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I. INTRODUCTION
The hard disk drive (HDD) industry stores data

at areal densities close to the capacity limit of the Mons

one-dimensional (1D) magnetic recording channel [1]. oS track View rL Tc TR

New technologies are emerging to increase density, l l

including heat assisted magnetic recording (HAMR),

microwave-assisted magnetic recording (MAMR), @21 | Q2R ‘ ‘ | Hppectayer
and two-dimensional magnetic recording (TDMR). a; ‘ }Lowermyer
TDMR employs 2D signal processing to achieve || m m )

significant density gains, without changes to existing ! ! !

. . . . Interfering tracks ~ Tracks of interest Interfering tracks
magnetic media. Recent encouraging studies [2]-[5] Figure 1: Cross-track View of the MLMR System.
propose multilayer magnetic recording (MLMR):

vertical stacking of an additional magnetic media layer to a TDMR system to achieve further density gains.
Using a realistic grain flipping probability (GFP) model to generate waveforms [3], [4], we investigate the
design of deep neural network (DNN) based methods for equalization and detection for MLMR.

Fig. 1 shows a cross-track view of the MLMR system
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Rate CNN a, considered. On the upper layer, six tracks are written at

Conv. x 2 Detector 1 track pitch (TP) 48 nm and bit length (BL) 11 nm. On the

lower layer, three tracks are written at TP 96 nm and BL

i N ot 2, 22 nm. Hence, the system stores one bit on the lower layer

re CNN rn for every four bits on the upper layer. Consistent with the
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notation in [5], the lower layer is indexed by 1, and the

Figure 2: Architecture of the CNN Detector System. upper layer by 2. For the tracks of interest, we denote the

bit sequences written on the upper left and right tracks by

a,; and a,p, respectively, and the bit sequence on the lower track by a;. Readings are obtained every 11 nm

down-track at the left, center, and right cross-track positions, and measured reading sequences are denoted by
1., T, and Ty, respectively.

We compare three methods for detection and equalization of bit sequences a,;,a,;, and a,p from
readings 7;,7rc, and rg. The first method relies only on convolutional DNNs (CNNs) to detect the bit
sequences. Fig. 2 illustrates the CNN-only system, which consists of CNNs for detection on each layer.
Readings within a 3 X 17 sliding window comprise input examples for the upper layer bits. Since each reader
collects two samples per lower layer bit, and to
maintain a 17-bit down-track footprint, a rate e o AN Tllis-based
converter multiplexes these additional readings B qualizer Soft-Output
across-track, resulting in size 6 X 17 lower layer | - , : Detectcs
input examples. Each CNN detector accepts input rammgon, | s (””yi‘).y'&"'w}”%”;
examples and estimates its corresponding bit label. Il Constrained- P LT Wign A g2y
The second method consists of a non-linear CNN | M5E Soiver B bl e

P YR=Wig1* A+ g * Az
equalizer followed by a Viterbi Algorithm (VA) for

detection and is illustrated in Fig. 3. During training,

the CNN equalizer iterates with a constrained mean squared error (MSE) solver to adjust the target partial
response (PR) masks. The third method is the conventional 2D-linear equalizer followed by a VA. The 2D-linear
equalizer also iterates with a constrained MSE solver to adapt the target masks. We use the VA in [5], which is
the ML detector for an ideal MLMR channel that does not incorporate erasures caused by the write process.

g1, 92,W1, W2

Figure 3: Architecture of the CNN Equalizer-VA. System.
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Figures 4 and 5 detail the architectures equalizer and 3 x 17 example
detector CNNs, respectively. The equalizer CNN
minimizes the MSE between its output and the ideal PR
waveforms y;,y., and yg in Fig. 3. The detector CNN
minimizes the cross-entropy loss function between the
correct bit labels and its soft-output estimate. Stochastic
gradient descent is used to update the weights in both
networks. The detection CNN includes residual paths,
which enable it to achieve higher accuracies than equal
depth CNNs without residual paths [6]. Since the
detection CNN implicitly equalizes and then detects bit
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sequences, it benefits from increased depth, and, hence, [3x5con,8 | [ 3x3conv,8 |

from incorporating residual paths. In contrast, since the  gegression output: 3 reLu(*) reluC)

equalizer CNN is followed by a VA, we have found that Figure 4: CNN i

the equalizer CNN does not require increased depth to Equalizer

perform well. [[3x5conv., 8 | [[3x3conv, 8 |

II. RESULTS AND DISCUSSION relu() relu()

We trained the three methods mentioned on 60 blocks of waveforms +

generated based on the GFP model [3]. Each block contains 82,412 bits per [Fxscoma] [3x3com,a]

track on the upper layer and 41,206 bits per track on the lower layer. Table 1 .

summarizes the detection BERs obtained during testing for the three methods
studied. The testing dataset consists of 20 blocks. As a reference, we evaluated
the BER for a one-layer TDMR system with TP 48 nm and BL 11 nm. The
detection BER achieved by a CNN detector for this one-layer system is 0.0563.
Following the CNN detector, we interfaced a channel decoder that performs
coset-decoding using appropriate code rates. We then adjusted the rates via
code design and puncturing so that the decoder BER is less than 1075, This Classification

FC204 x 2

Softmax:
e /(e + ‘1)

results in a maximum code rate of 0.7477 achieved by the one-layer TDMR %%
. . : Figure 5: CNN Detector
system. In comparison, the maximum code rates achieved by the two-layer Archi
rchitecture
MLMR system are 0.7116 and 0.6289 on the upper and Table 1: BER comparison. One-layer system BER is 0.0563.
lower layers, respectively. Since there are four bits on Method . DNN
the upper layer per one bit on the lower layer, the total I\ZIIIR/I-;E?\% DeDtggor Equalizer —
rate of the MLMR system is 0.7116 4+ 0.6289/4 = |Layer VA
0.8688. Hence, the areal density gain of the MLMR Upper 0.1335 0.06610 0.06733
system over the TDMR system is (0.8688 —
0,7477)/0_7477 = 16.20%. Lower 0.1812 0.1020 0.1190
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