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Abstract

Graph Neural Networks (GNNs) are a powerful tool for machine learning on
graphs. GNNs combine node feature information with the graph structure by
recursively passing neural messages along edges of the input graph. However, in-
corporating both graph structure and feature information leads to complex models
and explaining predictions made by GNNs remains unsolved. Here we propose
GNNEXPLAINER, the first general, model-agnostic approach for providing inter-
pretable explanations for predictions of any GNN-based model on any graph-based
machine learning task. Given an instance, GNNEXPLAINER identifies a compact
subgraph structure and a small subset of node features that have a crucial role in
GNN’s prediction. Further, GNNEXPLAINER can generate consistent and concise
explanations for an entire class of instances. We formulate GNNEXPLAINER as an
optimization task that maximizes the mutual information between a GNN’s predic-
tion and distribution of possible subgraph structures. Experiments on synthetic and
real-world graphs show that our approach can identify important graph structures
as well as node features, and outperforms alternative baseline approaches by up to
43.0% in explanation accuracy. GNNEXPLAINER provides a variety of benefits,
from the ability to visualize semantically relevant structures to interpretability, to
giving insights into errors of faulty GNNs.

1 Introduction

In many real-world applications, including social, information, chemical, and biological domains,
data can be naturally modeled as graphs [9, 41, 49]. Graphs are powerful data representations but
are challenging to work with because they require modeling of rich relational information as well
as node feature information [45, 46]. To address this challenge, Graph Neural Networks (GNNs)
have emerged as state-of-the-art for machine learning on graphs, due to their ability to recursively
incorporate information from neighboring nodes in the graph, naturally capturing both graph structure
and node features [16, 21, 40, 44].

Despite their strengths, GNNs lack transparency as they do not easily allow for a human-intelligible
explanation of their predictions. Yet, the ability to understand GNN’s predictions is important and
useful for several reasons: (i) it can increase trust in the GNN model, (ii) it improves model’s
transparency in a growing number of decision-critical applications pertaining to fairness, privacy and
other safety challenges [11], and (iii) it allows practitioners to get an understanding of the network
characteristics, identify and correct systematic patterns of mistakes made by models before deploying
them in the real world.

While currently there are no methods for explaining GNNs, recent approaches for explaining other
types of neural networks have taken one of two main routes. One line of work locally approximates

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



GNN model training and predictions Explaning GNN’s predictions

GNNExplainer

Figure 1: GNNEXPLAINER provides interpretable explanations for predictions made by any GNN model on any
graph-based machine learning task. Shown is a hypothetical node classification task where a GNN model Φ is
trained on a social interaction graph to predict future sport activities. Given a trained GNN Φ and a prediction ŷi
= “Basketball” for person vi, GNNEXPLAINER generates an explanation by identifying a small subgraph of the
input graph together with a small subset of node features (shown on the right) that are most influential for ŷi.
Examining explanation for ŷi, we see that many friends in one part of vi’s social circle enjoy ball games, and so
the GNN predicts that vi will like basketball. Similarly, examining explanation for ŷj , we see that vj’s friends
and friends of his friends enjoy water and beach sports, and so the GNN predicts ŷj = “Sailing.”

models with simpler surrogate models, which are then probed for explanations [25, 29, 30]. Other
methods carefully examine models for relevant features and find good qualitative interpretations of
high level features [6, 13, 27, 32] or identify influential input instances [23, 38]. However, these
approaches fall short in their ability to incorporate relational information, the essence of graphs.
Since this aspect is crucial for the success of machine learning on graphs, any explanation of GNN’s
predictions should leverage rich relational information provided by the graph as well as node features.

Here we propose GNNEXPLAINER, an approach for explaining predictions made by GNNs. GNNEX-
PLAINER takes a trained GNN and its prediction(s), and it returns an explanation in the form of a small
subgraph of the input graph together with a small subset of node features that are most influential for
the prediction(s) (Figure 1). The approach is model-agnostic and can explain predictions of any GNN
on any machine learning task for graphs, including node classification, link prediction, and graph
classification. It handles single- as well as multi-instance explanations. In the case of single-instance
explanations, GNNEXPLAINER explains a GNN’s prediction for one particular instance (i.e., a node
label, a new link, a graph-level label). In the case of multi-instance explanations, GNNEXPLAINER
provides an explanation that consistently explains a set of instances (e.g., nodes of a given class).

GNNEXPLAINER specifies an explanation as a rich subgraph of the entire graph the GNN was
trained on, such that the subgraph maximizes the mutual information with GNN’s prediction(s).
This is achieved by formulating a mean field variational approximation and learning a real-valued
graph mask which selects the important subgraph of the GNN’s computation graph. Simultaneously,
GNNEXPLAINER also learns a feature mask that masks out unimportant node features (Figure 1).

We evaluate GNNEXPLAINER on synthetic as well as real-world graphs. Experiments show that
GNNEXPLAINER provides consistent and concise explanations of GNN’s predictions. On synthetic
graphs with planted network motifs, which play a role in determining node labels, we show that
GNNEXPLAINER accurately identifies the subgraphs/motifs as well as node features that determine
node labels outperforming alternative baseline approaches by up to 43.0% in explanation accuracy.
Further, using two real-world datasets we show how GNNEXPLAINER can provide important domain
insights by robustly identifying important graph structures and node features that influence a GNN’s
predictions. Specifically, using molecular graphs and social interaction networks, we show that
GNNEXPLAINER can identify important domain-specific graph structures, such as NO2 chemical
groups or ring structures in molecules, and star structures in Reddit threads. Overall, experiments
demonstrate that GNNEXPLAINER provides consistent and concise explanations for GNN-based
models for different machine learning tasks on graphs.

2 Related work

Although the problem of explaining GNNs is not well-studied, the related problems of interpretability
and neural debugging received substantial attention in machine learning. At a high level, we can
group those interpretability methods for non-graph neural networks into two main families.
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Figure 2: A. GNN computation graph Gc (green and orange) for making prediction ŷ at node v. Some edges
in Gc form important neural message-passing pathways (green), which allow useful node information to be
propagated across Gc and aggregated at v for prediction, while other edges do not (orange). However, GNN
needs to aggregate important as well as unimportant messages to form a prediction at node v, which can dilute the
signal accumulated from v’s neighborhood. The goal of GNNEXPLAINER is to identify a small set of important
features and pathways (green) that are crucial for prediction. B. In addition to GS (green), GNNEXPLAINER
identifies what feature dimensions of GS’s nodes are important for prediction by learning a node feature mask.

Methods in the first family formulate simple proxy models of full neural networks. This can be done
in a model-agnostic way, usually by learning a locally faithful approximation around the prediction,
for example through linear models [29] or sets of rules, representing sufficient conditions on the
prediction [3, 25, 47]. Methods in the second family identify important aspects of the computation, for
example, through feature gradients [13, 43], backpropagation of neurons’ contributions to the input
features [6, 31, 32], and counterfactual reasoning [19]. However, the saliency maps [43] produced
by these methods have been shown to be misleading in some instances [2] and prone to issues like
gradient saturation [31, 32]. These issues are exacerbated on discrete inputs such as graph adjacency
matrices since the gradient values can be very large but only on very small intervals. Because of that,
such approaches are not suitable for explaining predictions made by neural networks on graphs.

Instead of creating new, inherently interpretable models, post-hoc interpretability methods [1, 14, 15,
17, 23, 38] consider models as black boxes and then probe them for relevant information. However, no
work has been done to leverage relational structures like graphs. The lack of methods for explaining
predictions on graph-structured data is problematic, as in many cases, predictions on graphs are
induced by a complex combination of nodes and paths of edges between them. For example, in some
tasks, an edge is important only when another alternative path exists in the graph to form a cycle, and
those two features, only when considered together, can accurately predict node labels [10, 12]. Their
joint contribution thus cannot be modeled as a simple linear combinations of individual contributions.

Finally, recent GNN models augment interpretability via attention mechanisms [28, 33, 34]. However,
although the learned edge attention values can indicate important graph structure, the values are the
same for predictions across all nodes. Thus, this contradicts with many applications where an edge is
essential for predicting the label of one node but not the label of another node. Furthermore, these
approaches are either limited to specific GNN architectures or cannot explain predictions by jointly
considering both graph structure and node feature information.

3 Formulating explanations for graph neural networks

Let G denote a graph on edges E and nodes V that are associated with d-dimensional node features
X = {x1, . . . , xn}, xi ∈ Rd. Without loss of generality, we consider the problem of explaining a
node classification task (see Section 4.4 for other tasks). Let f denote a label function on nodes
f : V 7→ {1, . . . , C} that maps every node in V to one of C classes. The GNN model Φ is optimized
on all nodes in the training set and is then used for prediction, i.e., to approximate f on new nodes.

3.1 Background on graph neural networks

At layer l, the update of GNN model Φ involves three key computations [4, 45, 46]. (1) First, the
model computes neural messages between every pair of nodes. The message for node pair (vi, vj) is a
function MSG of vi’s and vj’s representations hl−1

i and hl−1
j in the previous layer and of the relation

rij between the nodes: ml
ij = MSG(hl−1

i ,hl−1
j , rij). (2) Second, for each node vi, GNN aggregates
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messages from vi’s neighborhood Nvi and calculates an aggregated message Mi via an aggregation
method AGG [16, 35]: M l

i = AGG({ml
ij |vj ∈ Nvi

}), where Nvi
is neighborhood of node vi whose

definition depends on a particular GNN variant. (3) Finally, GNN takes the aggregated message M l
i

along with vi’s representation hl−1
i from the previous layer, and it non-linearly transforms them to

obtain vi’s representation hl
i at layer l: hl

i = UPDATE(M l
i ,h

l−1
i ). The final embedding for node vi

after L layers of computation is zi = hL
i . Our GNNEXPLAINER provides explanations for any GNN

that can be formulated in terms of MSG, AGG, and UPDATE computations.

3.2 GNNEXPLAINER: Problem formulation

Our key insight is the observation that the computation graph of node v, which is defined by the
GNN’s neighborhood-based aggregation (Figure 2), fully determines all the information the GNN
uses to generate prediction ŷ at node v. In particular, v’s computation graph tells the GNN how to
generate v’s embedding z. Let us denote that computation graph by Gc(v), the associated binary
adjacency matrix byAc(v) ∈ {0, 1}n×n, and the associated feature set byXc(v) = {xj |vj ∈ Gc(v)}.
The GNN model Φ learns a conditional distribution PΦ(Y |Gc, Xc), where Y is a random variable
representing labels {1, . . . , C}, indicating the probability of nodes belonging to each of C classes.

A GNN’s prediction is given by ŷ = Φ(Gc(v), Xc(v)), meaning that it is fully determined by the
model Φ, graph structural information Gc(v), and node feature information Xc(v). In effect, this
observation implies that we only need to consider graph structure Gc(v) and node features Xc(v)
to explain ŷ (Figure 2A). Formally, GNNEXPLAINER generates explanation for prediction ŷ as
(GS , X

F
S ), where GS is a small subgraph of the computation graph and XF

S is a small subset of node
features (i.e., XF

S = {xFj |vj ∈ GS}) that are most important for explaining ŷ (Figure 2B).

4 GNNEXPLAINER

Next we describe our approach GNNEXPLAINER. Given a trained GNN model Φ and a prediction
(i.e., single-instance explanation, Sections 4.1 and 4.2) or a set of predictions (i.e., multi-instance
explanations, Section 4.3), the GNNEXPLAINER will generate an explanation by identifying a
subgraph of the computation graph and a subset of node features that are most influential for the
model Φ’s prediction. In the case of explaining a set of predictions, GNNEXPLAINER will aggregate
individual explanations in the set and automatically summarize it with a prototype. We conclude this
section with a discussion on how GNNEXPLAINER can be used for any machine learning task on
graphs, including link prediction and graph classification (Section 4.4).

4.1 Single-instance explanations

Given a node v, our goal is to identify a subgraph GS ⊆ Gc and the associated features XS =
{xj |vj ∈ GS} that are important for the GNN’s prediction ŷ. For now, we assume that XS is a
small subset of d-dimensional node features; we will later discuss how to automatically determine
which dimensions of node features need to be included in explanations (Section 4.2). We formalize
the notion of importance using mutual information MI and formulate the GNNEXPLAINER as the
following optimization framework:

max
GS

MI (Y, (GS , XS)) = H(Y )−H(Y |G = GS , X = XS). (1)

For node v, MI quantifies the change in the probability of prediction ŷ = Φ(Gc, Xc) when v’s
computation graph is limited to explanation subgraph GS and its node features are limited to XS .

For example, consider the situation where vj ∈ Gc(vi), vj 6= vi. Then, if removing vj from Gc(vi)
strongly decreases the probability of prediction ŷi, the node vj is a good counterfactual explanation
for the prediction at vi. Similarly, consider the situation where (vj , vk) ∈ Gc(vi), vj , vk 6= vi. Then,
if removing an edge between vj and vk strongly decreases the probability of prediction ŷi then the
absence of that edge is a good counterfactual explanation for the prediction at vi.

Examining Eq. (1), we see that the entropy term H(Y ) is constant because Φ is fixed for a trained
GNN. As a result, maximizing mutual information between the predicted label distribution Y and
explanation (GS , XS) is equivalent to minimizing conditional entropy H(Y |G = GS , X = XS),
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which can be expressed as follows:

H(Y |G=GS , X=XS) = −EY |GS ,XS
[logPΦ(Y |G=GS , X=XS)] . (2)

Explanation for prediction ŷ is thus a subgraph GS that minimizes uncertainty of Φ when the GNN
computation is limited to GS . In effect, GS maximizes probability of ŷ (Figure 2). To obtain a
compact explanation, we impose a constraint on GS’s size as: |GS | ≤ KM , so that GS has at most
KM nodes. In effect, this implies that GNNEXPLAINER aims to denoise Gc by taking KM edges
that give the highest mutual information with the prediction.
GNNEXPLAINER’s optimization framework. Direct optimization of GNNEXPLAINER’s objective
is not tractable as Gc has exponentially many subgraphs GS that are candidate explanations for ŷ. We
thus consider a fractional adjacency matrix1 for subgraphs GS , i.e., AS ∈ [0, 1]n×n, and enforce the
subgraph constraint as: AS [j, k] ≤ Ac[j, k] for all j, k. This continuous relaxation can be interpreted
as a variational approximation of distribution of subgraphs of Gc. In particular, if we treat GS ∼ G
as a random graph variable, the objective in Eq. (2) becomes:

min
G

EGS∼GH(Y |G = GS , X = XS), (3)

With convexity assumption, Jensen’s inequality gives the following upper bound:

min
G
H(Y |G = EG [GS ], X = XS). (4)

In practice, due to the complexity of neural networks, the convexity assumption does not hold.
However, experimentally, we found that minimizing this objective with regularization often leads to a
local minimum corresponding to high-quality explanations.

To tractably estimate EG , we use mean-field variational approximation and decompose G into a
multivariate Bernoulli distribution as: PG(GS) =

∏
(j,k)∈Gc

AS [j, k]. This allows us to estimate the
expectation with respect to the mean-field approximation, thereby obtaining AS in which (j, k)-th
entry represents the expectation on whether edge (vj , vk) exists. We observed empirically that
this approximation together with a regularizer for promoting discreteness [40] converges to good
local minima despite the non-convexity of GNNs. Finally, a computationally efficient version of
GNNEXPLAINER’s objective, which we optimize using gradient descent, is as follows:

min
M
−

C∑
c=1

1[y = c] logPΦ(Y = y|G = AS � σ(M), X = XS), (5)

where M ∈ Rn×n denotes the mask that we need to learn, � denotes element-wise multiplication,
and σ denotes the sigmoid that maps the mask to [0, 1]n×n. The masking approach is also found in
Neural Relational Inference [22], albeit with different motivation and objective. Lastly, we remove
low values in M through thresholding and compute the element-wise multiplication of σ(M) and Ac

to arrive at the explanation GS for GNN’s prediction ŷ at node v.

4.2 Joint learning of graph structural and node feature information

To identify what node features are most important for prediction ŷ, GNNEXPLAINER learns a feature
selector F for nodes in explanation GS . Instead of defining XS to consists of all node features, i.e.,
XS = {xj |vj ∈ GS}, GNNEXPLAINER considers XF

S as a subset of features of nodes in GS , which
are defined through a binary feature selector F ∈ {0, 1}d (Figure 2B):

XF
S = {xFj |vj ∈ GS}, xFj = [xj,t1 , . . . , xj,tk ] for Fti = 1, (6)

where xFj has node features that are not masked out by F . Explanation (GS , XS) is then jointly
optimized for maximizing the mutual information objective:

max
GS ,F

MI (Y, (GS , F )) = H(Y )−H(Y |G = GS , X = XF
S ), (7)

which represents a modified objective function from Eq. (1) that considers structural and node feature
information to generate an explanation for prediction ŷ.

1For typed edges, we define GS ∈ [0, 1]Ce×n×n where Ce is the number of edge types.

5



Learning binary feature selector F . We specify XF
S as XS � F , where F acts as a feature mask

that we need to learn. Intuitively, if a particular feature is not important, the corresponding weights in
GNN’s weight matrix take values close to zero. In effect, this implies that masking the feature out
does not decrease predicted probability for ŷ. Conversely, if the feature is important then masking
it out would decrease predicted probability. However, the problem with this approach is that it
ignores features that are important for prediction but take values close to zero. To address this issue
we marginalize over all feature subsets and use a Monte Carlo estimate to sample from empirical
marginal distribution for nodes in XS during training [48]. Further, we use a reparametrization
trick [20] to backpropagate gradients in Eq. (7) to the feature mask F . In particular, to backpropagate
through a d-dimensional random variable X we reparametrize X as: X = Z + (XS − Z)� F s.t.∑

j Fj ≤ KF , where Z is a d-dimensional random variable sampled from the empirical distribution
and KF is a parameter representing the maximum number of features to be kept in the explanation.
Integrating additional constraints into explanations. To impose further properties on the explana-
tion we can extend GNNEXPLAINER’s objective function in Eq. (7) with regularization terms. For
example, we use element-wise entropy to encourage structural and node feature masks to be discrete.
Further, GNNEXPLAINER can encode domain-specific constraints through techniques like Lagrange
multiplier of constraints or additional regularization terms. We include a number of regularization
terms to produce explanations with desired properties. We penalize large size of the explanation by
adding the sum of all elements of the mask paramters as the regularization term.

Finally, it is important to note that each explanation must be a valid computation graph. In particular,
explanation (GS , XS) needs to allow GNN’s neural messages to flow towards node v such that
GNN can make prediction ŷ. Importantly, GNNEXPLAINER automatically provides explanations that
represent valid computation graphs because it optimizes structural masks across entire computation
graphs. Even if a disconnected edge is important for neural message-passing, it will not be selected
for explanation as it cannot influence GNN’s prediction. In effect, this implies that explanation GS

tends to be a small connected subgraph.

4.3 Multi-instance explanations through graph prototypes

The output of a single-instance explanation (Sections 4.1 and 4.2) is a small subgraph of the input
graph and a small subset of associated node features that are most influential for a single prediction.
To answer questions like “How did a GNN predict that a given set of nodes all have label c?”, we
need to obtain a global explanation of class c. Our goal here is to provide insight into how the
identified subgraph for a particular node relates to a graph structure that explains an entire class.
GNNEXPLAINER provides multi-instance explanations that are based on graph alignments and
prototypes. Our approach has two stages.

First, for a given class c (or, any set of predictions that we want to explain), we first choose a reference
node vc, for example, by computing the mean embedding of all nodes assigned to c. We then take
explanation GS(vc) for reference vc and align it to explanations of other nodes assigned to class c.
Technically, we use relaxed graph matching to find correspondences between nodes in the reference
subgraph GS(vc) and subgraphs GS of other nodes [40] (See Appendix for details). Finding optimal
matching of large graphs is challenging in practice. However, the single-instance GNNEXPLAINER
generates small graphs (Section 4.2) and thus near-optimal pairwise graph matchings can be efficiently
computed. This procedure gives us adjacency matrices AS for all nodes predicted to belong to c,
where the matrices are aligned with respect to the node ordering in the reference vc’s matrix AS(vc).

Second, we aggregate aligned adjacency matrices into a graph prototype Aproto using, for example, a
robust median-based approach. Prototype Aproto gives insights into graph patterns shared between
nodes that belong to the same class. One can then study prediction for a particular node by comparing
explanation for that node’s prediction (i.e., returned by single-instance explanation approach) to the
prototype (see Appendix for more information and experiments).

4.4 GNNEXPLAINER model extensions

Any machine learning task on graphs. In addition to explaining node classification, GNNEX-
PLAINER provides explanations for link prediction and graph classification with no change to its
optimization algorithm. When predicting a link (vj , vk), GNNEXPLAINER learns two masks XS(vj)
and XS(vk) for both endpoints of the link. When classifying a graph, the adjacency matrix in Eq. (5)
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is the union of adjacency matrices for all nodes in the graph whose label we want to explain. However,
note that in graph classification, unlike node classification, due to the aggregation of node embed-
dings, it is no longer true that the explanation GS is necessarily a connected subgraph. Depending on
application, in some scenarios such as chemistry where explanation is a functional group and should
be connected, one can extract the largest connected component as the explanation.
Any GNN model. Modern GNNs are based on message passing architectures on the input graph. The
message passing computation graphs can be composed in many different ways and GNNEXPLAINER
can account for all of them. Thus, GNNEXPLAINER can be applied to: Graph Convolutional
Networks [21], Gated Graph Sequence Neural Networks [26], Jumping Knowledge Networks [36],
Attention Networks [33], Graph Networks [4], GNNs with various node aggregation schemes [7, 5, 18,
16, 40, 39, 35], Line-Graph NNs [8], position-aware GNN [42], and many other GNN architectures.
Computational complexity. The number of parameters in GNNEXPLAINER’s optimization depends
on the size of computation graph Gc for node v whose prediction we aim to explain. In particular,
Gc(v)’s adjacency matrix Ac(v) is equal to the size of the mask M , which needs to be learned
by GNNEXPLAINER. However, since computation graphs are typically relatively small, compared
to the size of exhaustive L-hop neighborhoods (e.g., 2-3 hop neighborhoods [21], sampling-based
neighborhoods [39], neighborhoods with attention [33]), GNNEXPLAINER can effectively generate
explanations even when input graphs are large.

5 Experiments

We begin by describing the graphs, alternative baseline approaches, and experimental setup. We then
present experiments on explaining GNNs for node classification and graph classification tasks. Our
qualitative and quantitative analysis demonstrates that GNNEXPLAINER is accurate and effective in
identifying explanations, both in terms of graph structure and node features.
Synthetic datasets. We construct four kinds of node classification datasets (Table 1). (1) In BA-
SHAPES, we start with a base Barabási-Albert (BA) graph on 300 nodes and a set of 80 five-node
“house”-structured network motifs, which are attached to randomly selected nodes of the base graph.
The resulting graph is further perturbed by adding 0.1N random edges. Nodes are assigned to 4
classes based on their structural roles. In a house-structured motif, there are 3 types of roles: the top,
middle and bottom node of the house. Therefore there are 4 different classes, corresponding to nodes
at the top, middle, bottom of houses, and nodes that do not belong to a house. (2) BA-COMMUNITY
dataset is a union of two BA-SHAPES graphs. Nodes have normally distributed feature vectors and
are assigned to one of 8 classes based on their structural roles and community memberships. (3)
In TREE-CYCLES, we start with a base 8-level balanced binary tree and 80 six-node cycle motifs,
which are attached to random nodes of the base graph. (4) TREE-GRID is the same as TREE-CYCLES
except that 3-by-3 grid motifs are attached to the base tree graph in place of cycle motifs.
Real-world datasets. We consider two graph classification datasets: (1) MUTAG is a dataset of
4,337 molecule graphs labeled according to their mutagenic effect on the Gram-negative bacterium S.
typhimurium [10]. (2) REDDIT-BINARY is a dataset of 2,000 graphs, each representing an online
discussion thread on Reddit. In each graph, nodes are users participating in a thread, and edges
indicate that one user replied to another user’s comment. Graphs are labeled according to the type of
user interactions in the thread: r/IAmA and r/AskReddit contain Question-Answer interactions, while
r/TrollXChromosomes and r/atheism contain Online-Discussion interactions [37].
Alternative baseline approaches. Many explainability methods cannot be directly applied to graphs
(Section 2). Nevertheless, we here consider the following alternative approaches that can provide
insights into predictions made by GNNs: (1) GRAD is a gradient-based method. We compute gradient
of the GNN’s loss function with respect to the adjacency matrix and the associated node features,
similar to a saliency map approach. (2) ATT is a graph attention GNN (GAT) [33] that learns attention
weights for edges in the computation graph, which we use as a proxy measure of edge importance.
While ATT does consider graph structure, it does not explain using node features and can only explain
GAT models. Furthermore, in ATT it is not obvious which attention weights need to be used for edge
importance, since a 1-hop neighbor of a node can also be a 2-hop neighbor of the same node due to
cycles. Each edge’s importance is thus computed as the average attention weight across all layers.
Setup and implementation details. For each dataset, we first train a single GNN for each dataset,
and use GRAD and GNNEXPLAINER to explain the predictions made by the GNN. Note that
the ATT baseline requires using a graph attention architecture like GAT [33]. We thus train a
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BA-Shapes

Base

Motif

Node Features None Nonewhere    = community ID

Graph structure Graph structure
Node feature information

Explanation
content

Explanation accuracy  
Att

Grad
GNNExplainer

Community 1Community 0

BA-Community Tree-Cycles

None

Tree-Grid

Graph structure Graph structure

0.925
0.882

0.815 0.739

0.750
0.836

0.824

0.905
0.948

0.612

0.667
0.875

Table 1: Illustration of synthetic datasets (refer to “Synthetic datasets” for details) together with performance
evaluation of GNNEXPLAINER and alternative baseline explainability approaches.
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Figure 3: Evaluation of single-instance explanations. A-B. Shown are exemplar explanation subgraphs for node
classification task on four synthetic datasets. Each method provides explanation for the red node’s prediction.

separate GAT model on the same dataset and use the learned edge attention weights for explanation.
Hyperparameters KM ,KF control the size of subgraph and feature explanations respectively, which
is informed by prior knowledge about the dataset. For synthetic datasets, we set KM to be the
size of ground truth. On real-world datasets, we set KM = 10. We set KF = 5 for all datasets.
We further fix our weight regularization hyperparameters across all node and graph classification
experiments. We refer readers to the Appendix for more training details (Code and datasets are
available at https://github.com/RexYing/gnn-model-explainer).
Results. We investigate questions: Does GNNEXPLAINER provide sensible explanations? How
do explanations compare to the ground-truth knowledge? How does GNNEXPLAINER perform on
various graph-based prediction tasks? Can it explain predictions made by different GNNs?
1) Quantitative analyses. Results on node classification datasets are shown in Table 1. We have
ground-truth explanations for synthetic datasets and we use them to calculate explanation accuracy for
all explanation methods. Specifically, we formalize the explanation problem as a binary classification
task, where edges in the ground-truth explanation are treated as labels and importance weights given
by explainability method are viewed as prediction scores. A better explainability method predicts
high scores for edges that are in the ground-truth explanation, and thus achieves higher explanation
accuracy. Results show that GNNEXPLAINER outperforms alternative approaches by 17.1% on
average. Further, GNNEXPLAINER achieves up to 43.0% higher accuracy on the hardest TREE-GRID
dataset.
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Figure 4: Evaluation of single-instance explanations. A-B. Shown are exemplar explanation subgraphs for graph
classification task on two datasets, MUTAG and REDDIT-BINARY.
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Figure 5: Visualization of features that are important
for a GNN’s prediction. A. Shown is a representative
molecular graph from MUTAG dataset (top). Impor-
tance of the associated graph features is visualized
with a heatmap (bottom). In contrast with baselines,
GNNEXPLAINER correctly identifies features that are
important for predicting the molecule’s mutagenicity,
i.e. C, O, H, and N atoms. B. Shown is a computation
graph of a red node from BA-COMMUNITY dataset
(top). Again, GNNEXPLAINER successfully identifies
the node feature that is important for predicting the
structural role of the node but baseline methods fail.

2) Qualitative analyses. Results are shown in Figures 3–5. In a topology-based prediction task with
no node features, e.g. BA-SHAPES and TREE-CYCLES, GNNEXPLAINER correctly identifies network
motifs that explain node labels, i.e. structural labels (Figure 3). As illustrated in the figures, house,
cycle and tree motifs are identified by GNNEXPLAINER but not by baseline methods. In Figure 4,
we investigate explanations for graph classification task. In MUTAG example, colors indicate node
features, which represent atoms (hydrogen H, carbon C, etc). GNNEXPLAINER correctly identifies
carbon ring as well as chemical groups NH2 and NO2, which are known to be mutagenic [10].

Further, in REDDIT-BINARY example, we see that Question-Answer graphs (2nd row in Figure 4B)
have 2-3 high degree nodes that simultaneously connect to many low degree nodes, which makes
sense because in QA threads on Reddit we typically have 2-3 experts who all answer many different
questions [24]. Conversely, we observe that discussion patterns commonly exhibit tree-like patterns
(2nd row in Figure 4A), since a thread on Reddit is usually a reaction to a single topic [24]. On the
other hand, GRAD and ATT methods give incorrect or incomplete explanations. For example, both
baseline methods miss cycle motifs in MUTAG dataset and more complex grid motifs in TREE-GRID
dataset. Furthermore, although edge attention weights in ATT can be interpreted as importance scores
for message passing, the weights are shared across all nodes in input the graph, and as such ATT fails
to provide high quality single-instance explanations.

An essential criterion for explanations is that they must be interpretable, i.e., provide a qualitative
understanding of the relationship between the input nodes and the prediction. Such a requirement
implies that explanations should be easy to understand while remaining exhaustive. This means
that a GNN explainer should take into account both the structure of the underlying graph as well as
the associated features when they are available. Figure 5 shows results of an experiment in which
GNNEXPLAINER jointly considers structural information as well as information from a small number
of feature dimensions2. While GNNEXPLAINER indeed highlights a compact feature representation
in Figure 5, gradient-based approaches struggle to cope with the added noise, giving high importance
scores to irrelevant feature dimensions.

Further experiments on multi-instance explanations using graph prototypes are in Appendix.

6 Conclusion

We present GNNEXPLAINER, a novel method for explaining predictions of any GNN on any graph-
based machine learning task without requiring modification of the underlying GNN architecture or
re-training. We show how GNNEXPLAINER can leverage recursive neighborhood-aggregation scheme
of graph neural networks to identify important graph pathways as well as highlight relevant node
feature information that is passed along edges of the pathways. While the problem of explainability of
machine-learning predictions has received substantial attention in recent literature, our work is unique
in the sense that it presents an approach that operates on relational structures—graphs with rich
node features—and provides a straightforward interface for making sense out of GNN predictions,
debugging GNN models, and identifying systematic patterns of mistakes.

2Feature explanations are shown for the two datasets with node features, i.e., MUTAG and BA-COMMUNITY.
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