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Abstract— We propose finite-alphabet equalization, a new
paradigm that restricts the entries of the spatial equalization
matrix to low-resolution numbers, enabling high-throughput,
low-power, and low-cost hardware equalizers. To minimize
the performance loss of this paradigm, we introduce FAME,
short for finite-alphabet minimum mean-square error (MMSE)
equalization, which is able to significantly outperform a naïve
quantization of the linear MMSE matrix. We develop efficient
algorithms to approximately solve the NP-hard FAME problem
and showcase that near-optimal performance can be achieved
with equalization coefficients quantized to only 1–3 bits for
massive multi-user multiple-input multiple-output (MU-MIMO)
millimeter-wave (mmWave) systems. We provide very-large scale
integration (VLSI) results that demonstrate a reduction in
equalization power and area by at least a factor of 3.9× and
5.8×, respectively.

Index Terms— Millimeter wave (mmWave), massive multi-user
MIMO, spatial equalization, minimum mean-square error
(MMSE), quantization, hardware implementation.

I. INTRODUCTION

F
UTURE wireless systems are expected to deliver even
higher data-rates within the already crowded frequency
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spectrum. Emerging technologies, such as millimeter-wave
(mmWave) communication [1], [2] and massive multi-user
multiple-input multiple-output (MU-MIMO) [3], [4], have
risen as promising candidates to provide such high data-rates.
The abundance of available bandwidth at mmWave frequen-
cies, combined with the fine-grained beamforming capabilities
provided by massive MU-MIMO, enables high-throughput
communication to multiple user equipments (UEs) in the
same time-frequency resource. However, the presence of
hundreds of antennas at the basestation (BS), each receiv-
ing a wideband signal, necessitates sophisticated radio fre-
quency (RF) and digital baseband processing circuitry. As
a result, circuit power consumption and system costs may
increase significantly, which may hamper the success of this
technology.

To reduce power consumption, the literature has largely
focused on multi-antenna mmWave architectures that rely on
hybrid analog-digital solutions [5]–[7]. Albeit energy effi-
cient, such architectures have limited multiplexing capabilities
as they are only capable of simultaneously combining sig-
nals coming from a restricted number of directions [7]–[10];
this key limitation may result in a reduced spectral effi-
ciency. An emerging alternative is the use of all-digital BS
architectures [11]–[13]. While it is commonly believed that
all-digital BS designs would be energy inefficient, it has been
shown recently that the power consumption of the RF and
data-conversion elements in an all-digital BS is compara-
ble to that of hybrid solutions, provided that the resolution
of the data converters at the BS is suitably reduced [10],
[12]. The power consumption and system costs of base-
band processing for all-digital BS architectures is, however,
largely unexplored.

A. The Case for Efficient Spatial Equalization

Spatial equalization in the uplink (UEs transmit to BS)
is among the most power- and throughput-critical tasks in
all-digital BS architectures. The purpose of spatial equalization
is to collect the signals from all U UEs at the B BS
antennas, while suppressing inter-UE interference. Mathemat-
ically, spatial equalization amounts to one or multiple U × B
matrix-vector multiplications involving a U × B equalization
matrix and the B-dimensional received vector. These mul-
tiplications need to be performed on a per-baseband-sample
basis (at the sample rate of the analog-to-digital converters).
Unfortunately, for a BS with B = 256 antennas serving
U = 16 UEs, a conventional matrix-vector-product circuit
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operating at 2G vectors/s consumes over 28W and occupies
more than 128 mm2 when implemented in 28 nm CMOS (see
Section V for the details). If more BS antennas and/or more
UEs are considered, circuit power and area increase even
further. Clearly, more efficient spatial equalization circuitry is
necessary for all-digital BS architectures operating at mmWave
frequencies in order to minimize power consumption and
silicon area (which translate to system costs), while achieving
high spectral efficiency.

The matrix-vector products required for spatial equalization
involve multiplications and additions, where the hardware mul-
tipliers dominate power and area. The area and delay of a hard-
ware multiplier scales with O(mn) and O(log(max{m, n})),
respectively, where m and n are the number of bits of each
operand [14]. As a consequence, circuit area, delay, and power
consumption (which is roughly proportional to circuit area) of
a matrix-vector-product engine can be minimized by using a
low number of bits to represent both operands. The literature
has extensively explored the efficacy of low-resolution data
converters at the BS antennas of massive MU-MIMO sys-
tems [7], [10]–[12], [15]–[17]. Depending on the scenario,
3 to 8 bits were shown to achieve near-optimal spectral
efficiency [10], [12], [15]–[17]. Such methods reduce the
precision of one of the operands (i.e., that of the received
vector) in a matrix-vector product. However, the coefficients
of the equalization matrix (the other operand) are typically left
at relatively high precision, e.g., 10 to 12 bits [18], [19].

B. Contributions

To reduce power consumption and implementation costs
of spatial equalization, we propose to coarsely quantize the
coefficients of spatial equalization matrices, a paradigm that
we call finite-alphabet equalization. We emphasize that,
in contrast to approaches that use low-resolution analog-to-
digital converters (ADCs) to quantize the received vector
to be equalized [7], [10]–[12], [15]–[17], finite-alphabet
equalization intends to coarsely quantize the entries of the
spatial equalization matrix. Although a straightforward
concept, it turns out that obtaining low-resolution finite-
alphabet equalization matrices that achieve high spectral
efficiency is a hard problem. Figure 1 illustrates this claim for
a case where the coefficients of a spatial equalization matrix
are quantized using 1 bit per real and imaginary part. A naïve
quantization of the linear minimum mean-square error
(L-MMSE) equalization matrix to 1-bit leads to a
finite-alphabet L-MMSE (FL-MMSE) equalizer, which,
as we can see from Figure 1, suffers from a high error
floor. To combat this problem, we propose finite-alphabet

minimum mean-square error equalization (FAME), which
leads to an NP-hard optimization problem that can be solved
approximately (and efficiently) using forward-backward
splitting (FBS). We refer to the resulting method as FAME-
FBS. As shown in Figure 1, using FAME-FBS results in a
substantially improved error rate compared to FL-MMSE
equalization.

The main contributions of this paper are summarized as fol-
lows. We propose a specific finite-alphabet equalization-matrix
structure that enables one to reduce the complexity of a

Fig. 1. Uncoded bit error-rate (BER) for a B = 256 BS antenna,
U = 16 UE massive MU-MIMO system with 16-QAM in an i.i.d.
Rayleigh-fading channel. The FAME-FBS algorithm proposed in this paper
significantly outperforms the naïve FL-MMSE equalizer, which quantizes
the real and imaginary parts of the conventional, high-resolution L-MMSE
equalizer to 1 bit.

U × B matrix-vector product by using U × B low-resolution
coefficients, while still being able to deliver a performance
similar to conventional, high-resolution spatial equalization
matrices. We derive the so-called FAME problem, whose
solution leads to finite-alphabet equalization matrices that
minimize the post-equalization mean-square error (MSE). We
propose a range of algorithms that approximate the NP-hard
FAME problem—some of these algorithms achieve excellent
performance even for 1-bit resolution; some require very low
complexity. We present simulation results for line-of-sight
(LoS) and non-LoS mmWave channel models, which demon-
strate the efficacy of FAME in terms of error-vector magnitude
(EVM), beamforming capabilities, and uncoded bit error-rate
(BER). Finally, we implement reference finite-alphabet equal-
ization circuits for different numbers of bits in 28 nm CMOS
to demonstrate the effectiveness of FAME in practice.

C. Notation

Matrices and column vectors are represented with uppercase
and lowercase boldface letters, respectively. The Hermitian
transpose and the Frobenius norm of a matrix A are
denoted by AH and kAkF , respectively. The real part of a
complex-valued matrix A is <{A} and the imaginary part is
={A}. The M × M identity matrix is denoted by IM . The
kth entry and the `2-norm of a vector a are ak and kak2,
respectively; the entry-wise complex conjugate is denoted by
a∗. The kth standard basis vector is represented by ek. The
signum function sgn(·) is defined as sgn(a) = +1 for a ≥ 0
and sgn(a) = −1 for a < 0 and is applied entry-wise to
vectors. We use Ex[·] to denote expectation with respect to the
random vector x. The set S+ contains all positive semidefinite
matrices, and the set R+ contains all the non-negative real
numbers.

D. Paper Outline

The rest of the paper is organized as follows. Section II
introduces the system model and summarizes the basics of
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Fig. 2. Uplink of a massive MU-MIMO mmWave wireless communication
system. The U UEs transmit data in the same time-frequency resource to
the B-antenna BS. After estimating the channel, the all-digital BS applies
spatial equalization to collect the signals from the individual UEs and suppress
inter-UE interference. In this work, we propose to use low-resolution spatial
equalization matrices, an approach that we call finite-alphabet equalization.

L-MMSE equalization. Section III proposes the FAME prob-
lem and presents numerical experiments. Section IV devel-
ops low-complexity algorithms that approximate the NP-hard
FAME problem. Section V shows hardware implementation
results. We conclude in Section VI. Proofs and complexity
counts are relegated to the appendices.

II. SYSTEM MODEL AND L-MMSE EQUALIZATION

We now introduce the system model considered in this work
and briefly introduce the essentials of L-MMSE equalization.

A. System Model

We focus on the uplink of a massive MU-MIMO system
with B BS antennas and U ≤ B single-antenna UEs, as illus-
trated in Figure 2. We consider the following narrowband
input-output relation:

y = Hs + n. (1)

Here, y ∈ CB is the received signal vector at the BS,
H ∈ CB×U is the known uplink MIMO channel matrix,
s ∈ SU is the transmit data vector, where S is the
constellation set (e.g., 16-QAM), and n ∈ CB is i.i.d.
circularly-symmetric complex Gaussian noise with covariance
matrix Cn = En

[

nnH
]

= N0IB per complex entry. In what
follows, we assume that the transmit signals of the UEs, su,
u = 1, . . . , U , are i.i.d. zero mean with variance Es so that
Cs = Es

[

ssH
]

= EsIU .
Remark 1: The input-output relation (1) is not only valid to

model narrowband transmission, but can also be used to model

the subcarriers of a wideband massive MU-MIMO system

that uses orthogonal frequency-division multiplexing (OFDM).

The theory and algorithms developed in the remainder of

the paper can be generalized for systems with inter-symbol

interference—the details are left for future work.

Remark 2: We assume that the channel remains constant

over multiple symbol transmissions and, hence, can be esti-

mated. For our mathematical derivations, we assume (quan-

tized) perfect channel state information at the BS. For systems

in which the UEs use an antenna array to perform transmit

beamforming, the channel matrix H represents the joint effect

of beamforming and the physical channel.

B. A Primer on L-MMSE Equalization

A key task of the BS is to form estimates ŝ ∈ C
U of

the transmitted data vector s. To develop methods that are
computationally efficient and hardware friendly, we focus on
linear spatial estimators of the form ŝ = WHy, where WH ∈
CU×B is the L-MMSE equalization matrix that minimizes the
post-equalization MSE defined as

MSE = Es,n

[

kWHy − sk2
2

]

. (2)

Given the assumptions on the statistics of the transmit data
and noise vectors, s and n, we have that

MSE = EskW
HH − IUk

2
F + N0kW

Hk2
F . (3)

Hence, the L-MMSE equalization matrix can be obtained by
solving the following matrix least-squares problem:

WH = arg min
W̃H∈CU×B

kIU − W̃HHk2
F + ρkW̃Hk2

F (4)

with regularization parameter ρ = N0/Es. This optimization
problem has a well-known closed-form solution given by [20]

WH = (ρIU + HHH)−1HH , (5)

which can be computed efficiently in hardware [18].
We can alternatively compute the rows wH

u , u = 1, . . . , U ,
of the L-MMSE equalization matrix WH by decomposing (4)
into U independent per-UE problems as follows:

wu = arg min
w̃∈CB

keu − HHw̃k2
2 + ρkw̃k2

2. (6)

This alternative formulation of the L-MMSE equalizer will
turn out useful in the next section.

III. FAME: FINITE-ALPHABET MMSE EQUALIZATION

We now propose the finite-alphabet equalization paradigm.
We start by defining a finite-alphabet equalization matrix
that enables efficient hardware for low-cardinality alphabets.
We then formulate the FAME problem, which computes
the finite-alphabet equalization matrix that minimizes the
post-equalization MSE. Finally, we present a simple approach
to compute finite-alphabet equalization matrices and compare
its performance to the one of an equalizer that solves the
FAME problem exactly.

A. Finite-Alphabet Equalization

Linear equalization in hardware requires the computation
of an inner product ŝu = hwu,yi = wH

u y per UE for every
received vector y. As demonstrated in Section I-A, executing
even such simple computations at the bandwidth offered by
mmWave systems can result in excessively large area and
high power consumption. To reduce both the area and power
consumption, we propose to reduce the numerical precision of
the equalization vectors wu, u = 1, . . . , U . In the extreme case
where the entries of wu are quantized using 1-bit per real and
imaginary component, an inner-product computation would
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only require additions and subtractions; this is significantly
less costly (in area and power) than using high-precision
multipliers [14]. However, it is obvious that reducing the
numerical precision of the equalization vectors wu will affect
the MSE and eventually the error-rate performance. Further-
more, quantization to, e.g., the finite alphabet X = {+1 +
j, +1−j,−1+j,−1−j}, will result in numerical-range issues,
meaning that such matrices will not be able to represent large
or small entries. To mitigate both of these issues, we now
develop a principled way to perform equalization with what
we call finite-alphabet matrices. Concretely, we are interested
in designing equalization matrices with the structure defined
next.

Definition 1: We define a U×B finite-alphabet equalization
matrix as follows:

VH = diag(β∗)XH . (7)

Here, β ∈ CU is a vector that consists of post-equalization

scaling factors and XH ∈ XU×B is an equalization matrix

with entries chosen from the finite alphabet X .

Remark 3: In this work, we are particularly interested in

finite alphabets X of low cardinality and whose elements can

be represented using a small number of bits. An example is the

“1-bit” finite alphabet X = {+1+ j, +1− j,−1+ j,−1− j},

which uses 1-bit per real and imaginary component.

With Definition 1, the equalized received symbol for the uth
UE is given by

ŝu = vH
u y = β∗

ux
H
u y, (8)

where vH
u ∈ C1×B and xH

u ∈ X 1×B are the uth rows of the
matrices VH and XH , respectively. It is now key to realize that
spatial equalization as in (8) allows for efficient circuit imple-
mentations, especially for finite alphabets with low cardinality
and regularly spaced elements. For such matrices, the inner
product xH

u y can be implemented using low-resolution multi-
pliers. As β ∈ CU , the post-equalization scaling operation
by the scalar factor β∗

u is performed using high-resolution
multipliers. Nonetheless, this operation is executed only once
per UE. In Section V, we show that equalizer implementa-
tions that leverage finite-alphabet equalization matrices enable
significant area and power savings.

B. FAME: Finite-Alphabet MMSE Equalization

We now propose FAME, a principled method to compute
MSE-optimal finite-alphabet equalization matrices. Analogous
to the derivation of the L-MMSE equalizer in Section II-B,
we are interested in minimizing the post-equalization MSE

FA-MSE = Es,n

[

kVHy − sk2
2

]

, (9)

which differs from the MSE in (2) as now VH = diag(β∗)XH

is a finite-alphabet equalization matrix as per Definition 1. The
FAME matrix is the finite-alphabet equalization matrix that
minimizes (9), i.e., it is the solution to the problem

VH = arg min
X̃∈XU×B,β̃∈CU

kIU − ṼHHk2
F + ρkṼHk2

F , (10)

where ṼH = diag(β̃∗)X̃H . Clearly, the problem in (10)
mirrors the one in (4). Hence, it follows from (6) that the rows

vH
u = β∗

ux
H
u , u = 1, . . . , U , of the desired FAME matrix can

be computed by solving the following optimization problem:

{βu,xu} = arg min
x̃∈XB,β̃∈C

keu − HH β̃x̃k2
2 + ρkβ̃x̃k2

2. (11)

Intuitively, we are interested in finding the finite-alphabet
equalization vectors vH

u = β∗
ux

H
u , u = 1, . . . , U , that best

mimic the infinite-precision L-MMSE equalizer.
Remark 4: For a fixed scaling factor βu, the FAME problem

in (11) is a closest vector problem, which is known to be

NP-hard [21]–[23]. For example, for a system with 256 BS

antennas using a 1-bit finite-alphabet equalization matrix,

solving the FAME problem using an exhaustive search would

require one to evaluate the objective function in (11) more

than 10154 times for each UE. Clearly, without low-complexity

algorithms, the FAME problem cannot be solved in practical

massive MU-MIMO mmWave systems.

Since the FAME problem in (11) minimizes the cost func-
tion for two quantities at once, i.e., the scaling factor βu and
the low-resolution vector xu, it is not obvious how to solve
it efficiently. To derive computationally efficient algorithms in
Section IV, we will use the following equivalent form of the
FAME problem in (11); the proof is given in Appendix A.

Lemma 1: The FAME problem in (11) is equivalent

to solving the following optimization problem for each

UE u = 1, . . . , U :

xu = arg min
x̃∈XB

kHH x̃k2
2 + ρkx̃k2

2

|hH
u x̃|2

, (12)

where the associated optimal scaling factor is given by

βu(xu) =
xH

u hu

kHHxuk2
2 + ρkxuk2

2

. (13)

This formulation of the FAME problem allows us to first
find the optimal vector xu using (12) and then compute the
associated optimal scaling factor βu using (13). Note that the
equation in (13) represents the MSE-optimal scaling factor βu

for a given vector xu, regardless of how xu was computed.
Furthermore, the equivalent formulation in Lemma 1 is similar
to a formulation proposed in [24] in the context of nonlinear
quantized precoders.

C. FL-MMSE: A Baseline Finite-Alphabet Equalizer

Since the FAME problem is NP-hard, we now present a
baseline method to compute finite-alphabet equalization matri-
ces as per Definition 1 without having to solve the FAME prob-
lem in (12). We call our approach finite-alphabet L-MMSE
(FL-MMSE), as it obtains the entries of the low-resolution
matrix XH by quantizing the L-MMSE equalizer in (5)—the
corresponding scaling factors βu, u = 1, . . . , U , are then
obtained via (13). In this work, we will use the FL-MMSE
equalizer as a baseline to evaluate the performance of other,
more sophisticated finite-alphabet equalizers that attempt to
directly solve the FAME problem in (12).

For the 1-bit case, FL-MMSE applies the signum func-
tion sgn(·) separately on the real and imaginary parts of the
L-MMSE matrix WH to obtain XH . Then, FL-MMSE uses
the expression in (13) to compute the high-resolution scaling
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Fig. 3. Error-vector magnitude (EVM) performance for different equalizers in a B = 8 BS antenna, U = 2 UE, 16-QAM system with i.i.d. Rayleigh-fading
channels at 15dB SNR. FL-MMSE corresponds to 1-bit quantization of the L-MMSE equalizer, which results in a significant EVM degradation. Solving the
1-bit FAME problem using an exhaustive search (FAME-EXH) yields an EVM comparable to that of infinite-precision L-MMSE equalization.

Fig. 4. Beam- and null-forming capabilities for different equalizers in a B = 8 BS antenna, U = 2 UE system for textbook LoS channel at an SNR of
15dB. The primary UE is located at 60

◦ with respect to the ULA of antennas, whereas the secondary UE is at 120
◦. We show the received signal power, in

decibels, of the signals coming from different angles after being equalized for the primary UE at 60◦. A good equalizer gathers energy from this UE, while
canceling interference from the UE at 120◦ . FL-MMSE, which performs 1-bit quantization on the L-MMSE matrix, fails to reject the interference from the
120

◦ UE. In contrast, 1-bit FAME-EXH achieves nearly identical beam- and null-forming performance to that of infinite-precision L-MMSE equalization.

factors in the vector β. FL-MMSE can also be used with finite
alphabets that have more than 1-bit per complex entry. In such
cases, after computing the L-MMSE equalization matrix WH

in (5), we proceed to quantize its real and imaginary parts
as follows. First, for each row wH

u of WH , we identify
the scalar wmax corresponding to the largest absolute value
in [<{wH

u },={wH
u }]. Then, assuming that the targeted res-

olution is r bits, we divide the range [−wmax, +wmax] into
2r uniform-width bins and quantize the entries of <{wH

u }
and ={wH

u } to the centroid values of these bins. For 2-bit
resolution, for example, the centroid values of the bins are
{−0.75,−0.25, +0.25, +0.75}wmax. In hardware, one would
scale these centroid values so that the minimum absolute value
corresponds to 1. Following the previous example, one would
use the values {−3,−1, +1, +3} to represent the entries of
<{xH

u } and ={xH
u }. Note that this scaling does not affect the

solution of the FAME problem in (12), as it is absorbed by the
scaling factor βu in (13). After obtaining the low-resolution
vector xH

u , the corresponding scaling factor βu is computed
using the expression in (13).

D. EVM and Beamforming Performance of Exact FAME

We now assess the EVM and beamforming performance
of the optimal FAME problem in (12) for a 1-bit finite
alphabet. To solve the NP-hard problem, we resort to an

exhaustive search, which we call FAME-EXH. To keep the
complexity within reasonable bounds, we simulate a small
MU-MIMO system with B = 8 BS antennas. We also simulate
the performance of conventional, infinite-precision L-MMSE
equalization and 1-bit FL-MMSE equalization as proposed in
Section III-C.

1) Error-Vector Magnitude: Figure 3 shows scatter plots
of the equalization outputs ŝ of L-MMSE, FL-MMSE,
and FAME-EXH equalization for 2 000 realizations in
a B = 8 BS antenna, U = 2 UE system operating over
an i.i.d. Rayleigh-fading channel at 15dB SNR. While the
infinite-precision L-MMSE equalizer achieves an EVM of
11.58%, quantizing its solution to 1-bit using FL-MMSE
degrades the EVM to 30.58%, which blurs the decision
regions of the considered 16-QAM constellation. In stark
contrast, the 1-bit FAME-EXH equalizer achieves an EVM of
only 15.30%, which is close to that of the infinite-precision
L-MMSE equalizer; furthermore, the decision regions between
constellation points are clearly visible. These results demon-
strate the significant EVM advantage of solving the FAME
problem over the simple FL-MMSE equalizer.

2) Beam- and Null-Forming Performance: Figure 4 illus-
trates the beam- and null-forming capabilities of FAME-EXH.
For these plots, we consider a B = 8 BS antenna, U = 2 UE
system operating at 15dB SNR over a textbook LoS channel,
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where the channel coefficient between the bth BS antenna and
an UE located at an angle of φ is modeled as follows [25]:

hb(φ) = e−jπ(b−1) cos(φ), b = 1, . . . , B. (14)

Here, we assume a uniform linear array (ULA) of antennas
with half-wavelength antenna spacing and constant path loss.
We locate a primary UE at an angle of φ1 = 60◦ and a
secondary UE at φ2 = 120◦. Next, we compute the cor-
responding equalization matrix using L-MMSE, FL-MMSE,
and FAME-EXH equalization. We then evaluate how much
the equalization vector vH

1 (which corresponds to the UE
at φ1 = 60◦) captures (or rejects) signals incoming from
different incident angles by evaluating |vH

1 h(φ′)|2 for 0 ≤
φ′ ≤ π. The equalization vector vH

1 should amplify the
signal from the primary UE at φ1 = 60◦ but attenuate the
signal from the secondary UE. The results shown in Figure 4
demonstrate that infinite-precision L-MMSE equalization is
able to simultaneously beam-form towards the primary UE and
null interference from the secondary UE. The 1-bit FL-MMSE
equalizer is unable to reject interference from the secondary
UE. In stark contrast, 1-bit FAME-EXH equalization is able
to both beam-form towards the primary UE and null-form
towards the secondary UE. We confirm these observations by
computing the signal-to-interference-plus-noise ratio (SINR)
for the primary UE.

Despite the significant performance advantages of 1-bit
FAME-EXH over 1-bit FL-MMSE, solving 1-bit FAME-EXH
for large-dimensional problems that arise in massive
MU-MIMO mmWave systems is infeasible in practice. To this
end, we next develop low-complexity FAME solvers that scale
to large BS antenna arrays.

IV. FAST ALGORITHMS TO SOLVE FAME

We next present approximate algorithms to solve the FAME
problem efficiently for systems with a large number of BS
antennas. We start by proposing a semidefinite relaxation
(SDR)-based method and then develop a much faster method
that uses forward-backward splitting (FBS).

A. FAME With Semidefinite Relaxation (SDR)

We focus on using SDR [26] to solve the FAME problem
in (12) for a 1-bit finite alphabet. To do so, we first re-express
the FAME problem in the real domain using the quantities

xR =

[

<{x}
={x}

]

and HR =

[

<{H} −={H}
={H} <{H}

]

. (15)

Throughout, we will assume that <{x} and ={x} take values
from the same alphabet XR. For example, for 1-bit finite
alphabets, we have XR = {−1, +1}. We can now rewrite the
FAME problem in (12) as

xR,u = arg min
x̃R∈X 2B

R

kHH
R
x̃Rk

2
2 + ρkx̃Rk

2
2

|hH
R,ux̃R|2

. (16)

It is now key to realize that the vector x̃R can be scaled
arbitrarily without changing the objective function of (16).

This observation enables us to state an equivalent optimization
problem

{

minimize
x̄R∈Z2B

α
,α>0

kHH
R
x̄Rk

2
2 + ρkx̄Rk

2
2

subject to |hH
R,ux̄R|

2 = 1,
(17)

where the discrete set Zα is a scaled version of XR; for 1-bit
finite alphabets, we have Zα = {−α, +α} with α > 0. This
formulation enables us to formulate a semidefinite program to
solve the FAME problem approximately.

By focusing on 1-bit finite alphabets, we can relax (17) by
replacing the constraint |hH

R,ux̄R|
2 = 1 by hH

R,uX̄hR,u = 1,
where the positive semidefinite matrix X̄ ∈ S2B

+ should
approximate x̄Rx̄H

R
. This SDR yields

⎧

⎪

⎨

⎪

⎩

minimize
X̄∈S2B

+

tr
(

(HRHH
R

+ ρI2B)X̄
)

subject to hH
R,uX̄hR,u = 1

X̄1,1 = X̄b,b, b = 2, . . . , 2B,

(18)

where we ensure that the diagonal elements of X̄ ∈ S2B
+ must

be equal (but we do not specify their value). This constraint is
a result of the fact that we are interested in a solution in the
set Zα, where the parameter α is not known. After solving the
semidefinite program in (18), we compute the finite-alphabet
vector by first extracting the leading eigenvector of the solution
matrix X̄ followed by quantizing it to {−1, +1} using the
signum function sgn(·). The equalization vector can then be
scaled using the optimal FAME scaling parameter in (13).
We refer to this procedure as FAME-SDR. A more detailed
description of general SDR techniques can be found in [26].

Remark 5: While FAME-SDR can also be derived for

multi-bit finite alphabets, e.g., using the techniques described

in [27], we will not pursue this approach for the following

reasons. As we will show in Section IV-C, the complexity

of FAME-SDR does not scale well to a large number of BS

antennas. Moreover, FAME-SDR cannot be applied to finite

alphabets that are not separable into real and imaginary

parts, such as a finite alphabet that contains the elements of

an 8-PSK (phase shift keying) constellation. In addition, to the

best of our knowledge, SDR can only handle finite alphabets

with even cardinality that exclude a zero element. To avoid the

drawbacks of SDR for FAME, we next present an alternative

approach.

B. FAME With Forward-Backward Splitting (FBS)

Due to the high complexity of FAME-SDR and the fact
that SDR solvers are notoriously difficult to implement in
hardware [28], we next develop a low-complexity alternative
for solving the FAME problem approximately. To do so,
we start by assuming that, for each UE u = 1, . . . , U , we know
the optimal value of the objective in (12), which we denote
with γu. Mathematically,

γu =
kHHxuk

2
2 + ρkxuk

2
2

|hH
u xu|2

, (19)

where xu is the solution to the problem in (12). Note that it
follows from (19) that γu > 1. By rearranging (19), we obtain

0 = kHHxuk
2
2 + ρkxuk

2
2 − γu|h

H
u xu|

2. (20)
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Thus, if γu was known, solving the problem

xu = arg min
x̃∈XB

1

2
kHH x̃k2

2 +
ρ

2
kx̃k2

2 −
γu

2
|hH

u x̃|2 (21)

would yield the same solution as (12). As the optimal value
of the objective in (12) is unknown in practice, we will use γu

as an algorithm parameter that we tune to empirically improve
the algorithm’s performance.

Since the problem in (21) still contains a search over
the finite alphabet XB , we relax the non-convex constraint
x̃ ∈ XB to x̃ ∈ BB. Here, B corresponds to the convex hull
of the finite alphabet X , which is defined as [29]

B =

⎧

⎨

⎩

|X |
∑

i=1

αix̄i | (αi ∈ R+, ∀i) ∧

|X |
∑

i=1

αi = 1

⎫

⎬

⎭

, (22)

where x̄i is the ith element of X and i = 1, . . . , |X |. After
this relaxation step, the all-zeros vector 0B×1 becomes a
trivial solution. To prevent the algorithm from returning this
trivial solution, we follow the approach put forward in [30]
and include a term in (21) that encourages large entries in
the vector x̃. Specifically, we add − δ

2kx̃k
2
2 to the objective

function, where δ > 0 is a regularization parameter. The
resulting optimization problem is given by

xu = arg min
x̃∈BB

1

2
kHH x̃k2

2 −
γu

2
|hH

u x̃|2 +
ρ − δ

2
kx̃k2

2. (23)

To compute a solution to (23), we utilize FBS [31]–[33].
FBS is an efficient, iterative solver for convex optimization
problems of the form

x̂ = arg min
x̃

f(x̃) + g(x̃), (24)

where both functions f and g are convex, but f is a smooth
function and g is not necessarily smooth or bounded. FBS exe-
cutes the following operations for t = 1, 2, . . . , tmax iterations
or until convergence [31], [33]:

z̃(t+1) = x̃(t) − τ (t)∇f(x̃(t)) (25)

x̃(t+1) = proxg

(

z̃(t+1); τ (t)
)

. (26)

Here, ∇f(x̃(t)) is the gradient of the function f , {τ (t) > 0} is
a sequence of step sizes, and proxg(·) is the proximal operator
of the function g, defined as [34]

proxg (z̃; τ) = arg min
x̃

{

τg(x̃) +
1

2
kx̃− z̃k2

}

. (27)

Our problem in (23) is not convex and hence, FBS is not
guaranteed to converge to an optimal solution. Nevertheless,
we can use FBS to find approximate solutions to (23) by
setting

f(x̃) =
1

2
kHH x̃k2

2 −
γu

2
|hH

u x̃|2 (28)

g(x̃) = 1BB (x̃) +
ρ − δ

2
kx̃k2

2. (29)

Here, the convex constraint x̃ ∈ BB in (23) is incorporated into
the function g(x̃) via the indicator function 1BB (x̃), which is

zero if x̃ ∈ BB and infinity otherwise. With these definitions,
we arrive at

∇f(x̃) = HHH x̃ − γuhuh
H
u x̃ (30)

proxg (z̃) = sgn (<{z̃})min
{

ν(t)|<{z̃}|, 1
}

+ j sgn (={z̃})min
{

ν(t)|={z̃}|, 1
}

, (31)

where ν(t) = (1 + τ (t)(ρ − δ))−1 and (31) is applied
element-wise to the vector z̃.

Note that we have introduced three sets of algorithm para-
meters: {τ (t)}, {ν(t)}, and {γu}, where t = 1, . . . , tmax and
u = 1, . . . , U . While one could manually tune these parame-
ters via numerical simulations, we automate the tuning process
by using a neural-network-based approach as put forward
in [35]. We note that such a neural-network-based approach
is only used for determining the algorithm parameters, i.e., it
is trained offline without affecting the runtime complexity of
FAME-FBS. As the same algorithm parameters should work
across several channel realizations, having a per-UE parameter
such as {γu} is meaningless. As a result, we set γ = γu for
u = 1, . . . , U . Furthermore, to provide the neural network
with greater flexibility during optimization, we allow γ to be
different in each iteration; i.e., we introduce another set of
per-iteration parameters {γ(t)}, t = 1, . . . , tmax. We call the
resulting algorithm FAME-FBS, which is summarized next.

Algorithm 1 (FAME-FBS): Initialize x̃(1) with either

the maximum-ratio combining (MRC) solution hu or the

low-resolution vector xu computed by FL-MMSE, and fix

the sets of parameters {τ (t)}, {ν(t)}, and {γ(t)}. Then,

for every iteration t = 1, 2, . . . , tmax, compute

z̃(t+1) =
(

IB − τ (t)H(IU − γ(t)eue
H
u )HH

)

x̃(t) (32)

x̃(t+1) = proxg(z̃
(t+1)). (33)

Here, the proximal operator proxg(·) is the element-wise

function given by (31). The result x̃(tmax+1) is quantized

to the finite alphabet X to obtain xH
u . Then, the optimal

FAME scaling parameter βu is computed using (13).

Remark 6: FAME-FBS supports multi-bit finite-alphabet

equalization matrices. This is achieved by uniformly quan-

tizing, in the range [−1, +1], the real and imaginary parts

of the solution vector x̃(tmax+1), similar to what is done by

FL-MMSE equalization. As a consequence, unlike FAME-SDR,

FAME-FBS can operate with finite alphabets that contain

(i) an odd number of elements and (ii) a zero element.

Furthermore, FAME-FBS (and FL-MMSE) can be applied to

PSK-like finite alphabets following an approach related to the

one used in [36].

Remark 7: Since FAME-FBS was obtained by relaxing the

original optimization problem and by applying an iterative

solver for convex optimization problems to the non-convex

problem in (23), it is not guaranteed to converge to the optimal

solution of the original problem in (12). Nonetheless, our simu-

lation results in Section IV-D confirm that FAME-FBS achieves
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TABLE I

COMPLEXITY FOR COMPUTING AN EQUALIZATION MATRIX

competitive performance for (i) different system configurations

and (ii) realistic channel models.

C. Computational Complexity

We now assess the complexity of (i) computing the equal-
ization matrix and (ii) performing equalization on a received
vector y, for high-resolution and finite-alphabet equaliza-
tion approaches. We measure computational complexity as
the number of real-valued multiplications performed by an
algorithm.1

1) Computing the Equalization Matrix: Table I lists the
computational complexity for computing a single equal-
ization matrix using L-MMSE, FL-MMSE, FAME-SDR,
and FAME-FBS. For the infinite-precision L-MMSE equal-
izer, the complexity corresponds to explicitly computing the
equalization matrix WH . For the finite-alphabet equalizers
(FL-MMSE and FAME-based algorithms), the complexity
corresponds to the computation of the low-resolution matrix
XH and the scaling factors in the vector β. Solving
FAME-SDR results in the highest complexity, which asymp-
totically scales as O(B4.5) unless specific problem struc-
tures can be exploited [26]. Since we do not have access
to a particular SDR solver, we only provide this asymp-
totic scaling. Evidently, FAME-SDR does not scale well to
systems with a large number of BS antennas. FAME-FBS
has the same asymptotic scaling of O(BU2) as L-MMSE
and FL-MMSE equalization, making it suitable for massive
MU-MIMO mmWave systems. The exact complexity counts
listed in Table I are derived in Appendix B.

Remark 8: While the constant associated with the term

BU2 is larger for FAME-FBS than for L-MMSE and

FL-MMSE, the complexity of the latter algorithms appears

to be higher in practice. Computing the L-MMSE (and the

FL-MMSE) equalizer in hardware requires square roots and

divisions, which result in high numerical precision require-

ments [18]. Furthermore, the Cholesky decomposition and

forward- and back-substitution procedures required when

computing the L-MMSE (and the FL-MMSE) equalization

matrix result in stringent data dependencies that limit paral-

lelism and, hence, reduce throughput. In contrast, FAME-FBS

has a regular structure with few data dependencies and

the matrix-vector multiplications can be parallelized easily.

In addition, one can parallelize computation per UE as the

FAME problem in (12) is independent for each u = 1, . . . , U .

1For the remainder of the paper, we assume that complex-valued multipli-
cations require four real-valued multiplications.

TABLE II

COMPLEXITY OF FINITE-ALPHABET EQUALIZATION

In fact, a simple hardware engine, similar to the one proposed

in [37] for another FBS-based algorithm, could be used to

efficiently execute FAME-FBS to determine the low-resolution

equalization vectors xH
u .

2) Performing Equalization: After computing the
equalization matrix, one must perform spatial equalization on
the received signal vectors y at the rate of the ADCs. For
the infinite-precision L-MMSE equalizer, this corresponds
to computing one high-resolution matrix-vector product
ŝ = WHy per received vector. For finite-alphabet equalizers,
this corresponds to a low-resolution matrix-vector product
z = XHy, followed by U high-resolution products
ŝu = β∗

uzu, u = 1, . . . , U . The complexity of equalization
is summarized in Table II, where we distinguish between
high resolution and low resolution multiplications. While
finite-alphabet equalization performs more multiplications
than a conventional equalizer, most of these multiplications
are performed at low resolution. Thus, for sufficiently low
resolution, finite-alphabet equalization effectively reduces the
complexity of spatial equalization.

Remark 9: While spatial equalization must be carried out

at symbol rate, the computation of the equalization matrix must

only be carried out if the channel matrix changes. Given that

we are considering operation at extremely high bandwidths,

the complexity of performing equalization will dominate in

most mmWave systems. For scenarios with short coherence

times, methods that minimize the complexity of computing the

equalization matrix are to be preferred.

D. Simulation Results

We now evaluate the uncoded BER performance of
FAME-based algorithms, and compare it to infinite-precision
L-MMSE equalization and FL-MMSE. The following simu-
lation results are obtained by carrying out 104 Monte-Carlo
trials. The per-iteration parameters {γ(t)}, {τ (t)}, and {ν(t)}
of FAME-FBS are tuned using a neural network as in [35];
the neural network is trained using 104 channel realizations,
which differ from the ones used to evaluate the BER. In
practice, we have observed that γ(t) = 1.1 and ν(t) = 1.1,
t = 1, . . . , tmax, constitute good values for initializing the
neural network regardless of the system configuration; good
initializers for τ (t) vary from 2−9 to 2−4 for the systems
considered in this work. For all equalizers, we quantize the
entries of the channel matrices H to 8 bits per real and
imaginary components. In addition, the received signal vectors
are quantized to 7 bits per real and imaginary components,
which is sufficient to achieve virtually the same performance
as with double-precision representation.
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Fig. 5. Uncoded bit error-rate (BER) for two MU-MIMO systems in
an i.i.d. Rayleigh-fading scenario. All equalizers, except for L-MMSE, use
1-bit finite-alphabet equalization matrices. (a) FAME-SDR approaches the
performance of an exhaustive search, while being scalable for systems with
more BS antennas. (b) FAME-FBS with tmax = 30 iterations achieves similar
performance as FAME-SDR but at a significantly lower complexity.

In Figure 5, we show uncoded BER for two different
MU-MIMO systems in an i.i.d. Rayleigh-fading scenario. For
the B = 8 BS antenna, U = 2 UE system shown in
Figure 5(a), we see that 1-bit FAME-EXH significantly out-
performs 1-bit FL-MMSE, which suffers from an error floor.
Since the complexity of FAME-EXH scales exponentially in
B, it cannot be used for significantly larger systems. Hence,
we also show the performance of FAME-SDR, which has
a 2dB loss at a BER of 10−3 compared to FAME-EXH.
Since FAME-SDR scales to systems with more BS antennas,
we also show a B = 64 BS antenna, U = 4 UE system
in Figure 5(b). In this scenario, FAME-SDR continues to
substantially outperform 1-bit FL-MMSE. As discussed in
Section IV-C, however, FAME-SDR does not scale to systems
with more BS antennas, whereas FAME-FBS exhibits the same
asymptotic complexity scaling as L-MMSE and FL-MMSE
equalization. From Figure 5, we see that FAME-FBS performs
on par with FAME-SDR but at much lower complexity.

In Figure 6(a), we show the BER performance of
finite-alphabet equalization matrices in a B = 256 BS

antenna, U = 16 UE system using 16-QAM with i.i.d.
Rayleigh-fading channels. The performance behavior of 1-bit
FL-MMSE and 1-bit FAME-FBS is similar to what we have
observed for smaller systems. The same figure also shows
the performance of finite-alphabet matrices with resolutions
larger than 1 bit. We see that the performance gap between
FAME-FBS and FL-MMSE is more pronounced for 1-bit and
2-bit finite-alphabet equalization matrices than for 3-bit. We
note that finite-alphabet equalizers achieve virtually the same
performance as infinite-precision L-MMSE equalization when
using 6 bits; nonetheless, 3 bits are sufficient to operate at
SNRs lower than 4dB.

Since i.i.d. Rayleigh-fading channels are a poor model
for mmWave propagation conditions, we also show the
performance of FAME-FBS in a B = 256 BS antenna,
U = 16 UE system operating over more realistic mmWave
channels generated using the QuaDRiGa model [39]. Con-
cretely, in Figure 6(b) and Figure 6(c), we simulate mmWave
systems with a carrier frequency of 60GHz within the
“mmMAGIC_UMi” scenario. We consider both non-LoS
(shown in Figure 6(b)) and LoS (shown in Figure 6(c)) prop-
agation conditions. We also model power control by scaling
the QuaDRiGa-generated channels so that the received UE
powers are in the range ±3dB. Specifically, for each channel
realization, the UE with highest power has 4× the power of the
UE with the lowest power. Furthermore, the UEs are randomly
placed in a sector of 120◦ in front of the BS antenna array
with a distance ranging from 10m to 110m, and a minimum
angular separation of 4◦. From Figure 6(b) and Figure 6(c),
we observe that FAME-FBS outperforms FL-MMSE for both
non-LoS and LoS channels—essentially the same trends as for
Rayleigh-fading channels. These simulation results indicate
that finite-alphabet equalization performs well under more
realistic mmWave propagation conditions, while having the
potential to significantly reduce power consumption and sili-
con area.

To further evaluate the performance of finite-alphabet equal-
izers, Figure 7 shows the EVM performance of FAME-FBS
and FL-MMSE for the same system configuration and prop-
agation conditions considered in Figure 6. The gray dashed
lines indicate the EVM requirements for different modulation
schemes as specified by the 3GPP 5G NR standard [38].
Figure 7 confirms the trends observed in the BER simulations.
For example, while 1-bit FL-MMSE is not able to meet the
EVM requirement for QPSK in Figure 7(a) and Figure 7(b),
1-bit FAME-FBS is almost able to reach the EVM require-
ment for 64-QAM. Moreover, while FAME-FBS significantly
outperforms FL-MMSE when using 1 and 2 bits of resolution,
their EVM performance is similar for 3 bits, in which case the
performance of both finite-alphabet equalizers is close to that
of infinite-precision L-MMSE.

Remark 10: FL-MMSE and FAME-based algorithms

(FAME-EXH, FAME-SDR, and FAME-FBS) generate

finite-alphabet equalization matrices as in Definition 1. This

implies that, for a fixed equalizer resolution, all the algorithms

proposed in this paper produce a low-resolution matrix XH

whose entries belong to the same finite alphabet X , as well

as a set of post-equalization scaling factors β, which are
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Fig. 6. Uncoded bit error-rate (BER) for a B = 256 BS antenna, U = 16 UE, 16-QAM system under different channel models. FAME-FBS runs tmax = 5

iterations for the i.i.d. Rayleigh channel and tmax = 20 iterations for both QuaDRiGa channels. FAME-FBS is initialized with the MRC equalizer HH for
all cases, except for the 3-bit QuaDRiGa LoS scenario, where FAME-FBS is initialized with the low-resolution matrix of FL-MMSE and runs for tmax = 3

iterations. FAME-FBS outperforms FL-MMSE in all considered scenarios. The performance of finite-alphabet equalizers meets that of L-MMSE with 6 bits.

Fig. 7. Error-vector magnitude (EVM) for a B = 256 BS antenna, U = 16 UE system under different channel models. The gray dashed lines indicate the
EVM requirements established by the 3GPP 5G NR technical specification [38]. The details for FAME-FBS are given in Figure 6. FAME-FBS significantly
outperforms FL-MMSE in all considered scenarios when using 1- and 2-bit finite-alphabet equalization matrices.

computed via (13) once XH has been determined. Even

though all the algorithms use the same finite alphabet for the

entries of XH , FAME-based algorithms are able to achieve

a better performance as they are (approximately) solving the

FAME problem in (12).

Remark 11: The improved performance of FAME-FBS over

FL-MMSE comes at the cost of a higher complexity, as shown

in Table I. Hence, there exists a performance-complexity trade-

off between using FL-MMSE and FAME-FBS to generate

finite-alphabet equalizers. In addition, the complexity and per-

formance of FAME-FBS can be further tuned via the number of

iterations tmax. Finally, the equalizer resolution offers another

performance-complexity trade-off: The use of more bits for the

finite-alphabet equalization matrix improves the performance,

but also increases the circuit’s power consumption and silicon

area—a trade-off we will study next.

V. HARDWARE-LEVEL EVALUATION

To demonstrate the real-world benefits of finite-alphabet
equalization, we now quantify the power and area sav-
ings that can be attained in comparison with conventional,
high-resolution equalizers.

A. Equalizer Architectures

To arrive at a fair comparison between finite-alphabet
equalization and conventional, high-resolution equalizers,

we implemented two equalization circuits: one for
finite-alphabet equalization and one for high-resolution
equalization.

The high-resolution equalizer computes a matrix-vector
product between the U × B equalization matrix WH and
the received vector y. The matrix-vector product is computed
in a column-by-column fashion by using a linear array of U
parallel multiply-accumulate (MAC) units over B clock cycles.
The multipliers in the MAC units are high-resolution and take
as input 10-bit numbers from the equalization matrix WH and
7-bit numbers from the received vector y. The accumulators in
the MAC units use 18 bits. Finally, 9 bits are taken from both
real and imaginary accumulators as the outputs of each MAC
unit. These outputs correspond to the estimates ŝ = WHy.

The finite-alphabet equalizer computes a low-resolution
matrix-vector product between the U × B finite-alphabet
matrix XH and the received vector y. This matrix-vector
product is implemented in the same way as in the traditional
equalizer, with the difference that far fewer bits are used
for the multipliers and accumulators. The multipliers take as
input r-bit numbers from XH and 7-bit numbers from y,
while the accumulators use r + 13 bits (except for the case
where r = 1, where the accumulators use 13 bits). We take
9 bits from the accumulators in each MAC unit as the output
of the low-resolution matrix-vector product XHy. Unlike
conventional equalization, the results of the U -dimensional
vector XHy are scaled by the values in β∗. This scaling
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TABLE III

IMPLEMENTATION RESULTS IN 28 nm CMOS FOR ONE EQUALIZER

INSTANCE OPERATING IN A SYSTEM WITH B = 256 AND U = 16

operation is implemented with a high-resolution multiplier that
computes the product between the 9-bit xH

u y and the 10-bit
scaling factor β∗

u. The output of this multiplier is represented
using 9 bits per real and imaginary components and correspond
to the estimates ŝ = VHy.

B. Implementation Results

Table III lists post-layout implementation results for the
circuits discussed in Section V-A implemented for a B = 256
BS antenna, U = 16 UE system, using a 28nm CMOS tech-
nology. The traditional, high-resolution equalizer corresponds
to the design with an equalization resolution r of 10 bits,
whereas the finite-alphabet equalizer was implemented for
r = {1, 2, . . . , 5} bits. To allow for a fair comparison between
the different equalization circuits, we consider a scenario in
which all of the designs support the same throughput. We
assume a throughput of 2 G (complex-valued) vectors/s, which
implies that the 2B ADCs at the BS run at 2 G samples/s. As
we can see from Table III, a single instance of our equalizer
designs reaches throughputs of the order of M vectors/s, which
is well below the target throughput of 2 G vectors/s. We can,
however, instantiate a time-multiplexed array of equalizers that
achieve the desired throughput (at the expense of increased
area). Assuming no overhead for this replication approach,
we can estimate the total silicon area and power consumption
required to perform equalization in a high-bandwidth mmWave
setting; Figure 8 shows the corresponding results.

Figure 8(a) shows the power consumption reduction
achieved by lowering the equalizer resolution; Figure 8(b)
shows the same effect but on silicon area. We see that halving
the number of bits used for the high-resolution equalizer
already introduces substantial gains of 19% and 44% lower
power and area, respectively. Further reducing the equalizer
resolution reduces the power and area by a factor of 3.9×
and 5.8×, respectively, when a 1-bit finite-alphabet equalizer
is used.

Remark 12: We note that the power and area can poten-

tially be reduced much more. Once the number of bits in

the equalization matrix has been reduced to 5 bits or below,

emerging processing-in-memory architectures, such as the

one proposed in [40], potentially lower the area and power

(additionally to the savings above) by about 2× to 4×. A

detailed analysis of such emerging multiplier-array architec-

tures in combination with finite-alphabet equalization is left

for future work.

Fig. 8. Power and area consumed by equalizer hardware designs in 28nm
CMOS technology for a B = 256 BS antenna, U = 16 UE massive
MU-MIMO system with varying equalizer resolution. All equalizers operate
at a rate of 2 G vectors/s and 7 bits are used to represent the entries of the
received vector y. For an equalizer resolution lower than 6 bits, we use a
finite-alphabet equalizer consisting of a low-resolution matrix-vector product,
followed by per-UE high-resolution scaling. The equalizer resolution of 10 bit
is executed with a high-resolution matrix-vector product only. Finite-alphabet
equalization (shown in blue) can reduce the power and area of conventional,
high-precision equalization (shown in orange) by a factor of 3.9× and 5.8×,
respectively.

VI. CONCLUSION

We have proposed finite-alphabet equalization, a par-
adigm in which the spatial equalization matrix contains
low-resolution numbers in order to enable energy- and
area-efficient equalization hardware. To achieve an error-rate
performance similar to that of conventional, high-resolution
equalizers, such as the L-MMSE equalizer, we have formu-
lated the finite-alphabet MMSE equalization (FAME) prob-
lem, which minimizes the post-equalization MSE. We have
shown that solving the FAME problem yields significant
improvements over finite-alphabet matrices that are obtained
by naïvely quantizing the L-MMSE matrix in terms of EVM,
beamforming capabilities, and uncoded BER. Since the FAME
problem is NP-hard, we have proposed approximate algo-
rithms that trade-off performance with complexity. One of
the proposed algorithms, FAME-FBS, achieves a performance
that is on par with semidefinite relaxation while having the
same asymptotic complexity scaling as L-MMSE equalization.
We have shown that FAME-FBS significantly outperforms
a baseline finite-alphabet equalizer for LoS and non-LoS
massive MU-MIMO mmWave channel models in terms of
EVM and uncoded BER. In addition, our reference VLSI
implementation results in 28nm CMOS have demonstrated
that the use of finite-alphabet equalization is able to reduce
the power and area of spatial equalization by at least a
factor of 3.9× and 5.8×, respectively. Thus, finite-alphabet
equalization is a viable solution to combat the excessively high
power consumption and area of all-digital massive MU-MIMO
mmWave BS designs.

There are many avenues of future work. A theoreti-
cal convergence and performance analysis of FAME-FBS
is an interesting (but difficult) open problem. Moreover,
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the development of algorithms that outperform FAME-FBS
and further approach the performance of FAME-EXH at low
complexity is a challenging open research direction. The
finite-alphabet equalization paradigm is also applicable to
downlink precoding in massive MU-MIMO mmWave sys-
tems [41] and could be used in other applications where
matrix-vector products must be computed at high rates or with
low power consumption—an investigation of other applica-
tions is part of ongoing research.

APPENDIX A
PROOF OF LEMMA 1

We start by deriving the expression for the optimal scaling
factor βu given an equalization vector xu and then use
the resulting quantity to simplify the optimization problem.
We first take the Wirtinger derivative of the objective function
in (11) in the complex-valued variable β̃∗ and set it to zero:

∂

∂β̃∗

(

keu − HH β̃x̃k2 + ρkβ̃x̃k2
)

= 0 (34)

−x̃HHeu + x̃HHHH x̃β̃ + ρkx̃k2β̃ = 0. (35)

Since Heu = hu, we obtain (13) by solving for β̃. To
obtain (12), we substitute (13) into (11) and simplify the result-
ing expression using algebraic manipulations. Concretely,
we carry out the steps listed in (36)–(43), as shown at the
top of this page.

APPENDIX B
COMPLEXITY COUNTS FOR COMPUTING EQUALIZATION

MATRICES WITH DIFFERENT ALGORITHMS

In what follows, we ignore the complexity of reciprocals,
square roots, and additions. The numbers in parenthe-
ses are real-valued multiplications, where we assume that
a complex-valued multiplication requires four real-valued
multiplications.

A. Complexity of Explicit L-MMSE

Explicit L-MMSE equalization corresponds to computing
WH = (ρIU + HHH)−1HH , which can be achieved at
low complexity using the approach detailed in [18]. First,
we calculate A = ρIU + HHH (2BU2). Then, we apply a
Cholesky decomposition to A so that A = LLH ( 2

3U3− 2
3U ).

Next, we compute the inverse of L via back-substitution
( 2
3U3 − 5

3U + 1), to calculate A−1 = L−HL−1 ( 2
3U3 + 1

3U ).
Finally, we obtain WH = A−1HH (4BU2 − 2BU ). The
total complexity of the explicit L-MMSE equalizer is 2U3 +
6BU2−2BU−2U +1. Since in massive MU-MIMO systems
we typically have B � U , the asymptotic complexity scales
as O(BU2).

B. Complexity of FL-MMSE

We start by computing the explicit L-MMSE equalizer,
which, as shown in Appendix B-A, entails a complexity of
2U3 + 6BU2− 2BU − 2U + 1. Then, we quantize the entries
of the L-MMSE equalizer. We will not count the complexity
of quantization as there are hardware-efficient ways to do so.
Now that XH has been determined, the next step is to compute
the optimal scaling factor βu(xu) for each UE. We need
to first calculate HHxu (4BU ) from which we also extract
xH

u hu. Then, we compute the `2-norm of HHxu and xu

(2U and 2B, respectively). The next steps are to scale kxuk
2
2

by ρ (1 multiplication), and obtain βu(xu) by multiplying
xH

u hu and the multiplicative inverse of kHHxuk
2
2 + ρkxuk

2
2

(2 multiplications). Then, computing βu(xu) for all UEs u =
1, . . . , U has a complexity of 4BU2 + 2BU + 2U2 + 3U .
Thus, computing XH and β for FL-MMSE equalization has
a total complexity of 10BU2 + 2U3 + 2U2 + U + 1. As
expected, FL-MMSE has the same asymptotic complexity
scaling O(BU2) as the L-MMSE equalizer.
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C. Complexity of FAME-FBS

For each UE u = 1, . . . , U , one instance of FAME-FBS
is executed. Each FAME-FBS instance requires an iterative
procedure with tmax iterations followed by the computation of
βu(xu). In the iterative procedure, we compute HH x̃ (4BU )
and scale one of its entries with γ(t) (2 multiplications). With
this, we have computed the vector (HH − γ(t)eue

H
u HH)x̃,

which we now multiply with H (4BU ) to obtain the gradient
∇f(x̃) in (30). The next step in FAME-FBS is to scale ∇f(x̃)
with τ (t) (2B) to compute z̃(t+1) in (25). Then, the entries of
z̃(t+1) are scaled by ν(t) (2B), completing one FAME-FBS
iteration. Hence, to compute xu, FAME-FBS requires (8BU +
4B+2)tmax real-valued products. As shown in Appendix B-B,
computing the optimal scaling factor βu(xu) requires 4BU +
2B+2U+3 real-valued multiplications per UE. Thus, the total
computational complexity of FAME-FBS is (8tmax +4)BU2+
2U2 + 2(2tmax + 1)BU + (2tmax + 3)U . Hence, FAME-FBS
has an asymptotic complexity of O(BU2).
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