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ABSTRACT

Graph Neural Networks (GNNs) are based on repeated aggregations

of information from nodes’ neighbors in a graph. However, because

nodes share many neighbors, a naive implementation leads to re-

peated and inefficient aggregations and represents significant com-

putational overhead. Here we propose Hierarchically Aggregated

computation Graphs (HAGs), a new GNN representation technique

that explicitly avoids redundancy by managing intermediate aggre-

gation results hierarchically and eliminates repeated computations

and unnecessary data transfers in GNN training and inference.

HAGs perform the same computations and give the same mod-

els/accuracy as traditional GNNs, but in a much shorter time due

to optimized computations. To identify redundant computations,

we introduce an accurate cost function and use a novel search al-

gorithm to find optimized HAGs. Experiments show that the HAG

representation significantly outperforms the standard GNN by in-

creasing the end-to-end training throughput by up to 2.8× and

reducing the aggregations and data transfers in GNN training by

up to 6.3× and 5.6×, with only 0.1% memory overhead. Overall,

our results represent an important advancement in speeding-up

and scaling-up GNNs without any loss in model predictive perfor-

mance.

CCS CONCEPTS

•Computingmethodologies→Neural networks; •Computer

systems organization→ Neural networks.
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1 INTRODUCTION

Graph Neural Network models (GNNs) generalize deep represen-

tation learning to graph data [3, 9, 23] and have achieved state-of-

the-art performance across a number of graph-based tasks, such

as node classification, link prediction, and graph classification and

recommender systems [8, 14, 24, 27].

GNNs are based on a recursive neighborhood aggregation scheme,

where within a single layer of a GNN each node aggregates its

neighbors’ activations and uses the aggregated value to update its

own activation [23]. Such updated activations are then recursively

propagated multiple times (multiple layers). In the end, every node

in a GNN collects information from other nodes that are in its k-
hop network neighborhood [8]. The activations of the final GNN

layer are then used for downstream prediction tasks, such as node

classification, graph classification, or link prediction.

Scaling GNNs to efficiently model very large graph datasets

remains a challenge [6]. In particular, many implementations aim to

work with the entire graph Laplacian matrix, which cannot fit into

main memory even for medium-size graphs [14]. The framework

GraphSAGE [8] improves over this approach by first performing

sampling of small graph neighborhoods over individual nodes in

each minibatch and then aggregating the neighborhood messages

for these nodes. However, sampling individual neighborhoods is an

expensive process and many hand-tuned heuristics are used to limit

the sampling complexity and select the neighborhood graph [26].

Several works [4, 5, 12, 29] improve the efficiency of GNNs by

focusing on the sampling step of GraphSAGE.

Present work. In this paper, we focus on speeding up the aggrega-

tion step of GNN models while preserving model performance. We

propose a newGNN representation calledHierarchically Aggregated

computation Graphs (HAGs), which allows us to make GNNs more

efficient and more scalable.

We start with an observation that when there is significant over-

lap between the network neighborhoods of two nodes, the nodes’

GNN graphs will have significant overlap and simply computing

activation propagation on each one separately leads to redundant

computations (Figure 1). In particular, we observe that existing

GNN representations use a computation graph (referred to as a

GNN-graph, Figure 1b) to define computation in a GNN layer. The

GNN-graph includes a tree structure for each node u in the input

graph describing how to compute u’s activations by aggregating

the previous-layer activations of u’s neighbors. Figure 1b shows

just a single layer of the GNN-graph of the input graph in Figure 1a;
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Figure 1: Comparison between a GNN-graph and an equivalent HAG. (a) Input graph; (b) 1-layer GNN computation graph

(GNN-graph); (c) HAG that avoids redundant computation. The GNN-graph computes new activations h
(k )
v by aggregating the

previous-layer activations of v’s neighbors. Because nodes in the input graph share common neighbors, the GNN-graph per-

forms redundant computation (e.g., both {A,B} and {C,D} are aggregated twice). (c) By identifying common computational

patterns, the HAG avoids repeated computation and leads to significant speed-ups. For example, rather than needing 10 ag-

gregations (b), the HAG needs only 6 aggregations for the same calculation (c).

for example, for node A, its neighbors’ activations h
(k−1)
B , h

(k−1)
C

and h
(k−1)
D from the layer k − 1 are aggregated to compute new

activation h
(k )
A of A at layer k . The new activations of the other

nodes are computed similarly using the previous activations of

their neighbors and the whole process repeats for multiple layers.

Notice that this representation results in redundant computation

and data transfers. In this small example, both {A,B} and {C,D} are
aggregated twice. Furthermore, due to triadic closure and clustering

of real-world graphs, we expect such overlaps and redundancies

to be rather significant [21]. Furthermore, as GNNs grow wider

and multi-layer, the redundancies in GNN-graphs account for a

significant fraction of all computation. For example, our experi-

ments show that in modern GNNs up to 84% of the aggregations

are redundant and can be avoided to speed-up training as well as

inference of GNNs.

Contributions. To avoid redundant computations we propose a

new GNN representation called Hierarchically Aggregated computa-

tion Graphs (HAGs). Figure 1c shows the HAG for the input graph

in Figure 1a, which eliminates redundant computation and unnec-

essary data transfers in GNN computation graphs by hierarchically

managing and reusing intermediate aggregation results.

HAGs are functionally equivalent to standard GNN-graphs in

the sense that they produce the same models and same predictions

as the original GNN, but HAGs represent common neighbors across

different nodes using aggregation hierarchies, which eliminates re-

dundant computation and unnecessary data transfers in both GNN

training as well as inference. In addition, a HAG is agnostic to any

particular GNNmodel, and can be used to eliminate redundancy for

arbitrary GNNs. HAG applies to both order invariant aggregation

functions (GCN [14], GraphSAGE [8], PinSage [26], GIN [24], P-

GNN [28]), as well as to GNN architectures where ordering of nodes

in the aggregation matters (GraphSAGE-LSTM [8], Tree-LSTM [18],

Ego-CNN [19]).

To identify redundancies in GNNs and compose HAGs, we in-

troduce an accurate cost function to estimate the cost of a given

HAG. Then we develop a linear-time HAG search algorithm to

automatically find a HAG with small computational cost. We prove

that the search algorithm finds HAGs with strong performance

guarantees: (1) for GNN models whose neighborhood aggregations

require a specific ordering on a node’s neighbors, the algorithm

finds a globally optimal HAG under the cost function; and (2) for

other GNN models, the algorithm finds HAGs whose runtime per-

formance is at least a (1 − 1/e) approximation (≈ 63%) of globally

optimal HAGs using the submodularity property [17]. Most impor-

tantly, our HAG abstraction maintains the predictive performance

of GNNs but leads to much faster training and inference.

We evaluate the runtime performance of HAGs on three node

classification datasets and two graph classification datasets using

three different GNN architectures (GCN, GraphSAGE, SimpleGC).

Our evaluation focuses on three dimensions: (a) end-to-end training

and inference runtime; (b) number of aggregations; and (c) size

of data transfers. The experiments show that HAGs increase the

end-to-end training and inference runtime performance of GNNs

on node as well as graph classification by up to 2.8× and 2.9×,

respectively. In addition, compared to standard GNN-graphs, HAGs

reduce the number of aggregations and the size of data transfers by

up to 6.3× and 5.6×, respectively, across the three predictive tasks,

five datasets, and three GNN architectures.

2 RELATEDWORK

We briefly survey related work in graph neural networks.

Graph neural networks have been used to solve various real-

world tasks with relational structures: GCN [14], GraphSAGE [8],



Algorithm 1 An abstraction for GNNs.V is the set of nodes in an

input graph, and N(v) denotes the set of neighbors for node v .

1: h
(0)
v = xv ,∀v ∈ V

2: for k = 1 to K do

3: for v ∈ V do

4: a
(k )
v ← Aggregate({h

(k−1)
u |u ∈ N(v)})

5: h
(k )
v ← Update(a

(k )
v ,h

(k−1)
v )

6: Goal: minimize L({h
(K )
v |v ∈ V})

DiffPool [27], P-GNN [28] and GIN [24]. To improve training effi-

ciency on large graphs, FastGCN [4] and SGC [22] accelerate GNN

training using importance sampling and removing nonlinearili-

ties, and ClusterGCN[6] approximates the graph by focusing on

intra-cluster edges. Our paper solves the orthogonal problem of

optimizing GNN efficiency while maintaining network accuracy by

removing redundant aggregations. Furthermore, our method can

be easily applied to the models above to speed them up without loss

of predictive accuracy, model training time or generalization ability.

Although our model does not apply to GAT[20], GAT cannot scale

well on large datasets such as REDDIT due to memory constraints,

and is not considered in existing scalable GNNs[4, 5, 29].

Join-trees are a tree decomposition technique that maps a graph

into a corresponding tree structure to solve optimization problems

on the graph, such as query optimization [7]. Although a join-tree

provides a possible way to find optimal HAGs for a GNN-graph, its

time complexity is exponential in the treewidth of a graph [2], and

real graphs tend to have very large treewidths. For example, Adcock

et al. [1] shows that the treewidth of real-world social networks

grows linearly with the network size, making it infeasible to use

join-trees to find optimal HAGs.

Computation reduction in DNNs. Recent work has proposed

several techniques to reduce computation in DNNs, including prun-

ing weights [11] and quantization [10]. For example, Han et al.

[11] presents a weight pruning algorithm to iteratively remove

weak connections in a network. As another example, Han et al. [10]

proposes a deep compression technique to reduce network com-

putation by training on low precision weights. These techniques

reduce computation at the cost of modifying networks, resulting in

decreased accuracy (as reported in these papers). In contrast, we

propose a new GNN representation that accelerates GNN training

by eliminating redundancy in GNN-graphs while maintaining the

original network accuracy.

3 HIERARCHICALLY AGGREGATED

COMPUTATION GRAPHS (HAGS)

ExistingGNN-graph representation. An input graphG = (V, E)

has nodesV and edges E. For each node v ∈ V , N(v) denotes the
set of neighbors of v , and xv denotes the input node features. A

GNN iteratively learns representations for individual nodes over

the entire graph through a number of GNN layers, as shown in Al-

gorithm 1. The learned activations of node v at layer k is h
(k)
v , and

we initialize h
(0)
v with xv . At the k-th layer, a

(k )
v denotes the aggre-

gated activations ofv’s neighbors, which is combined withh
(k−1)
v to

compute an updated activation h
(k)
v . The learned node activations

of the final layer (i.e., h
(K )
v ) are used for downstream learning tasks,

and a GNN model generally minimizes a loss function L that takes

the final node activations as inputs (line 6).

Existing GNN models use a GNN computation graph (GNN-

graph) to describe the computation in each GNN layer, as shown

in Figure 1b. For each node v in the input graph, the GNN-graph

includes an individual tree structure to define how to compute

the activations h
(k )
v of node v by aggregating the previous-layer

activations of v’s neighbors (i.e., {h
(k−1)
u ,u ∈ N(v)}). GNN-graphs

are efficient at expressing direct neighborhood relations between

nodes, but are not capable of capturing common neighbors across

multiple nodes, leading to redundant computation in GNN training

and inference.

3.1 HAG Representation

We propose a new graph representation called Hierarchically Ag-

gregated computation Graphs (HAGs) for GNNs. HAGs eliminate

redundancy in the GNN-graph representation by hierarchically

managing and reusing intermediate aggregation results. A HAG

Ĝ = (V̂, Ê) has nodes V̂ = V ∪VA and edges Ê, whereV is the

set of nodes in the original graph, andVA is a new set of aggregation

nodes. Each aggregation node inVA represents the intermediate

aggregations result for a subset of nodes (i.e., aggregation on a sub-

set of h
(k−1)
v ) . For the HAG example in Figure 1c, the new nodes AB

and CD denote the aggregation results of {A,B} and {C,D}, respec-
tively. A HAG can contain a multi-level aggregation hierarchy. For

example, Figure 1c can also have a third aggregation node ABCD

that depends on AB and CD. Similar to edges in GNN-graphs, an

edge (u,v) in a HAG denotes an aggregation relation — computing

v’s activations requires aggregating u’s activations.
The standard GNN-graph representation can be considered a

special case in the HAG representation with no intermediate ag-

gregation nodes (i.e.,VA = ∅). Our HAG abstraction is general and

applicable to many existing GNN models. Table 1 shows how to

use our abstraction to define existing GNNs, which can be further

divided into two categories:

• Set Aggregate. Most GNNs assume the neighbors of a node

have no ordering, and the aggregations are associative and com-

mutative operations that are invariant to the order in which the

aggregations are performed. Examples include GCNwith summa-

tion aggregations and GraphSAGE-P with element-wise pooling

aggregations (Table 1). Note that set aggregations in GNNs are

designed to be order invariant and thus can be performed in a

hierarchical fashion as we do in HAGs.

• Sequential Aggregate. Another class of GNNs require a spe-

cific ordering of a node’s neighbors and the aggregations are not

commutative. Examples include N -ary Tree-LSTM [18] and the

LSTM variant of GraphSAGE [8]. HAGs can be applied in the

case of sequential aggregations as well. Rather than identifying

common subsets of neighbors, we identify the common prefixes

of the sequence of aggregated nodes, which can then be reused

among nodes.

We further define two properties for the aggregation nodesVA.

First, for each v ∈ VA, âv denotes its intermediate aggregation

result, and N̂(v) denotes the in-neighbors of node v . To capture

the aggregation hierarchy in a HAG, we use a recursive function to



GNN Aggregate({h
(k−1)
u |u ∈ N(v)}) Update(a

(k )
v ,h

(k−1)
v )

Set Aggregate

GCN [14] a
(k )
v =

∑
u ∈N(v) h

(k−1)
u h

(k )
v = σ (W (k ) ·

a(k )v +h
(k−1)
v

|N(v) |+1 )

GIN [24] a
(k )
v =

∑
u ∈N(v) h

(k−1)
u h

(k )
v = σ

(
W ·

(
(1 + ϵ (k ))h

(k−1)
v + a

(k)
v

) )
GraphSAGE-P [8] a

(k )
v = maxu ∈N(v){σ (W

(k )
1
· h
(k−1)
u )} h

(k )
v = σ

(
W
(k )
2
· (a(k),h

(k−1)
v )

)
SGC [22] a

(k )
v =

∑
(u,v)∈Sk h

(0)
u h

(k )
v = σ

(
W · a

(k )
v

)
Sequential Aggregate

GraphSAGE-LSTM [8] a
(k )
v = LSTM(h

(k−1)
v1

, ...,h
(k−1)
vN ) h

(k )
v = σ

(
W (k ) · (a

(k)
v ,h

(k−1)
v )

)
N -ary Tree-LSTM [18] a

(k )
v = Tree-LSTM-Agg(h

(k−1)
v1

, ...,h
(k−1)
vN ) h

(k )
v = Tree-LSTM-Update(a

(k )
v ,h

(k−1)
v )

Table 1: Existing GNNs described in our abstraction. GraphSAGE-P and GraphSAGE-LSTM are the pooling and LSTM vari-

ants of GraphSAGE, respectively. σ and max indicate element-wise non-linear activation and max functions. For sequential

Aggregate, vi denotes the i-th in-neighbor of node v.

Algorithm 2 A GNN abstraction with HAGs. We exclude layer

index superscripts in âv to denote that âv does not need to be

memoized for back propagation, and its memory can be reused

across all layers.

1: h
(0)
v = xv ,∀v ∈ V

2: for k = 1 to K do

3: for v ∈ VA do

4: compute âv using Equation (1)

5: for v ∈ V do

6: a
(k )
v ← Aggregate({âu |u ∈ N̂v })

7: h
(k )
v ← Update(a

(k )
v ,h

(k−1)
v )

define âv .

âv = Aggregate

( {
h
(k−1)
u u ∈ V

âu u ∈ VA

�����u ∈ N̂(v)
)

(1)

Second, Ĉ(v) denotes the set of input activations h
(k−1)
u used to

compute âv in the recursive procedure.

âv = Aggregate({h
(k−1)
u |u ∈ Ĉ(v)}) (2)

Intuitively, Ĉ(v) defines the coverage of node v in a HAG. For the

HAG example in Figure 1c, Ĉ(A) = {B,C,D} because h
(k−1)
B , h

(k−1)
C ,

and h
(k−1)
D are used as inputs to compute h

(k )
A .

For a set Aggregate, Ĉ(·) is an unordered set:

Ĉ(v) =
⋃

u ∈N̂(v)

{
u u ∈ V

Ĉ(u) u ∈ VA
(3)

And for a sequential Aggregate, Ĉ(·) is an ordered list:

Ĉ(v) =
(
Ĉ(u1), ..., Ĉ(um )

)
(4)

where u1, ...,um are the ordered in-neighbors of v .

3.2 GNNs with HAGs

Next we show the equivalence between the GNN-graph abstrac-

tion and HAGs, as shown in Algorithm 2. As GNN-graph can be

abstracted by a HAG, HAG can also be represented by a GNN.

The only difference is how to compute neighborhood aggregations

(i.e., a
(k )
v ) in each GNN layer. Before the original aggregations are

processed, we add one step that precomputes commonly used inter-

mediate aggregation results to reduce redundant computation. In

Algorithm 2, we first compute âv for all aggregation nodesVA (line

3-4). This is performed recursively following the aggregation hierar-

chy of the HAG. We then compute the neighborhood aggregations

a
(k )
v (line 5-6) using the precomputed intermediate aggregations

âv .
Equivalence between GNN-graphs and HAGs. We then define

a GNN-graph and a HAG to be equivalent if they produce the exact

same outputs and gradients for a GNN model. Formally, a GNN-

graph G and a HAG Ĝ are equivalent for a GNN model if (1) the

GNN model outputs the same activations (i.e., h
(k )
v ) at each GNN

layer, and (2) the GNN model computes the same gradients for

all trainable parameters in back propagation. Equivalent graphs

guarantee the same predictive performance, and therefore can be

used interchangeably for both GNN training and inference. Theo-

rem 1 provides the equivalence between the two representations.

We prove the theorem in the Appendix.

Theorem 1. A GNN-graph with nodesV and a HAG with nodes

(V,VA) are equivalent if and only if N(v) = Ĉ(v) for all v ∈ V ,

whereN(v) is v’s neighbors in the input graph and Ĉ(·) is defined in

Equation 3 and 4.

Memory overhead. Although Algorithm 2 includes new interme-

diate variables âv , the memory overhead for storing âv is negligible

since âv is not used for back propagation and can be saved in a

constant memory across all GNN layers. In the experiments, we

show that HAGs can increase the training throughput by 2.8×,

while maintaining the original model accuracy at the cost of 0.1%

memory overhead to store âv . Meanwhile, storing a HAG repre-

sentation requires less memory than the original GNN-graph, as

HAGs generally contain much fewer edges.

4 HAG SEARCH ALGORITHM

For a GNN model and an input GNN-graph, there exists a large

space of equivalent HAGswith the samemodel accuracy but various

runtime performance. Our goal is to explore the search space to



discover a HAG with optimized runtime performance. First, we

define a realistic cost function to quantitatively evaluate the runtime

performance of different HAGs (Section 4.1). Second, we introduce

an efficient search algorithm (Section 4.2) that finds an optimized

HAG with the following guarantees :

• For GNNs with sequential Aggregate function, the HAG search

algorithm can find globally optimal HAGs under this cost func-

tion.

• For GNNs with set Aggregate, finding an optimal HAG is NP-

hard by a reduction from the NP-hardmaximum coverage problem

(see Appendix for the proof). The search algorithm finds at least

a (1− 1/e)-approximation of globally optimal HAGs based on the

submodularity property [17].

4.1 Cost Function

We introduce a cost function that allows us to quickly estimate the

runtime of a HAG by measuring the computation cost to perform

one epoch of GNN propagation on the HAG.

The computation cost of a GNN model includes aggregating the

neighbors of each node by calling Aggregate and updating the

activations of each node via Update, as shown in Algorithm 2.

For a GNN modelM, we need to define two constants: the cost

of performing Aggregate on two elements αM , and the cost of

computing an Update βM . In Algorithm 2, computing âv with

|N̂v | neighbors requires performing (|N̂v | −1) binary aggregations,

whose cost is αM × (|N̂v | − 1). Therefore, the total computation

cost of training a GNN modelM on a HAG Ĝ is

cost(M, Ĝ) =
∑

v ∈V∪VA

αM (|N̂v | − 1) +
∑
v ∈V

βM

= αM
(
|Ê | − |VA |

)
+ (βM − αM )|V|

|V| is determined by the input graph. αM and βM only depend

on the GNN modelM, and is independent to the HAG used for

training. Therefore, our goal is to minimize

(
|Ê | − |V̂A |

)
, where

|Ê | and |V̂A | are the number of edges and aggregation nodes in a

HAG, respectively.

4.2 Search Algorithm

Given the cost function cost(M, Ĝ) our next goal is to find a HAG

that minimizes the cost. Here we present a HAG search algorithm

that finds a globally optimal HAG for GNNs with sequential Aggre-

gate and a (1 − 1/e)-approximation of globally optimal HAGs for

GNNs with set Aggregate. In addition to an input GNN-graph and

a GNN model, the algorithm also takes a hyper-parameter capacity,

defining an upper limit on the number of intermediate aggregation

nodes (i.e., |VA |).

Algorithm 3 shows the pseudocode of the HAG search algo-

rithm. We start with an input GNN-graph, and iteratively insert

aggregation nodes into the current HAG to merge highly redun-

dant aggregations and remove unnecessary computation and data

transfers.

The Redundancy function (line 3-8) evaluates the degree of re-

dundancy for aggregating each node pair. By iteratively eliminating

aggregations with the highest redundancy we lower the cost of the

HAG, as defined in Section 4.1. More specifically, in each iteration

Algorithm 3 A HAG search algorithm to automatically find an

equivalent HAG for a GNN-graph with optimized runtime perfor-

mance. Ê and VA are the set of edges and aggregation nodes in

the HAG. Redundancy(v1,v2, Ê) calculates the number of nodes

aggregating both v1 and v2. Recall that Ĉ(u) is an ordered list for

sequential Aggregate (see Equation 4).

1: Input: A GNN-graph G and a GNN modelM.

2: Output: An equivalent HAG with optimized performance

3: function Redundancy(v1,v2, Ê)
4: ifM has a set Aggregate then

5: R = {u |(v1,u) ∈ Ê ∧ (v2,u) ∈ Ê}
6: else

7: R = {u |v1 = Ĉ(u)[1] ∧v2 = Ĉ(u)[2]}

8: return |R |

9:

10: VA ← ∅, Ê ← E

11: while |VA | < capacity do

12: (v1,v2) = argmaxv1,v2

Redundancy(v1,v2, Ê)

13: if Redundancy(v1,v2, Ê) > 1 then

14: VA ←VA + {w} ▷ wherew is a new node

15: Ê ← Ê + (v1,w) + (v2,w)
16: for u ∈ V do

17: if (v1,u) ∈ Ê ∧ (v2,u) ∈ Ê then

18: Ê ← Ê − (v1,u) − (v2,u) + (w,u)

19: return (VA ∪V, Ê)

we identify a binary aggregation with the highest redundancy and

insert a new aggregation node w in VA to represent the binary

aggregation results (line 12-15). All nodes containing this binary

aggregation can directly use the output ofw without recomputing

the aggregation (line 16-18). The search algorithm iteratively re-

duces the computation cost of the HAG by eliminating the most

redundant aggregation in each iteration. The redundancy scores

are maintained in a heap structure.

For a GNN model with a sequential Aggregate, Theorem 2

shows that our search algorithm finds an equivalent HAG with

globally optimal computation cost. We prove the theorem in the

appendix.

Theorem 2. For any GNN-graphG = (V, E) and any GNNmodel

M with a sequential Aggregate, Algorithm 3 returns an equivalent

HAG with globally minimum cost as long as capacity ≥ |E|.

For a GNN model with a set Aggregate, Theorem 3 shows

that our search algorithm finds a HAG that is at least a (1 − 1/e)-
approximation of the globally optimal HAGs (see the proof in the

appendix).

Theorem 3. For any GNN-graph G and GNN modelM with a set

Aggregate, Algorithm 3 gives a (1 − 1/e)-approximation of globally

optimal HAGs under the cost function. Formally, let Ĝ be the HAG

returned by Algorithm 3, and Ĝo is a globally optimal HAG under

the capacity constraint,

cost(M, Ĝ) ≤
1

e
cost(M,G) +

e − 1

e
cost(M, Ĝo )



HAGs produced by Algorithm 3 have the following three major

advantages.

Time and space complexity. Our HAG algorithm achieves low

theoretical complexity and has negligible runtime overhead. In par-

ticular, the overall time complexity of Algorithm 3 is O(capacity ×
|V|+ |E | × log |V|), and the space complexity isO(capacity× |V|+
|E |) (see the appendix for the proof). One key optimization is a

heap data structure for maintaining the redundancy scores of the

highest O(|V |) node pairs. Finding the most redundant node pair

over the entire graph thus only takes O(1) time, and updating the

redundancy scores (i.e., line 15 and 18) each takes O(log |V |) time.

Fast GPU implementation. Real-world graphs have non-uniform

edge distributions, leading to unbalanced workload among different

nodes. Previous work [13, 16] has proposed different strategies to

explicitly balance workload distributions among nodes at the cost

of synchronization overhead among GPU threads. In contrast, Al-

gorithm 3 produces HAGs whose aggregation nodes (i.e.,VA) have

uniform edge distributions (each has exactly two in-edges). This

eliminates any synchronization overheads to balance workload

among aggregation nodes and results in faster GPU implementa-

tions.

High reusability. For a given GNN-graph, the HAG produced by

Algorithm 3 only depends on the capacity and aggregation type (set

or sequential Aggregate) and is agnostic to any particular GNN

models. This allows us to only run the search algorithm once for

each aggregation type, and any GNN models can directly reuse the

generated HAGs without any additional analysis of the graph.

5 EXPERIMENTS

The HAG representation maintains the predictive performance of

GNNs but has much better runtime performance. This section eval-

uates the runtime performance of HAGs on five real-world graph

datasets. We evaluate HAGs along three dimensions: (a) end-to-end

training and inference performance; (b) number of aggregations;

and (c) size of data transfers.

5.1 Implementation

Existing deep learning frameworks such as TensorFlow and PyTorch

are designed for spatial data structures (e.g., images and text), and

have limited support for irregular data structures such as graphs.

As a result, GNN models in existing frameworks translate graph

structures to sparse adjacent matrices and use matrix operations to

perform GNN training.

We implemented the following operations in TensorFlow r1.14

to support GNN training with HAGs.

• First, graph_to_hag automatically transforms an input GNN-

graph to an equivalent HAG with optimized performance.

• Second, hag_aggregate takes a HAG and nodes’ activations

as inputs, and computes the aggregated activations of all

nodes.

• Finally, hag_aggregate_grad computes the gradients of

hag_aggregate for back propagation.

Our implementation minimizes changes to existing GNN pro-

grams: a GNN application can directly use all HAG optimizations

by only modifying a few lines of code.

Name # Nodes # Edges

Node Classification

BZR 6,519 137,734

PPI 56,944 1,612,348

REDDIT 232,965 114,615,892

Graph Classification

IMDB 19,502 197,806

COLLAB 372,474 12,288,900

Table 2: Datasets used in the experiments.

5.2 Experimental Setup

Datasets. Table 2 summarizes the public datasets used in our ex-

periments. BZR is a chemical compound dataset, where each node

is an atom and an edge is a chemical bond between two atoms [15].

PPI contains a number of protein-protein interaction graphs, each

of which corresponds to a different human tissue [30]. REDDIT is

an online discussion forum dataset, with each node being a Reddit

post and each edge being commenting relations. For both PPI and

REDDIT, we directly use preprocessed data from Hamilton et al.

[8]. IMDB and COLLAB are two collaboration datasets for graph

classification [25]. IMDB is a movie collaboration dataset, with each

node representing an actor/actress, while COLLAB is a scientific

collaboration dataset, with each node representing a researcher.

All experiments were performed running TensorFlow r1.14 on

NVIDIA Tesla V100 GPUs. Following previous work [8, 14], each

GNN model has two GNN layers and one SoftMax layer. For graph

classification datasets, each GNN model also includes a mean-

pooling layer to gather graph-level activations. For all experiments,

we set the maximum capacity of |VA | in a HAG to be |V|/4, which

achieves high performance on real-world graphs. In all experiments,

the memory overhead to save intermediate aggregation results is

negligible: intermediate nodes consume 6MB of memory in the

worst case while GNN training requires more than 7GB of memory

(∼0.1% memory overhead).

5.3 End-to-End Performance

Per-epoch performance. We first measure the per-epoch training

time and inference latency of GCN [14], GIN [24], and SGC [22]

on different graph datasets. We follow previous work [8, 15, 25] to

split the datasets into training, validation, and test sets, and use the

testing sets to measure the average inference latency.

We perform our experiments on five different datasets, two dif-

ferent tasks (node classification, graph classification), and three

different GNN architectures (GCN, GIN, SGC). Figure 2 compares

the per-epoch training time and inference latency between GNN-

graphs and HAGs across all these experimental configurations.

Compared to GNN-graphs, HAGs can improve the training and

inference performance by up to 3.1× and 3.3×, respectively, while

maintaining the same model accuracy. We note this improvement

is achieved completely automatically, and computing a HAG is

inexpensive. Thus, because the improvement provided by HAGs

maintains the original model accuracy and is essentially for free,

we believe there is no reason not to use HAGs in preference to

GNN-graphs.
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Figure 2: End-to-end runtime performance comparison between GNN-graphs and HAGs on two prediction tasks, five datasets,

and three different GNN architectures. We measure the per-epoch training time and inference latency on GCN [14], GIN [24],

and SGC [22]. The performance numbers are normalized by the GNN-graph numbers (higher is better). Note that across all

experimental configurations HAGs consistently provide significant speed-ups.
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Figure 3: Time-to-accuracy comparison between HAG and

GNN-graph for training a 2-layer GCN model on the Reddit

dataset.

Time-to-accuracy performance. We compare the time-to-accuracy

performance between HAG and GNN-graph. We train a 2-layer

GCN model (with 64 hidden dimensions in each layer) on the Red-

dit dataset until the test accuracy exceeds 95%. We follow previous

work [14] in setting all hyper-parameters and the split of the dataset.

Figure 3 shows the results. Each dot indicates the training time

and test accuracy of each epoch. Ax expected, the GCNmodel using

the HAG representation achieves exactly the same training and test

accuracy at the end of each epoch. It takes 55 training epochs to

achieve a test accuracy of 95% for both HAG and GNN-graph, and

HAG improves the end-to-end training time by 1.8×.

5.4 Aggregation Performance

We further compare the aggregation performance of GNN-graphs

and HAGs on the following two metrics: (1) the number of binary

aggregations performed in each GNN layer; and (2) the size of data

transfers between GPU threads to perform the aggregations. Note

that aggregating a neighbor’s activations requires transferring the

activations from GPU global memory to a thread’s local memory.

Figure 4 shows the comparison results. For GNNs with set ag-

gregations, HAGs reduce the number of aggregations by 1.5-6.3×

and the size of data transfers by 1.3-5.6×. For GNNs with sequential

aggregations, HAGs reduce aggregations and data transfers by up

to 1.8× and 1.9×, respectively.

Although the search algorithm finds a globally optimal HAG for

sequential aggregations (Theorem 2) and a (1− 1/e)-approximation

of globally optimal HAGs for set aggregations (Theorem 3), we

observe the performance improvement is more significant for set

aggregations. Optimality for HAGs with set aggregation involves

more potential redundancy compared to sequential aggregations,

due to permutation invariance of set aggregation. Thus higher per-

formance can be achieved with HAGs for set aggregations, though

optimal solutions are more difficult to compute.

It is also worth noting that the HAG search algorithm can find

highly optimized HAGs even on very sparse graphs. For example,

on the COLLAB dataset with a graph density of 0.01%, our algorithm

reduces the number of aggregations and data transfers by 3.3× and

2.2×, respectively.

5.5 HAG Search Algorithm

We evaluate the performance of the HAG search algorithm. Recall

that the search algorithm uses a hyper-parameter capacity to con-

trol the number of aggregation nodes in a HAG. A larger capacity

allows the algorithm to eliminate more redundant aggregations and

achieves lower cost.

Figure 5 shows the end-to-end GCN training time on the COL-

LAB dataset using HAGs with different capacities. A larger value of

capacity can consistently improve the training performance, which

indicates that the cost function is an appropriate metric to evaluate

and compare the performance of different HAGs. By gradually in-

creasing the capacity, the search algorithm eventually finds a HAG

with ∼100K aggregation nodes, which consume 6MB of memory

(0.1% memory overhead) while improving the training performance

by 2.8×. In addition, the HAG search time is negligible compared

to the end-to-end training time.
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Figure 4: Comparing the number of aggregations and the total data transferred between GPU threads to perform aggregations

(lower is better). The y-axes are normalized by GNN-graphs, and the last column in each figure is the geometric mean over all

datasets. Notice that HAG reduces the number of required aggregation operations by up to 84%.
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Figure 5: End-to-end GCN training time on the COLLAB

dataset using HAGs with different capacities. We train GCN

for a maximum of 350 epochs by following prior work [14].

6 CONCLUSION

We introduce HAG, a new graph representation to eliminate re-

dundancy in many GNNs. We propose a cost function to estimate

the performance of different HAGs and use a search algorithm to

find optimized HAGs. We show that HAGs outperform existing

GNN-graphs by improving the end-to-end training performance

and reducing the aggregations and data transfers in GNN training.
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