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This paper presents a combined Bahl-Cocke-Jelinek-Raviv (BCJR) and deep neural network (DNN) turbo-detection architecture
for one dimensional (1D) hard disk drive (HDD) magnetic recording. Simulated HDD readings based on a grain flipping probabilistic
(GFP) model are input to a linear filter equalizer with a 1D partial response (PR) target. The equalizer output is provided to the
BCJR detector in order to minimize the intersymbol interference (ISI) due to the PR mask. The BCJR detector’s log-likelihood-ratio
(LLR) outputs (along with the linear equalizer outputs) are then input to the DNN detector, which estimates the signal dependent
media noise. The media noise estimate is then fed back to the BCJR detector in an iterative manner. Several DNN media noise
estimation architectures based on fully connected (FC) and convolutional neural networks (CNNs) are investigated. For GFP data at
48 nm track pitch and 11 nm bit length the CNN-based BCJR-DNN turbo detector reduces the detector BER by 0.334× and the per
bit computational time by 0.731× compared to a BCJR detector that incorporates 1D pattern-dependent noise prediction (PDNP).
The proposed BCJR-DNN turbo detection architecture can be generalized for two-dimensional magnetic recording (TDMR).

Index Terms—Deep neural network, convolutional neural network, Bahl-Cocke-Jelinek-Raviv(BCJR) detectors, magnetic recording,
turbo-detectors.

I. INTRODUCTION

TRellis based detection with pattern dependent noise pre-
diction (PDNP) has become standard practice in the HDD

industry. In typical single track signal processing, the received
samples from the read head are filtered by a linear equalizer
with a 1D partial response (PR) target h, giving an effective
channel model of y = h∗u+nm +ne, where u are the coded
bits on the track, * indicates 1D convolution, nm is media
noise, ne is reader electronics AWGN, and the effective ISI
channel length I = length(h)−1. The term nm models signal
dependent noise due to, e.g., magnetic grains intersected by
bit boundaries, which can influence two or more bit readback
values. The equalizer output y flows into a trellis-based
(Viterbi [1] or BCJR [2]) detector that employs a super-trellis
based on the effective ISI channel and a 1D pattern dependent
noise prediction (1D PDNP) algorithm. PDNP is based on
an Lth order trained autoregressive media noise model ñmk

:
ñmk

(uk) =
∑L

i=1 ai(uk)nmk−i
(uk) + ek(uk), where the ai

are the auto-regressive coefficients, and the model error ek is
assumed to be uncorrelated Gaussian noise that depends on the
coded bit pattern vector uk = [uk+∆, . . . , uk, . . . , uk−(I+L)]
[3], [4]. The number of super-trellis states for Nt-track PDNP
detection is 2Nt(I+L+∆), with typical values I ≤ 3, L ≤ 4
and ∆ ≤ 1. The L model coefficients ai(uk) for each pattern
vector uk are trained and computed offline using the normal
equation. The trellis detector sends soft coded bit estimates to
a channel decoder to determine the user bits.

There are two problems with PDNP. First, when the number
of tracks Nt simultaneously processed is greater than one, e.g.
in two-dimensional magnetic recording (TDMR), the number
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of trellis states can become impractically large; this is the state
explosion problem. Second, the autoregressive noise model and
linear prediction used in PDNP is somewhat restrictive and
may not accurately represent the media noise, especially at
high storage densities; this is the modeling problem.

To avoid state explosion, we separate the ISI detection and
media noise estimation into two separate detectors and use
the turbo-principle to exchange information between them,
thus avoiding use of a super-trellis. To address the model-
ing problem, we design and train DNN-based media noise
estimators. DNNs feature a relatively large number (typically
≥ 5) of interconnected network layers, with each network
layer containing a hidden layer and non-linear output layer.
Recent breakthroughs in DNNs [5], [6] have led to great
success in applications such as speech recognition, image
understanding, and language translation. DNNs can learn a
probabilistic model from the data. As DNN models are much
more general than autoregressive models, they give a better
estimate of magnetic media noise nm than PDNP, and hence
lead to reduced detector BERs compared to PDNP.

Two previous papers [7], [8] employ neural networks (NNs)
for equalization of TDMR channels. However, these NNs have
only three layers, and are thus not DNNs, but are more like
the first generation NNs introduced in the 1980s. Also, these
papers employ the NNs in place of the BCJR/PDNP equaliz-
ers, not as media noise predictors, and their performance is
compared only with that of a 2D linear equalizer, which is
known to be inferior to the 2D-BCJR or Viterbi equalizers
typically employed in TDMR detectors (e.g. [9]–[12]).

To our knowledge, the present paper is one of the first to
employ a DNN media noise predictor, and to combine it with
trellis-based ISI detection in a turbo architecture.
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II. SYSTEM MODEL

The BCJR-DNN turbo detector assumes a channel model
for the kth linear equalizer filter output y(k) similar to that of
the 1D PDNP scheme described in the introduction:

y(k) = (h ∗ u)(k) + nm(k) + ne(k) (1)

where h is the PR target, u are the coded bits on the track,
* indicates 1D convolution, nm(k) is media noise, ne(k) is
reader electronics AWGN, and the ISI channel length I =
length(h) − 1. Unlike PDNP, the media noise term nm(k) is
not modeled as an AR process; instead a more general model
for nm(k) is learned by the DNN through offline training.

We use GFP model data to train and evaluate our system.
The GFP waveforms are generated based on micro-magnetic
simulations [13]. The simulated media has grain density of
11.4 Teragrains per square inch. The GFP waveforms corre-
spond to five tracks of coded bits (±1), denoted as tracks 0
through 4. They are written using shingled writing technology.
Track 0 at the bottom is written first. Then track 1 is written,
overlapping part of track 0. The writing process repeats until
track 4 is written. Track 4 is called the fat track, since it is not
followed by any more tracks and thus preserves the original
magnetic write width (MWW), which is 75 nm. In our GFP
simulations, the bit length (BL) is 11 nm. We have two GFP
data sets for system evaluation. For the first data set the track
pitch (TP) (i.e., the distance between adjacent tracks) is 48 nm,
and for the second the TP is 27 nm. The number of grains per
coded bit (GPB) for the 48 nm TP data set is

GPB = Grain density × BL × TP = 9.33.

Similarly, for the 27 nm TP data set we compute GPB = 5.25.
Each track in GFP data set consists of 41206 coded bits,

close to the sector size of 32768 bits (4K bytes) in a typical
HDD. The readings from the center of Track #2 are used as
input to the BCJR-DNN turbo detector, and to a comparison
baseline 1D PDNP detector.

III. BCJR-DNN DETECTOR

Fig. 1 shows the system block diagram for the proposed
BCJR-DNN turbo detector. This system is a turbo-equalization
structure that separates the ISI detection and media-noise
prediction functions into two detectors that iteratively ex-
change LLR estimates of coded bits and noise samples until
convergence to a low BER occurs.

In Fig. 1, the GFP simulated HDD read-head output vector
r contains two samples per coded bit, denoted r(1) and r(2).
These samples are on the same track and are collected by
the same read head, but are located at different downtrack
locations within a given bit; the odd samples r(1) (the “first
samples” per bit) are located near the center of each bit, and
the even samples r(2) are located at the boundary between
bits. The odd samples r(1) are first filtered by a length 15 1D
linear equalizer designed to minimize the mean squared error
(MMSE) between the filter output y(1) and the convolution of
the coded bits u with the 1D PR mask h. This PR equalization
is done because the down track ISI can have a span of up
to about 15 bits. The filter output y(1) is input to the BCJR
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Fig. 1: Block diagram for the BCJR-DNN turbo detector.

detector, which handles only ISI equalization based on the PR
target h and outputs a block LLRb of 41206 coded bit LLRs.
In this work, we design the PR target h with three taps, so
that the ISI channel length I = 2, and the BCJR detector has
M = 2I = 4 states and eight total branches.

The BCJR’s coded bit LLRs LLRb are sent to the DNN,
which provides an estimate n̂m of the media noise to the
next iteration of the BCJR detector in order to improve the
BCJR’s estimate LLRb. In the BCJR’s gamma probability
computation for the jth trellis branch at trellis stage k, the ex-
ponent in the Gaussian conditional channel probability density
function (PDF) is (y(1)

k − (h ∗ vj)l − n̂mk
)2, where vj denotes

the vector branch label for branch j (which has the same
length as h), and l is the index corresponding to y

(1)
k ; thus,

an accurate estimate of the media noise maximizes this PDF
when vj corresponds to the correct data bits. The DNN inputs
also include the filtered first sample sequence y(1) and the
even reading samples r(2). We have found experimentally that
providing r(2) as an additional input to the DNN measurably
improves the DNN’s estimation of the media noise and hence
reduces the BER of the BCJR’s output in the next iteration.

The dotted lines and box in Fig. 1 indicate future work
beyond the present paper; they show how the detector can
interface to an LDPC channel decoder.

The BCJR-DNN turbo detection architecture shown in
Fig. 1 can be readily generalized to multi-track detection for
TDMR. When Nt tracks are simultaneously detected and a 2D
linear equalizer and 2D PR target with Nt rows is employed,
the BCJR jointly equalizes downtrack ISI as well as inter-track
interference (ITI), and its number of trellis states M becomes
M = 2NtI ; e.g., M = 64 when Nt = 3 and I = 2. Thus,
by limiting the BCJR detector to ISI or ISI-ITI detection only,
the trellis state explosion problem is circumvented.

We employ two methods for interfacing the BCJR detector
to the DNN. In the first method, labeled as “1 DNN” in the
tabular results provided in section IV, one DNN estimates the
media noise for the kth BCJR trellis stage based on LLRb

(and on y(1) and r(2)) and then passes this estimate n̂mk
to

all eight BCJR branches. In the second method, labeled as “8
DNNs” in section IV, a media noise estimate n̂mkj

, 0 ≤ j ≤ 7,
for the jth branch of the kth BCJR trellis stage is provided by
a DNN, denoted DNNj , dedicated to (and trained for) the jth
branch. Thus, at each trellis stage eight separate DNNs (which
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Fig. 2: (a) LLR/state block for 1 DNN: LLRs are from BCJR.
(b) LLR/state block for 8 DNNs: branches are specified by
fixed value of vector [u0, u1, u2]. L0-L2 and L6-L8 are LLRs
from BCJR.

can operate in parallel) provide eight separate media noise
estimates, one for each trellis branch. In this second method,
the LLRbj vector provided to DNNj has its central three
elements equal to the level shifted (to ±1) three bit binary
representation [u0, u1, u2] of the branch index j, and the other
elements are unchanged from those in LLRb. Fig. 2 shows the
LLR input vectors for both the 1 DNN and 8 DNNs methods.
For this second method, in general, BCJR trellises with Nbr

branches per stage require Nbr separate DNNs.

A. Deep neural network (DNN)

We investigate two neural network architectures for the
noise predictor. The first architecture is the traditional fully
connected deep neural network (FCDNN). Each FCDNN layer
consists of a hidden layer and an output layer. Each output
layer node is connected to a node in the next FCDNN layer’s
hidden layer through a non-linear activation function. The
output oj of a given output layer’s node j is computed
from its hidden layer node inputs xi as oj = f(zj), where
zj =

∑
i wijxi + bj , and the wij and bj are trainable weights

and a trainable bias term, respectively. The function f(z) is
the rectified linear unit (ReLU) function f(z) = max(0, z).

The second architecture is the convolutional neural network
(CNN), wherein each convolutional layer has a bank of trained
finite length filters connected to an output layer. Each output
layer node has a trainable bias term, and is connected to
the next convolutional layer through a ReLU function. Both
the FCDNN and the CNN can perform feature extraction to
facilitate media noise prediction.

The DNNs process their input data in a sliding block
manner. To estimate the kth media noise sample n̂mk

, the
lowest input layer of each DNN accepts a block LLRbk

of
Ni BCJR output LLRs, Ni filtered readings y(1)

k , and Ni raw
second readings r(2)

k where Ni is an odd number, and the kth
noise estimate corresponds to the middle element of the Ni

elements in each block; in this paper, Ni = 9. To estimate the
(k + 1)th media noise sample, each of the input data blocks
is shifted by exactly one sample into the future.

1) Fully connected deep neural network (FCDNN)
Fig. 3 shows the architecture for the proposed FCDNN,

which we designed for the noise predictor. A FCDNN is a
modular layer design for which we can choose the network
depth to optimize the model. Every node in each fully con-
nected layer is connected to all the nodes in the previous layer.
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Fig. 3: Fully connected neural network architecture.

The proposed FCDNN has 11 layers. The first layer is an
input image layer in which data normalized to have zero mean
and unit variance enters. The input layer size is 27 when there
are three length-9 input data blocks (i.e., LLRbk

, y(1)
k and

r(2)
k ); the input layer size is 18 when only LLRbk

and y(1)
k

are used as inputs. The output of this layer feeds the next layer,
which is a fully connected one. The proposed network has 5
fully connected layers. For three input data blocks, the sizes
of fully connected layers 1 through 5 are equal to [27 × 24],
[24×18], [18×12], [12×6], and [6×1]; for two input blocks,
the sizes are [18×15], [15×12], [12×9], [9×6], and [6×1].
After each fully connected layer except the last one, there
exists a Rectified Linear Unit (ReLU) activation function layer.
The ReLU function assists the model to converge with greater
acceleration. After the last fully connected layer, there should
not be any ReLU layer since thresholding the last layer’s
output will give a poor estimate of the true media noise, which
is a real number that can take positive or negative values. The
last layer is the regression layer, which predicts the responses
of the model. The regression loss function is 0.5× the mean
squared error between the training label media noise and the
DNN prediction of the media noise.

2) Convolutional neural network (CNN)
Fig. 4 presents the CNN architecture. The CNN is similar

to the FCDNN in that every node receives some input and
predicts the output with non-linearity.

The proposed CNN contains 18 layers. These layers are
categorized as one input image layer, 5 convolutional units,
and one output layer. After normalizing the raw data received
from the other blocks to have zero mean and unit variance,
the system passes them to the input image layer. The 2D input
image layer is of size 27, and includes three rows consisting
of nine samples from each of the three input blocks LLRbk

,
y(1)

k and r(2)
k . We also consider the case where r(2)

k is not
included as an input; in this case the input layer is of size
18 and includes two rows of nine samples each from LLRbk

and y(1)
k . Organizing the 1D input blocks into a 2D array in

this manner induces 2D spatial correlation between the blocks.
We exploit this spatial correlation by employing trained 2D
convolutional filters on all CNN layers.

Every convolutional unit includes 3 layers: convolutional
layer, batch normalization layer, and ReLU layer. The convo-
lutional layer slides the filter over the input data, and the batch
normalization layer normalizes the data to speed up network
training and reduce sensitivity to the initial conditions (of the
filter coefficients and interconnection weights) in the layers.
The output layer is a regression layer. Every convolutional
layer has three properties: the filter length, the filter width, and
the number of filters which is called the number of channels.
In CNNs designed for three rows of input, all convolutional
layers employ filters of size [3× 3]; for two-row-input CNNs
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Fig. 4: Convolutional neural network architecture.

the filters are of size [2× 3]. The number of channels in units
1 through 5 is equal to 8, 16, 32, 64, and 128 respectively.

IV. SIMULATION RESULTS

In this section, we present simulation results for BCJR-
DNN turbo detector on two different GFP waveform data sets.
Results are presented for both FCDNN and CNN architectures
for the media noise estimator. Simulation results for four
scenarios for the DNN input features are also provided.

In all presented BCJR-DNN simulation results, one turbo-
loop between the BCJR and the DNN is performed. In this
turbo-loop, the BCJR initially assumes that the media noise is
zero, and computes an initial set of output LLRs LLRbk

which
are passed to the DNN. The DNN then computes media noise
estimates n̂mk

and passes them back to the BCJR. Finally
the BCJR is run a second time using the DNN’s media noise
estimates to obtain a lower BER. The LLR outputs of the
second pass through the BCJR are thresholded and used to
compute the detector’s BER.

A. Data sets

We use two GFP waveform data sets, both with 11 nm BL.
The first set has TP = 48 nm and GPB = 9.33; the second has
TP = 27 nm and GPB = 5.25. Each block in each data set
has 5 × Nb input bits, where Nb = 41206. The central three
tracks for each data set have two readings per bit, i.e. 3×2Nb

readings per block. The 1D detectors considered in this paper
use only the central track in the GFP waveforms for training
and testing. We use 16 GFP blocks as the training data set
to train the DNNs and the 1D PDNP used as a comparison
baseline. Another (distinct set of) 16 blocks is used as the test
data set to generate (by simulation) the BER figures presented
in Tables I and II below.

B. Input scenarios

We investigate four scenarios for the DNN input features. In
the first, the DNN inputs are the signs of the BCJR detector’s
output LLRs and the sequence y(1)

k . In the second, the LLR
signs are replaced with their corresponding probabilities. For
all scenarios, we normalize the data by subtracting the mean
and dividing by the standard deviation for each feature, so that
the DNN gets unbiased data. The LLR probabilities give more
information: not only the estimated bit but also the estimation’s
reliability can be determined from them. Experiments show
that using the LLR probabilities as DNN inputs gives better
media noise estimates than using the signed LLR values; this
may be due to the non-linear scale inherent in the LLRs, as
opposed to the linear scale of their associated probabilities.

The rest of the scenarios utilize the second samples r(2)
k of

the raw GFP readings. For the third scenario, we assign the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Number of Epochs

0

0.05

0.1

0.15

0.2

0.25

0.3

R
M

SE

CNN -- UE
CNN -- Monic
FCDNN -- UE
FCDNN -- Monic

Fig. 5: Learning curves for the FCDNN and CNN on the 48
nm TP data set, when the inputs include the LLR probabilities,
y(1)

k , and r(2)
k . One epoch refers to one pass through all 16

training data blocks. The points of the curve indicate separate
iterations; an iteration refers to an instance of stochastic-
gradient-descent based on a gradient estimate derived from
a small subset of the training data.

signs of the LLRs, y(1)
k , and r(2)

k as the DNN input features.
The last scenario has the same features as the third, except we
use the LLR probabilities rather than their signs.

C. Discussion of simulation results

Figure 5 shows the FCDNN and CNN learning curves
(i.e., root MSE (RMSE) versus number of training epochs)
for the case when 1 DNN has LLR probabilities, y(1)

k , and
r(2)
k as inputs. Results for three-tap unit energy (UE) and

monic PR masks designed using the method described in
[14] are included. The convergence speed is fastest, and the
final achieved RMSE is lowest, for the CNN with monic
mask, followed by the CNN with UE mask, the FCDNN with
monic mask, and the FCDNN with UE mask. The first three
of these converge within one epoch, whereas the FCDNN
with UE mask takes a little longer to converge. The learning
curve convergence results are consistent with the BER results
presented in Tables I and II below.

Table I summarizes the results for the TP = 48 nm data set.
The block of LLR inputs LLRbk

to the DNN from the BCJR
is indicated by L in Table I. The table compares the BER
performance of the proposed BCJR-DNN detector to that of
a 1D PDNP BCJR detector with 128 states, corresponding to
I = 2, L = 4, and ∆ = 1. The 1D PDNP takes its input from
the same length 15 MMSE filter (with the same PR target
h) as that used with the BCJR-DNN detector. The PDNP’s
pattern vector length of I+ 1 +L+ ∆ = 8 bits is about equal
to the DNN’s channel input y(1) length of 9 samples.

To test whether the PDNP can exploit both sample se-
quences r(1)

k and r(2)
k without doubling the number of state

bits, we compute the averaged input ravg
k = (r(1)

k +r(2)
k )/2 and
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TABLE I: Simulations of PDNP and DNN/BCJR detectors at
TP 48 nm.

Method Input
PR BER BER

Mask No AWGN SNR 20 dB

PDNP

Single UE 4.55e−4 7.54e−4

Sample Monic 5.55e−4 5.76e−4
Double UE 7.45e−4 1.32e−3

Samples Monic 7.68e−4 9.01e−4

DNN 8 DNNs 1 DNN 8 DNNs 1 DNN

FC

Sign[L], UE 1.10e−3 1.02e−3 3.59e−3 3.38e−3

y(1) Monic 2.84e−4 2.81e−4 7.34e−4 7.24e−4

Pr[L], UE 7.58e−4 7.22e−4 2.38e−3 2.42e−3

y(1) Monic 2.29e−4 2.18e−4 5.39e−4 5.51e−4

Sign[L], UE 2.93e−4 4.08e−4 3.38e−4 3.61e−4

y(1), r(2) Monic 2.50e−4 2.79e−4 2.91e−4 3.85e−4

Pr[L], UE 2.58e−4 2.34e−4 3.29e−4 2.61e−4

y(1), r(2) Monic 2.09e−4 2.09e−4 2.64e−4 2.55e−4

CNN

Sign[L], UE 3.06e−4 3.52e−4 7.72e−4 9.57e−4

y(1) Monic 1.58e−4 1.67e−4 4.14e−4 4.40e−4

Pr[L], UE 2.93e−4 2.85e−4 7.77e−4 7.62e−4

y(1) Monic 1.65e−4 1.65e−4 4.41e−4 4.32e−4

Sign[L], UE 1.87e−4 2.28e−4 2.08e−4 2.43e−4

y(1), r(2) Monic 1.53e−4 1.70e−4 1.97e−4 2.09e−4

Pr[L], UE 1.85e−4 1.64e−4 2.25e−4 2.14e−4

y(1), r(2) Monic 1.52e−4 1.62e−4 2.02e−4 2.00e−4

TABLE II: Simulations of PDNP and DNN/BCJR detectors at
TP 27 nm.

Method Input
PR BER BER

Mask No AWGN SNR 20 dB

PDNP

Single UE 9.75e−3 1.58e−2

Sample Monic 7.12e−3 1.12e−2
Double UE 1.25e−2 2.35e−2

Samples Monic 8.75e−3 1.73e−2

DNN 8 DNNs 1 DNN 8 DNNs 1 DNN

FC

Sign[L], UE 2.08e−2 2.16e−2 3.22e−2 3.64e−2

y(1) Monic 7.30e−3 7.39e−3 1.18e−2 1.26e−2

Pr[L], UE 1.86e−2 1.67e−2 2.83e−2 2.90e−2

y(1) Monic 7.20e−3 7.25e−3 1.19e−2 1.18e−2

Sign[L], UE 8.52e−3 9.96e−3 1.13e−2 1.24e−2

y(1), r(2) Monic 7.08e−3 7.22e−3 9.51e−3 1.03e−2

Pr[L], UE 8.36e−3 8.44e−3 1.10e−2 1.13e−2

y(1), r(2) Monic 7.12e−3 7.14e−3 9.60e−3 9.58e−3

CNN

Sign[L], UE 1.14e−2 1.21e−2 1.94e−2 2.17e−2

y(1) Monic 6.92e−3 7.08e−3 1.16e−2 1.16e−2

Pr[L], UE 1.10e−2 1.14e−2 1.86e−2 1.90e−2

y(1) Monic 6.96e−3 6.99e−3 1.15e−2 1.15e−2

Sign[L], UE 7.72e−3 8.68e−3 9.97e−3 1.07e−2

y(1), r(2) Monic 6.74e−3 7.06e−3 9.18e−3 9.66e−3

Pr[L], UE 7.74e−3 7.78e−3 9.84e−3 9.87e−3

y(1), r(2) Monic 6.71e−3 6.83e−3 8.45e−3 9.16e−3

design the entire BCJR-PDNP system (including the MMSE
filter, the PR mask, and trained PDNP coefficients) for the
input ravg

k ; the results for this case are shown in the row labeled
“Double Samples” under the PDNP method. The BER for the
double sample case is higher in all cases than that of the single
sample case that only uses r(1). This probably occurs because
r(2) is not co-located with r(1), and thus averaging it with r(1)

does not give true noise averaging. In addition, the location of
r(2) between the bits introduces additional downtrack ISI into

the average of the two readings.
The GFP data contains no read-head electronic AWGN, i.e.,

ne(k) = 0 in (1). The column labeled “BER No AWGN”
reports results for this case. The column labeled “BER SNR
20 dB” reports results when non-zero AWGN ne(k) at an SNR
of 20 dB is added to both sample sequences r(1)

k and r(2)
k . The

SNRs for the cases when the PDNP (or DNN) uses only r(1)
k

or both samples r(1)
k and r(2)

k are computed as

SNR1 = 10 log10

(
1
σ2

e

E
[
(r(1)

k )2
])

(2)

SNR2 = 10 log10

(
1
σ2

e

E
[
(r(1)

k )2 + (r(2)
k )2

])
, (3)

where SNR1 and SNR2 indicate the single and double sample
cases, and σ2

e is the AWGN variance.
For the zero AWGN results, except for a few UE mask

cases, the BCJR-DNN detector achieves lower BERs than the
PDNP detector. The BCJR-DNN detector’s lowest BER of
1.52e-4 occurs in the last row of the table with the monic mask,
8 CNN noise predictors, and inputs of the LLR probabilities
Pr[L] and y(1)

k and r(2)
k ; this BER is about 0.334× the PDNP’s

lowest BER of 4.55e-4, which is achieved with the UE mask.
The next lowest BER of 1.62e-4 (i.e. 0.356× the PDNP’s
lowest BER) occurs under the same conditions except with
only 1 CNN.

For the BCJR-DNN detector, the monic mask gives lower
BER than the UE mask in all cases. By contrast, the UE mask
gives the lowest BER for the 1D PDNP detector. Using LLR
probabilities in the BCJR-DNN detector always gives lower
BERs than using LLR signs. Adding the second GFP sample
r(2)
k to the DNN inputs always lowers the BER, although the

reduction is less for the monic mask than for the UE mask.
In many cases there is little to no advantage in using

8 DNNs instead of 1 DNN, although 8 DNNs do give a
significant BER reduction with the UE mask, LLR signs and
both GFP input samples. Also, 8 CNNs with the monic mask
achieve the lowest overall BER in the table’s last row.

The BERs for AWGN at 20 dB SNR are higher than those
with zero AWGN; the single exception occurs with one UE
mask FCDNN system that uses the sign of the LLR and both
readings. The non-linear sign operation might actually benefit
from some amount of AWGN. Trends with the 20 dB SNR
results are similar to those of the zero AWGN case: the lowest
CNN BER of 1.97e-4 (essentially tied between 1 CNN and 8
CNNs) is about 0.342× the lowest PDNP BER of 5.76e-4.

Table II summarizes results for the TP = 27 nm data set.
There is significantly more ITI, which neither 1D detector
can explicitly take into account; this leads to higher BERs
throughout Table II as compared with Table I. The trends
are similar to those in Table I, except that the zero-AWGN
BCJR-DNN detector’s BER is lower than the PDNP’s BER
only for the monic-mask CNN cases in the table’s last and
second to last rows, and the monic-mask 8-FCDNN case in
the table’s sixth FCDNN row. The lowest BCJR-DNN BER
is about 0.942× the PDNP’s lowest BER for zero AWGN,
and about 0.754× lower for AWGN at 20 dB SNR. PDNP’s
superior robustness to unknown ITI may be due to its use of
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TABLE III: Computational complexity for BCJR-PDNP,
BCJR-1 CNN and BCJR-8 CNNs.

Method mul/div add/sub exp/log sqrt
PDNP 141,168 41,347 257 256
1 DNN 12,953 11,087 18 16
8 DNNs 101,013 86,528 18 16

256 different prediction filters (conditioned on the super-trellis
branch) compared to the BCJR-DNN detector’s much lower
degree of branch conditioning. This hypothesis is supported by
the generally superior performance of 8 DNNs over 1 DNN
in Table II, which is not the case in Table I.

We also investigated a second iteration between the BCJR
and the noise-prediction CNN. In this scenario, a second-
iteration CNN is trained with the BCJR output LLRs that result
from the first-iteration CNN’s noise prediction (as well as with
y(1)

k and r(2)
k ), and the BCJR uses the second-iteration CNN’s

noise prediction to derive new LLR estimates of the data bits.
However, the second iteration did not reduce the final BER.
Further investigation of design of the second-iteration CNN is
left for future work.

D. Computational run time and complexity comparison

We measured the run time per input bit by running all 16
test blocks on the same CPU for the PDNP, BCJR-FCDNN
and BCJR-CNN detectors; both BCJR-DNN detectors use one
DNN. The PDNP required 774 µs per bit, the BCJR-CNN
required 89.6 µs per bit, and the BCJR-FCDNN required 43.7
µs per bit. Thus, both BCJR-DNN detectors run substantially
faster than the PDNP. The best performing BCJR-CNN de-
tector with 8 CNNs requires 0.731 times the per bit running
time (PBRT) of the PDNP detector; running all 8 CNNs in
parallel would reduce the PBRT by about 1/8th. The next
best performing detector uses only 1 CNN and requires only
0.116 times the PBRT of the PDNP detector.

The run-time comparisons are supported by the computa-
tional complexity figures shown in Table III. The complexity
of the BCJR algorithm grows as the square of the number of
states, due to the double summation over the state variables
required to compute the LLRs. The higher complexity of the
BCJR-PDNP is due to its trellis having 32× the number of
states of the trellis used in the BCJR-CNN system.

V. CONCLUSION

This paper has presented a concatenated BCJR-DNN archi-
tecture for detection of bits on single-track HDDs. Separation
of the ISI detection and media noise estimation between
the BCJR and DNN detectors avoids the high complexity
associated with use of super-trellises in PDNP detectors. The
DNN’s ability to learn general probabilistic models from
the data enables the BCJR-DNN detector to achieve lower
BERs than the PDNP detector. In tests with GFP waveforms
at 48 nm track pitch and 11 nm bit length, a BCJR-CNN
detector with 8 DNNs achieves 0.334× the BER and 0.731×
the PBRT of a 1D PDNP detector; a version with 1 DNN

achieves 0.356× the BER and 0.116× the PBRT of the PDNP
detector. The BCJR-DNN detector can be readily generalized
for detection of TDMR waveforms, and can be interfaced with
an LDPC code in order to demonstrate what we believe will
be substantial areal density gains over either 1D or 2D PDNP;
these generalizations will be the topic of future publications.
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