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Figure 2: Architecture of the CNN Detector System. 

Figure 3: Architecture of the CNN Equalizer-VA. System. 
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I. INTRODUCTION 

The hard disk drive (HDD) industry stores data 
at areal densities close to the capacity limit of the 
one-dimensional (1D) magnetic recording channel [1]. 
New technologies are emerging to increase density, 
including heat assisted magnetic recording (HAMR), 
microwave-assisted magnetic recording (MAMR), 
and two-dimensional magnetic recording (TDMR). 
TDMR employs 2D signal processing to achieve 
significant density gains, without changes to existing 
magnetic media. Recent encouraging studies [2]-[5] 
propose multilayer magnetic recording (MLMR): 
vertical stacking of an additional magnetic media layer to a TDMR system to achieve further density gains. 
Using a realistic grain flipping probability (GFP) model to generate waveforms [3], [4], we investigate the 
design of deep neural network (DNN) based methods for equalization and detection for MLMR. 

Fig. 1 shows a cross-track view of the MLMR system 
considered. On the upper layer, six tracks are written at 
track pitch (TP) 48 nm and bit length (BL) 11 nm. On the 
lower layer, three tracks are written at TP 96 nm and BL 
22 nm. Hence, the system stores one bit on the lower layer 
for every four bits on the upper layer. Consistent with the 
notation in [5], the lower layer is indexed by 1, and the 
upper layer by 2. For the tracks of interest, we denote the 
bit sequences written on the upper left and right tracks by 

𝒂ଶ,௅ and 𝒂ଶ,ோ, respectively, and the bit sequence on the lower track by 𝒂ଵ. Readings are obtained every 11 nm 
down-track at the left, center, and right cross-track positions, and measured reading sequences are denoted by 
𝒓௅ , 𝒓஼ , and 𝒓ோ, respectively. 

We compare three methods for detection and equalization of bit sequences 𝒂ଵ, 𝒂ଶ,௅ , and 𝒂ଶ,ோ  from 
readings 𝒓௅ , 𝒓஼ , and 𝒓ோ . The first method relies only on convolutional DNNs (CNNs) to detect the bit 
sequences. Fig. 2 illustrates the CNN-only system, which consists of CNNs for detection on each layer. 
Readings within a 3 × 17 sliding window comprise input examples for the upper layer bits. Since each reader 
collects two samples per lower layer bit, and to 
maintain a 17-bit down-track footprint, a rate 
converter multiplexes these additional readings 
across-track, resulting in size 6 ×  17 lower layer 
input examples. Each CNN detector accepts input 
examples and estimates its corresponding bit label. 
The second method consists of a non-linear CNN 

equalizer followed by a Viterbi Algorithm (VA) for 
detection and is illustrated in Fig. 3. During training, 
the CNN equalizer iterates with a constrained mean squared error (MSE) solver to adjust the target partial 
response (PR) masks. The third method is the conventional 2D-linear equalizer followed by a VA. The 2D-linear 
equalizer also iterates with a constrained MSE solver to adapt the target masks. We use the VA in [5], which is 
the ML detector for an ideal MLMR channel that does not incorporate erasures caused by the write process.  

Figure 1: Cross-track View of the MLMR System. 
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Figures 4 and 5 detail the architectures equalizer and 
detector CNNs, respectively. The equalizer CNN 
minimizes the MSE between its output and the ideal PR 
waveforms 𝒚௅ , 𝒚஼ , and 𝒚ோ in Fig. 3. The detector CNN 
minimizes the cross-entropy loss function between the 
correct bit labels and its soft-output estimate. Stochastic 
gradient descent is used to update the weights in both 
networks. The detection CNN includes residual paths, 
which enable it to achieve higher accuracies than equal 
depth CNNs without residual paths [6]. Since the 
detection CNN implicitly equalizes and then detects bit 
sequences, it benefits from increased depth, and, hence, 
from incorporating residual paths. In contrast, since the 
equalizer CNN is followed by a VA, we have found that 
the equalizer CNN does not require increased depth to 
perform well.  

II. RESULTS AND DISCUSSION 
We trained the three methods mentioned on 60 blocks of waveforms 

generated based on the GFP model [3]. Each block contains 82,412 bits per 
track on the upper layer and 41,206 bits per track on the lower layer. Table 1 
summarizes the detection BERs obtained during testing for the three methods 
studied. The testing dataset consists of 20 blocks. As a reference, we evaluated 
the BER for a one-layer TDMR system with TP 48 nm and BL 11 nm. The 
detection BER achieved by a CNN detector for this one-layer system is 0.0563.  
Following the CNN detector, we interfaced a channel decoder that performs 
coset-decoding using appropriate code rates. We then adjusted the rates via 
code design and puncturing so that the decoder BER is less than 10ିହ. This 
results in a maximum code rate of 0.7477 achieved by the one-layer TDMR 
system. In comparison, the maximum code rates achieved by the two-layer 

MLMR system are 0.7116 and 0.6289 on the upper and 
lower layers, respectively. Since there are four bits on 
the upper layer per one bit on the lower layer, the total 
rate of the MLMR system is 0.7116 + 0.6289/4 =
0.8688. Hence, the areal density gain of the MLMR 
system over the TDMR system is (0.8688 −
0.7477)/0.7477 =  16.20%. 
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Table 1: BER comparison. One-layer system BER is 0.0563. 

Figure 5: CNN Detector 
Architecture  

Figure 4: CNN
Equalizer 
Architecture. 
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