
Published as a conference paper at ICLR 2020

STRATEGIES FOR PRE-TRAINING GRAPH NEURAL
NETWORKS

Weihua Hu1∗, Bowen Liu2∗, Joseph Gomes4, Marinka Zitnik5,
Percy Liang1, Vijay Pande3, Jure Leskovec1
1Department of Computer Science, 2Chemistry, 3Bioengineering, Stanford University,
4Department of Chemical and Biochemical Engineering, The University of Iowa,
5Department of Biomedical Informatics, Harvard University
{weihuahu,liubowen,pliang,jure}@cs.stanford.edu,
joe-gomes@uiowa.edu, marinka@hms.harvard.edu, pande@stanford.edu

ABSTRACT

Many applications of machine learning require a model to make accurate pre-
dictions on test examples that are distributionally different from training ones,
while task-specific labels are scarce during training. An effective approach to this
challenge is to pre-train a model on related tasks where data is abundant, and then
fine-tune it on a downstream task of interest. While pre-training has been effective
in many language and vision domains, it remains an open question how to effec-
tively use pre-training on graph datasets. In this paper, we develop a new strategy
and self-supervised methods for pre-training Graph Neural Networks (GNNs). The
key to the success of our strategy is to pre-train an expressive GNN at the level of
individual nodes as well as entire graphs so that the GNN can learn useful local
and global representations simultaneously. We systematically study pre-training
on multiple graph classification datasets. We find that naïve strategies, which
pre-train GNNs at the level of either entire graphs or individual nodes, give limited
improvement and can even lead to negative transfer on many downstream tasks.
In contrast, our strategy avoids negative transfer and improves generalization sig-
nificantly across downstream tasks, leading up to 9.4% absolute improvements in
ROC-AUC over non-pre-trained models and achieving state-of-the-art performance
for molecular property prediction and protein function prediction.

1 INTRODUCTION

Transfer learning refers to the setting where a model, initially trained on some tasks, is re-purposed
on different but related tasks. Deep transfer learning has been immensely successful in computer
vision (Donahue et al., 2014; Girshick et al., 2014; Zeiler & Fergus, 2014) and natural language
processing (Devlin et al., 2019; Peters et al., 2018; Mikolov et al., 2013). Despite being an effective
approach to transfer learning, few studies have generalized pre-training to graph data.

Pre-training has the potential to provide an attractive solution to the following two fundamental
challenges with learning on graph datasets (Pan & Yang, 2009; Hendrycks et al., 2019): First,
task-specific labeled data can be extremely scarce. This problem is exacerbated in important graph
datasets from scientific domains, such as chemistry and biology, where data labeling (e.g., biological
experiments in a wet laboratory) is resource- and time-intensive (Zitnik et al., 2018). Second, graph
data from real-world applications often contain out-of-distribution samples, meaning that graphs in
the training set are structurally very different from graphs in the test set. Out-of-distribution prediction
is common in real-world graph datasets, for example, when one wants to predict chemical properties
of a brand-new, just synthesized molecule, which is different from all molecules synthesized so far,
and thereby different from all molecules in the training set.

However, pre-training on graph datasets remains a hard challenge. Several key studies (Xu et al.,
2017; Ching et al., 2018; Wang et al., 2019) have shown that successful transfer learning is not only a

∗Equal contribution. Project website, data and code: http://snap.stanford.edu/gnn-pretrain

1

http://snap.stanford.edu/gnn-pretrain

Published as a conference paper at ICLR 2020

(a.i) (a.ii) (a.iii)

Node-level Graph-level

Attribute
prediction

Attribute
Masking

Supervised
Attribute

Prediction

Structural
Similarity
Prediction

Structure
prediction

Context
Prediction

(b) Categorization of our pre-training methods

G
ra

ph
 s

pa
ce

N
od

e
sp

ac
e

Graph embeddings Node embeddings Linear classifier

Figure 1: (a.i) When only node-level pre-training is used, nodes of different shapes (semantically
different nodes) can be well separated, however, node embeddings are not composable, and thus
resulting graph embeddings (denoted by their classes, + and−) that are created by pooling node-level
embeddings are not separable. (a.ii) With graph-level pre-training only, graph embeddings are well
separated, however the embeddings of individual nodes do not necessarily capture their domain-
specific semantics. (a.iii) High-quality node embeddings are such that nodes of different types are
well separated, while at the same time, the embedding space is also composable. This allows for
accurate and robust representations of entire graphs and enables robust transfer of pre-trained models
to a variety of downstream tasks. (b) Categorization of pre-training methods for GNNs. Crucially,
our methods, i.e., Context Prediction, Attribute Masking, and graph-level supervised pre-training
(Supervised Attribute Prediction) enable both node-level and graph-level pre-training.

matter of increasing the number of labeled pre-training datasets that are from the same domain as
the downstream task. Instead, it requires substantial domain expertise to carefully select examples
and target labels that are correlated with the downstream task of interest. Otherwise, the transfer of
knowledge from related pre-training tasks to a new downstream task can harm generalization, which
is known as negative transfer (Rosenstein et al., 2005) and significantly limits the applicability and
reliability of pre-trained models.

Present work. Here, we focus on pre-training as an approach to transfer learning in Graph Neural
Networks (GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017a; Ying et al., 2018b; Xu et al., 2019;
2018) for graph-level property prediction. Our work presents two key contributions. (1) We conduct
the first systematic large-scale investigation of strategies for pre-training GNNs. For that, we build
two large new pre-training datasets, which we share with the community: a chemistry dataset with
2 million graphs and a biology dataset with 395K graphs. We also show that large domain-specific
datasets are crucial to investigate pre-training and that existing downstream benchmark datasets
are too small to evaluate models in a statistically reliable way. (2) We develop an effective pre-
training strategy for GNNs and demonstrate its effectiveness and its ability for out-of-distribution
generalization on hard transfer-learning problems.

In our systematic study, we show that pre-training GNNs does not always help. Naïve pre-training
strategies can lead to negative transfer on many downstream tasks. Strikingly, a seemingly strong
pre-training strategy (i.e., graph-level multi-task supervised pre-training using a state-of-the-art graph
neural network architecture for graph-level prediction tasks) only gives marginal performance gains.
Furthermore, this strategy even leads to negative transfer on many downstream tasks (2 out of 8
molecular datasets and 13 out of 40 protein prediction tasks).

We develop an effective strategy for pre-training GNNs. The key idea is to use easily accessible
node-level information and encourage GNNs to capture domain-specific knowledge about nodes and
edges, in addition to graph-level knowledge. This helps the GNN to learn useful representations
at both global and local levels (Figure 1 (a.iii)), and is crucial to be able to generate graph-level
representations (which are obtained by pooling node representations) that are robust and transferable
to diverse downstream tasks (Figure 1). Our strategy is in contrast to naïve strategies that either
leverage only at graph-level properties (Figure 1 (a.ii)) or node-level properties (Figure 1 (a.i)).

Empirically, our pre-training strategy used together with the most expressive GNN architecture,
GIN (Xu et al., 2019), yields state-of-the-art results on benchmark datasets and avoids negative
transfer across downstream tasks we tested. It significantly improves generalization performance

2

Published as a conference paper at ICLR 2020

across downstream tasks, yielding up to 9.4% higher average ROC-AUC than non-pre-trained GNNs,
and up to 5.2% higher average ROC-AUC compared to GNNs with the extensive graph-level multi-
task supervised pre-training. Furthermore, we find that the most expressive architecture, GIN, benefits
more from pre-training compared to those with less expressive power (e.g., GCN (Kipf & Welling,
2017), GraphSAGE (Hamilton et al., 2017b) and GAT (Velickovic et al., 2018)), and that pre-training
GNNs leads to orders-of-magnitude faster training and convergence in the fine-tuning stage.

2 PRELIMINARIES OF GRAPH NEURAL NETWORKS

We first formalize supervised learning of graphs and provide an overview of GNNs (Gilmer et al.,
2017). Then, we briefly review methods for unsupervised graph representation learning.

Supervised learning of graphs. Let G = (V,E) denote a graph with node attributes Xv for v ∈ V
and edge attributes euv for (u, v) ∈ E. Given a set of graphs {G1, . . . , GN} and their labels {y1, . . . ,
yN}, the task of graph supervised learning is to learn a representation vector hG that helps predict
the label of an entire graph G, yG = g(hG). For example, in molecular property prediction, G is a
molecular graph, where nodes represent atoms and edges represent chemical bonds, and the label to
be predicted can be toxicity or enzyme binding.

Graph Neural Networks (GNNs). GNNs use the graph connectivity as well as node and edge
features to learn a representation vector (i.e., embedding) hv for every node v ∈ G and a vector
hG for the entire graph G. Modern GNNs use a neighborhood aggregation approach, where repre-
sentation of node v is iteratively updated by aggregating representations of v’s neighboring nodes
and edges (Gilmer et al., 2017). After k iterations of aggregation, v’s representation captures the
structural information within its k-hop network neighborhood. Formally, the k-th layer of a GNN is:

h(k)v = COMBINE(k)
(
h(k−1)v ,AGGREGATE(k)

({(
h(k−1)v , h(k−1)u , euv

)
: u ∈ N (v)

}))
, (2.1)

where h(k)v is the representation of node v at the k-th iteration/layer, euv is the feature vector of edge
between u and v, and N (v) is a set neighbors of v. We initialize h(0)v = Xv .

Graph representation learning. To obtain the entire graph’s representation hG, the READOUT
function pools node features from the final iteration K,

hG = READOUT
({
h(K)
v

∣∣ v ∈ G}). (2.2)

READOUT is a permutation-invariant function, such as averaging or a more sophisticated graph-level
pooling function (Ying et al., 2018b; Zhang et al., 2018).

3 STRATEGIES FOR PRE-TRAINING GRAPH NEURAL NETWORKS

At the technical core of our pre-training strategy is the notion to pre-train a GNN both at the level of
individual nodes as well as entire graphs. This notion encourages the GNN to capture domain-specific
semantics at both levels, as illustrated in Figure 1 (a.iii). This is in contrast to straightforward but
limited pre-training strategies that either only use pre-training to predict properties of entire graphs
(Figure 1 (a.ii)) or only use pre-training to predict properties of individual nodes (Figure 1 (a.i)).

In the following, we first describe our node-level pre-training approach (Section 3.1) and then
graph-level pre-training approach (Section 3.2). Finally, we describe the full pre-training strategy in
Section 3.3.

3.1 NODE-LEVEL PRE-TRAINING

For node-level pre-training of GNNs, our approach is to use easily-accessible unlabeled data to
capture domain-specific knowledge/regularities in the graph. Here we propose two self-supervised
methods, Context Prediction and Attribute Masking.

3

Published as a conference paper at ICLR 2020

Input graph (a) Context Prediction (b) Attribute Masking

Context graph

K-hop neighborhood

Figure 2: Illustration of our node-level methods, Context Prediction and Attribute Masking for pre-
training GNNs. (a) In Context Prediction, the subgraph is a K-hop neighborhood around a selected
center node, where K is the number of GNN layers and is set to 2 in the figure. The context is defined
as the surrounding graph structure that is between r1- and r2-hop from the center node, where we use
r1 = 1 and r2 = 4 in the figure. (b) In Attribute Masking, the input node/edge attributes (e.g., atom
type in the molecular graph) are randomly masked, and the GNN is asked to predict them.

3.1.1 CONTEXT PREDICTION: EXPLOITING DISTRIBUTION OF GRAPH STRUCTURE

In Context Prediction, we use subgraphs to predict their surrounding graph structures. Our goal
is to pre-train a GNN so that it maps nodes appearing in similar structural contexts to nearby
embeddings (Rubenstein & Goodenough, 1965; Mikolov et al., 2013).

Neighborhood and context graphs. For every node v, we define v’s neighborhood and context
graphs as follows. K-hop neighborhood of v contains all nodes and edges that are at most K-hops
away from v in the graph. This is motivated by the fact that a K-layer GNN aggregates information
across the K-th order neighborhood of v, and thus node embedding h(K)

v depends on nodes that are
at most K-hops away from v. We define context graph of node v as graph structure that surrounds v’s
neighborhood. The context graph is described by two hyperparameters, r1 and r2, and it represents
a subgraph that is between r1-hops and r2-hops away from v (i.e., it is a ring of width r2 − r1).
Examples of neighborhood and context graphs are shown in Figure 2 (a). We require r1 < K so that
some nodes are shared between the neighborhood and the context graph, and we refer to those nodes
as context anchor nodes. These anchor nodes provide information about how the neighborhood and
context graphs are connected with each other.

Encoding context into a fixed vector using an auxiliary GNN. Directly predicting the context
graph is intractable due to the combinatorial nature of graphs. This is different from natural language
processing, where words come from a fixed and finite vocabulary. To enable context prediction, we
encode context graphs as fixed-length vectors. To this end, we use an auxiliary GNN, which we refer
to as the context GNN. As depicted in Figure 2 (a), we first apply the context GNN (denoted as GNN′
in Figure 2 (a)) to obtain node embeddings in the context graph. We then average embeddings of
context anchor nodes to obtain a fixed-length context embedding. For node v in graph G, we denote
its corresponding context embedding as cGv .

Learning via negative sampling. We then use negative sampling (Mikolov et al., 2013; Ying et al.,
2018a) to jointly learn the main GNN and the context GNN. The main GNN encodes neighborhoods
to obtain node embeddings. The context GNN encodes context graphs to obtain context embeddings.
In particular, the learning objective of Context Prediction is a binary classification of whether a
particular neighborhood and a particular context graph belong to the same node:

σ
(
h(K)>
v cG

′

v′

)
≈ 1{v and v′ are the same nodes}, (3.1)

where σ(·) is the sigmoid function, and 1(·) is the indicator function. We either let v′ = v and
G′ = G (i.e., a positive neighborhood-context pair), or we randomly sample v′ from a randomly
chosen graph G′ (i.e., a negative neighborhood-context pair). We use a negative sampling ratio of
1 (one negative pair per one positive pair), and use the negative log likelihood as the loss function.
After pre-training, the main GNN is retained as our pre-trained model.

4

Published as a conference paper at ICLR 2020

3.1.2 ATTRIBUTE MASKING: EXPLOITING DISTRIBUTION OF GRAPH ATTRIBUTES

In Attribute Masking, we aim to capture domain knowledge by learning the regularities of the
node/edge attributes distributed over graph structure.

Masking node and edges attributes. Attribute Masking pre-training works as follows: We mask
node/edge attributes and then we let GNNs predict those attributes (Devlin et al., 2019) based on
neighboring structure. Figure 2 (b) illustrates our proposed method when applied to a molecular
graph. Specifically, We randomly mask input node/edge attributes, for example atom types in
molecular graphs, by replacing them with special masked indicators. We then apply GNNs to obtain
the corresponding node/edge embeddings (edge embeddings can be obtained as a sum of node
embeddings of the edge’s end nodes). Finally, a linear model is applied on top of embeddings to
predict a masked node/edge attribute. Different from Devlin et al. (2019) that operates on sentences
and applies message passing over the fully-connected graph of tokens, we operate on non-fully-
connected graphs and aim to capture the regularities of node/edge attributes distributed over different
graph structures. Furthermore, we allow masking edge attributes, going beyond masking node
attributes.

Our node and edge attribute masking method is especially beneficial for richly-annotated graphs
from scientific domains. For example, (1) in molecular graphs, the node attributes correspond to
atom types, and capturing how they are distributed over the graphs enables GNNs to learn simple
chemistry rules such as valency, as well as potentially more complex chemistry phenomenon such as
the electronic or steric properties of functional groups. Similarly, (2) in protein-protein interaction
(PPI) graphs, the edge attributes correspond to different kinds of interactions between a pair of
proteins. Capturing how these attributes distribute across the PPI graphs enables GNNs to learn how
different interactions relate and correlate with each other.

3.2 GRAPH-LEVEL PRE-TRAINING

We aim to pre-train GNNs to generate useful graph embeddings composed of the meaningful node
embeddings obtained by methods in Section 3.1. Our goal is to ensure both node and graph embed-
dings are of high-quality so that graph embeddings are robust and transferable across downstream
tasks, as illustrated in Figure 1 (a.iii). Additionally, there are two options for graph-level pre-training,
as shown in Figure 1 (b): making predictions about domain-specific attributes of entire graphs (e.g.,
supervised labels), or making predictions about graph structure.

3.2.1 SUPERVISED GRAPH-LEVEL PROPERTY PREDICTION

As the graph-level representation hG is directly used for fine-tuning on downstream prediction tasks,
it is desirable to directly encode domain-specific information into hG.

We inject graph-level domain-specific knowledge into our pretrained embeddings by defining su-
pervised graph-level prediction tasks. In particular, we consider a practical method to pre-train
graph representations: graph-level multi-task supervised pre-training to jointly predict a diverse set
of supervised labels of individual graphs. For example, in molecular property prediction, we can
pre-train GNNs to predict essentially all the properties of molecules that have been experimentally
measured so far. In protein function prediction, where the goal is predict whether a given protein has
a given functionality, we can pre-train GNNs to predict the existence of diverse protein functions that
have been validated so far. In our experiments in Section 5, we prepare a diverse set of supervised
tasks (up to 5000 tasks) to simulate these practical scenarios. Further details of the supervised
tasks and datasets are described in Section 5.1. To jointly predict many graph properties, where
each property corresponds to a binary classification task, we apply linear classifiers on top of graph
representations.

Importantly, naïvely performing the extensive multi-task graph-level pre-training alone can fail to
give transferable graph-level representations, as empirically demonstrated in Section 5. This is
because some supervised pre-training tasks might be unrelated to the downstream task of interest
and can even hurt the downstream performance (negative transfer). One solution would be to select
“truly-relevant” supervised pre-training tasks and pre-train GNNs only on those tasks. However, such
a solution is extremely costly since selecting the relevant tasks requires significant domain expertise
and pre-training needs to be performed separately for different downstream tasks.

5

Published as a conference paper at ICLR 2020

To alleviate this issue, our key insight is that the multi-task supervised pre-training only provides
graph-level supervision; thus, local node embeddings from which the graph-level embeddings are
created may not be meaningful, as illustrated in Figure 1 (a.ii). Such non-useful node embeddings
can exacerbate the problem of negative transfer because many different pre-training tasks can more
easily interfere with each other in the node embedding space. Motivated by this, our pre-training
strategy is to first regularize GNNs at the level of individual nodes via node-level pre-training methods
described in Section 3.1, before performing graph-level pre-training. As we demonstrate empirically,
the combined strategy produces much more transferable graph representations and robustly improves
downstream performance without expert selection of supervised pre-training tasks.

3.2.2 STRUCTURAL SIMILARITY PREDICTION

A second approach is to define a graph-level predictive task where the goal would be to model
the structural similarity of two graphs. Examples of such tasks include modeling the graph edit
distance (Bai et al., 2019) or predicting graph structure similarity (Navarin et al., 2018). However,
finding the ground truth graph distance values is a difficult problem, and in large datasets there is a
quadratic number of graph pairs to consider. Therefore, while this type of pre-training is also very
natural, it is beyond the scope of this paper and we leave its investigation for future work.

3.3 OVERVIEW: PRE-TRAINING GNNS AND FINE-TUNING FOR DOWNSTREAM TASKS

Altogether, our pre-training strategy is to first perform node-level self-supervised pre-training (Sec-
tion 3.1) and then graph-level multi-task supervised pre-training (Section 3.2). When the GNN
pre-training is finished, we fine-tune the pre-trained GNN model on downstream tasks. Specifically,
we add linear classifiers on top of graph-level representations to predict downstream graph labels. The
full model, i.e., the pre-trained GNN and downstream linear classifiers, is subsequently fine-tuned in
an end-to-end manner. Time-complexity analysis is provided in Appendix F.

4 FURTHER RELATED WORK

There is rich literature on unsupervised representation learning of individual nodes within graphs,
which broadly falls into two categories. In the first category are methods that use local random
walk-based objectives (Grover & Leskovec, 2016; Perozzi et al., 2014; Tang et al., 2015) and methods
that reconstruct a graph’s adjacency matrix, e.g., by predicting edge existence (Hamilton et al., 2017a;
Kipf & Welling, 2016). In the second category are methods, such as Deep Graph Infomax (Veličković
et al., 2019), that train a node encoder that maximizes mutual information between local node
representations and a pooled global graph representation. All these methods encourage nearby nodes
to have similar embeddings and were originally proposed and evaluated for node classification and
link prediction. This, however, can be sub-optimal for graph-level prediction tasks, where capturing
structural similarity of local neighborhoods is often more important than capturing the positional
information of nodes within a graph (You et al., 2019; Rogers & Hahn, 2010; Yang et al., 2014). Our
approach thus considers both the node-level as well as graph-level pretraining tasks and as we show
in our experiments, it is essential to use both types of tasks in order for pretrained models to achieve
good performance.

A number of recent works have also explored how node embeddings generalize across tasks (Jaeger
et al., 2018; Zhou et al., 2018; Chakravarti, 2018; Narayanan et al., 2016). However, all of these
methods use distinct node embeddings for different substructures and do not share any parameters.
Thus, they are inherently transductive, cannot transfer between datasets, cannot be fine-tuned in an
end-to-end manner, and cannot capture large and diverse neighborhoods/contexts due to data sparsity.
Our approach addresses all these challenges by developing pre-training methods for GNNs that use
shared parameters to encode the the graph-level as well as node-level dependencies and structures.

6

Published as a conference paper at ICLR 2020

5 EXPERIMENTS

5.1 DATASETS

We consider two domains; molecular property prediction in chemistry and protein function prediction
in biology. We release the new datasets at: http://snap.stanford.edu/gnn-pretrain.

Pre-training datasets. For the chemistry domain, we use 2 million unlabeled molecules sampled
from the ZINC15 database (Sterling & Irwin, 2015) for node-level self-supervised pre-training. For
graph-level multi-task supervised pre-training, we use a preprocessed ChEMBL dataset (Mayr et al.,
2018; Gaulton et al., 2011), containing 456K molecules with 1310 kinds of diverse and extensive
biochemical assays. For the biology domain, we use 395K unlabeled protein ego-networks derived
from PPI networks of 50 species (e.g., humans, yeast, zebra fish) for node-level self-supervised pre-
training. For graph-level multi-task supervised pre-training, we use 88K labeled protein ego-networks
to jointly predict 5000 coarse-grained biological functions (e.g., cell apoptosis, cell proliferation).

Downstream classification datasets. For the chemistry domain, we considered classical graph
classification benchmarks (MUTAG, PTC molecule datasets) (Kersting et al., 2016; Xu et al., 2019)
as our downstream tasks, but found that they are too small (188 and 344 examples for MUTAG
and PTC) to evaluate different methods in a statistically meaningful way (see Appendix B for the
results and discussion). Because of this, as our downstream tasks, we decided to use 8 larger binary
classification datasets contained in MoleculeNet (Wu et al., 2018), a recently-curated benchmark
for molecular property prediction. The dataset statistics are summarized in Table 1. For the biology
domain, we compose our PPI networks from Zitnik et al. (2019), consisting of 88K proteins from 8
different species, where the subgraphs centered at a protein of interest (i.e., ego-networks) are used
to predict their biological functions. Our downstream task is to predict 40 fine-grained biological
functions1 that correspond to 40 binary classification tasks. In contrast to existing PPI datasets
(Hamilton et al., 2017a), our dataset is larger and spans multiple species (i.e., not only humans),
which makes it a suitable benchmark for evaluating out-of-distribution prediction. Additional details
about datasets and features of molecule/PPI graphs are in Appendices C and D.

Dataset splitting. In many applications, conventional random split is overly optimistic and does not
simulate the real-world use case, where test graphs can be structurally different from training graphs
(Wu et al., 2018; Zitnik et al., 2019). To reflect the actual use case, we split the downstream data
in the following ways to evaluate the models’ out-of-distribution generalization. In the chemistry
domain, we use scaffold split (Ramsundar et al., 2019), where we split molecules according to their
scaffold (molecular substructure). In the biology domain, we use species split, where we predict
functions of proteins from new species. Details are in Appendix E. Furthermore, to prevent data
leakage, all test graphs used for performance evaluation are removed from the graph-level supervised
pre-training datasets.

5.2 EXPERIMENTAL SETUP

We thoroughly compare our pre-training strategy with two naïve baseline strategies: (i) extensive
supervised multi-task pre-training on relevant graph-level tasks, and (ii) node-level self-supervised
pre-training.

GNN architectures. We mainly study Graph Isomorphism Networks (GINs) (Xu et al., 2019), the
most expressive and state-of-the-art GNN architecture for graph-level prediction tasks. We also
experimented with other popular architectures that are less expressive: GCN (Kipf & Welling, 2016),
GAT (Veličković et al., 2019), and GraphSAGE (with mean neighborhood aggregation) (Hamilton
et al., 2017b). We select the following hyper-parameters that performed well across all downstream
tasks in the validation sets: 300 dimensional hidden units, 5 GNN layers (K = 5), and average
pooling for the READOUT function. Additional details can be found in Appendix A.

Pre-training. For Context Prediction illustrated in Figure 2 (a), on molecular graphs, we define
context graphs by setting inner radius r1 = 4. On PPI networks whose diameters are often smaller than
5, we use r1 = 1, which works well empirically despite the large overlap between the neighborhood
and context subgraphs. For both molecular and PPI graphs, we let outer radius r2 = r1 + 3, and

1Fine-grained labels are harder to obtain than coarse-grained labels; the latter are used for pre-training.

7

http://snap.stanford.edu/gnn-pretrain

Published as a conference paper at ICLR 2020

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Average
Molecules 2039 7831 8575 1427 1478 93087 41127 1513 /

Binary prediction tasks 1 12 617 27 2 17 1 1 /
Pre-training strategy Out-of-distribution prediction (scaffold split)Graph-level Node-level

– – 65.8 ±4.5 74.0 ±0.8 63.4 ±0.6 57.3 ±1.6 58.0 ±4.4 71.8 ±2.5 75.3 ±1.9 70.1 ±5.4 67.0
– Infomax 68.8 ±0.8 75.3 ±0.5 62.7 ±0.4 58.4 ±0.8 69.9 ±3.0 75.3 ±2.5 76.0 ±0.7 75.9 ±1.6 70.3
– EdgePred 67.3 ±2.4 76.0 ±0.6 64.1 ±0.6 60.4 ±0.7 64.1 ±3.7 74.1 ±2.1 76.3 ±1.0 79.9 ±0.9 70.3
– AttrMasking 64.3 ±2.8 76.7 ±0.4 64.2 ±0.5 61.0 ±0.7 71.8 ±4.1 74.7 ±1.4 77.2 ±1.1 79.3 ±1.6 71.1
– ContextPred 68.0 ±2.0 75.7 ±0.7 63.9 ±0.6 60.9 ±0.6 65.9 ±3.8 75.8 ±1.7 77.3 ±1.0 79.6 ±1.2 70.9

Supervised – 68.3 ±0.7 77.0 ±0.3 64.4 ±0.4 62.1 ±0.5 57.2 ±2.5 79.4 ±1.3 74.4 ±1.2 76.9 ±1.0 70.0
Supervised Infomax 68.0 ±1.8 77.8 ±0.3 64.9 ±0.7 60.9 ±0.6 71.2 ±2.8 81.3 ±1.4 77.8 ±0.9 80.1 ±0.9 72.8
Supervised EdgePred 66.6 ±2.2 78.3 ±0.3 66.5 ±0.3 63.3 ±0.9 70.9 ±4.6 78.5 ±2.4 77.5 ±0.8 79.1 ±3.7 72.6
Supervised AttrMasking 66.5 ±2.5 77.9 ±0.4 65.1 ±0.3 63.9 ±0.9 73.7 ±2.8 81.2 ±1.9 77.1 ±1.2 80.3 ±0.9 73.2
Supervised ContextPred 68.7 ±1.3 78.1 ±0.6 65.7 ±0.6 62.7 ±0.8 72.6 ±1.5 81.3 ±2.1 79.9 ±0.7 84.5 ±0.7 74.2

Table 1: Test ROC-AUC (%) performance on molecular prediction benchmarks using different
pre-training strategies with GIN. The rightmost column averages the mean of test performance
across the 8 datasets. The best result for each dataset and comparable results (i.e., results within one
standard deviation from the best result) are bolded. The shaded cells indicate negative transfer, i.e.,
ROC-AUC of a pre-trained model is worse than that of a non-pre-trained model. Notice that node- as
well as graph-level pretraining are essential for good performance.

Chemistry Biology
Non-pre-trained Pre-trained Gain Non-pre-trained Pre-trained Gain

GIN 67.0 74.2 +7.2 64.8 ± 1.0 74.2 ± 1.5 +9.4
GCN 68.9 72.2 +3.4 63.2 ± 1.0 70.9 ± 1.7 +7.7

GraphSAGE 68.3 70.3 +2.0 65.7 ± 1.2 68.5 ± 1.5 +2.8
GAT 66.8 60.3 -6.5 68.2 ± 1.1 67.8 ± 3.6 -0.4

Table 2: Test ROC-AUC (%) performance of different GNN architectures with and without
pre-training. Without pre-training, the less expressive GNNs give slightly better performance
than the most expressive GIN because of their smaller model complexity in a low data regime.
However, with pre-training, the most expressive GIN is properly regularized and dominates the other
architectures. For results split by chemistry datasets, see Table 4 in Appendix H. Pre-training strategy
for chemistry data: Context Prediction + Graph-level supervised pre-training; pre-training strategy
for biology data: Attribute Masking + Graph-level supervised pre-training.

use a 3-layer GNN to encode the context structure. For Attribute Masking shown in Figure 2 (b),
we randomly mask 15% of node (for molecular graphs) or edge attributes (for PPI networks) for
prediction. As baselines for node-level self-supervised pre-training, we adopt the original Edge
Prediction (denoted by EdgePred) (Hamilton et al., 2017a) and Deep Graph Infomax (denoted by
Infomax) (Veličković et al., 2019) implementations. Further details are provided in Appendix G.

5.3 RESULTS

We report results for molecular property prediction and protein function prediction in Tables 2 and 1
and Figure 3. Our systematic study suggests the following trends:

Observation (1): Table 2 shows that the most expressive GNN architecture (GIN), when pre-trained,
achieves the best performance across domains and datasets. Compared with gains of pre-training
achieved by GIN architecture, gains of pre-training using less expressive GNNs (GCN, GraphSAGE,
and GAT) are smaller and can sometimes even be negative (Table 2). This finding confirms previous
observations (e.g., Erhan et al. (2010)) that using an expressive model is crucial to fully utilize
pre-training, and that pre-training can even hurt performance when used on models with limited
expressive power, such as GCN, GraphSAGE, and GAT.

Observation (2): As seen from the shaded cells of Table 1 and highlighted region in the middle panel
of Figure 3, the strong baseline strategy that performs extensive graph-level multi-task supervised
pre-training of GNNs gives surprisingly limited performance gain and yields negative transfer on
many downstream tasks (2 out of 8 datasets in molecular prediction, and 13 out of 40 tasks in protein
function prediction).

8

Published as a conference paper at ICLR 2020

Observation (3): From the upper half of Table 1 and the left panel of Figure 3, we see that another
baseline strategy, which only performs node-level self-supervised pre-training, also gives limited
performance improvement and is comparable to the graph-level multi-task supervised pre-training
baseline.

Observation (4): From the lower half of Table 1 and the right panel of Figure 3, we see that our
pre-training strategy of combining graph-level multi-task supervised and node-level self-supervised
pre-training avoids negative transfer across downstream datasets and achieves best performance.

Observation (5): Furthermore, from Table 1 and the left panel of Figure 3, we see that our strategy
gives significantly better predictive performance than the two baseline pre-training strategies as well
as non-pre-trained models, achieving state-of-the-art performance.

Specifically, in the chemistry datasets, we see from Table 1 that our Context Prediction + Graph-level
multi-task supervised pre-training strategy gives the most promising performance, leading to an
increase in average ROC-AUC of 7.2% over non-pre-trained baseline and 4.2% over graph-level
multi-task supervised pre-trained baseline. On the HIV dataset, where a number of recent works (Wu
et al., 2018; Li et al., 2017; Ishiguro et al., 2019) have reported performance on the same scaffold split
and using the same protocol, our best pre-trained model (ContextPred + Supervised) achieves state-of-
the-art performance. In particular, we achieved a ROC-AUC score of 79.9%, while best-performing
graph models in Wu et al. (2018), Li et al. (2017), and Ishiguro et al. (2019) had ROC-AUC scores of
76.3%, 77.6%, and 76.2%, respectively.

Also, in the biology datasets, which we have built in this work, we see from the left panel of Figure 3
that our Attribute Masking + Graph-level multi-task supervised pre-training strategy achieves the
best predictive performance compared to other baseline strategies across almost all 40 downstream
prediction tasks (the right panel of Figure 3). On average, our strategy improves ROC-AUC by 9.4%
over non-pre-trained baseline and 5.2% over graph-level multi-task supervised pre-trained baseline,
again achieving state-of-the-art performance.

Observation (6): In the chemistry domain, we also report performance on classic benchmarks
(MUTAG, PTC molecule datasets) in Appendix B. However, as mentioned in Section 5.1, the
extremely small dataset sizes make these benchmarks unsuitable to compare different methods in a
statistically reliable way.

Observation (7): Beyond predictive performance improvement, Figure 4 shows that our pre-trained
models achieve orders-of-magnitude faster training and validation convergence than non-pre-trained
models. For example, on the MUV dataset, it took 1 hour for the non-pre-trained GNN to get 74.9%
validation ROC-AUC, while it took only 5 minutes for our pre-trained GNN to get 85.3% validation
ROC-AUC. The same trend holds across the downstream datasets we used, as shown in Figure 5 in
Appendix I. We emphasize that pre-training is a one-time-effort. Once the model is pre-trained, it can
be used for any number of downstream tasks to improve performance with little training time.

As a final remark, in our preliminary experiments, we performed the Attribute Masking and Context
Prediction simultaneously to pre-train GNNs. That approach did not improve performance in our
experiments. We leave a thorough analysis of the approach for future work.

6 CONCLUSIONS AND FUTURE WORK

We developed a novel strategy for pre-training GNNs. Crucial to the success of our strategy is
to consider both node-level and graph-level pre-training in combination with an expressive GNN.
This ensures that node embeddings capture local neighborhood semantics that are pooled together
to obtain meaningful graph-level representations, which, in turn, are used for downstream tasks.
Experiments on multiple datasets, diverse downstream tasks and different GNN architectures show
that the new pre-training strategy achieves consistently better out-of-distribution generalization than
non-pre-trained models.

Our work makes an important step toward transfer learning on graphs and addresses the issue of
negative transfer observed in prior studies. There are many interesting avenues for future work. For
example, further increasing generalization by improving GNN architectures as well as pre-training
and fine-tuning approaches, is a fruitful direction. Investigating what pre-trained models have learned
would also be useful to aid scientific discovery (Tshitoyan et al., 2019). Finally, it would be interesting

9

Published as a conference paper at ICLR 2020

G
ra
ph
-le
ve
l s
up
er
vi
se
d

pr
e -
tra
in
in
g
on
ly

No pre-training No pre-training

At
tri
bu
te
 M
as
ki
ng
 +
 G
ra
ph
-le
ve
l

su
pe
rv
is
ed
 p
re
-tr
ai
ni
ng

Negative transfer
occurs in 13 tasks
out of 40 tasks.

Attribute Masking
helps avoiding
negative transfer
across tasks.

Graph-level supervised
pre-training only

Attribute Masking
improves generalization
over pure graph-level pre-
training across tasks.

Pre-training strategy Out-of-dist.
Graph-level Node-level (species split)

– – 64.8 ±1.0
– Infomax 64.1 ±1.5
– EdgePred 65.7 ±1.3
– ContextPred 65.2 ±1.6
– AttrMasking 64.4 ±1.3

Supervised – 69.0 ±2.4
Supervised Infomax 72.8 ±1.5
Supervised EdgePred 72.3 ±1.4
Supervised ContextPred 73.8 ± 1.0
Supervised AttrMasking 74.2 ±1.5

Table 1: Test AUC performance on molecular prediction benchmarks with different pre-
training strategies (%). The best ones and the comparable ones that are within one standard
deviation from the best ones are bolded.

Strategies for Pre-training Graph Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

Figure 3: Test ROC-AUC of protein function prediction using different pre-training strategies
with GIN. (Left) Test ROC-AUC scores (%) obtained by different pre-training strategies, where
the scores are averaged over the 40 fine-grained prediction tasks. (Middle and right): Scatter plot
comparisons of ROC-AUC scores for a pair of pre-training strategies on the 40 individual downstream
tasks. Each point represents a particular individual downstream task. (Middle): There are many
individual downstream tasks where graph-level multi-task supervised pre-trained model performs
worse than non-pre-trained model, indicating negative transfer. (Right): When the graph-level multi-
task supervised pre-training and Attribute Masking are combined, negative transfer is avoided across
downstream tasks. The performance also improves over pure graph-level supervised pre-training.

Pre-trained

Non-pre-trained
Random initialization

Graph-level supervised
pre-training + Masking

Graph-level supervised
pre-training only
Masking

Chemistry: MUV

Epoch Epoch

Biology: PPI prediction

Figure 4: Training and validation curves of different pre-training strategies on GINs. Solid and
dashed lines indicate training and validation curves, respectively.

to apply our methods to other domains, e.g., physics, material science, and structural biology, where
many problems are defined over graphs representing interactions of e.g., atoms, particles, and amino
acids.

ACKNOWLEDGMENTS

We thank Camilo Ruiz, Rex Ying, Zhenqin Wu, Shantao Li, Srijan Kumar, Hongwei Wang, and
Robin Jia for their helpful discussion. W.H is supported by Funai Overseas Scholarship and Masason
Foundation Fellowship. J.L is a Chan Zuckerberg Biohub investigator. We gratefully acknowledge
the support of DARPA under Nos. FA865018C7880 (ASED), N660011924033 (MCS); ARO under
Nos. W911NF-16-1-0342 (MURI), W911NF-16-1-0171 (DURIP); NSF under Nos. OAC-1835598
(CINES), OAC-1934578 (HDR); Stanford Data Science Initiative, Wu Tsai Neurosciences Institute,
Chan Zuckerberg Biohub, JD.com, Amazon, Boeing, Docomo, Huawei, Hitachi, Observe, Siemens,
UST Global.

The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not necessarily reflect the
views, policies, or endorsements, either expressed or implied, of DARPA, NIH, ARO, or the U.S.
Government.

The Pande Group acknowledges the generous support of Dr. Anders G. Frøseth and Mr. Christian
Sundt for our work on machine learning. The Pande Group is broadly supported by grants from the
NIH (R01 GM062868 and U19 AI109662) as well as gift funds and contributions from Folding@home
donors.

10

Published as a conference paper at ICLR 2020

V.S.P is a consultant & SAB member of Schrodinger, LLC and Globavir, sits on the Board of
Directors of Apeel Sciences, Asimov, BioAge Labs, Ciitizen, Devoted Health, Freenome, Insitro,
Omada Health, PatientPing, and is a General Partner at Andreessen Horowitz.

REFERENCES

AACT. AACT database, Jan 2017. URL https://www.ctti-clinicaltrials.org/
aact-database.

Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler, J Michael
Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al. Gene ontology: tool
for the unification of biology. Nature Genetics, 25(1):25, 2000.

Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen, Yizhou Sun, and
Wei Wang. Unsupervised inductive whole-graph embedding by preserving graph proximity. In
International Joint Conference on Artificial Intelligence (IJCAI), 2019.

Guy W. Bemis and Mark A. Murcko. The properties of known drugs. 1. molecular frameworks.
Journal of Medicinal Chemistry, 39(15):2887–2893, 1996. doi: 10.1021/jm9602928. PMID:
8709122.

Andrew P Bradley. The use of the area under the ROC curve in the evaluation of machine learning
algorithms. Pattern Recognition, 30(7):1145–1159, 1997.

Suman K Chakravarti. Distributed representation of chemical fragments. ACS Omega, 3(3):2825–
2836, 2018.

Bin Chen, Robert P. Sheridan, Viktor Hornak, and Johannes H. Voigt. Comparison of random forest
and pipeline pilot naïve bayes in prospective QSAR predictions. Journal of Chemical Information
and Modeling, 52(3):792–803, 2012. doi: 10.1021/ci200615h. PMID: 22360769.

Travers Ching, Daniel S Himmelstein, Brett K Beaulieu-Jones, Alexandr A Kalinin, Brian T Do,
Gregory P Way, Enrico Ferrero, Paul-Michael Agapow, Michael Zietz, Michael M Hoffman, et al.
Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal
Society Interface, 15(141):20170387, 2018.

Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong. Nucleic
Acids Research, 47(D1):D330–D338, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Annual Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL), 2019.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In
International Conference on Machine Learning (ICML), pp. 647–655, 2014.

Brendan L Douglas. The Weisfeiler-Lehman method and graph isomorphism testing. arXiv preprint
arXiv:1101.5211, 2011.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine
Learning Research, 11(Feb):625–660, 2010.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with Pytorch Geometric. In
International Conference on Learning Representations (ICLR), RLGM Workshop, 2019.

Eleanor J Gardiner, John D Holliday, Caroline O’Dowd, and Peter Willett. Effectiveness of 2d
fingerprints for scaffold hopping. Future Medicinal Chemistry, 3(4):405–414, 2011.

Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. ChEMBL: a large-scale
bioactivity database for drug discovery. Nucleic Acids Research, 40(D1):D1100–D1107, 2011.

11

https://www.ctti-clinicaltrials.org/aact-database
https://www.ctti-clinicaltrials.org/aact-database

Published as a conference paper at ICLR 2020

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning (ICML),
pp. 1273–1272, 2017.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 580–587, 2014.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp. 855–864. ACM,
2016.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems (NeurIPS), pp. 1025–1035, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. IEEE Data Engineering Bulletin, 40(3):52–74, 2017b.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness
and uncertainty. In International Conference on Machine Learning (ICML), 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning (ICML), pp.
448–456, 2015.

Katsuhiko Ishiguro, Shin-ichi Maeda, and Masanori Koyama. Graph warp module: An auxiliary
module for boosting the power of graph neural networks. arXiv preprint arXiv:1902.01020, 2019.

Sabrina Jaeger, Simone Fulle, and Samo Turk. Mol2vec: unsupervised machine learning approach
with chemical intuition. Journal of chemical information and modeling, 58(1):27–35, 2018.

Kristian Kersting, Nils M Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Bench-
mark data sets for graph kernels, 2016. URL http://graphkernels. cs. tu-dortmund. de, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. In Advances in Neural Information
Processing Systems (NeurIPS), Bayesian Deep Learning Workshop, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

DV Klopfenstein, Liangsheng Zhang, Brent S Pedersen, Fidel Ramírez, Alex Warwick Vesztrocy,
Aurélien Naldi, Christopher J Mungall, Jeffrey M Yunes, Olga Botvinnik, Mark Weigel, et al.
Goatools: A Python library for gene ontology analyses. Scientific Reports, 8(1):10872, 2018.

Michael Kuhn, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. The sider database of drugs and side
effects. Nucleic Acids Research, 44(D1):D1075–D1079, 2015.

Greg Landrum et al. RDKit: Open-source cheminformatics, 2006.

Junying Li, Deng Cai, and Xiaofei He. Learning graph-level representation for drug discovery. arXiv
preprint arXiv:1709.03741, 2017.

Ines Filipa Martins, Ana L Teixeira, Luis Pinheiro, and Andre O Falcao. A bayesian approach to in
silico blood-brain barrier penetration modeling. Journal of Chemical Information and Modeling,
52(6):1686–1697, 2012.

Andreas Mayr, Günter Klambauer, Thomas Unterthiner, Marvin Steijaert, Jörg K Wegner, Hugo
Ceulemans, Djork-Arné Clevert, and Sepp Hochreiter. Large-scale comparison of machine learning
methods for drug target prediction on ChEMBL. Chemical Science, 9(24):5441–5451, 2018.

12

Published as a conference paper at ICLR 2020

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 3111–3119, 2013.

Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar
Saminathan. subgraph2vec: Learning distributed representations of rooted sub-graphs from large
graphs. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), MLG
workshop, 2016.

Nicolò Navarin, Dinh V Tran, and Alessandro Sperduti. Pre-training graph neural networks with
kernels. arXiv preprint arXiv:1811.06930, 2018.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
for graphs. In International Conference on Machine Learning (ICML), pp. 2014–2023, 2016.

Paul A. Novick, Oscar F. Ortiz, Jared Poelman, Amir Y. Abdulhay, and Vijay S. Pande. SWEETLEAD:
an in silico database of approved drugs, regulated chemicals, and herbal isolates for computer-
aided drug discovery. PLOS ONE, 8(11), 11 2013. doi: 10.1371/journal.pone.0079568. URL
https://doi.org/10.1371/journal.pone.0079568.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2009.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In Advances in Neural Information Processing Systems (NeurIPS), Workshop, 2017.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social represen-
tations. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp.
701–710. ACM, 2014.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Annual Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL), 2018.

Bharath Ramsundar, Peter Eastman, Patrick Walters, and Vijay Pande. Deep Learn-
ing for the Life Sciences. O’Reilly Media, 2019. https://www.amazon.com/
Deep-Learning-Life-Sciences-Microscopy/dp/1492039837.

Ann M. Richard, Richard S. Judson, Keith A. Houck, Christopher M. Grulke, Patra Volarath, Inthirany
Thillainadarajah, Chihae Yang, James Rathman, Matthew T. Martin, John F. Wambaugh, Thomas B.
Knudsen, Jayaram Kancherla, Kamel Mansouri, Grace Patlewicz, Antony J. Williams, Stephen B.
Little, Kevin M. Crofton, and Russell S. Thomas. Toxcast chemical landscape: Paving the road to
21st century toxicology. Chemical Research in Toxicology, 29(8):1225–1251, 2016.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of Chemical Informa-
tion and Modeling, 50(5):742–754, 2010. doi: 10.1021/ci100050t.

Michael T Rosenstein, Zvika Marx, Leslie Pack Kaelbling, and Thomas G Dietterich. To transfer or
not to transfer. In Advances in Neural Information Processing Systems (NeurIPS), Workshop on
transfer learning, volume 898, pp. 1–4, 2005.

Herbert Rubenstein and John B Goodenough. Contextual correlates of synonymy. Communications
of the ACM, 8(10):627–633, 1965.

Robert P. Sheridan. Time-split cross-validation as a method for estimating the goodness of prospective
prediction. Journal of Chemical Information and Modeling, 53(4):783–790, 2013. doi: 10.1021/
ci400084k. PMID: 23521722.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

13

https://doi.org/10.1371/journal.pone.0079568
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837

Published as a conference paper at ICLR 2020

Teague Sterling and John J. Irwin. Zinc 15 – ligand discovery for everyone. Journal of Chemical
Information and Modeling, 55(11):2324–2337, 2015. doi: 10.1021/acs.jcim.5b00559. PMID:
26479676.

Govindan Subramanian, Bharath Ramsundar, Vijay Pande, and Rajiah Aldrin Denny. Computational
modeling of β-secretase 1 (BACE-1) inhibitors using ligand based approaches. Journal of Chemical
Information and Modeling, 56(10):1936–1949, 2016.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the International World Wide Web Conference
(WWW), pp. 1067–1077, 2015.

Tox21. Tox21 data challenge 2014, 2014. URL https://tripod.nih.gov/tox21/
challenge/.

Vahe Tshitoyan, John Dagdelen, Leigh Weston, Alexander Dunn, Ziqin Rong, Olga Kononova,
Kristin A Persson, Gerbrand Ceder, and Anubhav Jain. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature, 571(7763):95, 2019.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations (ICLR),
2019.

Jingshu Wang, Divyansh Agarwal, Mo Huang, Gang Hu, Zilu Zhou, Chengzhong Ye, and Nancy R
Zhang. Data denoising with transfer learning in single-cell transcriptomics. Nature Methods, 16
(9):875–878, 2019.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu,
Karl Leswing, and Vijay Pande. MoleculeNet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning (ICML), pp. 5453–5462, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Yuting Xu, Junshui Ma, Andy Liaw, Robert P Sheridan, and Vladimir Svetnik. Demystifying multi-
task deep neural networks for quantitative structure–activity relationships. Journal of Chemical
Information and Modeling, 57(10):2490–2504, 2017.

Rendong Yang, Yun Bai, Zhaohui Qin, and Tianwei Yu. EgoNet: identification of human disease
ego-network modules. BMC Genomics, 15(1):314, 2014.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), pp. 974–983, 2018a.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Advances in Neural
Information Processing Systems (NeurIPS), 2018b.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In International
Conference on Machine Learning (ICML), 2019.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European Conference on Computer Vision (ECCV), pp. 818–833. Springer, 2014.

14

https://tripod.nih.gov/tox21/challenge/
https://tripod.nih.gov/tox21/challenge/

Published as a conference paper at ICLR 2020

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In AAAI Conference on Artificial Intelligence, pp. 4438–4445,
2018.

Quan Zhou, Peizhe Tang, Shenxiu Liu, Jinbo Pan, Qimin Yan, and Shou-Cheng Zhang. Learning
atoms for materials discovery. Proceedings of the National Academy of Sciences, 115(28):E6411–
E6417, 2018.

Marinka Zitnik, Rok Sosic, and Jure Leskovec. Prioritizing network communities. Nature Communi-
cations, 9(1):2544, 2018.

Marinka Zitnik, Rok Sosič, Marcus W. Feldman, and Jure Leskovec. Evolution of resilience in
protein interactomes across the tree of life. Proceedings of the National Academy of Sciences,
116(10):4426–4433, 2019. ISSN 0027-8424. doi: 10.1073/pnas.1818013116. URL https:
//www.pnas.org/content/116/10/4426.

15

https://www.pnas.org/content/116/10/4426
https://www.pnas.org/content/116/10/4426

Published as a conference paper at ICLR 2020

A DETAILS OF GNN ARCHITECTURES

Here we describe GNN architectures used in our molecular property and protein function prediction
experiments. For both domains we use the GIN architecture (Xu et al., 2019) with some minor
modifications to include edge features, as well as center node information in the protein ego-networks.

As our primary goal is to systematically compare our pre-training strategy to the strong baseline
strategies, we fix all of these hyper-parameters in our experiments and focus on relative improvement
directly caused by the difference in pre-training strategies.

Molecular property prediction. In molecular property prediction, the raw node features and edge
features are both 2-dimensional categorical vectors (see Appendix C for details), denoted as (iv,1, iv,2)
and (je,1, je,2) for node v and edge e, respectively. Note that we also introduce unique categories to
indicate masked node/edges as well as self-loop edges. As input features to GNNs, we first embed
the categorical vectors by

h(0)v = EmbNode1(iv,1) + EmbNode2(iv,2)

h(k)e = EmbEdge
(k)
1 (je,1) + EmbEdge

(k)
2 (je,2) for k = 0, 1, . . . ,K − 1,

where EmbNode1(·), EmbNode2(·), EmbEdge
(k)
1 (·), and EmbNode

(k)
1 (·) represent embedding

operations that map integer indices to d-dimensional real vectors, and k represents the index of GNN
layers. At the k-th layer, GNNs update node representations by

h(k)v = ReLU

MLP(k)

 ∑
u∈N (v)∪{v}

h(k−1)u +
∑

e=(v,u):u∈N (v)∪{v}

h(k−1)e

 , (A.1)

where N (v) is a set of nodes adjacent to v, and e = (v, v) represents the self-loop edge. Note that
for the final layer, i.e., k = K, we removed the ReLU from Eq. (A.1) so that h(k)v can take negative
values. This is crucial for pre-training methods based on the dot product, e.g., Context Prediction and
Edge Prediction, as otherwise, the dot product between two vectors would be always positive.

The graph-level representation hG is obtained by averaging the node embeddings at the final layer,
i.e.,

hG = MEAN({h(K)
v | v ∈ G}). (A.2)

The label prediction is made by a linear model on top of hG.

In our experiments, we set the embedding dimension d to 300. For MLPs in Eq. (A.1), we use the
ReLU activation with 600 hidden units. We apply batch normalization (Ioffe & Szegedy, 2015) right
before the ReLU in Eq. (A.1) and apply dropout (Srivastava et al., 2014) to h(k)v at all the layers
except the input layer.

Protein function prediction. The GNN architecture used for protein function prediction is similar to
the one used for molecular property prediction except for a few differences. First, the raw input node
features are uniform (denoted as X here) and second, the raw input edge features are binary vectors
(see Appendix D for the detail), which we denote as ce ∈ {0, 1}d0 . As input features to GNNs, we
first embed the raw features by

h(0)v = X

h(k)e =Wce + b for k = 0, 1, . . . ,K − 1,

where W ∈ Rd×d0 and b ∈ Rd are learnable parameters, and h(0)v , h
(k)
e ∈ Rd. At each layer, GNNs

update node representations by

h(k)v = ReLU

MLP(k)

CONCAT

 ∑
u∈N (v)∪{v}

h(k−1)u ,
∑

e=(v,u):u∈N (v)∪{v}

h(k−1)e

 ,

(A.3)

16

Published as a conference paper at ICLR 2020

Dataset MUTAG PTC
Molecules 188 344

Binary prediction tasks 1 1
Prvious results Cross validation split

WL substree (Douglas, 2011) 90.4 ± 5.7 59.9 ± 4.3
Patchysan (Niepert et al., 2016) 92.6 ± 4.2 60.0 ± 4.8

GIN (Xu et al., 2019) 89.4 ± 5.6 64.6 ± 7.0
Pre-training strategy Cross validation splitGraph-level Node-level
– – 89.3 ± 7.4 62.4 ± 6.3
– Infomax 89.8 ± 5.6 65.9 ± 3.9
– EdgePred 91.9 ± 7.0 66.5 ± 5.7
– Masking 91.4 ± 5.0 64.4 ± 7.3
– ContextPred 92.4 ± 7.1 68.3 ± 7.8

Supervised – 90.9 ± 5.8 64.7 ± 7.9
Supervised Infomax 90.9 ± 5.4 63.0 ± 9.3
Supervised EdgePred 91.9 ± 4.2 63.5 ± 8.2
Supervised Masking 90.3 ± 3.3 60.9 ± 9.1
Supervised ContextPred 92.5 ± 5.0 66.5 ± 5.2

Table 3: 10-fold cross validation accuracy (%) on classic graph classification benchmarks using
different pre-training strategies with GIN. All the previous results are excerpted from Xu et al.
(2019).

where CONCAT(·, ·) takes two vectors as input and concatenates them. Since the downstream task
is ego-network classification, we use the embedding of the center node vcenter together with the
embedding of the entire ego-network. More specifically, we obtain graph-level representation hG by

hG = CONCAT
(
MEAN({h(K)

v | v ∈ G}), h(K)
vcenter

)
. (A.4)

Other GNN architectures. For GCN, GraphSAGE, and GAT, we adopt the implementation in the
Pytorch Geometric library (Fey & Lenssen, 2019), where we set the number of GAT attention heads
to be 2. The dimensionality of node embeddings as well as the number of GNN layers are kept the
same as GIN. These models do not originally handle edge features. We incorporate edge features into
these models similarly to how we do it for the GIN; we add edge embeddings into node embeddings,
and perform the GNN message-passing on the obtained node embeddings.

B EXPERIMENTS ON CLASSIC GRAPH CLASSIFICATION BENCHMARKS

In Table 3 we report our experiments on the commonly-used classic graph classification benchmarks
(Kersting et al., 2016). Among the datasets Xu et al. (2019) used, MUTAG, PTC, and NCI1 are
molecule datasets for binary classification. Out of these three, we excluded the NCI1 dataset, because
it misses edge information (i.e., bond type) and therefore, we cannot recover the original molecule
information, which is necessary to construct our input representations described in Appendix C.

For fair comparison, we used exactly the same evaluation protocol as Xu et al. (2019), i.e., report
10-fold cross-validation accuracy. All the hyper-parameters in our experiments are kept the same in
the main experiments except that we additionally tuned dropout rate from {0, 0.2, 0.5} and the batch
size from {8, 64} at the fine-tuning stage.

While the pre-trained GNNs (especially those with Context Prediction) give competent performance,
all the accuracies (including all the previous methods) are within a standard deviation with each other,
making it hard to reliably compare different methods. As Xu et al. (2019) has pointed out, this is
due to the extremely small dataset size; a validation set at each fold only contains around 19 to 35
molecules for MUTAG and PTC, respectively. Given these results, we argue that it is necessary to use
larger datasets to make reliable comparison, so we mainly focus on MoleculeNet (Wu et al., 2018) in
this work.

17

Published as a conference paper at ICLR 2020

C DETAILS OF MOLECULAR DATASETS

Input graph representation. For simplicity, we use a minimal set of node and bond features that
unambiguously describe the two-dimensional structure of molecules. We use RDKit (Landrum et al.,
2006) to obtain these features.

• Node features:
– Atom number: [1, 118]
– Chirality tag: {unspecified, tetrahedral cw, tetrahedral ccw, other}

• Edge features:
– Bond type: {single, double, triple, aromatic}
– Bond direction: {–, endupright, enddownright}

Downstream task datasets. 8 binary graph classification datasets from Moleculenet (Wu et al.,
2018) are used to evaluate model performance.

• BBBP. Blood-brain barrier penetration (membrane permeability) (Martins et al., 2012).
• Tox21. Toxicity data on 12 biological targets, including nuclear receptors and stress response

pathways (Tox21).
• ToxCast. Toxicology measurements based on over 600 in vitro high-throughput screenings

(Richard et al., 2016).
• SIDER. Database of marketed drugs and adverse drug reactions (ADR), grouped into 27

system organ classes (Kuhn et al., 2015).
• ClinTox. Qualitative data classifying drugs approved by the FDA and those that have failed

clinical trials for toxicity reasons (Novick et al., 2013; AACT).
• MUV. Subset of PubChem BioAssay by applying a refined nearest neighbor analysis,

designed for validation of virtual screening techniques (Gardiner et al., 2011).
• HIV. Experimentally measured abilities to inhibit HIV replication (?).
• BACE. Qualitative binding results for a set of inhibitors of human β-secretase 1 (Subrama-

nian et al., 2016).

D DETAILS OF PROTEIN DATASETS

Input graph representation. The protein subgraphs only have edge features.

• Edge features:
– Neighbourhood: {True, False}
– Fusion: {True, False}
– Co-occurrence: {True, False}
– Co-expression: {True, False}
– Experiment: {True, False}
– Database: {True, False}
– Text: {True, False}

These edge features indicate whether a particular type of relationship exists between a pair of proteins:

• Neighbourhood: if a pair of genes are consistently observed in each other’s genome neigh-
bourhood
• Fusion: if a pair of proteins have their respective orthologs fused into a single protein-coding

gene in another organism
• Co-occurrence: if a pair of proteins tend to be observed either as present or absent in the

same subset of organisms
• Co-expression: if a pair of proteins share similar expression patterns

18

Published as a conference paper at ICLR 2020

• Experiment: if a pair of proteins are experimentally observed to physically interact with
each other

• Database: if a pair of proteins belong to the same pathway, based on assessments by a human
curator

• Text mining: if a pair of proteins are mentioned together in PubMed abstracts

Datasets. A dataset containing protein subgraphs from 50 species is used (Zitnik et al., 2019). The
original PPI networks do not have node attributes, but contain edge attributes that correspond to the
degree of confidence for 7 different types of protein-protein relationships. The edge weights range
from 0, which indicates no evidence for the specific relationship, to 1000, which indicates the highest
confidence. The weighted edges of the PPI networks are thresholded such that the distribution of edge
types across the 50 PPI networks are uniform. Then, for every node in the PPI networks, subgraphs
centered on each node were generated by: (1) performing a breadth first search to select the subgraph
nodes, with a search depth limit of 2 and a maximum number of 10 neighbors randomly expanded
per node, (2) including the selected subgraph nodes and all the edges between those nodes to form
the resulting subgraph.

The entire dataset contains 394,925 protein subgraphs derived from 50 species. Out of these 50
species, 8 species (arabidopsis, celegans, ecoli, fly, human, mouse, yeast, zebrafish) have proteins with
GO protein annotations. The dataset contains 88,000 protein subgraphs from these 8 species, of which
57,448 proteins have at least one positive coarse-grained GO protein annotation and 22,876 proteins
have at least one positive fine-grained GO protein annotation. For the self-supervised pre-training
dataset, we use all 394,925 protein subgraphs.

We define fine-grained protein functions as Gene Ontology (GO) annotations that are leaves in the
GO hierarchy, and define coarse-grained protein functions as GO annotations that are the immediate
parents of leaves (Ashburner et al., 2000; Consortium, 2018). For example, a fine-grained protein
function is “Factor XII activation”, while a coarse-grained function is “positive regulation of protein”.
The former is a specific type of the latter, and is much harder to derive experimentally. The GO
hierarchy information is obtained using GOATOOLS (Klopfenstein et al., 2018). The supervised
pre-training dataset and the downstream evaluation dataset are derived from the 8 labeled species, as
described in Appendix E. The 40-th most common fine-grained protein label only has 121 positively
annotated proteins, while the 40-th most common coarse-grained protein label has 9386 positively
annotated proteins. This illustrates the extreme label scarcity of our downstream tasks.

For supervised pre-training, we combine the train, validation, and prior sets described previously,
with the 5,000 most common coarse-grained protein function annotations as binary labels. For our
downstream task, we predict the 40 most common fine-grained protein function annotations, to ensure
that each protein function has at least 10 positive labels in our test set.

E DETAILS OF DATASET SPLITTING

For molecular prediction tasks, following Ramsundar et al. (2019), we cluster molecules by scaffold
(molecular graph substructure) (Bemis & Murcko, 1996), and recombine the clusters by placing the
most common scaffolds in the training set, producing validation and test sets that contain structurally
different molecules. Prior work has shown that this scaffold split provides a more realistic estimate of
model performance in prospective evaluation compared to random split (Chen et al., 2012; Sheridan,
2013). The split for train/validation/test sets is 80%:10%:10%.

In the PPI network, species split simulates a scenario where we have only high-level coarse-grained
knowledge on a subset of proteins (prior set) in a species of interest (human in our experiments), and
want to predict fine-grained biological functions for the rest of the proteins in that species (test set).
For species split, we use 50% of the protein subgraphs from human as test set, and 50% as a prior
set containing only coarse-grained protein annotations. The protein subgraphs from 7 other labelled
species (arabidopsis, celegans, ecoli, fly, mouse, yeast, zebrafish) are used as train and validation sets,
which are split 85% : 15%. The effective split ratio for the train/validation/prior/test sets is 69% :
12% : 9.5% : 9.5%.

19

Published as a conference paper at ICLR 2020

F TIME COMPLEXITY OF PRE-TRAINING

Here we analyze the time complexity for processing graphs in Attribute Masking and Context
Prediction. First, the time complexity for Attribute Masking is linear with respect to the number of
edges/nodes as it only involves sampling nodes/edges to be masked. Second, the time complexity
for Context Prediction is again linear with respect to the number of edges/nodes, because it involves
sampling a center node per graph plus extracting K-hop neighborhood and context graph. Extracting
the neighborhood/context graphs is performed by the breadth-first search, which takes at most linear
time with respect to the number of edges in the graph. In summary, the time complexity for both of
our pre-training methods are at most linear with respect to the number of edges, which is as efficient
as message-passing computation in GNNs, and thus, is as efficient as the ordinary supervised learning
using GNNs. Also, there is almost no memory overhead as we transform data (e.g., mask input
node/edge features, sample the context graphs) on-the-fly.

G FURTHER DETAILS OF THE EXPERIMENTAL SETUP

Optimization. All models are trained with Adam optimizer (Kingma & Ba, 2015) with a learning
rate of 0.001. We use Pytorch (Paszke et al., 2017) and Pytorch Geometric (Fey & Lenssen, 2019)
for all of our implementation. We run all pre-training methods for 100 epochs. For self-supervised
pre-training, we use a batch size of 256, while for supervised pre-training, we use a batch size of 32
with dropout rate of 20%.

Fine-tuning. After pre-training, we follow the procedure in Section 3.3 to fine-tune the models on
the training sets of the downstream datasets. We use a batch size of 32 and dropout rate of 50%.
Datasets with multiple prediction tasks are fit jointly. On the molecular property prediction datasets,
we train models for 100 epochs, while on the protein function prediction dataset (with the 40 binary
prediction tasks), we train models for 50 epochs.

Evaluation. We evaluate test performance on downstream tasks using ROC-AUC (Bradley, 1997)
with the validation early stopping protocol, i.e., test ROC-AUC at the best validation epoch is reported.
For datasets with multiple prediction tasks, we take the average ROC-AUC across all their tasks. The
downstream experiments are run with 10 random seeds, and we report mean ROC-AUC and standard
deviation.

Computation time for pre-training. The computation time for the two stages of our pre-training
is reported below. Chemistry: Self-supervised pre-training takes about 24 hours, while supervised
pre-training takes about 11 hours. Biology: Self-supervised pre-training takes about 3.8 hours, while
supervised pre-training takes about 2.5 hours.

H COMPARISON OF PRE-TRAINING WITH DIFFERENT GNN ARCHITECTURES

Table 4 shows the detailed comparison of different GNN architectures on the chemistry datasets. We
see that the most expressive GIN architectures benefit most from pre-training compared to the other
less expressive models.

I ADDITIONAL TRAINING AND VALIDATION CURVES

Training and validation curves. In Figure 5, we plot training and validation curves for all the
datasets used in the molecular property prediction experiments.

Additional scatter plot comparisons of ROC-AUCs. In Figure 6, we compare our Context Predic-
tion + graph-level supervised pre-training with a non-pre-trained model and a graph-level supervised
pre-trained model. We see from the left plot that the combined strategy again completely avoids
negative transfer across all the 40 downstream tasks. Furthermore, we see from the right plot that ad-
ditionally adding our node-level Context Prediction pre-training almost always improves ROC-AUC
scores of supervised pre-trained models across the 40 downstream tasks.

20

Published as a conference paper at ICLR 2020

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Average
Molecules 2039 7831 8575 1427 1478 93087 41127 1513 /

Binary prediction tasks 1 12 617 27 2 17 1 1 /
Configuration Out-of-distribution prediction (scaffold split)Architecture Pre-train?

GIN No 65.8 ±4.5 74.0 ±0.8 63.4 ±0.6 57.3 ±1.6 58.0 ±4.4 71.8 ±2.5 75.3 ±1.9 70.1 ±5.4 67.0
GIN Yes 68.7 ±1.3 78.1 ±0.6 65.7 ±0.6 62.7 ±0.8 72.6 ±1.5 81.3 ±2.1 79.9 ±0.7 84.5 ±0.7 74.2
GCN No 64.9±3.0 74.9±0.8 63.3±0.9 60.0±1.0 65.8±4.5 73.2±1.4 75.7±1.1 73.6±3.0 68.9
GCN Yes 70.6±1.6 75.8±0.3 65.3±0.1 62.4±0.5 63.6±1.7 79.4±1.8 78.2±0.6 82.3±3.4 72.2

GraphSAGE No 69.6±1.9 74.7±0.7 63.3±0.5 60.4±1.0 59.2±4.4 72.7±1.4 74.4±0.7 72.5±1.9 68.3
GraphSAGE Yes 63.9±2.1 76.8±0.3 64.9±0.2 60.7±0.5 60.7±2.0 78.4±2.0 76.2±1.1 80.7±0.9 70.3

GAT No 66.2±2.6 75.4±0.5 64.6±0.6 60.9±1.4 58.5±3.6 66.6±2.2 72.9±1.8 69.7±6.4 66.8
GAT Yes 59.4±0.5 68.1±0.5 59.3±0.7 56.0±0.5 47.6±1.3 65.4±0.8 62.5±1.6 64.3±1.1 60.3

Table 4: Test ROC-AUC (%) performance on molecular prediction benchmarks with different
GNN architectures. The rightmost column averages the mean of test performance across the 8
datasets. For pre-training, we applied Context Prediction + graph-level supervised pre-training.

EpochEpoch

EpochEpoch Epoch

Epoch Epoch Epoch

Pre-trained

Non-pre-trained
Random initialization

Attribute Masking + Graph-
level supervised pre-training

Graph-level supervised
pre-training only

Attribute Masking

Figure 5: Training and validation curves of different pre-training strategies. The solid and
dashed lines indicate the training and validation curves, respectively.

21

Published as a conference paper at ICLR 2020

C
on
te
xt
Pr
ed

+
G
ra
ph
-le
ve
l

su
pe
rv
is
ed
 p
re
-tr
ai
ni
ng

No pre-training Graph-level supervised
pre-training only

Context Prediction
helps avoiding
negative transfer
across tasks.

Context Prediction
improves generalization
over pure graph-level pre-
training across tasks.

Figure 6: Scatter plot comparisons of ROC-AUC scores of our Context Prediction + graph-level
supervised pre-training strategy versus the two baseline strategies (non-pre-trained and graph-level
supervised pre-trained) on the 40 individual downstream tasks of predicting different fine-grained
protein function labels.

22

	Introduction
	Preliminaries of Graph Neural Networks
	Strategies for pre-training Graph Neural Networks
	Node-level pre-training
	Context Prediction: Exploiting distribution of graph structure
	Attribute Masking: Exploiting distribution of graph attributes

	Graph-level Pre-training
	Supervised Graph-Level Property Prediction
	Structural Similarity Prediction

	Overview: Pre-training GNNs and Fine-tuning for Downstream Tasks

	Further Related Work
	Experiments
	Datasets
	Experimental Setup
	Results

	Conclusions and Future Work
	Details of GNN architectures
	Experiments on classic graph classification benchmarks
	Details of molecular datasets
	Details of protein datasets
	Details of dataset splitting
	Time complexity of pre-training
	Further details of the experimental setup
	Comparison of pre-training with different GNN architectures
	Additional Training and validation curves

