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We investigate the stability of katabatic slope flows over an infinitely wide and uniformly
cooled planar surface subject to a downslope uniform ambient wind aloft. We adopt an
extension of Prandtl’s original model for slope flows (Lykosov & Gutman|{1972)) to derive
the base flow, which constitutes an interesting basic state in stability analysis because
it cannot be reduced to a single universal form independent of external parameters.
We apply a linear modal analysis to this basic state to demonstrate that for a fixed
Prandtl number and slope angle, two independent dimensionless parameters are sufficient
to describe the flow stability. One of these parameters is the stratification perturbation
number that we have introduced in Xiao & Senocak (2019). The second parameter,
which we will henceforth designate the wind forcing number, is hitherto uncharted
and can be interpreted as the ratio of the kinetic energy of the ambient wind aloft
to the damping due to viscosity and stabilising effect of the background stratification.
For a fixed Prandtl number, stationary transverse and travelling longitudinal modes of
instabilities can emerge, depending on the value of the slope angle and the aforementioned
dimensionless numbers. The influence of ambient wind forcing on the base flow’s stability
is complicated as the ambient wind can be both stabilising as well as destabilising for a
certain range of the parameters. Our results constitute a strong counter-evidence against
the current practice of relying solely on the gradient Richardson number to describe the
dynamic stability of stratified atmospheric slope flows.

1. Introduction

Ludwig Prandtl’s slope flow model permits an exact solution to the Navier-Stokes
equations including heat transfer at an infinitely wide inclined surface immersed within
a stably stratified medium (Prandtl [1942). The model has been found to describe
qualitatively the vertical profiles of wind speed and temperature associated with katabatic
winds in mountainous terrain or over large ice sheets in (Ant-)arctica or Greenland
(Fedorovich & Shapiro|2009). The validity of certain simplifying assumptions in Prandtl’s
model, such as perfect horizontal spatial homogeneity or constant fluid viscosity, have
been questioned |Grisogono & Oerlemans| (2001a,b)), and it has been found that adopting
a gradually varying eddy viscosity improves the fit between model predictions and
experimental field data.

In addition to Prandtl’s original formulation, which assumes local equilibrium, bulk-
averaged models of increasing sophistication have been developed and applied by [Fleagle
(1950); Manins & Sawford| (1979b)); Kondo & Sato| (1988); [Manins & Sawford (1979a));
Fitzjarrald (1984); [Ellison & Turner| (1959) to predict the along-slope progression of
the katabatic boundary layers. |[Fitzjarrald| (1984) extended this model by accounting for
the presence of opposing ambient flow which counteracts the katabatic wind, which is
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also discussed in |Zardi & Whiteman| (2013). Laboratory experiments were performed by
Ellison & Turner| (1959)) to empirically determine the flow entrainment rate as a function
of the local Richardson number of flow velocity. The drawback of these bulk models is
that information about the vertical flow profile is sacrificed in favour of resolving along-
slope variation of bulk-averaged quantities, which may obscure subtle dynamics that can
trigger flow instabilities and lead to transition to turbulence. In that regard, Prandtl’s
model can be seen as an antipode to these models since it aims at describing the vertical
structure of katabatic winds instead of their along-slope variation which is zero under
the assumption of an infinite slope.

Prandtl assumed quiescent winds at high altitudes in his slope model. It is also
common in mountain meteorology for katabatic winds to develop in the presence of
an external ambient wind field aloft, as for example when stably stratified air flows over
a long mountain range, resulting in a non-zero wind in the free stream (Whiteman!2000;
Whiteman & Zhong|2008; [Manins & Sawford|1979a)). The presence of ambient wind has
been known to make it more difficult to fit observed field data into predictions of simple
katabatic flow models (Doran et al.||1990; Doran & Horst|/1983} Haiden & Whiteman
2005). [Lykosov & Gutman| (1972) incorporated the effect of a uniform ambient wind
field into Prandtl’s original formulation. We will henceforth refer to their model as the
extended Prandtl model. Katabatic wind profiles above an inclined cooled slope depicted
by the original and the extended Prandtl model are shown in figure[I] The vertical profiles
of buoyancy and velocity as predicted by the original Prandtl model are exponentially
damped sinusoidal solutions. In the original Prandtl model, the near-surface jet along the
slope descent is capped by a weak reverse flow. The extended Prandtl model appears as a
mere shifting of the velocity profile produced by the original Prandtl model. However, as
the equations indicate, the downslope ambient wind also increases the velocity maximum
of the near-surface jet. This extended model can be accepted as a valid approximation
to a situation in which stably stratified air flows over the top of an elevated terrain and
follows the underlying surface closely (Whiteman|2000). In the present work, we adopt
the extended Prandtl model with the assumption that the ambient wind is directed
down-slope without cross-slope components and remains parallel to the inclined plane
underneath.

In [Xiao & Senocak| (2019), we investigated the linear stability of the katabatic flows
under the original Prandtl model and uncovered transverse and longitudinal modes of
flow instabilities that emerge as a function of the slope angle, Prandtl number and
a new dimensionless number, which we have designated the stratification perturbation
parameter. This new dimensionless number represents the importance of heat exchange at
the surface relative to the strength of the ambient stratification, and it is defined solely by
the intrinsic parameters of the flow problem at hand, and thus physically more insightful
for the problem at hand than the more familiar internal Froude or Richardson numbers.
However, by using “derived” internal length and velocity scales in the original Prandtl
model, II; can be converted to a bulk Richardson or internal Froude number, creating a
misleading interpretation that there is no necessity for a new dimensionless parameter. In
the present work, we demonstrate that I1s intrinsically exists along side with another new
dimensionless number, and for fixed Prandtl number, these two dimensionless numbers
along with the inclination angle describe the dynamic stability of stably stratified slope
flows under the combined action of ambient wind and surface cooling. Here, we pursue
the same technical approach and the methods outlined in Xiao & Senocak| (2019) to
determine the stability limits of the extended Prandtl model to comprehend the effect of
a uniform ambient wind field on the stability katabatic slope flows.
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Figure 1: Velocity profiles corresponding to the extended (red) and the original Prandtl
model (blue) for slope flows. A rotated coordinate system is adopted.

2. Governing Equations

Let us consider the slope flow under the action of an ambient wind as depicted in
figure [T} where « is the slope angle and Bg is the constant negative heat flux imposed
at the surface. The constant ambient wind speed in the free stream is U,,. For ease of
analysis, the problem is studied in a rotated Cartesian coordinate system whose x axis
is aligned with the planar inclined surface and points along the upslope direction.

Let b be the scalar buoyancy variable, and u the along-slope (longitudinal), v the
cross-slope (transverse), and w the slope-normal velocity components, such that u; =
[u, v, w] is the velocity vector, where a positive value of u is associated with the upslope
direction. g; = [g1, g2, 93] = [sina, 0,cosa] are the components of the non-dimensional
gravity vector, and we will also refer the spatial coordinate components (x;) in the
rotated frame as (z,y, z). The ambient wind vector is assumed to be of the form (U;) =
(U, 0,0),Us < 0. The governing equations for conservation of momentum and energy
under the Boussinesq approximation for an incompressible flow can be written as follows:

Qui | Juiu; 1 dp 0 ou;
- ) 9z, : 2.1
ot N ox;  Ox;j (5813j) N7g;j(u; = Uj), (2.2)

where v is the kinematic viscosity, S is the thermal diffusivity. N = ,/&%(jf is the

Brunt-Vaiséla frequency, assumed to be constant, © is the potential temperature, and
Z' is the vertical coordinate in the non-rotated coordinate system. Buoyancy is related
to the potential temperature @ as b = g(@ — 6.)/6O,., where O,. is a reference potential
temperature and O, is the environmental potential temperature. The governing equations
are completed by the divergence free velocity field condition for incompressible flows.
Following the same assumptions in the original Prandtl model, equations
reduce to simple momentum and buoyancy balance equations. |[Lykosov & Gutman|(1972)
presented an exact solution for the case with constant temperature at the surface and
ambient wind parallel to the surface. Here, we follow the approach presented in [Shapiro
& Fedorovichl (2004) and modify that solution for constant surface buoyancy flux at the
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surface. The modified solution takes the following form:
U = [(Uso + V2u0) sin(z,, /V2) — Uss c08(2n/V2)] exp(—2n /V2) 4+ Uso, (2.3)
2 (U + V2u0) c08(20/V2) + Uso sin(z /V) exp(—2a/V2),  (2.4)
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where 2, = z/ly is the nondimensional height. (Fedorovich & Shapiro [2009) have
proposed the following flow scales for the original Prandtl model, which we use for the
present flow problem as well

lo= (wB)/*N ~sin” " q, (2.5)

ug = (vB) ~*N *’Bgsin” a, (2.6)
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where Pr = v/f is the Prandtl number. As an extension to the velocity scale defined
above, we introduce a composite velocity scale U, as the sum of the inner velocity scale
up and the outer velocity scale Uy, which is the ambient wind in this case, as follows

U, =ug + U (28)

It can be shown via calculus that for all values of ug, Uy, < 0, the normalised maximal
velocity limax = Umax/Ue of the flow profile as well as normalised location Zmax = Zmax/lo
where this maximum is attained always lie within a constant, finite interval; to be more
specific, we have: 2. € [r/4,7/2], and the normalised maximal velocity at Zya.x lies
within [0.45,1.21]. Thus the choice of the velocity scale u. and length scale Iy is both
simple and meaningful for this class of flow profiles.

We observe from that the velocity profile exhibits the expected near-surface jet
and approaches the ambient wind speed U,, at higher altitudes. This trend implies the
existence of two distinct velocity scales, one that is associated with the processes near the
surface based on the near-surface jet, and another one that represents the ambient wind
aloft. Thus, no matter which velocity scale is chosen, the flow profiles in the extended
Prandtl model cannot be normalised to a universal form independent of the wind speed
U, in contrast to the original Prandtl model with U,, = 0.

Let us now consider the Buckingham-7 theorem to determine the dimensionless num-
bers involved in the extended Prandtl model for slope flows. One can show that any
nondimensional dependent variable (e.g. nondimensional maximum jet velocity) is a
function of the following four independent dimensionless parameters:

v B 2

a, PrEB, s = ‘BZ\;L wz% (2.9)
Due to the lack of an externally imposed length scale, familiar dimensionless numbers
such as the Reynolds, Richardson, or Froude number do not appear in the above list
and all the dimensionless numbers are functions of the externally imposed dimensional
parameters in the slope flow problem only.

The new dimensionless number in the above set is IT,,. It is interesting to observe that
11, can be expressed as the product of the Reynolds and internal Froude numbers

UL U
I, = Re- Fr = 2
CErTE T IN

We note that both the Re number and the F'r number requires the specification of an
external characteristic length scale L. From (2.10]), we also observe that the external

(2.10)
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length scale L cancels out, further supporting our argument that an external length scale
is absent in the extended Prandtl slope flow model. Our statement, however, does not
imply the non-existence of a length scale in the flow problem. The flow will eventually
exhibit a length scale as quantified by . However, this length scale should be viewed
as a “internal” quantity as opposed to a characteristic external scale that is imposed on
the flow problem.

I was introduced in Xiao & Senocak| (2019)) as the stratification perturbation number.
Here, we designate IT,, the wind forcing number, and interpret it as the ratio of the
kinetic energy in the ambient wind to the damping of kinetic energy in the flow due to
action of viscosity and stabilising effect of stratification, which is also supported by the

expression given in ([2.10]).

3. Linear Stability Analysis

We introduce the normalised velocity and buoyancy as w,, = u/uc, b, = b/bg, and use ly
to normalise all lengths. Linearising around the base flow given by ({2.3))-(2.4)), and assum-
ing that disturbances are waves of the form q(z,v, z,t) = §(z) exp {i(kyz + kyy) + ot},
the resulting equations have the form

ikl + iky O + % =0, (3.1)
ol + iUy ke @+ ul b = —ikyp — w (—(ki + k)i + g?;) - % b, (3.2)
b + iU, ky® = —ikyp — w <—(k§ + k2)0 + ?;’) , (3.3)

O + fup kb = —% — w (—(kﬁ + ko) + ?;;20) - Hng;osa b, (3.4)

0b + ity kb + bl = _siga (—(ki + kg)i) + gj;) + His(ﬁ sina+wcosa),  (3.5)

where ¢ is the imaginary unit, and a,@,w,ﬁ,z} are flow disturbances varying along the
slope normal direction normalised by wu., by, respectively. z is the distance to the slope
surface normalised by the length scale ly. k;, k, are normalised positive wavenumbers in
the z (along-slope) and y (transverse) directions, respectively, whereas o is a normalised
complex frequency. The normalised base flow solution and its derivative in the slope
normal direction in normalised coordinates are denoted by uy, b, and w/,, b}, respectively.
The coefficient C' = II; + /II,, Pr*/* sin'/? v is introduced solely for convenience, and
we choose IT,, instead of /II,,Pr®/* sin'/? o as the dimensionless parameter such that
it is independent of the slope angle o and Prandtl number Pr which are separate
dimensionless numbers of the configuration.

The solution method for the above generalised eigenvalue problem follows the same
approach as described in|Xiao & Senocak!(2019). The stability behaviour of the problem is
encoded by the eigenvalues , whose real part equals the exponential growth rate and whose
imaginary part is the temporal oscillation frequency of the corresponding eigenmode.

3.1. Dependence of instability modes on dimensionless parameters

From the results in Xiao & Senocak| (2019), it is known that without ambient winds,
the dominant instability of Prandtl’s profile for katabatic flows at each angle is either
a stationary transverse mode, i.e. varying purely along the cross-slope direction, or a
longitudinal mode travelling along-slope. This means that the instability growth rate as
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Figure 2: Contours of maximal growth rates at a = 4° for (a) transverse and (b)

longitudinal modes depending on wind forcing number I7,, and stratification perturbation
IT;. The same contours at a = 67° for (c) transverse and (d) longitudinal modes. Red
lines are contours of the gradient Richardson number calculated from equation @

a function of the wave number vectors (k,, k,) attains its maximum only when one of
the wave numbers k,, k, is zero. It turns out that the same also holds true for katabatic
flows in the presence of ambient winds, hence the growth rate contours for disturbances
in the wave vector space, looking qualitatively similar to those in|Xiao & Senocak|(2019),
will not be shown here.

The fact that the most dominant instability is either a pure transverse (k, = 0)
or longitudinal mode (k, = 0) means that at a fixed configuration determined by the
slope angle o and the parameters I1,, IT,,, the most dominant instability can be found
by searching for one of the wave numbers k, or k, which maximises the growth rate,
setting the other wave number to zero. This approach has been applied to obtain the
growth rate contour of the strongest transverse and longitudinal modes over the IT,,, IT
space for different slope angles, as shown in figure 2] At each given angle o and ambient
wind value specified by IT,,, the most dominant amongst the transverse and longitudinal
modes is identified as the one which attains critical stability(zero growth rate) at a
smaller IT; value. We would like to remark that for typical values of N,v,Pr, B, Uy
found in nocturnal atmospheric conditions (Fedorovich et al|[2017), the dimensionless
parameters II,, IT,, would be in the order of 10° and 10°, respectively, thus many orders
of magnitude higher than the threshold value required to trigger the instabilities. The
vertical profile of the eigenfunctions corresponding to disturbances of each instability
mode are shown in figure [3] and figure [d] from which it can be seen that the transverse
mode at 4° is three-dimensional, whereas the longitudinal mode at 67° has no cross-slope
velocity component and is hence two-dimensional.
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Since the gradient Richardson number Ri, features prominently in the study of
stratified flows, we also overlay the corresponding Ri, number on the contour plots in
figure 2| The Ri, number used in those figures is calculated from the extended Prandtl
model velocity profile and reduces to the following convenient formula with the help
of the dimensionless parameters I1,, IT,, defined in equation [2.9

2
Riy = aNQ = Pr 5 (3.6)
(zTZ)max (\/2HwPr3/4 sin1/2a+ﬂs)

where it can be shown that the maximum shear is attained at the slope surface. We can
observe that Ri, number decreases with an increase of either of the parameters II; or
IT,,. However, since Ri, is a function depending on three independent variables o, I1, IT,,
for a fixed Pr number, it is possible from equation to find different combinations of
their values which lead to the same Ri, number. By inspecting the normalised partial
derivative (ORi,/0c)/Rig, it can be concluded that for fixed I, IT,, > 1, Ri, becomes
insensitive to variations of slope angle «. This means that at those more unstable flow
configurations, the Ri, number remains almost constant for all angles .

We note that Richardson number contours, calculated using equation , appear as
straight lines on the \/II, — II, plane. Thus, figure |2 and subsequent plots adopt /II,,
instead IT,, as the horizontal axis. But as the results shown in figure [2| demonstrate,
different values for either of these dimensionless parameters can have profoundly different
effects on the linear stability of the underlying base flow. For example, at different
slope angles, the dominant instability may change from either the stationary transverse
mode or the travelling longitudinal mode to the other instability, respectively. From the
plots shown in figure [2| we observe that increasing the ambient wind tend to lower an
instability’s growth rate at the same Ri, number, i.e. the most unstable mode at fixed Ri,
is found at U, = 0. which is the original Prandtl model as analysed in Xiao & Senocak
(2019). At the low slope angle of @ = 4°, it can be observed that for the wind forcing
number I, < 3, the base flow can be unstable despite possessing a larger Ri, number
than critical value Riyz = 0.25. This counter example to the celebrated Miles-Howard
stability theorem has already been shown in |Xiao & Senocak| (2019)) for the Prandtl base
flow without ambient wind and has been attributed to the presence of surface inclination,
heat transfer at the surface, and viscosity.

We observe from figure |2 that an increase of surface buoyancy, as measured by the
dimensionless number I, is a monotonically destabilising effect for both the transverse
and longitudinal modes. This finding is in agreement with the stability results for the
original Prandtl model as demonstrated in |Xiao & Senocak| (2019). However, we would
like to remark that the purely destabilising effect of negative surface buoyancy flux applies
only under the ideal conditions assumed by the Prandtl model, where a larger magnitude
of the buoyancy flux increases the near-surface jet velocity (equation , which leads to
an increase of maximum shear and thus lowers the gradient Richardson number(equation
. The effect of IT,, on the instabilities, however, is slightly more complex. Figures
and [2c indicate that for both slope angles o = 4°,67°, the growth rate of the most
unstable transverse mode grows monotonically with an increase in I1,,. As shown in [Xiao
& Senocak! (2019), at low slope angles devoid of an external ambient wind forcing (i.e.
Us = 0), the transverse mode is the dominant instability. Thus at those angles, when all
other flow parameters are left unchanged, ambient wind has a strictly destabilising effect
on the base flow field. This behaviour is consistent with expectation since increasing the
ambient wind also increases the maximal shear of the base flow profile given in equation
thus decreasing the Ri, number, according to equation For the longitudinal
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Figure 3: Eigenfunctions of the dominant instability at I, = 1.2, IT,, = 20 (stationary
transverse mode) at o = 4°. Dash-dotted lines represent the real part, asterisks represent
the imaginary part, and dashed line is the magnitude. The disturbance magnitudes have
been normalised with the maximal occurring along-slope velocity disturbance magnitude
in each case.
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Figure 4: Eigenfunctions of the dominant instability at IT, = 17, II,, = 20 (propagating
longitudinal mode) at o = 67°. Dashed-dotted lines represent the real part, asterisks
represent the imaginary part, and dashed line is the magnitude. The disturbance
magnitudes have been normalised with the maximal occurring along-slope velocity
disturbance magnitude in each case.

instability mode at the steep angle of a = 67°, however, an increase II,, only destabilises
the mode when I7,, < 100; beyond the approximate value II,, ~ 100, increasing I,
starts to decrease the mode’s growth rate, thus stabilising the mode, which runs counter
to expectations. Since the longitudinal mode is the dominant instability at steep angles in
the absence of ambient wind, when the surface buoyancy measured by II is kept constant,
increasing the ambient wind from the value corresponding to IT,, = 100 onward tends
to stabilise the flow. As is known from equation the Ri, number is monotonically
decreasing with respect to II,,, so this behaviour implies that a lowering of Ri, stabilises
the base flow, which is an unexpected finding. However, since it is known that the ambient
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Figure 5: Regions of different modes at slope angles on the IT, — —II,, space. (a) a = 67°;
(b) o = 61°. The red lines are contours of Riy number. The marked points P, Q, R, S
all have II; = 13.8, whereas points T,U,V have II; = 16.5. The transitions among these
states are shown in supplementary movies obtained from direct numerical simulation of
equations Movie 1: from Q (longitudinal mode) to R (stable); movie 2: from R
(stable) to S (transverse mode); movie 3: from T (longitudinal mode) to U (mixed mode)
and movie 4: from U (mixed mode) to V (transverse mode).

wind is monotonically destabilising for the transverse mode, this effect can only persist
until the ambient wind becomes large enough such that the growth rate of the previously
dormant transverse mode overtakes that of its longitudinal counterpart, thus becoming
the dominant instability. Such a complex behaviour of the stability region due to both
stabilising as well as destabilising effects of an external flow parameter has also been
discovered in |Schorner et al| (2016)), who reported the simultaneous stabilising as well
as destabilising effects of topography on gravity-driven viscous film flows beyond the
Nusselt regime.

3.2. Mode transitions at steep slope angles

The aforementioned switching of the dominant instability from the longitudinal mode
to transverse mode occurring at the steep angle of a = 67° is investigated here in more
detail. Figure |h shows that the dominant instability mode is a complex function of both
parameters I1,,, I1;. For a fixed value of II; < 16.5, the base flow is initially stable for
II,, = 0, then becomes linearly unstable to the longitudinal mode with increasing I7,,.
When I7,, continues to grow,depending on the value of I, the flow then becomes either
stable again (IT; < 14) or susceptible to both longitudinal and transverse instability
modes (IT; > 14). For IT,, large enough, however, the dominant instability becomes
the transverse mode. The effect of flow stabilization despite lowering of Ri, and the
subsequent mode switching can be observed in the marked points P,Q,R,S,T,U,V shown
in figure [Bh. These transitions predicted by linear modal analysis can also be observed in
the four supplementary movies obtained from DNS data: Keeping IT; constant at 13.8,
movie 1 demonstrates the stabilising transition from Q to R, whereas movie 2 shows the
emergence of the transverse mode by moving from R to S; at the higher value 1T, = 16.5,
movie 3 displays how the mixed mode appears by transition from T to U, whereas movie
4 indicates the weakening of the longitudinal mode when moving from U to V. The
stabilising effect of a flow parameter that is generally considered to be monotonically
destabilising has also been reported by |Gollub & Benson| (1980), where an increase of
the Rayleigh number was found to reduce the complexity of convective flow patterns for
certain initial mean flow fields.

The same contour plot for a slightly smaller angle of @ = 61° is shown in figure




- - - - Longitudinal mode
Transverse mode

- - - - Longitudinal mode

Transverse mode

30 40 50 60 70 80

a (deg.)

Figure 6: Iy — « instability map for katabatic slope flows at Pr = 0.71 for different
ambient wind values measured by II,,. The crosses mark the angle at which both
instability modes have the same critical I threshold. Subfigure (b) zooms into the
angle range in which the transition from transverse to longitudinal mode happens.

bb, which indicates that the region of longitudinal mode has completely vanished at
this angle, in agreement with the known fact that the longitudinal instability is being
dominated at smaller slope angles.

3.3. Stability at different slope angles

As pointed out in the previous subsection, the most dangerous modes at each slope
angle o and parameter couples I, IT,, either have pure along-slope (longitudinal mode)
or pure cross-slope gradients (transverse mode). A plot of the critical IT; required for
the onset of each instability mode at a specific slope angle a and wind forcing number
II,, is shown in figure [6] The effect of the ambient wind on the transition slope angle
oy at which the dominant instability mode switches from the transverse to longitudinal
mode can be clearly observed: due to the stabilising effect of increasing ambient wind
forcing on the longitudinal mode as discussed previously, for wind forcing number I7,,
sufficiently large, o, increases beyond the value of 62° found by [Xiao & Senocak| (2019)
in the absence of ambient wind IT,, = 0 . The monotonic destabilising effect of growing
11, on the transverse mode, i.e. a lowering of its critical stability threshold over all shown
angles, is also clearly visible. In particular, for slope angles o < 40° and IT,, = 320, we
can notice that the base flow profile is unstable to the transverse mode even for very
small surface cooling as evidenced by the threshold I, value close to zero.

3.4. Mized Instability Mode

For a steep slope angle of a« = 67°, when II; is sufficiently large, figure [f] shows
that for ambient wind values corresponding to II,, = 0,320, both the transverse and
longitudinal modes have positive growth rates. In order to visualise the flow field at
these conditions, the Navier-Stokes equations — for katabatic slope flows are
solved using a Cartesian mesh, three-dimensional, bouyancy-driven incompressible flow
solver (Jacobsen & Senocak|2013). The settings for the direct numerical simulations are
the same as adopted in Xiao & Senocak] (2019), i.e. the simulation domain is chosen to
be large enough to capture multiple vortex rolls along both cross-slope and along-slope
directions, and the mesh resolution ensures that there are at least two points per length
scale [y in each direction.

To study the combined effect of the parameters II,,, Il; on the mixed mode compared
to the Ri, number, we have chosen configurations at the same slope angle o« = 67°
and the same Ri, number, but with different combinations of I1,,, IT; determined from
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Figure 7: Q-contour visualisations of mixed-mode instabilities. Colour represents for the
slope normal velocity. Top row: a = 67° at constant Ri, ~ 5.25 x 10~%: (a) II, = 36.77,
II,, = 0; (b) II; = 18, IT,, = 320. Bottom row: o = 5° at constant Ri, = 1.14 x 1073:
(¢) IIy =25, IT,, = 0; (d) II; = 19.8, II,, = 320. Main slope flow direction is from top to
bottom.

equation [3.6] The first flow case contains no ambient wind and has IT; = 36.77, whereas
the second case has a wind forcing number of IT,, = 320 and a smaller II, = 18. An
instantaneous visualization of the results via the contour of the Q-criterion
is shown in figures -b, where the contour values used to obtain the plots are the
same. It can clearly be seen that the flow field corresponding to the larger stratification
perturbation II, = 36.77 is more unstable than its counterpart at the same Ri, number
with a nonzero wind forcing number I7,, = 320. This serves as another confirmation of
the result obtained from linear stability analysis as shown in figure [2| where the maximal
growth rate of instabilities decline along the Ri-contour when Il is reduced and IT,, is
increased. The same comparison is made for a shallow slope with o = 5°, shown in figures
[e-d. In the first flow configuration, we have I, = 25 without ambient wind, whereas
the second configuration has a smaller IT; = 19.8 but a nonzero wind forcing number of
II,, = 320; both flows have the same Ri, number. Similar to the steep slope case, it is
evident that the first flow field with the larger stratification perturbation IT; = 25 looks
more unstable and contains smaller eddies than the second flow at the same Ri, number
with a nonzero wind forcing number IT,, = 320. Thus, it appears that for a fixed Rig,
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the surface buoyancy has a stronger destabilization effect than the ambient wind higher
aloft.

4. Conclusions

We performed a linear stability analysis of the extended Prandtl model (Lykosov &
Gutman||1972)) for katabatic slope flows to investigate the effect of a constant downslope
ambient wind on the stability behavior of slope flows on an infinitely wide planar surface
cooled from below. Our analysis has led to a new dimensionless number that we interpret
as the ratio of kinetic energy of the ambient wind to the damping of kinetic energy in slope
flows due to the combined action of viscosity and stable stratification. We designated
this new dimensionless number I7,, the wind forcing parameter. We then demonstrated
that the stability behavior of katabatic slope flows under the extended Prandtl model
at a constant slope angle and Prandtl number is completely defined by II,, and the
stratification perturbation parameter (II;) that we have introduced earlier in Xiao &
Senocak| (2019). The extended Prandtl model also enables us to show analytically that the
gradient Richardson number (Ri,) is a function depending on multiple parameters. Ri, is
a monotonic decreasing function of II; and II,, at a given slope angle and Pr number. We
conducted direct numerical simulations to further demonstrate that dynamically different
slope flows do emerge under the same Ri, and the same slope angle a. Collectively, our
results show that a single Ri, criterion is ineffective to characterise the stability behaviour
katabatic slope flows under the original or extended Prandtl model.

The types of flow instabilities that occur under the extended Prandtl model are same
as the stationary transverse mode and travelling longitudinal mode that were uncovered
in [ Xiao & Senocak| (2019), but their characteristics can exhibit a complex behavior
as a result of ambient wind forcing. When II, is held constant, ambient wind forcing
monotonically destabilises the stationary transverse mode. For the travelling longitudinal
instability at steep slope angles, however, an increase of ambient wind forcing, within
a certain range of II,, values, can stabilise the entire flow configuration until its value
becomes sufficiently large to trigger the dormant mode of instability, which, in this case,
is the stationary transverse instability. This observation runs counter to the currently
held assumption that a decrease in Ri, always destabilises the base flow. Thus, it
further supports our argument that any stability criterion based solely on Ri, number
is insufficient for slope flows under the original or the extended Prandtl model. Future
subgrid-scale parameterisation schemes for stably stratified slope flows would benefit
from taking into account the dependency of flow stability on the dimensionless multi-
parameter space that we have laid out in the present work.

Research was sponsored by the Army Research Office and was accomplished under
Grant Number W911NF-17-1-0564 with Dr. Julia Baryzk as the program manager,
and in part by the National Science Foundation under Award Number 1936445. The
views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the Army
Research Office or the U.S. Government. The U.S. Government is authorised to reproduce
and distribute reprints for Government purposes notwithstanding any copyright notation
herein.

Declaration of Interests: The authors report no conflict of interest.

REFERENCES



Journal of Fluid Mechanics 13

DoraN, JC & HorsT, TW 1983 Observations and models of simple nocturnal slope flows.
Journal of the Atmospheric Sciences 40 (3), 708-717.

DoraN, JC, HorsT, TW & WHITEMAN, C DAvID 1990 The development and structure of
nocturnal slope winds in a simple valley. Boundary-Layer Meteorology 52 (1-2), 41-68.

ErLisoN, TH & TURNER, JS 1959 Turbulent entrainment in stratified flows. Journal of Fluid
Mechanics 6 (3), 423-448.

FEDOROVICH, EVGENI, GIBBS, JEREMY A & SHAPIRO, ALAN 2017 Numerical study of nocturnal
low-level jets over gently sloping terrain. Journal of the Atmospheric Sciences T4 (9),
2813-2834.

FEDOROVICH, E. & SHAPIRO, A. 2009 Structure of numerically simulated katabatic and anabatic
flows along steep slopes. Acta Geophys 57 (4), 981-1010.

F11zJARRALD, DAVID R 1984 Katabatic wind in opposing flow. Journal of the atmospheric
sciences 41 (7), 1143-1158.

FLEAGLE, ROBERT G 1950 A theory of air drainage. Journal of Meteorology 7 (3), 227-232.

GoLLUB, J. P. & BENSON, S. V. 1980 Many routes to turbulent convection. J. Fluid Mech.
100 (3), 449-470.

GRISOGONO, B. & OERLEMANS, J. 2001a Katabatic flow: Analytic solution for gradually varying
eddy diffusivities. J. Atmos. Sci. 58 (21), 3349-3354.

GRISOGONO, B. & OERLEMANS, J. 20015 A theory for the estimation of surface fluxes in simple
katabatic flows. Q. J. Roy. Meteor. Soc. 127 (578), 2725-2739.

HADEN, THOMAS & WHITEMAN, C DAvID 2005 Katabatic flow mechanisms on a low-angle
slope. Journal of applied meteorology 44 (1), 113-126.

Hunt, J. C. R., WRrAY, A. & Moin, P. 1988 Eddies, streams, and convergence zones in
turbulent flows. In Proc. 1988 Summer Program, pp. 193—208. Center for Turbulence
Research, Stanford Univ.; CA, United States.

JACOBSEN, D. A. & SENOCAK, I. 2013 Multi-level parallelism for incompressible flow
computations on GPU clusters. Parallel Comput. 39 (1), 1-20.

KonDpo, JUNSEL & SATO, TAKESHI 1988 A simple model of drainage flow on a slope. Boundary-
Layer Meteorology 43 (1-2), 103-123.

Lykosov, VN & GuTMAN, LN 1972 Turbulent boundary-layer over a sloping underlying surface.
Izv. Acad. Sci. USSR, Atmos. Ocean. Phys. 8 (8), 799.

MaNIns, PC & SAWFORD, BL 1979a Katabatic winds: A field case study. Q. J. Royal Meteorol.
Soc. 105 (446), 1011-1025.

ManiNs, PC & SAWFORD, BL 197956 A model of katabatic winds. Journal of the Atmospheric
Sciences 36 (4), 619-630.

PRANDTL, L. 1942 Fihrer durch die Strémungslehre. Vieweg und Sohn.

SCHORNER, M., RECK, D. & AKSEL, N. 2016 Stability phenomena far beyond the Nusselt flow
- Revealed by experimental asymptotics. Phys. Fluids 28 (2), 022102.

SHAPIRO, A. & FEDOROVICH, E. 2004 Unsteady convectively driven flow along a vertical plate
immersed in a stably stratified fluid. J Fluid Mech. 498, 333-352.

WHITEMAN, C DAVID & ZHONG, SHIYUAN 2008 Downslope flows on a low-angle slope and their
interactions with valley inversions. part i: Observations. Journal of Applied Meteorology
and Climatology 47 (7), 2023-2038.

WHITEMAN, D. C. 2000 Mountain meteorology: fundamentals and applications. Oxford
University Press.

X1A0, C-N. & SENOCAK, I. 2019 Stability of the Prandtl model for katabatic slope flows. J.
Fluid Mech. 865.

ZARDI, DINO & WHITEMAN, C DAvID 2013 Diurnal mountain wind systems. In Mountain
Weather Research and Forecasting, pp. 35—119. Springer.



	Introduction
	Governing Equations
	Linear Stability Analysis
	Dependence of instability modes on dimensionless parameters
	Mode transitions at steep slope angles 
	Stability at different slope angles
	Mixed Instability Mode

	Conclusions

