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Abstract

Graph convolutional neural networks (GCNs) embed nodes in a graph into Eu-
clidean space, which has been shown to incur a large distortion when embedding
real-world graphs with scale-free or hierarchical structure. Hyperbolic geome-
try offers an exciting alternative, as it enables embeddings with much smaller
distortion. However, extending GCNs to hyperbolic geometry presents several
unique challenges because it is not clear how to define neural network operations,
such as feature transformation and aggregation, in hyperbolic space. Furthermore,
since input features are often Euclidean, it is unclear how to transform the features
into hyperbolic embeddings with the right amount of curvature. Here we propose
Hyperbolic Graph Convolutional Neural Network (HGCN), the first inductive
hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic
geometry to learn inductive node representations for hierarchical and scale-free
graphs. We derive GCNs operations in the hyperboloid model of hyperbolic space
and map Euclidean input features to embeddings in hyperbolic spaces with different
trainable curvature at each layer. Experiments demonstrate that HGCN learns
embeddings that preserve hierarchical structure, and leads to improved performance
when compared to Euclidean analogs, even with very low dimensional embeddings:
compared to state-of-the-art GCNs, HGCN achieves an error reduction of up to
63.1% in ROC AUC for link prediction and of up to 47.5% in F1 score for node
classification, also improving state-of-the art on the Pubmed dataset.

1 Introduction

Graph Convolutional Neural Networks (GCNs) are state-of-the-art models for representation learning
in graphs, where nodes of the graph are embedded into points in Euclidean space [15, 21, 41, 45].
However, many real-world graphs, such as protein interaction networks and social networks, often
exhibit scale-free or hierarchical structure [7, 50] and Euclidean embeddings, used by existing GCNs,
have a high distortion when embedding such graphs [6, 32]. In particular, scale-free graphs have
tree-like structure and in such graphs the graph volume, defined as the number of nodes within some
radius to a center node, grows exponentially as a function of radius. However, the volume of balls in
Euclidean space only grows polynomially with respect to the radius, which leads to high distortion
embeddings [34, 35], while in hyperbolic space, this volume grows exponentially.

Hyperbolic geometry offers an exciting alternative as it enables embeddings with much smaller
distortion when embedding scale-free and hierarchical graphs. However, current hyperbolic embed-
ding techniques only account for the graph structure and do not leverage rich node features. For
instance, Poincaré embeddings [29] capture the hyperbolic properties of real graphs by learning
shallow embeddings with hyperbolic distance metric and Riemannian optimization. Compared to
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Figure 1: (a) Poincaré disk geodesics (shortest path) connecting x and y for different curvatures. As
curvature (−1/K) decreases, the distance between x and y increases, and the geodesics lines get
closer to the origin. Center: Hyperbolic distance vs curvature. (b) Hyperbolic distance vs curvature.
(c) Poincaré geodesic lines.

deep alternatives such as GCNs, shallow embeddings do not take into account features of nodes, lack
scalability, and lack inductive capability. Furthermore, in practice, optimization in hyperbolic space
is challenging.

While extending GCNs to hyperbolic geometry has the potential to lead to more faithful embeddings
and accurate models, it also poses many hard challenges: (1) Input node features are usually Euclidean,
and it is not clear how to optimally use them as inputs to hyperbolic neural networks; (2) It is not
clear how to perform set aggregation, a key step in message passing, in hyperbolic space; And (3)
one needs to choose hyperbolic spaces with the right curvature at every layer of the GCN.

Here we solve the above challenges and propose Hyperbolic Graph Convolutional Networks
(HGCN)2, a class of graph representation learning models that combines the expressiveness of
GCNs and hyperbolic geometry to learn improved representations for real-world hierarchical and
scale-free graphs in inductive settings: (1) We derive the core operations of GCNs in the hyperboloid
model of hyperbolic space to transform input features which lie in Euclidean space into hyperbolic
embeddings; (2) We introduce a hyperbolic attention-based aggregation scheme that captures hierar-
chical structure of networks; (3) At different layers of HGCN we apply feature transformations in
hyperbolic spaces of different trainable curvatures to learn low-distortion hyperbolic embeddings.

The transformation between different hyperbolic spaces at different layers allows HGCN to find the
best geometry of hidden layers to achieve low distortion and high separation of class labels. Our
approach jointly trains the weights for hyperbolic graph convolution operators, layer-wise curvatures
and hyperbolic attention to learn inductive embeddings that reflect hierarchies in graphs.

Compared to Euclidean GCNs, HGCN offers improved expressiveness for hierarchical graph data.
We demonstrate the efficacy of HGCN in link prediction and node classification tasks on a wide
range of open graph datasets which exhibit different extent of hierarchical structure. Experiments
show that HGCN significantly outperforms Euclidean-based state-of-the-art graph neural networks
on scale-free graphs and reduces error from 11.5% up to 47.5% on node classification tasks and
from 28.2% up to 63.1% on link prediction tasks. Furthermore, HGCN achieves new state-of-the-art
results on the standard PUBMED benchmark. Finally, we analyze the notion of hierarchy learned by
HGCN and show how the embedding geometry transforms from Euclidean features to hyperbolic
embeddings.

2 Related Work

The problem of graph representation learning belongs to the field of geometric deep learning. There
exist two major types of approaches: transductive shallow embeddings and inductive GCNs.

2Project website with code and data: http://snap.stanford.edu/hgcn
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Transductive, shallow embeddings. The first type of approach attempts to optimize node embed-
dings as parameters by minimizing a reconstruction error. In other words, the mapping from nodes
in a graph to embeddings is an embedding look-up. Examples include matrix factorization [3, 24]
and random walk methods [12, 31]. Shallow embedding methods have also been developed in
hyperbolic geometry [29, 30] for reconstructing trees [35] and graphs [5, 13, 22], or embedding text
[39]. However, shallow (Euclidean and hyperbolic) embedding methods have three major downsides:
(1) They fail to leverage rich node feature information, which can be crucial in tasks such as node
classification. (2) These methods are transductive, and therefore cannot be used for inference on
unseen graphs. And, (3) they scale poorly as the number of model parameters grows linearly with the
number of nodes.

(Euclidean) Graph Neural Networks. Instead of learning shallow embeddings, an alternative
approach is to learn a mapping from input graph structure as well as node features to embeddings,
parameterized by neural networks [15, 21, 25, 41, 45, 47]. While various Graph Neural Network
architectures resolve the disadvantages of shallow embeddings, they generally embed nodes into a
Euclidean space, which leads to a large distortion when embedding real-world graphs with scale-free
or hierarchical structure. Our work builds on GNNs and extends them to hyperbolic geometry.

Hyperbolic Neural Networks. Hyperbolic geometry has been applied to neural networks, to prob-
lems of computer vision or natural language processing [8, 14, 18, 38]. More recently, hyperbolic
neural networks [10] were proposed, where core neural network operations are in hyperbolic space.
In contrast to previous work, we derive the core neural network operations in a more stable model of
hyperbolic space, and propose new operations for set aggregation, which enables HGCN to perform
graph convolutions with attention in hyperbolic space with trainable curvature. After NeurIPS 2019
announced accepted papers, we also became aware of the concurrently developed HGNN model [26]
for learning GNNs in hyperbolic space. The main difference with our work is how our HGCN defines
the architecture for neighborhood aggregation and uses a learnable curvature. Additionally, while
[26] demonstrates strong performance on graph classification tasks and provides an elegant extension
to dynamic graph embeddings, we focus on link prediction and node classification.

3 Background

Problem setting. Without loss of generality we describe graph representation learning on a single
graph. Let G = (V, E) be a graph with vertex set V and edge set E , and let (x0,E

i )i∈V be d-
dimensional input node features where 0 indicates the first layer. We use the superscript E to indicate
that node features lie in a Euclidean space and use H to denote hyperbolic features. The goal in graph
representation learning is to learn a mapping f which maps nodes to embedding vectors:

f : (V, E , (x0,E
i )i∈V)→ Z ∈ R|V|×d

′
,

where d′ � |V|. These embeddings should capture both structural and semantic information and can
then be used as input for downstream tasks such as node classification and link prediction.

Graph Convolutional Neural Networks (GCNs). Let N (i) = {j : (i, j) ∈ E} denote a set of
neighbors of i ∈ V , (W `, b`) be weights and bias parameters for layer `, and σ(·) be a non-linear
activation function. General GCN message passing rule at layer ` for node i then consists of:

h`,Ei = W `x`−1,Ei + b` (feature transform) (1)

x`,Ei = σ(h`,Ei +
∑

j∈N (i)

wijh
`,E
j ) (neighborhood aggregation) (2)

where aggregation weights wij can be computed using different mechanisms [15, 21, 41]. Message
passing is then performed for multiple layers to propagate messages over network neighborhoods.
Unlike shallow methods, GCNs leverage node features and can be applied to unseen nodes/graphs in
inductive settings.

The hyperboloid model of hyperbolic space. We review basic concepts of hyperbolic geometry
that serve as building blocks for HGCN. Hyperbolic geometry is a non-Euclidean geometry with a
constant negative curvature, where curvature measures how a geometric object deviates from a flat
plane (cf. [33] for an introduction to differential geometry). Here, we work with the hyperboloid
model for its simplicity and its numerical stability [30]. We review results for any constant negative
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curvature, as this allows us to learn curvature as a model parameter, leading to more stable optimization
(cf. Section 4.5 for more details).

Hyperboloid manifold. We first introduce our notation for the hyperboloid model of hyperbolic
space. Let 〈., .〉L : Rd+1 × Rd+1 → R denote the Minkowski inner product, 〈x,y〉L := −x0y0 +
x1y1 + . . . + xdyd. We denote Hd,K as the hyperboloid manifold in d dimensions with constant
negative curvature −1/K (K > 0), and TxHd,K the (Euclidean) tangent space centered at point x

Hd,K := {x ∈ Rd+1 : 〈x,x〉L = −K,x0 > 0} TxHd,K := {v ∈ Rd+1 : 〈v,x〉L = 0}. (3)

Now for v and w in TxHd,K , gKx (v,w) := 〈v,w〉L is a Riemannian metric tensor [33] and
(Hd,K , gKx ) is a Riemannian manifold with negative curvature −1/K. TxHd,K is a local, first-
order approximation of the hyperbolic manifold at x and the restriction of the Minkowski inner
product to TxHd,K is positive definite. TxHd,K is useful to perform Euclidean operations undefined
in hyperbolic space and we denote ||v||L =

√
〈v,v〉L as the norm of v ∈ TxHd,K .

Geodesics and induced distances. Next, we introduce the notion of geodesics and distances in
manifolds, which are generalizations of shortest paths in graphs or straight lines in Euclidean
geometry (Figure 1). Geodesics and distance functions are particularly important in graph embedding
algorithms, as a common optimization objective is to minimize geodesic distances between connected
nodes. Let x ∈ Hd,K and u ∈ TxHd,K , and assume that u is unit-speed, i.e. 〈u,u〉L = 1, then we
have the following result:
Proposition 3.1. Let x ∈ Hd,K , u ∈ TxHd,K be unit-speed. The unique unit-speed geodesic
γx→u(·) such that γx→u(0) = x, γ̇x→u(0) = u is γKx→u(t) = cosh

(
t√
K

)
x +
√
Ksinh

(
t√
K

)
u,

and the intrinsic distance function between two points x,y in Hd,K is then:

dKL (x,y) =
√
Karcosh(−〈x,y〉L/K). (4)

Exponential and logarithmic maps. Mapping between tangent space and hyperbolic space is done
by exponential and logarithmic maps. Given x ∈ Hd,K and a tangent vector v ∈ TxHd,K , the
exponential map expKx : TxHd,K → Hd,K assigns to v the point expKx (v) := γ(1), where γ is the
unique geodesic satisfying γ(0) = x and γ̇(0) = v. The logarithmic map is the reverse map that
maps back to the tangent space at x such that logKx (expKx (v)) = v. In general Riemannian manifolds,
these operations are only defined locally but in the hyperbolic space, they form a bijection between
the hyperbolic space and the tangent space at a point. We have the following direct expressions of
the exponential and the logarithmic maps, which allow us to perform operations on points on the
hyperboloid manifold by mapping them to tangent spaces and vice-versa:

Proposition 3.2. For x ∈ Hd,K , v ∈ TxHd,K and y ∈ Hd,K such that v 6= 0 and y 6= x, the
exponential and logarithmic maps of the hyperboloid model are given by:

expK
x (v) = cosh

(
||v||L√
K

)
x+
√
Ksinh

(
||v||L√
K

)
v

||v||L
, logKx (y) = dKL (x,y)

y + 1
K
〈x,y〉Lx

||y + 1
K
〈x,y〉Lx||L

.

4 Hyperbolic Graph Convolutional Networks

Here we introduce HGCN, a generalization of inductive GCNs in hyperbolic geometry that benefits
from the expressiveness of both graph neural networks and hyperbolic embeddings. First, since input
features are often Euclidean, we derive a mapping from Euclidean features to hyperbolic space. Next,
we derive two components of graph convolution: The analogs of Euclidean feature transformation
and feature aggregation (Equations 1, 2) in the hyperboloid model. Finally, we introduce the HGCN
algorithm with trainable curvature.

4.1 Mapping from Euclidean to hyperbolic spaces

HGCN first maps input features to the hyperboloid manifold via the exp map. Let x0,E ∈ Rd denote
input Euclidean features. For instance, these features could be produced by pre-trained Euclidean
neural networks. Let o := {

√
K, 0, . . . , 0} ∈ Hd,K denote the north pole (origin) in Hd,K , which we

4



Figure 2: HGCN neighborhood aggregation (Eq. 9) first maps messages/embeddings to the tangent
space, performs the aggregation in the tangent space, and then maps back to the hyperbolic space.

use as a reference point to perform tangent space operations. We have 〈(0,x0,E),o〉 = 0. Therefore,
we interpret (0,x0,E) as a point in ToHd,K and use Proposition 3.2 to map it to Hd,K with:

x0,H = expKo ((0,x0,E)) =

(√
Kcosh

( ||x0,E ||2√
K

)
,
√
Ksinh

( ||x0,E ||2√
K

)
x0,E

||x0,E ||2

)
. (5)

4.2 Feature transform in hyperbolic space

The feature transform in Equation 1 is used in GCN to map the embedding space of one layer to
the next layer embedding space and capture large neighborhood structures. We now want to learn
transformations of points on the hyperboloid manifold. However, there is no notion of vector space
structure in hyperbolic space. We build upon Hyperbolic Neural Network (HNN) [10] and derive
transformations in the hyperboloid model. The main idea is to leverage the exp and log maps in
Proposition 3.2 so that we can use the tangent space ToHd,K to perform Euclidean transformations.

Hyperboloid linear transform. Linear transformation requires multiplication of the embedding
vector by a weight matrix, followed by bias translation. To compute matrix vector multiplication, we
first use the logarithmic map to project hyperbolic points xH to ToHd,K . Thus the matrix representing
the transform is defined on the tangent space, which is Euclidean and isomorphic to Rd. We then
project the vector in the tangent space back to the manifold using the exponential map. Let W be a
d′ × d weight matrix. We define the hyperboloid matrix multiplication as:

W ⊗K xH := expKo (W logKo (xH)), (6)

where logKo (·) is on Hd,K and expKo (·) maps to Hd′,K . In order to perform bias addition, we use a
result from the HNN model and define b as an Euclidean vector located at ToHd,K . We then parallel
transport b to the tangent space of the hyperbolic point of interest and map it to the manifold. If
PKo→xH (·) is the parallel transport from ToHd

′,K to TxHHd′,K (c.f. Appendix A for details), the
hyperboloid bias addition is then defined as:

xH ⊕K b := expKxH(PKo→xH (b)). (7)

4.3 Neighborhood aggregation on the hyperboloid manifold

Aggregation (Equation 2) is a crucial step in GCNs as it captures neighborhood structures and features.
Suppose that xi aggregates information from its neighbors (xj)j∈N (i) with weights (wj)j∈N (i).
Mean aggregation in Euclidean GCN computes the weighted average

∑
j∈N (i) wjxj . An analog of

mean aggregation in hyperbolic space is the Fréchet mean [9], which, however, has no closed form
solution. Instead, we propose to perform aggregation in tangent spaces using hyperbolic attention.

Attention based aggregation. Attention in GCNs learns a notion of neighbors’ importance and
aggregates neighbors’ messages according to their importance to the center node. However, attention
on Euclidean embeddings does not take into account the hierarchical nature of many real-world
networks. Thus, we further propose hyperbolic attention-based aggregation. Given hyperbolic
embeddings (xHi ,x

H
j ), we first map xHi and xHj to the tangent space of the origin to compute
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(a) GCN layers. (b) HGCN layers. (c) GCN (left), HGCN (right).

Figure 3: Visualization of embeddings for LP on DISEASE and NC on CORA (visualization on the
Poincaré disk for HGCN). (a) GCN embeddings in first and last layers for DISEASE LP hardly
capture hierarchy (depth indicated by color). (b) In contrast, HGCN preserves node hierarchies. (c)
On CORA NC, HGCN leads to better class separation (indicated by different colors).

attention weights wij with concatenation and Euclidean Multi-layer Percerptron (MLP). We then
propose a hyperbolic aggregation to average nodes’ representations:

wij = SOFTMAXj∈N (i)(MLP(logKo (xHi )||logKo (xHj ))) (8)

AGGK(xH)i = expKxH
i

( ∑
j∈N (i)

wij logKxH
i

(xHj )

)
. (9)

Note that our proposed aggregation is directly performed in the tangent space of each center point
xHi , as this is where the Euclidean approximation is best (cf. Figure 2). We show in our ablation
experiments (cf. Table 2) that this local aggregation outperforms aggregation in tangent space at the
origin (AGGo), due to the fact that relative distances have lower distortion in our approach.

Non-linear activation with different curvatures. Analogous to Euclidean aggregation (Equation
2), HGCN uses a non-linear activation function, σ(·) such that σ(0) = 0, to learn non-linear
transformations. Given hyperbolic curvatures −1/K`−1,−1/K` at layer ` − 1 and ` respectively,
we introduce a hyperbolic non-linear activation σ⊗

K`−1,K` with different curvatures. This step is
crucial as it allows us to smoothly vary curvature at each layer. More concretely, HGCN applies the
Euclidean non-linear activation in ToHd,K`−1 and then maps back to Hd,K` :

σ⊗
K`−1,K`

(xH) = expK`
o (σ(logK`−1

o (xH))). (10)

Note that in order to apply the exponential map, points must be located in the tangent space at the
north pole. Fortunately, tangent spaces of the north pole are shared across hyperboloid manifolds of
the same dimension that have different curvatures, making Equation 10 mathematically correct.

4.4 HGCN architecture

Having introduced all the building blocks of HGCN, we now summarize the model architecture.
Given a graph G = (V, E) and input Euclidean features (x0,E)i∈V , the first layer of HGCN maps
from Euclidean to hyperbolic space as detailed in Section 4.1. HGCN then stacks multiple hyperbolic
graph convolution layers. At each layer HGCN transforms and aggregates neighbour’s embeddings
in the tangent space of the center node and projects the result to a hyperbolic space with different
curvature. Hence the message passing in a HGCN layer is:

h`,Hi = (W ` ⊗K`−1 x`−1,Hi )⊕K`−1 b` (hyperbolic feature transform) (11)

y`,Hi = AGGK`−1(h`,H)i (attention-based neighborhood aggregation) (12)

x`,Hi = σ⊗
K`−1,K`

(y`,Hi ) (non-linear activation with different curvatures) (13)

where−1/K`−1 and−1/K` are the hyperbolic curvatures at layer `−1 and ` respectively. Hyperbolic
embeddings (xL,H)i∈V at the last layer can then be used to predict node attributes or links.

For link prediction, we use the Fermi-Dirac decoder [23, 29], a generalization of sigmoid, to compute
probability scores for edges:

p((i, j) ∈ E|xL,Hi ,xL,Hj ) =
[
e(d

KL
L (xL,H

i ,xL,H
j )2−r)/t + 1

]−1
, (14)
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Dataset DISEASE DISEASE-M HUMAN PPI AIRPORT PUBMED CORA
Hyperbolicity δ δ = 0 δ = 0 δ = 1 δ = 1 δ = 3.5 δ = 11

Method LP NC LP NC LP NC LP NC LP NC LP NC

Sh
al

lo
w EUC 59.8 ± 2.0 32.5 ± 1.1 - - - - 92.0 ± 0.0 60.9 ± 3.4 83.3 ± 0.1 48.2 ± 0.7 82.5 ± 0.3 23.8 ± 0.7

HYP [29] 63.5 ± 0.6 45.5 ± 3.3 - - - - 94.5 ± 0.0 70.2 ± 0.1 87.5 ± 0.1 68.5 ± 0.3 87.6 ± 0.2 22.0 ± 1.5
EUC-MIXED 49.6 ± 1.1 35.2 ± 3.4 - - - - 91.5 ± 0.1 68.3 ± 2.3 86.0 ± 1.3 63.0 ± 0.3 84.4 ± 0.2 46.1 ± 0.4
HYP-MIXED 55.1 ± 1.3 56.9 ± 1.5 - - - - 93.3 ± 0.0 69.6 ± 0.1 83.8 ± 0.3 73.9 ± 0.2 85.6 ± 0.5 45.9 ± 0.3

N
N MLP 72.6 ± 0.6 28.8 ± 2.5 55.3 ± 0.5 55.9 ± 0.3 67.8 ± 0.2 55.3±0.4 89.8 ± 0.5 68.6 ± 0.6 84.1 ± 0.9 72.4 ± 0.2 83.1 ± 0.5 51.5 ± 1.0

HNN[10] 75.1 ± 0.3 41.0 ± 1.8 60.9 ± 0.4 56.2 ± 0.3 72.9 ± 0.3 59.3 ± 0.4 90.8 ± 0.2 80.5 ± 0.5 94.9 ± 0.1 69.8 ± 0.4 89.0 ± 0.1 54.6 ± 0.4

G
N

N

GCN[21] 64.7 ±0.5 69.7 ± 0.4 66.0 ± 0.8 59.4 ± 3.4 77.0 ± 0.5 69.7 ± 0.3 89.3 ± 0.4 81.4 ± 0.6 91.1 ± 0.5 78.1 ± 0.2 90.4 ± 0.2 81.3 ± 0.3
GAT [41] 69.8 ±0.3 70.4 ± 0.4 69.5 ± 0.4 62.5 ± 0.7 76.8 ± 0.4 70.5 ± 0.4 90.5 ± 0.3 81.5 ± 0.3 91.2 ± 0.1 79.0 ± 0.3 93.7 ± 0.1 83.0 ± 0.7
SAGE [15] 65.9 ± 0.3 69.1 ± 0.6 67.4 ± 0.5 61.3 ± 0.4 78.1 ± 0.6 69.1 ± 0.3 90.4 ± 0.5 82.1 ± 0.5 86.2 ± 1.0 77.4 ± 2.2 85.5 ± 0.6 77.9 ± 2.4
SGC [44] 65.1 ± 0.2 69.5 ± 0.2 66.2 ± 0.2 60.5 ± 0.3 76.1 ± 0.2 71.3 ± 0.1 89.8 ± 0.3 80.6 ± 0.1 94.1 ± 0.0 78.9 ± 0.0 91.5 ± 0.1 81.0 ± 0.1

O
ur

s HGCN 90.8 ± 0.3 74.5 ± 0.9 78.1 ± 0.4 72.2 ± 0.5 84.5 ± 0.4 74.6 ± 0.3 96.4 ± 0.1 90.6 ± 0.2 96.3 ± 0.0 80.3 ± 0.3 92.9 ± 0.1 79.9 ± 0.2

(%) ERR RED -63.1% -13.8% -28.2% -25.9% -29.2% -11.5% -60.9% -47.5% -27.5% -6.2% +12.7% +18.2%

Table 1: ROC AUC for Link Prediction (LP) and F1 score for Node Classification (NC) tasks. For
inductive datasets, we only evaluate inductive methods since shallow methods cannot generalize to
unseen nodes/graphs. We report graph hyperbolicity values δ (lower is more hyperbolic).

where dKL

L (·, ·) is the hyperbolic distance and r and t are hyper-parameters. We then train HGCN by
minimizing the cross-entropy loss using negative sampling.

For node classification, we map the output of the last HGCN layer to the tangent space of the origin
with the logarithmic map logKL

o (·) and then perform Euclidean multinomial logistic regression. Note
that another possibility is to directly classify points on the hyperboloid manifold using the hyperbolic
multinomial logistic loss [10]. This method performs similarly to Euclidean classification (cf. [10]
for an empirical comparison). Finally, we also add a link prediction regularization objective in node
classification tasks, to encourage embeddings at the last layer to preserve the graph structure.

4.5 Trainable curvature

We further analyze the effect of trainable curvatures in HGCN. Theorem 4.1 (proof in Appendix
B) shows that assuming infinite precision, for the link prediction task, we can achieve the same
performance for varying curvatures with an affine invariant decoder by scaling embeddings.
Theorem 4.1. For any hyperbolic curvatures −1/K,−1/K ′ < 0, for any node embeddings H =

{hi} ⊂ Hd,K of a graph G, we can find H ′ ⊂ Hd,K′ , H ′ = {h′i|h′i =
√

K′

K hi}, such that the
reconstructed graph from H ′ via the Fermi-Dirac decoder is the same as the reconstructed graph
from H , with different decoder parameters (r, t) and (r′, t′).

However, despite the same expressive power, adjusting curvature at every layer is important for good
performance in practice due to factors of limited machine precision and normalization. First, with
very low or very high curvatures, the scaling factor K

′

K in Theorem 4.1 becomes close to 0 or very
large, and limited machine precision results in large error due to rounding. This is supported by
Figure 4 and Table 2 where adjusting and training curvature lead to significant performance gain.
Second, the norms of hidden layers that achieve the same local minimum in training also vary by a
factor of

√
K. In practice, however, optimization is much more stable when the values are normalized

[16]. In the context of HGCN, trainable curvature provides a natural way to learn embeddings of the
right scale at each layer, improving optimization. Figure 4 shows the effect of decreasing curvature
(K = +∞ is the Euclidean case) on link prediction performance.

5 Experiments

We comprehensively evaluate our method on a variety of networks, on both node classification (NC)
and link prediction (LP) tasks, in transductive and inductive settings. We compare performance of
HGCN against a variety of shallow and GNN-based baselines. We further use visualizations to
investigate the expressiveness of HGCN in link prediction tasks, and also demonstrate its ability to
learn embeddings that capture the hierarchical structure of many real-world networks.

5.1 Experimental setup

Datasets. We use a variety of open transductive and inductive datasets that we detail below (more
details in Appendix). We compute Gromovs δ−hyperbolicity [1, 28, 17], a notion from group theory
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Figure 4: Decreasing curvature (−1/K) improves
link prediction performance on DISEASE.

Method DISEASE AIRPORT
HGCN 78.4 ± 0.3 91.8 ± 0.3

HGCN-ATTo 80.9 ± 0.4 92.3 ± 0.3
HGCN-ATT 82.0 ± 0.2 92.5 ± 0.2

HGCN-C 89.1 ± 0.2 94.9 ± 0.3
HGCN-ATT-C 90.8 ± 0.3 96.4 ± 0.1

Table 2: ROC AUC for link prediction on AIR-
PORT and DISEASE datasets.

that measures how tree-like a graph is. The lower δ, the more hyperbolic is the graph dataset, and
δ = 0 for trees. We conjecture that HGCN works better on graphs with small δ-hyperbolicity.

1. Citation networks. CORA [36] and PUBMED [27] are standard benchmarks describing citation
networks where nodes represent scientific papers, edges are citations between them, and node
labels are academic (sub)areas. CORA contains 2,708 machine learning papers divided into 7
classes while PUBMED has 19,717 publications in the area of medicine grouped in 3 classes.

2. Disease propagation tree. We simulate the SIR disease spreading model [2], where the label of a
node is whether the node was infected or not. Based on the model, we build tree networks, where
node features indicate the susceptibility to the disease. We build transductive and inductive variants
of this dataset, namely DISEASE and DISEASE-M (which contains multiple tree components).

3. Protein-protein interactions (PPI) networks. PPI is a dataset of human PPI networks [37].
Each human tissue has a PPI network, and the dataset is a union of PPI networks for human tissues.
Each protein has a label indicating the stem cell growth rate after 19 days [40], which we use
for the node classification task. The 16-dimensional feature for each node represents the RNA
expression levels of the corresponding proteins, and we perform log transform on the features.

4. Flight networks. AIRPORT is a transductive dataset where nodes represent airports and edges
represent the airline routes as from OpenFlights.org. Compared to previous compilations [49], our
dataset has larger size (2,236 nodes). We also augment the graph with geographic information
(longitude, latitude and altitude), and GDP of the country where the airport belongs to. We use the
population of the country where the airport belongs to as the label for node classification.

Baselines. For shallow methods, we consider Euclidean embeddings (EUC) and Poincaré embeddings
(HYP) [29]. We conjecture that HYP will outperform EUC on hierarchical graphs. For a fair
comparison with HGCN which leverages node features, we also consider EUC-MIXED and HYP-
MIXED baselines, where we concatenate the corresponding shallow embeddings with node features,
followed by a MLP to predict node labels or links. For state-of-the-art Euclidean GNN models,
we consider GCN [21], GraphSAGE (SAGE) [15], Graph Attention Networks (GAT) [41] and
Simplified Graph Convolution (SGC) [44]3. We also consider feature-based approaches: MLP and
its hyperbolic variant (HNN) [10], which does not utilize the graph structure.

Training. For all methods, we perform a hyper-parameter search on a validation set over initial
learning rate, weight decay, dropout4, number of layers, and activation functions. We measure
performance on the final test set over 10 random parameter initializations. For fairness, we also
control the number of dimensions to be the same (16) for all methods. We optimize all models with
Adam [19], except Poincaré embeddings which are optimized with RiemannianSGD [4, 48]. Further
details can be found in Appendix. We open source our implementation5 of HGCN and baselines.

Evaluation metric. In transductive LP tasks, we randomly split edges into 85/5/10% for training,
validation and test sets. For transductive NC, we use 70/15/15% splits for AIRPORT, 30/10/60%
splits for DISEASE, and we use standard splits [21, 46] with 20 train examples per class for CORA
and PUBMED. One of the main advantages of HGCN over related hyperbolic graph embedding is its
inductive capability. For inductive tasks, the split is performed across graphs. All nodes/edges in

3The equivalent of GCN in link prediction is GAE [20]. We did not compare link prediction GNNs based on
shallow embeddings such as [49] since they are not inductive.

4HGCN uses DropConnect [42], as described in Appendix C.
5Code available at http://snap.stanford.edu/hgcn. We provide HGCN implementations for hyperboloid and

Poincaré models. Empirically, both models give similar performance but hyperboloid model offers more stable
optimization, because Poincaré distance is numerically unstable [30].
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Figure 5: Attention: Euclidean GAT (left), HGCN (right). Each graph represents a 2-hop neighbor-
hood of the DISEASE-M dataset.

training graphs are considered the training set, and the model is asked to predict node class or unseen
links for test graphs. Following previous works, we evaluate link prediction by measuring area under
the ROC curve on the test set and evaluate node classification by measuring F1 score, except for
CORA and PUBMED, where we report accuracy as is standard in the literature.

5.2 Results

Table 1 reports the performance of HGCN in comparison to baseline methods. HGCN works
best in inductive scenarios where both node features and network topology play an important role.
The performance gain of HGCN with respect to Euclidean GNN models is correlated with graph
hyperbolicity. HGCN achieves an average of 45.4% (LP) and 12.3% (NC) error reduction compared
to the best deep baselines for graphs with high hyperbolicity (low δ), suggesting that GNNs can
significantly benefit from hyperbolic geometry, especially in link prediction tasks. Furthermore,
the performance gap between HGCN and HNN suggests that neighborhood aggregation has been
effective in learning node representations in graphs. For example, in disease spread datasets, both
Euclidean attention and hyperbolic geometry lead to significant improvement of HGCN over other
baselines. This can be explained by the fact that in disease spread trees, parent nodes contaminate
their children. HGCN can successfully model these asymmetric and hierarchical relationships with
hyperbolic attention and improves performance over all baselines.

On the CORA dataset with low hyperbolicity, HGCN does not outperform Euclidean GNNs, sug-
gesting that Euclidean geometry is better for its underlying graph structure. However, for small
dimensions, HGCN is still significantly more effective than GCN even with CORA. Figure 3c shows
2-dimensional HGCN and GCN embeddings trained with LP objective, where colors denote the
label class. HGCN achieves much better label class separation.

5.3 Analysis

Ablations. We further analyze the effect of proposed components in HGCN, namely hyperbolic
attention (ATT) and trainable curvature (C) on AIRPORT and DISEASE datasets in Table 2. We
observe that both attention and trainable curvature lead to performance gains over HGCN with fixed
curvature and no attention. Furthermore, our attention model ATT outperforms ATTo (aggregation
in tangent space at o), and we conjecture that this is because the local Euclidean average is a better
approximation near the center point rather than near o. Finally, the addition of both ATT and C
improves performance even further, suggesting that both components are important in HGCN.

Visualizations. We first visualize the GCN and HGCN embeddings at the first and last layers in
Figure 3. We train HGCN with 3-dimensional hyperbolic embeddings and map them to the Poincaré
disk which is better for visualization. In contrast to GCN, tree structure is preserved in HGCN,
where nodes close to the center are higher in the hierarchy of the tree. This way HGCN smoothly
transforms Euclidean features to Hyperbolic embeddings that preserve node hierarchy.

Figure 5 shows the attention weights in the 2-hop neighborhood of a center node (red) for the
DISEASE dataset. The red node is the node where we compute attention. The darkness of the color
for other nodes denotes their hierarchy. The attention weights for nodes in the neighborhood are
visualized by the intensity of edges. We observe that in HGCN the center node pays more attention
to its (grand)parent. In contrast to Euclidean GAT, our aggregation with attention in hyperbolic
space allows us to pay more attention to nodes with high hierarchy. Such attention is crucial to good
performance in DISEASE, because only sick parents will propagate the disease to their children.
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6 Conclusion

We introduced HGCN, a novel architecture that learns hyperbolic embeddings using graph convolu-
tional networks. In HGCN, the Euclidean input features are successively mapped to embeddings in
hyperbolic spaces with trainable curvatures at every layer. HGCN achieves new state-of-the-art in
learning embeddings for real-world hierarchical and scale-free graphs.
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A Review of Differential Geometry

We first recall some definitions of differential and hyperbolic geometry.

A.1 Differential geometry

Manifold. An d−dimensional manifoldM is a topological space that locally resembles the topologi-
cal space Rd near each point. More concretely, for each point x onM, we can find a homeomorphism
(continuous bijection with continuous inverse) between a neighbourhood of x and Rd. The notion of
manifold is a generalization of surfaces in high dimensions.

Tangent space. Intuitively, if we think ofM as a d−dimensional manifold embedded in Rd+1, the
tangent space TxM at point x onM is a d−dimensional hyperplane in Rd+1 that best approximates
M around x. Another possible interpretation for TxM is that it contains all the possible directions
of curves onM passing through x. The elements of TxM are called tangent vectors and the union
of all tangent spaces is called the tangent bundle TM = ∪x∈MTxM.

Riemannian manifold. A Riemannian manifold is a pair (M,g), whereM is a smooth manifold
and g = (gx)x∈M is a Riemannian metric, that is a family of smoothly varying inner products on
tangent spaces, gx : TxM×TxM→ R. Riemannian metrics can be used to measure distances on
manifolds.

Distances and geodesics. Let (M,g) be a Riemannian manifold. For v ∈ TxM, define the norm of
v by ||v||g :=

√
gx(v,v). Suppose γ : [a, b]→M is a smooth curve onM. Define the length of γ

by:

L(γ) :=

∫ b

a

||γ′(t)||gdt.

Now with this definition of length, every connected Riemannian manifold becomes a metric space
and the distance d :M×M→ [0,∞) is defined as:

d(x,y) := infγ{L(γ) : γ is a continuously differentiable curve joining x and y}.

Geodesic distances are a generalization of straight lines (or shortest paths) to non-Euclidean geometry.
A curve γ : [a, b]→M is geodesic if d(γ(t), γ(s)) = L(γ|[t,s])∀(t, s) ∈ [a, b](t < s).

Parallel transport. Parallel transport is a generalization of translation to non-Euclidean geometry.
Given a smooth manifoldM, parallel transport Px→y(·) maps a vector v ∈ TxM to Px→y(v) ∈
TyM. In Riemannian geometry, parallel transport preserves the Riemannian metric tensor (norm,
inner products...).

Curvature. At a high level, curvature measures how much a geometric object such as surfaces
deviate from a flat plane. For instance, the Euclidean space has zero curvature while spheres have
positive curvature. We illustrate the concept of curvature in Figure 6.

A.2 Hyperbolic geometry

Hyperbolic space. The hyperbolic space in d dimensions is the unique complete, simply connected
d−dimensional Riemannian manifold with constant negative sectional curvature. There exist several
models of hyperbolic space such as the Poincaré model or the hyperboloid model (also known as
the Minkowski model or the Lorentz model). In what follows, we review the Poincaré and the
hyperboloid models of hyperbolic space as well as connections between these two models.
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Figure 6: From left to right: a surface of negative curvature, a surface of zero curvature, and a surface
of positive curvature.

A.2.1 Poincaré ball model

Let ||.||2 be the Euclidean norm. The Poincaré ball model with unit radius and constant negative
curvature −1 in d dimensions is the Riemannian manifold (Dd,1, (gx)x) where

Dd,1 := {x ∈ Rd : ||x||2 < 1},
and

gx = λ2xId,

where λx := 2
1−||x||22

and Id is the identity matrix. The induced distance between two points (x,y)

in Dd,1 can be computed as:

d1D(x,y) = arcosh

(
1 + 2

||x− y||22
(1− ||x||22)(1− ||y||22)

)
.

A.2.2 Hyperboloid model

Hyperboloid model. Let 〈., .〉L : Rd+1 × Rd+1 → R denote the Minkowski inner product,

〈x,y〉L := −x0y0 + x1y1 + . . .+ xdyd.

The hyperboloid model with unit imaginary radius and constant negative curvature−1 in d dimensions
is defined as the Riemannian manifold (Hd,1, (gx)x) where

Hd,1 := {x ∈ Rd+1 : 〈x,x〉L = −1, x0 > 0},
and

gx :=


−1

1
. . .

1

 .

The induced distance between two points (x,y) in Hd,1 can be computed as:

d1L(x,y) = arcosh(−〈x,y〉L).

Geodesics. We recall a result that gives the unit speed geodesics in the hyperboloid model with
curvature −1 [33]. This result can be used to show Propositions 3.1 and 3.2 for the hyperboloid
manifold with negative curvature −1/K, and then learn K as a model parameter in HGCN.

Theorem A.1. Let x ∈ Hd,1 and u ∈ TxHd,1 unit-speed (i.e. 〈u,u〉L = 1). The unique unit-speed
geodesic γx→u : [0, 1]→ Hd,1 such that γx→u(0) = x and γ̇x→u(0) = u is given by:

γx→u(t) = cosh(t)x + sinh(t)u.
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Figure 7: Illustration of the hyperboloid model (top) in 3 dimensions and its connection to the
Poincaré disk (bottom).

Parallel Transport. If two points x and y on the hyperboloid Hd,1 are connected by a geodesic,
then the parallel transport of a tangent vector v ∈ TxHd,1 to the tangent space TyHd,1 is:

Px→y(v) = v − 〈logx(y),v〉L
d1L(x,y)2

(logx(y) + logy(x)). (15)

Projections. Finally, we recall projections to the hyperboloid manifold and its corresponding tangent
spaces. A point x = (x0,x1:d) ∈ Rd+1 can be projected on the hyperboloid manifold Hd,1 with:

ΠRd+1→Hd,1(x) := (
√

1 + ||x1:d||22,x1:d). (16)

Similarly, a point v ∈ Rd+1 can be projected on TxHd,1 with:

ΠRd+1→TxHd,1(v) := v + 〈x,v〉Lx. (17)

In practice, these projections are very useful for optimization purposes as they constrain embeddings
and tangent vectors to remain on the manifold and tangent spaces.

A.2.3 Connection between the Poincaré ball model and the hyperboloid model

While the hyperboloid model tends to be more stable for optimization than the Poincaré model [30],
the Poincaré model is very interpretable and embeddings can be directly visualized on the Poincaré
disk. Fortunately, these two models are isomorphic (cf. Figure 7) and there exist a diffeomorphism
ΠHd,1→Dd,1(·) mapping one space onto the other:

ΠHd,1→Dd,1(x0, . . . , xd) =
(x1, . . . , xd)

x0 + 1
(18)

and ΠDd,1→Hd,1(x1, . . . , xd) =
(1 + ||x||22, 2x1, . . . , 2xd)

1− ||x||22
. (19)

B Proofs of Results

B.1 Hyperboloid model of hyperbolic space

For completeness, we re-derive results of hyperbolic geometry for any arbitrary curvature. Similar
derivations can be found in the literature [43].
Proposition 3.1. Let x ∈ Hd,K , u ∈ TxHd,K be unit-speed. The unique unit-speed geodesic
γx→u(·) such that γx→u(0) = x, γ̇x→u(0) = u is γKx→u(t) = cosh

(
t√
K

)
x +
√
Ksinh

(
t√
K

)
u,

and the intrinsic distance function between two points x,y in Hd,K is then:

dKL (x,y) =
√
Karcosh(−〈x,y〉L/K). (4)
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Proof. Using theorem A.1, we know that the unique unit-speed geodesic γy→u(.) in Hd,1 must
satisfy

γy→u(0) = y and γ̇y→u(0) = u and
d

dt
〈γ̇y→u(t), γ̇y→u(t)〉L = 0 ∀t,

and is given by
γy→u(t) = cosh(t)y + sinh(t)u.

Now let x ∈ Hd,K and u ∈ TxHd,K be unit-speed and denote γKx→u(.) the unique unit-speed
geodesic in Hd,K such that γKx→u(0) = x and γ̇Kx→u(0) = u. Let us define y := x√

K
∈ Hd,1 and

φy→u(t) = 1√
K
γKx→u(

√
Kt). We have,

φy→u(0) = y and φ̇y→u(0) = u,

and since γKx→u(.) is the unique unit-speed geodesic in Hd,K , we also have

d

dt
〈φ̇y→u(t), φ̇y→u(t)〉L = 0 ∀t.

Furthermore, we have y ∈ Hd,1, u ∈ TyHd,1 as 〈u,y〉L = 1√
K
〈u,x〉L = 0 and

〈φy→u(t), φy→u(t)〉L = −1∀t. Therefore φy→u(.) is a unit-speed geodesic in Hd,1 and we get

φy→u(t) = cosh(t)y + sinh(t)u.

Finally, this leads to

γKx→u(t) = cosh(
t√
K

)x +
√
Ksinh(

t√
K

)u.

Proposition 3.2. For x ∈ Hd,K , v ∈ TxHd,K and y ∈ Hd,K such that v 6= 0 and y 6= x, the
exponential and logarithmic maps of the hyperboloid model are given by:

expK
x (v) = cosh

(
||v||L√
K

)
x+
√
Ksinh

(
||v||L√
K

)
v

||v||L
, logKx (y) = dKL (x,y)

y + 1
K
〈x,y〉Lx

||y + 1
K
〈x,y〉Lx||L

.

Proof. We use a similar reasoning to that in Corollary 1.1 in [11]. Let γKx→v(.) be the unique geodesic
such that γKx→v(0) = x and γ̇Kx→v(0) = v. Let us define u := v

||v||L where ||v||L =
√
〈v,v〉L is

the Minkowski norm of v and

φKx→u(t) := γKx→v

(
t

||v||L

)
.

φx→u(t) satisfies,

φKx→u(0) = x and φ̇Kx→u(0) = u and
d

dt
〈φ̇Kx→u(t), φ̇Kx→u(t)〉L = 0 ∀t.

Therefore φKx→u(.) is a unit-speed geodesic in Hd,K and we get

φKx→u(t) = cosh(
t√
K

)x +
√
Ksinh(

t√
K

)u.

By identification, this leads to

γKx→v(t) = cosh

( ||v||L√
K

t

)
x +
√
Ksinh

( ||v||L√
K

t

)
v

||v||L
.

We can use this result to derive exponential and logarthimic maps on the hyperboloid model. We
know that expKx (v) = γKx→v(1). Therefore we get,

expKx (v) = cosh

( ||v||L√
K

)
x +
√
Ksinh

( ||v||L√
K

)
v

||v||L
.
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Now let y = expKx (v). We have 〈x,y〉L = −Kcosh

(
||v||L√
K

)
as 〈x,x〉L = −K and 〈x,v〉L = 0.

Therefore y + 1
K 〈x,y〉Lx =

√
Ksinh

(
||v||L√
K

)
v
||v||L and we get

v =
√
Karsinh

( ||y + 1
K 〈x,y〉Lx||L√

K

)
y + 1

K 〈x,y〉Lx
||y + 1

K 〈x,y〉Lx||L
,

where ||y + 1
K 〈x,y〉L||L is well defined since y + 1

K 〈x,y〉Lx ∈ TxHd,K . Note that,

||y +
1

K
〈x,y〉Lx||L =

√
〈y,y〉L +

2

K
〈x,y〉2L +

1

K2
〈x,y〉2L〈x,x〉L

=

√
−K +

1

K
〈x,y〉2L

=
√
K

√
〈 x√

K
,

y√
K
〉2L − 1

=
√
Ksinh arcosh

(
− 〈 x√

K
,

y√
K
〉L
)

as 〈 x√
K
, y√

K
〉L ≤ −1. Therefore, we finally have

logKx (y) =
√
Karcosh

(
− 〈 x√

K
,

y√
K
〉L
)

y + 1
K 〈x,y〉Lx

||y + 1
K 〈x,y〉Lx||L

.

B.2 Curvature

Lemma 1. For any hyperbolic spaces with constant curvatures −1/K,−1/K ′ > 0, and any pair of
hyperbolic points (u,v) embedded in Hd,K , there exists a mapping φ : Hd,K → Hd,K′ to another
pair of corresponding hyperbolic points in Hd,K′ , (φ(u), φ(v)) such that the Minkowski inner
product is scaled by a constant factor.

Proof. For any hyperbolic embedding x = (x0, x1, . . . , xd) ∈ Hd,K we have the identity: 〈x,x〉L =

−x20 +
∑d
i=1 x

2
i = −K. For any hyperbolic curvature −1/K < 0, consider the mapping φ(x) =√

K′

K x. Then we have the identity 〈φ(x), φ(x)〉L = −K ′ and therefore φ(x) ∈ Hd,K′ . For any pair

(u, v), 〈φ(u), φ(v)〉L = K′

K

(
−u0v0 +

∑d
i=1 uivi

)
= K′

K 〈u,v〉L. The factor K
′

K only depends on
curvature, but not the specific embeddings.

Lemma 1 implies that given a set of embeddings learned in hyperbolic space Hd,K , we can find
embeddings in another hyperbolic space with different curvature, Hd,K′ , such that the Minkowski
inner products for all pairs of embeddings are scaled by the same factor K

′

K .

For link prediction tasks, Theorem 4.1 shows that with infinite precision, the expressive power of
hyperbolic spaces with varying curvatures is the same.

Theorem 4.1. For any hyperbolic curvatures −1/K,−1/K ′ < 0, for any node embeddings H =

{hi} ⊂ Hd,K of a graph G, we can find H ′ ⊂ Hd,K′ , H ′ = {h′i|h′i =
√

K′

K hi}, such that the
reconstructed graph from H ′ via the Fermi-Dirac decoder is the same as the reconstructed graph
from H , with different decoder parameters (r, t) and (r′, t′).

Proof. The Fermi-Dirac decoder predicts that there exists a link between node i and j iif[
e(d

K
L (hi,hj)−r)/t + 1

]−1
≥ b, where b ∈ (0, 1) is the threshold for determining existence of

links. The criterion is equivalent to dKL (hi,hj) ≤ r + t log( 1−b
b ).
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Name Nodes Edges Classes Node features
CORA 2708 5429 7 1433

PUBMED 19717 88651 3 500
HUMAN PPI 17598 5429 4 17

AIRPORT 3188 18631 4 4
DISEASE 1044 1043 2 1000

DISEASE-M 43193 43102 2 1000
Table 3: Benchmarks’ statistics

Given H = {h1, . . . ,hn}, the graph GH reconstructed with the Fermi-Dirac decoder has the edge

set EH =
{

(i, j)|dKL (hi,hj) ≤ r + t log( 1−b
b )
}

. Consider the mapping to Hd,K′ , φ(x) :=
√

K′

K x.
Let H ′ = {φ(h1), . . . , φ(hn)}. By Lemma 1,

dK
′

L (φ(hi), φ(hj)) =
√
K ′arcosh

(
−K

′

K
〈hi,hj〉L/K ′

)
=

√
K ′

K
dKL (hi,hj). (20)

Due to linearity, we can find decoder parameter, r′ and t′ that satisfy r′ + t′ log( 1−b
b ) =√

K′

K (r + t log( 1−b
b )). With such r′, t′, the criterion dKL (hi,hj) ≤ r + t log( 1−b

b ) is equiva-

lent to dK
′

L (φ(hi), φ(hj)) ≤ r′ + t′ log( 1−b
b ). Therefore, the reconstructed graph GH′ based on the

set of embeddings H ′ is identical to GH .

C Experimental Details

C.1 Dataset statistics

We detail the dataset statistics in Table 3.

C.2 Training details

Here we present details of HGCN’s training pipeline, with optimization and incorporation of
DropConnect [42].

Parameter optimization. Recall that linear transformations and attention are defined on the tangent
space of points. Therefore the linear layer and attention parameters are Euclidean. For bias, there
are two options: one can either define parameters in hyperbolic space, and use hyperbolic addition
operation [10], or define parameters in Euclidean space, and use Euclidean addition after transforming
the points into the tangent space. Through experiments we find that Euclidean optimization is much
more stable, and gives slightly better test performance compared to Riemannian optimization, if
we define parameters such as bias in hyperbolic space. Hence different from shallow hyperbolic
embeddings, although our model and embeddings are hyperbolic, the learnable graph convolution
parameters can be optimized via Euclidean optimization (Adam Optimizer [19]), thanks to exponential
and logarithmic maps. Note that to train shallow Poincaré embeddings, we use Riemannian Stochastic
Gradient Descent [4, 48], since its model parameters are hyperbolic. We use early stopping based on
validation set performance with a patience of 100 epochs.

Drop connection. Since rescaling vectors in hyperbolic space requires exponential and logarithmic
maps, and is conceptually not tied to the inverse dropout rate in terms of re-normalizing L1 norm,
Dropout cannot be directly applied in HGCN. However, as a result of using Euclidean parameters in
HGCN, DropConnect [42], the generalization of Dropout, can be used as a regularization. DropCon-
nect randomly zeros out the neural network connections, i.e. elements of the Euclidean parameters
during training time, improving the generalization of HGCN.

Projections. Finally, we apply projections similar to Equations 16 and 17 for the hyperboloid model
Hd,K after each feature transform and log or exp map, to constrain embeddings and tangent vectors
to remain on the manifold and tangent spaces.
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