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Multilayer magnetic recording (MLMR) is a next-generation technology that has the potential to enhance the longevity of magnetic
recording technology by storing data on multiple layers that are stacked on top of one another. The challenges associated with the
development of MLMR fall into two main categories: the challenges of writing to multiple layers and the challenges of reading back
from multiple layers. As there is already a fair amount of existing work addressing the former, in this article we target the latter
by building and testing detection schemes that are able to separate the signals from multiple layers that are mixed together during
the readback. In this initial work, we consider a two-layer system. The resolution of the bottom layer is worse than that of the
top due to the increased separation of the bottom layer from the reader. We assume a geometry of two single-width tracks on the
top-layer straddling a double-width track on the bottom layer and with intersymbol interference (ISI) response on the bottom layer
having half the amplitude and double the length of that on the top-layer. We examine the performance of two candidate detection
algorithms, a Viterbi-based algorithm operating on a trellis, and a least-squared (LS) algorithm that attempts to invert the effect
of the channel’s interference. We evaluate the error rate performance of these detection schemes using a common channel model
that sums the ISI and intertrack interference (ITI) components from each of the layers. The main result from this work is that
14.5% density gains over the conventional perpendicular magnetic recording (PMR) and 7.6% gains over two-dimensional magnetic
recording (TDMR) could be possible for the novel MLMR system.

Index Terms— Channel model, least-squared (LS) detector, microwave-assisted magnetic recording (MAMR), multilayer magnetic
recording (MLMR), Viterbi.

I. INTRODUCTION

THE magnetic recording industry writes data onto the
surface of a recording medium in circular tracks with

magnetization at 90◦ to the medium’s surface with a tech-
nology known as perpendicular magnetic recording (PMR).
In [1], it was predicted that PMR might be able to achieve
about 1 Terabit per square inch (Tbpsi), a prediction that
has been largely confirmed by the technology development
since then. Subsequently in 2009, two-dimensional magnetic
recording (TDMR) [2], [3] was proposed to carry the industry
upward beyond 1 Tbpsi. Other candidate technologies also
proposed in this same time-period include heat-assisted mag-
netic recording (HAMR) [4], [5], microwave-assisted magnetic
recording (MAMR) [6]–[8], and bit-patterned media recording
(BPMR) [9], [10].
Strongly competing with the magnetic recording technology

in the hard disk drive (HDD), is flash memory technology
[11], [12] in the solid state drive (SSD). Flash technology has
made great strides recently by arranging the flash memory cells
not only on the 2-D surface but also by stacking many cells
vertically upward, taking advantage of the third dimension.
This approach has allowed flash technology to come close
to the HDD’s traditional cost per byte advantage. A similar
approach has not been viewed as being helpful for the HDD.
Magnetic recording technology on which the HDD is based,
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currently only deposits a single recording layer onto the
medium. The separation between the recording layer and the
read/write head has a great influence on the density at which
data can be stored on the media grains. When multiple layers
are deposited, the lower layers are further from the read/write
head and are, therefore, expected to hold less data than the
top layer. Nevertheless, reasonable density gains may still
be possible using appropriate coding and detection schemes.
A preliminary investigation in [13] has suggested that gains
of around 17% may be possible. In that work, one isolated
track in the top layer over one isolated track in the bottom
layer was assumed, with just one reader, and with different
downtrack bit densities on the bottom layer. In this article,
we introduce the impact of the cross-track dimension as well.
We examine a geometry with two side-by-side tracks in the
top-layer straddling a single, double-width track on the bottom
layer, again with varying downtrack densities on the bottom
layer, and we investigate two and three-reader configurations.
We also assume a write process that obeys linear superposition
and media noise that is stationary, as it enables us to focus on
the main contribution of the work: the development of the
readback channel. This means that the effects of imperfect
writing such as nonlinear transition-shift, transition noise, and
the coloration of the media noise are not included. However,
this simplification in the model applies to both the novel and
reference systems that are compared in this work. We also
assume synchronization in the writing of the top and bottom
layers. In practice, we do not expect this to be a serious
problem as the same patterns can be written through both
layers that would allow the synchronization of the writing to
the top and bottom layers.
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Fig. 1. Comparison of PMR, TDMR, previous work in [13], and the current work. In this work, we attempt to jointly detect the bits from the two tracks in
the top layer and single track in the bottom layer.

The architectural evolution from 1-D to 2-D and now to the
3-D recording is depicted in Fig. 1. The original 1-D PMR
technology is shown in Fig. 1(a), in which the reader width is
maintained at approximately 60% of the track width to ensure
that intertrack interference (ITI) is negligible, and therefore,
1-D detection schemes perform adequately. The proposal for
TDMR [in Fig. 1(b)] was to squeeze down the track pitch
using the shingled magnetic recording (SMR), a technique
that overlaps successively written tracks in a shingle block.
This enables the writing of tracks narrower than the magnetic
write width (MWW). To achieve the equivalent of reading
tracks narrower than the magnetic read width (MRW), it was
proposed to use 2-D coding and detection schemes to mitigate
the ITI caused by the partial reading of the adjacent track [14].
However, TDMR could not circumvent the decrease in the
number of grains per bit cell as the track width shrank, leading
to a decrease in SNR and reduced capacity.
The traditional method of increasing areal density (AD) is

to produce media with smaller grains, and that has tighter
distributions. Smaller grains lead to the ability to pack larger
quantities of grains onto the same area of the medium, whereas
tighter distributions lead to higher quality grains that are able
to support higher SNRs at fewer grains per bit cell, with BPMR
being the ultimate goal in the evolution toward increasing grain
quality. However, at a given level of technology, typically the
grain size (or quantity) and grain quality vary inversely with
each other: smaller grains tend to produce larger distributions.
By adding a second layer, we can potentially double the
quantity of grains at the same level of grain quality.
Fig. 1(c) shows the geometry of the setup in [13], where

the target was to build and test the performance of a detector

that is able to separate the signals from the two layers. ITI
was not considered with only a single isolated track on the
top layer centered over a single isolated track on the bottom
layer, and the reader centered over both tracks. Similar to the
PMR system, only downtrack intersymbol interference (ISI)
played a role in this scenario. We adopt a naming convention
for the various architectures that identify the number of layers,
tracks, and readers used in the architecture. In this convention,
the architecture in Fig. 1(c) is referred to as 2L2T1R, for two
layers, two tracks, and one reader.
The geometry used in this work has two layers, three

tracks, and two or three readers, that we refer to as two-layer,
three-track, three-reader (2L3T3R) architecture. It is shown
in Fig. 1(d), with two tracks on the top layer straddling a
single double-width track on the bottom as the home tracks
containing the target data bits. There are also four tracks
containing interfering bits adjacent to these three home tracks,
on both sides and on both layers. We investigate situations
with one, two, or three readers placed symmetrically over the
tracks, that pick up the signals from the target tracks as well
as the interfering ITI tracks.
In this article, we propose a new generalized channel

model for multilayer magnetic recording (MLMR), that can
turn on and off various features of the recording, such as
individual readers, tracks, and the ITI from the adjacent tracks.
We develop and test the performance of two detection schemes
to operate over the MLMR channel: the least squares (LSs) and
the Viterbi detectors. Using the model and detection schemes,
we investigate the impact of varying the density on the lower
layer, and the cross-track positions of the read heads on the
overall achievable user bit density (UBD).
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Algorithm 1 Iterative LSs for Bit Sequences Estimation in
MLMR Channels. Note That for Each SNR Value Locally
Optimal K , Ki , ε, and εi Are Determined Beforehand via
Offline Training to Minimize Individual BERs for the Upper
and Lower Layers
1: We are given an operating SNR and, hence, σn .
2: Pick K and Ki corresponding to the operating SNR.
3: Set to zero any σ s such that σ 2 < max{Kσ 2n , ε} and
any σis such that σ 2i < max{Kiσ

2
n , εi } (i = L, U ).

4: Compute H† = V�−1UT HT C−1
Z and

H†
i = Vi�

−1
i UT

i HT
i C−1

Z .
(Steps 1 to 4 can be performed offline if the operating SNR
is known.)

5: for j = 1 to Number of Iterations do
6: if j = 1 then
7: ÂT

( j ) = [ÂT
L,( j ), ÂT

U,( j ), ÂT
ITI,( j )] = sign{H†R}

8: else
9: R2 = R − Heff

L ÂL,( j−1)
10: ÂU,( j ) = sign{H†

U R2}
11: R1 = R − Heff

U ÂU,( j−1)
12: ÂL,( j ) = sign{H†

LR1}
13: if BER ≤ Desired Threshold then break
14: end if
15: end if
16: end for

II. CHANNEL MODEL

In this work, we focus on the readback of MLMR, and we
assume that the writing process has been appropriately han-
dled. This could potentially have been accomplished through
a multilayer MAMR writing scheme such as described in [15]
and [16]. The block diagram that we implement to model
the readback channel is shown in Fig. 2. There are three
input bit sequences: a2L[k], a1[k], and a2R[k] that are written
onto the top-left, bottom, and top right tracks, respectively,
with a1[k] being written at 1/U the density of a top-layer
track, where U is an integer parameter chosen by the user.
Each track contributes its signal to each of three possible
readers labeled L (left), C (center), and R (right) that are
above the tracks at positions pR , pC , and pL . In this work,
we assume symmetrical reader positioning at −pR, 0, and pR ,
respectively. We also investigate the performance of the two-
reader scenario, omitting the central reader, to see how much
gain is obtained from introducing the third reader. One of the
investigations performed in this work is the impact of varying
the cross-track reader location pR; however, for most of the
simulations, the readers are in the default “home position”,
with each reader centered over one of the tracks at positions
pL = −t/2, pC = 0, and pR = +t/2, shown in Fig. 1 and
the inset of Fig. 2.

A. Evaluation of the ISI Coefficients Weights: βi

Each of the three data-streams contributes to each of the
(up to) three readers through nine possible linear ISI filters in
the paths labeled 1 through 9 in Fig. 2. The basic form of the

discrete ISI components are the same as those used in [13],
with h1 = [0.0732, 0.25, 0.4268, 0.5, 0.4268, 0.25, 0.0732]
for the bottom layer and h2 = [0.5, 1, 0.5], for the top layer,
respectively, that correspond to samples from a raised-cosine
pulse. These are the channel coefficients after integration
over a wide track, equalization, and sampling. There is an
underlying assumption here that the overall system design
is such that the response can be equalized to a relatively
short target while, simultaneously, the total noise presented to
the Viterbi detector is approximately white. This ensures that
performance is close to the maximum likelihood (ML). As a
simplification, we assume the noise from the head and from the
media layers are all white and stationary. In reality, the head
noise as seen at the detector would be slightly blue and the
media noise would be slightly red in order that the total noise
be white. Also, the media noise would be signal dependent.
These simplifications are acknowledged shortcomings of the
model.
In this work, we continue the usage of the nomenclature

from [13] of having subscript 1 and 2 refer to the bottom
and top layers, respectively. The basic downtrack responses
h1 and h2 are weighted by coefficients βi that depend on the
cross-track position of the particular read head, equal to the
area under the cross-track response that overlaps the profile of
the rectangular track being sensed. In this work, we assume
discrete downtrack coefficients in h1 and h2, but a continuous
cross-track profile, with the underlying shape being a raised-
cosine pulse in both cases as depicted in Fig. 1. The reason for
this difference in the way we treat the downtrack and cross-
track profiles is that the downtrack readback is sampled at
discrete time instances prior to being processed by the digital
back-end channel, whereas the reader can pick up the signal
from anywhere in a continuum of cross-track locations y ∈ R.
To evaluate the βi coefficients, we define the continuous cross-
track profile functions

h2(y) = 0.5(1+ cos(2πy)), −0.5 ≤ y ≤ 0.5

h1(y) = 0.25(1+ cos(πy)), −1.0 ≤ y ≤ 1.0 (1)

as two raised-cosine pulses that are zero outside their defined
ranges, representing the continuous cross-track response func-
tions on the top and bottom layers, normalized to the track
pitch t of the top layer. Note that the resolution on the
lower layer (h1) is worse by a factor of two compared to the
resolution on the of the upper layer (h2). We define cross-track
weighting functions β2(y) and β1(y) as the fraction of the
area under the reader sensitivity function (RSF) overlapping
the track when the track and reader centers are offset by
the normalized value of y, for the top and bottom layers,
respectively. They are

β2(y) =

0.5∫
−0.5

h2(y ′ − y)dy ′

∞∫
−∞

h2(y ′ − y)dy ′
and β1(y) =

1∫
−1

h1(y ′ − y)dy ′

∞∫
−∞

h1(y ′ − y)dy ′

(2)
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Fig. 2. Channel block diagram for the MLMR system, modeled as the summation of linear ISI components from each track to each reader, plus the noise
from each media layer and noise from each reader. The full three-reader configuration is shown.

respectively. β2(y) and β1(y) can be evaluated to

β2(y) =

⎧⎪⎨
⎪⎩

− sin(2πy)
2π + y + 1, −1 ≤ y ≤ 0

sin(2πy)
2π − y + 1, 0 ≤ y ≤ 1

0, otherwise

β1(y) =

⎧⎪⎨
⎪⎩

− sin(πy)
2π + y

2 + 1, −2 ≤ y ≤ 0
sin(πy)
2π − y

2 + 1, 0 ≤ y ≤ 2
0, otherwise

(3)

and are shown in Fig. 3. From β2(y) and β1(y), the βi

coefficients in Fig. 2 can be easily derived with appropriate
choices of y in each case. The values of βi for three readers
in their home positions are

⎡
⎣β1 β2 β3

β4 β5 β6
β7 β8 β9

⎤
⎦ =

⎡
⎣1.0000 0.9092 0.0000
0.5000 1.0000 0.5000
0.0000 0.9092 1.0000

⎤
⎦ . (4)

B. Modeling of the ITI

Following the downtrack ISI filters in Fig. 2 are four adders
that introduce the unwanted ITI from the outside unknown
tracks that also depend on the readers’ cross-track positions.
The adjacent-track ITI filters are similarly versions of h1 and
h2 scaled by a factor equal to the area of overlap of the cross-
track profile, with the interfering track. These can be evaluated
to

γ2(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin(2πy)
2π + y − 1

2 , 0.5 ≤ y ≤ 1.5

0, −0.5 ≤ y ≤ 0.5
− sin(2πy)

2π − y − 1
2 , −1.5 ≤ y ≤ −0.5

1, otherwise

γ1(y) =

⎧⎪⎨
⎪⎩

− sin(πy)
2π + y

2 , 0 ≤ y ≤ 2
sin(πy)
2π − y

2 , −2 ≤ y ≤ 0
1, otherwise

(5)

and are also shown in Fig. 3. The four values of the γ
coefficients in the readers’ home positions are[

γt L γt R

γbL γbR

]
=

[
0.0000 0.0000
0.09085 0.09085

]
(6)

respectively. To obtain the ITI sequences I T It L , I T IbL ,
I T It R , and I T IbR in Fig. 2, adjacent-track bit sequences
at L[k], abL[k], at R[k], and abR[k] are generated and convolved
with the weighted ISI filters: γt Lh2, γbLh1, γbRh1, and γt Rh2,
respectively.

C. Reader Noise and Media Noise

To incorporate the media and reader noise, we adopt the
same approach as in [13]. In the reference PMR system
with a single reader over a single track on a single layer,
approximately two-thirds of the noise power comes from
the medium while approximately one-third comes from the
reader. The reader noise and top-layer media noise rms remain
as in the conventional case at σn(1/3)1/2 and σn(2/3)1/2,
respectively, where the value of σn is related to the SNR of
our simulations by

σ 2n =
∑

k h22[k]
10SNR/10 = 1.5

10SNR/10 . (7)

Throughout this article, this reference value of SNR is used
and it always refers to the single-head, single-layer configura-
tion. The media noise power of the bottom layer is a quarter
that of the top due to a 2× loss in resolution in both the
downtrack and cross-track directions. It is also further scaled
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down by a factor of U to account for the lower bit density
on the bottom layer, giving a bottom-layer media noise rms
of σn(2/3)1/2/(4U)1/2 = σn/(6U)1/2.
The media noise sequences w1, w2, and w3 on the top layer

(and w4, w5, and w6 on the bottom layer) are individually
modeled as white in this work, but the noise within each layer
as seen by any two readers at different positions, is correlated
between the readers. This correlation is caused by the overlap
of the RSFs over the same set of grains on each layer. The
noise correlation between two readers, located at normalized
positions p1 and p2 (with p2 > p1) both with cross-track RSF
h(y) that ranges from −t/2 to t/2, due to the overlap of their
sensitivity functions on the same set of grains is given by

A(p1, p2) =

p1+ t
2∫

p2− t
2

h(y − p1)h(y − p2)dy

+ t
2∫

− t
2

h2(y)dy

. (8)

The correlation is dependent only on the separation of the two
readers y = p2− p1 (y > 0) and when substituting in (1) and
(8) can be evaluated to

A1(y) = sin(πy)

2π
− (y − 2)[cos(πy) + 2]

6
, 0 ≤ y ≤ 2

A2(y) = sin(2πy)

2π
− (y − 1)[cos(2πy) + 2]

3
, 0 ≤ y ≤ 1

(9)

for the bottom and top layers, respectively. These top and
bottom correlations are shown in Fig. 4. In the readers’ home
positions, the noise correlation matrices evaluate to

A1 = σ 2n
6U

⎡
⎣1.0000 0.6592 0.1667
0.6592 1.0000 0.6592
0.1667 0.6592 1.0000

⎤
⎦

A2 = 2σ 2n
3

⎡
⎣1.0000 0.1667 0.0000
0.1667 1.0000 0.1667
0.0000 0.1667 1.0000

⎤
⎦ (10)

on the bottom and top layers, respectively. Within the model
of the recording channel, we wish to create three correlated bit
streams w1, w2, and w3 on the top layer and three correlated
bit streams w4, w5, and w6 on the bottom layer with cross
correlation coefficients as given in (10). This is accomplished
by multiplying the unity variance white noise sequences n1,
n2, and n3 and n4, n5, and n6 by matrices C2 and C1,
respectively. The matrices that create the desired correlated
noise are

C1 = √
A1 and C2 = √

A2 (11)

respectively. The symmetric square root of matrices A1 and
A2 can be obtained using a standard technique of solving for
the eigenvalues and eigenvectors of A1 and A2, which allows
us to write Ai = Vi�i VT

i , where Vi is an orthonormal matrix
holding the eigenvectors of Ai in each column and �i is a
diagonal matrix holding its eigenvalues on the diagonal, from
which we can get (Ai )

1/2 = Vi (�i )
1/2VT

i . The correlated

Fig. 3. β(y) and γ (y) functions, are the percentage overlap of the response
function with the home tracks and ITI tracks, respectively.

Fig. 4. Noise correlation functions for the top and bottom layers, for two
readers separated by a cross-track distance y.

noise sequences in Fig. 2 can be obtained from the matrices
C2 and C1 as⎡

⎣w1
w2
w3

⎤
⎦ = C2

⎡
⎣n1

n2
n3

⎤
⎦ and

⎡
⎣w4

w5
w6

⎤
⎦ = C1

⎡
⎣n4

n5
n6

⎤
⎦ (12)

respectively. In the readers’ home positions at SNR=10 dB,
σ 2n = 0.15, and U = 1, the matrices become

C1 =
⎡
⎣0.1472 0.0577 0.0028
0.0577 0.1354 0.0577
0.0028 0.0577 0.1472

⎤
⎦

C2 =
⎡
⎣ 0.3151 0.0265 −0.0011
0.0265 0.3140 0.0265

−0.0011 0.0265 0.3151

⎤
⎦ (13)

respectively. As well as introducing the correct correlation,
these matrices adjust the variances of the noise to the appropri-
ate levels. To achieve ML performance, this cross-track noise
correlation that is introduced in the channel must be removed
before the signals are presented to the joint Viterbi detector.
A key aspect of the MLMR model is the separability of the

sensitivity function in the downtrack and cross-track dimen-
sions, that avoids the need for a 2-D convolution and allows
the use of simpler 1-D downtrack ISI filters adjusted by a
cross-track weighting coefficient. The model also incorporates
unwanted ITI from the two outside neighboring tracks on the
upper and lower layers, as well as reader and media noise
in proportions typical of that in a real recording system. The
media noise injected into the readers in our model is correlated
when the RSFs intersect, to account for them responding to
the same grains in the overlapping regions. The model also
accounts for a lower linear density in the downtrack direction
by an integer amount U , and a constant factor of half in the
cross-track dimension, on the bottom layer.

III. CHANNEL DETECTORS

Based on the channel model previously described and
shown in Fig. 2, readback signals rL [k], rC [k], and rR[k]
can be generated for each reader, which are subsequently
passed to the detector module. Our model also allows us to
enable/disable individual readers and individual tracks. Turn-
ing on/off individual readers corresponds to choosing which of
the rL [k], rC [k], and rR[k] signals are passed to the detector.



6701216 IEEE TRANSACTIONS ON MAGNETICS, VOL. 55, NO. 12, DECEMBER 2019

Fig. 5. Combinations of readers and tracks turned on/off for the different
values of readerFlag/trackFlag.

Fig. 6. For U = 1 and looking at the drown-track cross section showing the
left upper layer track and the lower layer track, shown is the position of the
read head for obtaining the second sample rL ,S2 with respect to the read head
position for obtaining the first sample rL ,S1. rL ,S1 and rL ,S2 are measured
b/2 bit length apart.

Meanwhile turning on/off individual tracks corresponds to
enabling/disabling the a2,L[k], a1[k], and a2,R[k] signal paths
in Fig. 2. In the simulations we will show results for varying
both the numbers of readers and tracks. We use two 3-bit
flags called trackFlag and readerFlag that determine the status
of which tracks/readers are turned on/off, respectively. These
reader/track flags are described in Fig. 5. The main situa-
tions that we examine are trackFlag=5, 7 and readerFlag=5,
7 corresponding to the double and triple reader or track
configurations. A convenient shorthand that we also use is
(#readerFlag,#trackFlag) to refer to a particular architecture,
for example (#7,#7) refers to the full system with three-reader
on three tracks. The signals rL [k], rC [k] and rR [k] from the
channel model are fed into two detectors: the LS detector and
Viterbi detector that we now describe.

A. Least Squares Detector

It is desirable to compare the performance of the Viterbi
detector with a low complexity detector; in this section,
we propose a LS detector for the MLMR channel. From the
system model in Fig. 2, we can derive a LS detector for the
bit sequences of interest. Convolution can be represented via
matrix multiplication of the respective bit sequences by an
appropriately constructed Toeplitz matrix [17, eq. (2.27)]. Let
H1 and H2 be such Toeplitz matrices constructed from h1 and

h2, respectively, and G denote an oversampling matrix of rate
U . Let the vectors of readings from the left, center, and right
readers be denoted by rL , rC , and rR , and similarly define the
respective vectors for the bit sequences and noise variables
in Fig. 2. Then, letting N be the block size, the 3N × 1
readings vector R can be written as shown in bottom of the
next page (14), in terms of the (4N + 3N/U) × 1 matrix A,
comprised of the three wanted bit streams and four interfering
bit streams, a known 3N ×(4N +3N/U) deterministic matrix,
H, describing the channel response, and a 3N ×1 noise vector
Z. The N × 1 upsampled lower layer bit sequences can be
written in terms of the lower layer N/U ×1 data bit sequence,
a′
1, and the ITI generating bit sequences a′

1,bL and a′
1,bR as

a1 = Ga′
1

a1,bL = Ga′
1,bL

a1,bR = Ga′
1,bR (16)

respectively, and the block components of Z are defined as

zL � n1 + w1 + w4
zC � n2 + w2 + w5
zR � n3 + w3 + w6. (17)

Also, the 3N × 3N covariance of Z, denoted by CZ is given
by (15), as shown at the bottom of the next page, where ⊗
denotes the Kronecker product. The binary LS estimator of A,
denoted Â, is a 7N × 1 vector given by

Â = sign{H†R} (18)

= sign
{(

HT C−1
Z H

)−1HT C−1
Z R

}
(19)

where H† is the 7N × 3N pseudoinverse matrix

H† �
(
HT C−1

Z H
)−1HT C−1

Z . (20)

It can be shown that (HT C−1
Z H)−1 can be computed using

[17, eq. (4.7)]

(
HT C−1

Z H
)−1 = V

[
�−1 0

0 0

]
UT (21)

where HT C−1
Z H = U�VT is a singular-value decomposition

(SVD), hence, U and V are 7N ×7N unitary matrices, and �
is a diagonal matrix of singular values. Numerical experiments
have shown the LS detector is sensitive to noise. To improve
the robustness of the LS detector to noise, we discard all
singular values σ ∈ � such that σ 2 < Kσ 2n or σ 2 < ε
when computing (21), where the finite positive parameter K
and the small positive constant ε can be tuned via an offline
training stage to improve the bit error rate (BER). Note that the
sparsity of the matrices H and C−1

Z can further be exploited
to make the SVD computation more efficient and minimize
their storage requirements. It is noted that this formulation
implicitly accounts for the correlation between readers of
the media noise. In contrast, the Viterbi detector requires an
explicit step to first decorrelate the noise.
Further, the bottom-layer density-reduction factor U affects

the relative accuracy of the estimates of the upper and lower
layers’ bits. When U is large (small), the lower (upper) layer
bit estimates are more accurate than the upper (lower) layer
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bit estimates. Thus, we introduce iterative steps to the LS
detector whereby we subtract the effect of the more reliable
layer bit estimates from the readings and re-estimate the other
layer’s bits. An offline training stage can identify the cutoff
lower layer oversampling factor Q = 1, 2, . . . , such that if
U ≥ Q, the lower layer’s bit estimates are more reliable than
the upper layer’s bit estimates. Note that A can be partitioned
into the lower and upper layers’ bit sequences, denoted by
AL and AU, respectively, as AT = [AT

L , AT
U, AT

ITI], where
AL = a′

1 is an N/U ×1 column vector, AT
U � [aT

2,L, aT
2,R] is a

2N×1 column vector, and AT
ITI � [aT

2,t L, aT
2,t R, aT

1,bL, aT
1,bT ] is

a (2N +2N/U)×1 column vector. To remove the effect of the
more reliable estimates from the readings, the effective 3N ×
N/U and 3N×2N matricesHeff

L andHeff
U are constructed from

the block components of H that premultiply the lower and
upper layers’ bit estimates, respectively. Then, we similarly
construct 3N × 3N/U and 3N × 4N matrices HL and HU

from H for the lower and upper layers, respectively, except
that we also include the ITI generating components of H.
Let H†

L and H†
U denote the corresponding 3N × 3N/U and

3N × 4N pseudoinverse matrices as in (20) that premultiply
the appropriately processed readings to estimate the lower and
upper layer bits, respectively. Then, the iterative LS algorithm
is given in Algorithm 1. Notice that the impact of ITI is not
subtracted from the readings because the estimates of the ITI
generating bits is generally very poor for SNRs of interest. But
the components of H generating ITI are taken into account in
the re-estimation so that the LS detector reduces the impact
of ITI on the detection of the bit sequences of interest.
The system in (14) uses ∼ 3N readings, but is attempting

to estimate 2N + N/U unknowns (2N upper layer bits and
N/U lower layer bits), without considering the length 2N and

2N/U ITI generating bit sequences at the upper and lower
layers, respectively. In general, H is not full rank. Hence,
the LS detector would benefit from additional readings. One
method for generating more readings without increasing the
complexity of the MLMR architecture is by sampling twice
per bit in the downtrack direction as shown in Fig. 6. The
first sample sequence rL ,S1 is obtained when the reader is
positioned over the center of a top-layer bit, and the second
sample sequence rL ,S2 is obtained when the reader is posi-
tioned in between two bits. The sampling of the sensitivity
function in Fig. 1 to obtain the discrete ISI components is
illustrated in Fig. 7. The sampled ISI coefficients are therefore,
h′
1 = [0.0190, 0.1543, 0.3457, 0.48100.4810, 0.3457, 0.1543,
0.0190] and h′

2 = [0.1464, 0.8536, 0.8536, 0.1464], for the
lower and upper layers, respectively, at the read head position
for measuring the second sample. When the second sample
is obtained, the noise bandwidth doubles. Hence, from (7),
the noise variance when the second sample is measured is
given by

σ 2n = 3

10SNR/10 . (22)

The addition of the second sample provides the LS detector
with 6N readings while maintaining the number of unknown
bits of interest to 2N+N/U . This results in an overdetermined
H, which our numerical investigations have shown improves
the BER performance of the LS detector considerably even
though the noise bandwidth has doubled.
Since the pseudoinverses H† and H†

i (i ∈ {L, U}) can be
computed offline, the real-time implementation complexity of
the LS detector is 3N scalar multiplications and 3N −1 scalar
additions per data bit per iteration with only a single sample

⎡
⎢⎢⎢⎢⎢⎢⎣

rL

rC

rR

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�R

=

⎡
⎢⎢⎢⎢⎢⎢⎣

β1H2 β2H1G β3H2 Ct LH2 Ct RH2 CbLH1G CbRH1G

β4H2 β5H1G β6H2 0 0 0 0

β7H2 β8H1G β9H2 Ct LH2 Ct RH2 CbLH1G CbRH1G

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�H

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2,L

a′
1

a2,R

a2,t L

a2,t R

a′
1,bL

a′
1,bR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�A

+

⎡
⎢⎢⎢⎢⎢⎢⎣

zL

zC

zR

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�Z

(14)

CZ = σ 2n

⎡
⎢⎢⎢⎢⎢⎣

1+ 1

6U

2Ct (pC − pL)

3
+ Cb(pC − pL)

6U

Ct (pR − pL)

3
+ Cb(pR − pL)

6U
2Ct (pC − pL)

3
+ Cb(pC − pL)

6U
1+ 1

6U

2Ct (pR − pC)

3
+ Cb(pR − pC)

6U
2Ct (pR − pL)

3
+ Cb(pR − pL)

6U

2Ct (pR − pC)

3
+ Cb(pR − pC)

6U
1+ 1

6U

⎤
⎥⎥⎥⎥⎥⎦ ⊗ IN×N

(15)
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Fig. 7. Sampling of the sensitivity functions for the lower and upper layers when obtaining the first and second readings. (a) Lower layer. (b) Upper layer.

Fig. 8. State definition and transitions for the three-track/three-reader Viterbi
detector, with three sample transitions depicted.

per top-layer bit, and 6N scalar multiplications and 6N − 1
scalar additions per data bit per iteration with two samples
per top-layer bit. Note that the complexity of the LS detector
remains approximately constant as the length of the ISI filters
increases.

B. Viterbi Detector

The Viterbi detector for the 2L3T3R architecture is based
on the conventional Viterbi detector, but with a redefinition
of the states and the metrics associated with the transitions
between states. Each state contains 3 bit sequences of length,
Nh −1 concatenated together one after the other, where Nh is
the length of the ISI coefficients for the particular subchannel.
Since we are using three-tap ISI channels for the top-layer
bit streams and a seven-tap ISI channel for the bottom-layer
bit-stream, there are 2 bits for each of the two top layers
and 6 bits for the bottom giving 10 bits and 1024 states
in total. This is independent of the number of readers. The
state definition together with some example trellis transitions
is depicted in Fig. 8.

Fig. 8 shows the definition of a single state for our
2L3T3R architecture and part of a trellis with a transition
from the all-zero state to three of the possible eight candidate
next states. As there are potentially three new input bits
per clock cycle, there are potentially eight new branches
at each time instant k. However, if there is a repetition-
constraint on the bottom layer that enforces U consecutive
bits of a1[k] to be all identical, then there will be cases
when there are only two new bits in some clock-cycles, and
therefore, only four branches emanating from each state at
those time instances. Therefore, the trellis definition changes
with U . In the scenarios where some of the tracks are
omitted, the corresponding subportion of the trellis state def-
inition is also removed, again leading to fewer states in the
trellis.
Besides a modification to the trellis state definitions, that

account for the bits being written to the different tracks, there
is also a modification to be made to the branch metric compu-
tation as depicted in Fig. 8. This modification accounts for the
fact that there are now multiple readers contributing signals to
the detector from rL [k], rC [k], and rR[k]. While the normal
Viterbi detector uses the Euclidean distance (squared) between
the received waveform and the candidate noise-free waveforms
as the branch metric, the 2L3T3R Viterbi uses the sum of the
Euclidean distances squared from each readback waveform
to the corresponding noise-free signal associated with the
branch. Given the known channel parameters, the noise-free
signals are

sL [k] =
2∑

i=0
β1h2[i ]a2,L[k − i ] +

6∑
i=0

β2h1[i ]a1[k − i ]

+
2∑

i=0
β3h2[i ]a2,R[k − i ]

sC [k] =
2∑

i=0
β4h2[i ]a2,L[k − i ] +

6∑
i=0

β5h1[i ]a1[k − i ]
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+
2∑

i=0
β6h2[i ]a2,R[k − i ]

sR[k] =
2∑

i=0
β7h2[i ]a2,L[k − i ] +

6∑
i=0

β8h1[i ]a1[k − i ]

+
2∑

i=0
β9h2[i ]a2,R[k − i ] (23)

respectively. In the full trellis with three bit streams and
no repetition code on the lower layer (U = 1) there are
1024 states with eight branches per state. When U 
= 1, there
will be four branches per state, except at the time instances that
are divisible by U , when there will again be eight branches
per state.

C. Noise Decorrelation Between Readers

The noise correlation between the readers, caused by the
overlap in the RSFs, described in (13) can cause some perfor-
mance loss in the Viterbi detector. Prior to detection, we can
multiply the signals rL [k], rC [k], and rR [k] by a cross-track
noise-decorrelating (ND) matrix to remove the correlation and
improve the performance. The ND matrix is the inverse of
the square root of the total noise correlation matrix at the
detector input which consists of the noise from three sources:
the top layer, the bottom layer, and the reader. The total noise
correlation at the detector input and corresponding ND matrix
will be

C = A1 + A2 + σ 2n
3

I and D = C− 1
2 (24)

respectively. The noise correlation and decorrelating matrices
in the readers home positions (after normalization) are

C =
⎡
⎣1.0000 0.1894 0.0238
0.1894 1.0000 0.1894
0.0238 0.1894 1.0000

⎤
⎦

D =
⎡
⎣ 1.014 −0.0974 0.0017

−0.0974 1.028 −0.0974
0.0017 −0.0974 1.014

⎤
⎦ (25)

respectively. The matrix, D, de-correlates the noise, while
leaving the noise magnitudes unchanged. For two-reader con-
figurations, the middle row and middle column, are omitted.
It is noted that while the correlating matrices transform noise
with unity power into noise that is suitable for combining
with the signal at a certain SNR, they depend on σn , while
the decorrelating matrix in (25) operates on the combined
signal+noise waveforms and therefore, does not.
In addition to whitening the noise, the above ND matrix also

changes the values of the cross-track dependent β coefficients
which need to be modified in the detector. The beta coefficients
need to be updated as follows:

β ′
1 = D1,1β1 + D1,2β4 + D1,3β7

β ′
2 = D1,1β2 + D1,2β5 + D1,3β8

β ′
3 = D1,1β3 + D1,2β6 + D1,3β9

β ′
4 = D2,1β1 + D2,2β4 + D2,3β7

β ′
5 = D2,1β2 + D2,2β5 + D2,3β8

β ′
6 = D2,1β3 + D2,2β6 + D2,3β9

β ′
7 = D3,1β1 + D3,2β4 + D3,3β7

β ′
8 = D3,1β2 + D3,2β5 + D3,3β8

β ′
9 = D3,1β3 + D3,2β6 + D3,3β9. (26)

The values for β ′ after noise decorrelation for the readers in
their home position are⎡
⎣β ′

1 β ′
2 β ′

3
β ′
4 β ′

5 β ′
6

β ′
7 β ′

8 β ′
9

⎤
⎦ =

⎡
⎣ 0.9652 0.8260 −0.0470
0.4165 0.8508 0.4165

−0.0470 0.8260 0.9652

⎤
⎦ (27)

respectively.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we show the simulation results for the LS
and Viterbi detectors described in Section III for the various
scenarios.

A. LS Detector Results

We demonstrate the BER performance of the LS detec-
tor. For the nominal positions of three read heads, pL =
−t/2, pC = 0, and pR = t/2, the bit sequences vector
becomes A = col[a2,L, a′

1, a2,L R, a′
1,bL, a′

1,bR]T . Also, from
(3) and (4), H simplifies to

H

=
⎡
⎣ H2 0.9092H1G 0 0.0908H1G 0
0.5H2 H1G 0.5H2 0 0

0 0.9092H1G H2 0 0.0908H1G

⎤
⎦

(28)

and, from (10), CZ becomes

CZ = σ 2n

⎡
⎢⎢⎢⎢⎢⎣

1+ 1

6U

1

9
+ 1+ π

12πU

1

36U
1

9
+ 1+ π

12πU
1+ 1

6U

1

9
+ 1+ π

12πU
1

36U

1

9
+ 1+ π

12πU
1+ 1

6U

⎤
⎥⎥⎥⎥⎥⎦ ⊗ IN×N .

(29)

Algorithm 1 is then implemented to obtain the BER versus
SNR performance of the iterative LS detector. We examine
the performance of the LS detector for different values of
U , number of readers, and with and without the second
sample sequences. Three iterations of the LS algorithm are
implemented, which give most of the possible improvements
in the BER with the LS detector. Since the error rates on
the two upper layer tracks are similar, the upper layer BERs
shown represent their average. To examine the impact of
possible degradation on the BERs due to the superposition
of the signals from the two layers, we also simulate the BERs
for a one-layer reference with two upper layer tracks and no
lower layer track. The LS simulations use N = 1200 bits,
1000 testing blocks, and 100 training blocks to tune the
parameters mentioned in Algorithm 1.
Fig. 9(a) shows the BER performance of the LS detector

when only two readers, the left and right, are available, with
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Fig. 9. BER performance of the LS detector is shown with one reading per top-layer bit. (a) Two readers. (b) Three readers.

Fig. 10. BER performance of the LS detector with two readings per top-layer bit. (a) Two readers. (b) Three readers.

one reading per upper layer bit, and different values of U .
Hence, the readings vector consists only of the components
rL and rR . Such a system provides 2N readings and requires
estimating 2N + N/U unknown bits. Hence, the system is
under-determined. From Fig. 9(a), the LS detector is not able
to achieve BERs less than 10−2 for the lower layer track with
U = 1 and U = 2, and the upper layer requires 10 dB more of
SNR than the one-layer reference to achieve a BER of 10−2.
For U ≥ 3, BERs less than 10−2 are achieved on the lower
and upper layers with respective error floors. A BER of 10−2
on the upper and lower layers are achieved by 42, 32, 30, and
28 dB for U = 3, . . . , 6, respectively, whereas the one-layer
reference achieves a BER of 10−2 by 32 dB.
In Fig. 9(b), all three readers in the system model in Figs. 1

and 2 are available. For U = 1, 2, the BERs on the lower layer
reach error floors of about 10−1 and 2×10−2, respectively. For
U = 3 and U = 4, 5, 6, BERs of 10−2 on the upper layer are

achieved by 32, 30 dB, respectively, which are within 2 dB of
the one-layer reference, indicating that a further increase in U
beyond three results in negligible improvement in the BERs of
the upper layer for a BER of 10−2. But increasing U decreases
the eventual error floor on the upper layer bit estimates. On the
lower layer, BERs of 10−2 are attained by 32, 26, 16, and
12 dB for U = 3, . . . , 6, respectively. At U = 6, the upper
and lower layers’ BERs can reach 10−4.
Fig. 10(a) shows the BER versus SNR performance of

the LS detector when the sampling rate is doubled and two
readings per upper layer bit are obtained. Though such a
scheme doubles the noise bandwidth as discussed, it provides
more readings than unknowns for the LS detector, making the
LS solution better-behaved. More precisely, with two readers
the LS detector has 4N readings from which it estimates
2N + N/U unknown bits. Unlike with the single sample
scenario, a BER of 10−4 is achievable on the upper and lower
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Fig. 11. Demonstrated are the BERs on the upper and lower layers for each iteration of the LS detector with three readers, two samples per upper layer bit,
and (a) U = 1 and (b) U = 6.

layers with high enough SNRs for all U = 1, . . . , 6. For
U = 1, 2, U = 3, and U = 5, 6, the upper layer achieves a
BER of 10−2 by 36, 30, and 24 dB. For U = 4, 5, 6, the upper
layer is within 2 dB of the one-layer reference for a BER of
10−2. The lower layer achieves a BER of 10−2 by 44, 42, 32,
26, 22, and 10 dB for U = 1, . . . , 6, respectively, displaying
the sharpest decrease in SNRs for U = 3 and U = 6.
In Fig. 10(b), the three-reader configuration is assumed, and

two samples per upper layer bit are obtained. On the upper
layer, a BER of 10−2 is achieved by 28, 30, 26, 24, and 20 dB
for U = 1, U = 2, U = 3, 4, U = 5, and U = 6, respectively,
which are all within about 3 dB of the reference. The bottom
layer reaches a BER of 10−2 by 40, 26, 24, and 8 dB for
U = 1, 2, U = 3, U = 4, 5, and U = 6, respectively. Similar
to the two-reader case, the lower layer experiences the largest
improvement in SNR for U = 3 and U = 6. This suggests a
tradeoff between SNR and U with the largest SNR gains in
return for density happening at U = 3 and U = 6 using the
LS detector.
It is instructive to also demonstrate the BERs of the LS

detector per iteration. Fig. 11 illustrates the BER versus SNR
performance of the LS detector for different iterations with
two samples per upper layer bit and for U = 1 and U = 6.
For U = 1, the upper layer’s bit estimates are more accurate
than the lower layer’s bit estimates during the first iteration.
Hence, subtracting the effect of the upper layer bits reduces
the required SNR for a BER of 10−2 on the lower layer by
about 10 dB as shown in Fig. 11(a) with iterations 2 and 3 for
the lower layer. For U = 6, the lower layer’s bits are more
accurately estimated than the upper layer bits during the first
iteration as shown in Fig. 11(b). A second iteration decreases
the required SNR on the top layer by about 5 dB and 13 dB
for BERs of 10−2 and 10−3, respectively, compared with the
first iteration.
The singular values removal schedule eliminates all singular

values that are less than the max(Kσn, ε). The lower limit

ε ensures that a very small number of singular values are
discarded regardless of how large the SNR is. In doing so,
it prevents the computations of 1/σ if σ is very close to
zero, which could otherwise result in undefined pseudoinverse
matrices. Hence, the sharp turns in the BER versus SNR curves
of the LS detector happen when the singular values removal
scheme switches from removing singular values that are less
than Kσn to removing singular values that are less than ε.
In practice, the operating SNR is known beforehand. Thus,
the parameters for singular values removal in Algorithm 1 can
be carefully tuned to minimize the BER at the desired SNR
value.

B. Viterbi Detector Results

Fig. 12 shows the performance of the Viterbi detector for
N ∼ 4k block sizes. The first two rows hold the results for
the situation with two readers and three tracks (#5,#7), turning
on and off the ITI, while rows three and four are similar
but with three readers. We omit the single-reader/single-track
scenarios as the performance with one reader is not good,
and the single-track case is not interesting. The graphs also
include the configurations where the bottom-layer signal and
noise are both removed, as our baseline reference, that we
label (#5,#5) when two readers are used and (#7,#5) when
three readers are used. The (#5,#5) configuration corresponds
to two narrow tracks on the top layer, with a reader centered
over each of them, while the (#7,#5) case is similar, but
with three evenly spaced readers over the two tracks. These
reference configurations would be equivalent to reading in the
conventional PMR system and the TDMR system, respectively.
These reference curves are unaffected by ITI, as none of the
response functions on the top layer fall outside of the two
tracks being detected. The remaining curves on each plot
correspond to varying values of U from 1 to 4 shown in
different colors and, in the cases where it is appropriate, for
the top layer and bottom layer with different marker symbols.
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Fig. 12. Performance plots for the Viterbi detector. The leftmost column shows the BER versus SNR plots. In the second column, we convert the BERs into
BSC capacities, and in the third column to user densities versus channel densities.

The first column of plots in Fig. 12 show the BER as
a function of SNR in each configuration. The general trend
observed is that with increasing bit length on the bottom
track, U , the BER performance improves for both layers. This
is attributed to the increased spectral separation between the
signals in the top and bottom layers.
In going from the first to the second row, the ITI is being

turned on and we see a marked loss in performance for all U .
Compared with the (#7,#7) cases in the third and fourth rows,
we see the performance with two readers is more sensitive

to ITI than that with three readers. We notice in particular,
an unusual second waterfall mode when the ITI is turned on
for the (#5,#7) case when U = 3 (green curve). We have
encountered similar such cases in the past and found it to
be attributed to the existence of a low minimum-distance
pattern that has a long supporting bit pattern. For the purposes
of the discussion, we will call it error pattern E PA with
supporting bit pattern S PA . The low minimum distance of
E PA means that when S PA happens, the probability of error
is high. However, because S PA is long, its probability of
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occurrence is low. Thus, the Viterbi performance is dominated
by another larger minimum-distance error pattern, that has a
shorter supporting bit pattern, which we call E PB and S PB .
At low SNR, the BER is dominated by E PB /S PB that occur
more frequently because it is shorter, even though it has a
larger minimum distance. As the SNR increases, eventually
the probability of error of E PB drops below the probability
of occurrence of S PA revealing the second observed waterfall
mode. One of the main observations from these plots is that
although there is relatively little loss in going from three
readers to two readers when there is no unknown ITI, when it
is present, the loss can be considerably larger. We expect this
could hold true for TDMR as well.
In the second column of plots in Fig. 12, we transform the

BERs into binary-symmetric channel (BSC) capacities using
Shannon’s BSC capacity formula [18]

CBSC = 1+ p log2(p) + (1− p) log2(1− p) (30)

where we substitute in the BER for the crossover probability
p. The BSC capacity computation provides a strict upper
bound on the information flow through a channel with random
independent bits and errors. In the case of the BER, however,
the errors are correlated and the channel has a capacity higher
than the BSC bound suggests. We view the BSC capacity as
an estimate of the practical information rate that the channel
might support when including the options of pattern dependent
detection and channel encoding. In the second column of
Fig. 12, there are three plots for each value of U : one for
the top layer marked with x, one for the bottom layer marked
with squares and one for the combination of the two layers
marked with circles. The capacity for the combined system is
computed as

Ctot = 2Ctop + 1

U
Cbot (31)

where Ctop and Cbot are the BSC capacities computed from the
top and bottom-layer BERs, respectively. There are two tracks
on the top layer and the bottom layer only produces 1/U
bits per clock cycle. This is an estimate at the total number
of user bits per clock cycle that the system can detect at a
given SNR. We see that when U = 1, the system saturates
at 3 bits/clock cycle at high SNR: two bits on the top and
one on the bottom. As U increases, the curves saturate at
lower capacities, because the bottom layer is holding less data.
However, it is not the number of bits/clock cycle that the
curves saturate at, that ultimately interests us. Our assumption
is that the SNR on the horizontal axis of these plots is changing
with channel bit density (CBD): the higher the CBD, the lower
the SNR, and the poorer the BER. Here, CBD refers to the
linear downtrack density on the top layer alone, rather than the
density achieved when the bottom layer is included. We use
the same assumption as in [13] that the SNR changes for
a magnetic recording system by about 6 dB per doubling
of CBD. Then choosing an equivalence point allows us to
convert the SNRs on the horizontal axis into CBDs in kilo
flux change per inch (KFCI): a standard unit for the CBD.
Furthermore, we multiply the CBDs by the capacity, which by
Shannon’s theorem [18] is an estimate of the highest code-rate

TABLE I

TABLE USED TO CONVERT SNR INTO KFCI

TABLE II

GAIN OF U = 4 OVER THE TWO REFERENCES

achievable for “error-free” recording on the BSC, to convert
KFCI into kilobits per inch (KBPI), and obtain an estimate
of the highest UBD. This is an estimate rather than a bound,
as the BSC capacity underestimates the actual capacity of a
channel when the errors are correlated. The equivalence that
we use to convert SNR into KFCI is shown in Table I, and
the plot of UBD versus CBD is shown in the last column
of Fig. 12. At low CBDs (high SNRs), the capacity is almost
constant at 2+1/U and the UBDs increase linearly with CBD.
As CBD increases, the SNR drops and at some point, errors
begin to occur in the channel at a sufficient rate, such that
the capacity begins to drop and therefore, the total achievable
UBD decreases again. In between, there is a maximum UBD
that can be identified in the charts of the last column of Fig. 12.
This should be chosen as the highest operating UBD for the
architecture being investigated. We estimate this maximum
UBD using parabolic interpolation of the maximum point and
two adjacent points, and display its value in the legend of
each curve. We see that the U = 4 has the highest UBD
in all situations. For each of the four scenarios depicted
in Fig. 12, the percentage gain over the reference curves are
shown in Table II.
We note here the manifestation of the previous observation

that the two-reader case is more sensitive to ITI, losing about
∼ 7% to ITI compared with only ∼ 4.8% for the three-reader
case.

C. Optimizing the Reader Position

In the simulations of Fig. 12, the L and R readers were held
fixed at positions of ±0.5t and the C reader at 0 cross-track
offset. In this section, we vary pR while keeping the left reader
symmetrically placed at pL = −pR , and leaving pC = 0. The
results shown in Fig. 13 focus on the (#7,#7) scenario as it is
the most interesting, investigating the situations with ITI and
ND both turned off and on. In a similar fashion to the case
of maximizing the UBD, we have fit parabolas to the BER
versus pR curves to locate the minimum values which are
subsequently also listed in the legends of Fig. 13. The SNR
is held fixed at 10 dB in these simulations and the reference
curves at 10 dB are plotted as a baseline for comparison.
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Fig. 13. Error rates as a function of reader cross-track location pR at SNR = 10 dB.

Comparing the plots in the left and right columns of Fig. 13,
we can see that introducing ITI causes higher error rates
toward pR = 1, where the readers are pushed out toward
the ITI tracks. However, the ITI has no significant effect near
pR = 0, which is where the L and R readers are moved in
toward the center. On the other hand, comparing the top row
against the bottom row plots of Fig. 13, the effect the ND
matrix at the input to the Viterbi detector can be seen. The ND
gives a slight improvement in BER at low pR around 0.1 or
0.2. This is the region where the overlap between the RSF of
the three readers is strongest leading to the greatest benefit
from the ND. However, the benefit from the ND predicted in
these simulations is not significant.
We observe a distinct minimum in the BER versus pR

curves of Fig. 13, the location of which depends on whether
ITI and ND are off or on. Except for the case U = 1,
the minima of the curves all tend to agree with less than 10%
discrepancy. For the U = 1 case at 10 dB, the BERs are quite
high, and close to 0.5 for the bottom layer, making the data
less accurate for the purposes of estimating the optimum pR .
Therefore, we average together the values of the optimum pR

for the cases excluding U = 1 and show them in Table III.
After obtaining the best value of pR in each case, we reran

the simulations and recomputed the BER versus SNR curves,
followed by C versus SNR and UBD versus CBD as we did

TABLE III

VALUE OF pR THAT MINIMIZES BER CURVES IN FIG. 13

in Fig. 12. We have omitted plotting the BER and C versus
SNR plots in this case and jumped directly to the UBD versus
CBD plots from which the density gains can be estimated
in Fig. 14.
Previously, we stopped our simulations at U = 4, but it

was found that U = 4 was the highest performing, so it was
not clear whether this was the optimum value of U . Hence,
in Fig. 14, we extended the simulations to also include U = 5
and 6 and we see that U = 4 does give the maximum UBD
that we tabulate in Table IV. We observe a 2% gain in the
case without ITI, and a 0.9% gain in the case with ITI due to
our optimization of pR .
A curious phenomenon is observed in that the gain for U =

4 is able to exceed 20% in certain conditions. This does not
seem feasible at first, as U = 4 leads to a quarter of the
downtrack linear density and all our simulations have half the
track density giving 1/8 AD additional gain on the bottom
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Fig. 14. UBD versus CBD plots for the 2L3T3R Viterbi detector.

TABLE IV

GAIN OF U = 4 SCHEME OVER THE REFERENCE, AFTER OPTIMIZING pR

layer or an expected maximum addition of 12.5%. In order
to better understand how 20% was achieved, we have plotted
the UBD for the top and bottom layers separately with dashed
curves in Fig. 14. We see that the top-layer UBD grows in
similar fashion toward its peak, as the (#5,#5) and (#7,#5)
reference curves. The bottom-layer UBD on the other hand,
grows 1/4 as quickly with CBD and so has not reached its
maximum in the range of CBDs in Fig. 14. Even when the top-
layer UBD has peaked and started to decline again, the bottom-
layer UBD is still increasing faster than the top-layer UBD
is declining. This has the effect of shifting the peak of the
combined maximum UBD out to a higher CBD and allows it
to peak at a higher UBD, resulting in a larger total UBD gain
of both layers together.

V. CONCLUSION

In this work, we have proposed a new model for MLMR,
that supports up to three readers over three tracks, with two
narrower tracks in the top-layer straddling a single double-
width track in the bottom layer. The model is based on the
ISI contribution of each track to each reader weighted by a
coefficient that depends on the cross-track displacement of
the reader to the track being sensed. We have also proposed,
written, and tested with our model two detection schemes: an
LSs detector with a simple iteration scheme and a full joint
Viterbi detector.
The LS detector shows promising error rates when the

system is overdetermined. Hence, adding the second sample
sequence per read head substantially improves the error rates
of the LS detector. Expectedly, the detectors exhibit a tradeoff
between the density on the lower layer and the SNR required
for a particular error rate. The LS detector achieves the largest
reductions in SNR for a BER of 10−2 at U = 3 and U = 6.
The Viterbi detector returns the ML bit sequence given the

readback waveform. We have evaluated the BER performances
for the Viterbi detector and used them to form an estimate
of the maximum achievable UBD for our proposed MLMR
system, comparing them to reference TDMR and conventional
PMR systems. The result is a 13.6% gain over PMR and
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6.8% gain over TDMR, respectively. It was also found from
the optimization of the cross-track reader locations, that they
were close to, but not optimal in, their home positions. After
optimizing pR , the gains went up to 14.5% and 7.6% for
TDMR and PMR, respectively.
Furthermore, optimization of pR where we do not constrain

the reader positions to be symmetrical could lead to additional
gains. In addition, a simple U -repetition code on the bottom
layer is easy to implement, but not necessarily the best choice.
These are the candidate topics for us to continue to investigate
in our future work.
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