
Towards a Reconfigurable Bit-Serial/Bit-Parallel Vector
Accelerator Using In-Situ Processing-In-SRAM

Khalid Al-Hawaj, Olalekan Afuye, Shady Agwa, Alyssa Apsel, Christopher Batten

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
{ka429, ota2, shady.agwa, aba25, cbatten}@cornell.edu

Abstract—Vector accelerators can efficiently execute regu-
lar data-parallel workloads, but they require expensive multi-
ported register files to feed large vector ALUs. Recent work
on in-situ processing-in-SRAM shows promise in enabling area-
efficient vector acceleration. This work explores two differ-
ent approaches to leveraging in-situ processing-in-SRAM: BS-
VRAM, which uses bit-serial execution, and BP-VRAM, which
uses bit-parallel execution. The two approaches have very differ-
ent latency vs. throughput trade-offs. BS-VRAM requires more
cycles per operation, but is able to execute thousands of opera-
tions in parallel, while BP-VRAM requires fewer cycles per op-
eration, but can only execute hundreds of operations in parallel.
This paper is the first work to perform a rigorous evaluation
of bit-serial vs. bit-parallel in-situ processing-in-SRAM. Our re-
sults show that both approaches have similar area overheads.
For 32-bit arithmetic operations, BS-VRAM improves through-
put by 1.3–5.0× compared to BP-VRAM, while BP-VRAM im-
proves latency by 3.0–23.0× compared to BS-VRAM.

I. INTRODUCTION

Vector accelerators are seeing a resurgence in both general

purpose and domain-specific processing [15, 17, 18]. These

accelerators can achieve high performance on well-structured

workloads by using a complex vector ALU and register file.

To keep the vector ALU busy, vector register files are usually

highly multi-ported which incurs significant area and energy

overheads. Recent work on in-situ processing-in-SRAM at-

tempts to reduce these overheads by fusing the vector ALU

and register file. In-situ processing-in-SRAM uses bit-line

computation to perform basic bit-wise logical operations in

a single read of a traditional SRAM [8, 9]. Each SRAM col-

umn can be transformed into a bit-serial ALU by adding extra

logic, multiplexing, and state elements in the peripheral cir-

cuitry. Alternatively, a set of SRAM columns can be grouped

into a bit-parallel ALU by adding bit-parallel logic in the pe-

ripheral circuitry instead.

In this paper, we provide a detailed implementation for

bit-serial vector RAM (BS-VRAM) and bit-parallel vec-

tor RAM (BP-VRAM) as two representative design points

for processing-in-SRAM. These two flavors of VRAM sup-

port a variety of micro-operations for implementing macro-

operations. Starting with an implementation of a traditional

28 nm 6T-SRAM in OpenRAM [6], we designed and laid

out the additional peripheral circuitry required to implement

BS-VRAM and BP-VRAM. Although surprisingly both de-

signs have comparable area overhead, they have very dif-

ferent performance characteristics. For a 32-bit MAC op-

eration, BS-VRAM has 5× higher throughput (6.4 GOPS)

than BP-VRAM (1.3 GOPS), while BP-VRAM can achieve

6.5× lower latency (197.9 ns) when compared to BS-VRAM

(1281 ns). BS-VRAM consumes lower energy per operation,

but we discuss possible techniques to help close this gap. As

the two designs require similar peripheral circuitry, this work

can be seen as a step towards building a reconfigurable bit-

serial/bit-parallel vector accelerator that is able to achieve ei-

ther high-throughput or low-latency depending on the appli-

cation requirements.

Our main contributions are: (1) a detailed circuit-level de-

sign of BS-/BP-VRAM in 28nm technology; (2) implementa-

tion of 17 macro-operations in BS-/BP-VRAM using micro-

operations; (3) a detailed study of the trade-offs in area, cycle

time, latency, throughput, and energy for BS-VRAM vs. BP-

VRAM. To our knowledge, this is the first work to rigorously

explore the trade-offs between a bit-serial vs. bit-parallel ap-

proach to in-situ processing-in-SRAM.

II. VRAM CIRCUITS

BS-VRAM and BP-VRAM start with a basic 6T SRAM

with support for bit-line computation (i.e., extra decoder and

reconfigurable single-ended/differential sense amplifiers as

in [8,9]). Bit-line computation simplifies the required periph-

eral logic to implement BS-VRAM and BP-VRAM. Figure 1

shows the additional peripheral circuitry required to enable

BS-VRAM and BP-VRAM beyond what is necessary for bit-

line computation.

A. Bit-Serial Compute Logic (BSCL)

The inputs to the BSCL are the output of each sense-

amplifier and its complement. Bit-line computation provides

bit-wise logical AND, NAND, OR, and NOR on these inputs.

The BSCL is composed of the following blocks. Bus

Logic: BSCL uses a distributed bus with NMOS pass-

transistors to choose between basic bit-wise logical opera-

tions (i.e., AND, NAND, OR, NOR). XOR/XNOR Logic:

Computing XOR and NOR in BSCL requires an additional

NAND gate and inverter. ADD Logic: BSCL uses a modified

serial Manchester carry chain (MCC). As addition is com-

puted bit serially, the carry out is stored for the subsequent

cycle while previous carry is used as carry in. The carry in is

XOR’ed with the bitwise logical XOR to compute the sum.

XRegister: XRegister’s input is multiplexed to choose either

the carry out from the ADD logic or an input carry, which

enables initializing the carry to zero for an addition or one

for a subtraction. The output of the XRegister is the input to

the ADD logic. Mask Logic: The mask logic in BSCL is a

latch with a multiplexer to choose either the unbuffered bus

or an input mask. The output of the latch is the mask used by

the SRAM for writes. In a conventional write, the input mask

will be chosen to be stored in the latch.

978-1-7281-3320-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Cornell University Library. Downloaded on October 23,2020 at 04:23:05 UTC from IEEE Xplore. Restrictions apply.

TABLE III. DETAILED COMPARSION TABLE BETWEEN

BS-VRAM AND BP-VRAM

8-bit 32-bit

BS BP BS BP

Latency add 17.8 3.1 (5.8×) 71.1 3.1 (23.0×)
(ns) mul 116.7 57.4 (2.0×) 1316.7 206.2 (6.4×)

Throughput add 14.4 (5.5×) 2.6 3.6 (1.4×) 2.6
(GOPS) mul 2.2 (15.7×) 0.14 0.2 (5.0×) 0.04

Energy add 1.2 4.8 4.7 4.8
(pJ/Op) mul 9.0 58.1 112.5 221.3

ergy due the multiplicand shifts required to generate partial-

products (i.e., more reads and writes).

V. COMPARISON TO PRIOR WORK

Processing-in-memory has shown promise in increasing

performance and energy efficiency by moving the computa-

tion closer to the memory [2,3,11–14,16,20,22]. Specifically,

recent work on processing-in-SRAM uses bit-line compute

to push logic into the SRAM with minimal area-overhead.

Prior work demonstrates the potential for bit-line compute by

transforming the cache subsystem of a chip multi-processor

into different engines: a bit-parallel bit-wise logic engine [1];

a fixed-function accelerator for neural networks [4]; and a

SIMT accelerator [5].

Jeloka et al. were the earliest to introduce the concept of

bit-line compute, where computations are performed digitally

inside the SRAM [8, 9]. Wang et al. propose CRAM which

extends bit-line compute to an 8T SRAM and include sup-

port for integer arithmetic [19]. Instead of performing the

computation vertically, the 8T bitcell allows the computations

to be performed horizontally in the compute bitlines. Addi-

tional functionality is implemented using bit-serial logic in

the periphery with appropriate multiplexing. Sub-array bank-

ing helps mitigate area overhead by sharing column decoders

and compute logic with neighboring sub-arrays.

Table IV shows a comparison of BS-VRAM and BP-

VRAM against prior work. Despite CRAM’s single-cycle

read-write, BS-VRAM is has higher throughput because: all

sub-arrays in BS-VRAM can be active at the same time while

CRAM can only use half of the subarrays due to banking; per

sub-array, BS-VRAM has twice computing bit-lines resulting

in twice the ALUs compared to CRAM; and BS-VRAM op-

erates at a higher frequency. The use of a 6T bitcells help

BS-VRAM and BP-VRAM in occupying only half the area

of CRAM. Energy efficiency of CRAM is roughly 3× higher

than BS-VRAM because CRAM uses lower wordline voltage

while performing a bit-line computation as well as utilizing

a more optimized sense-amp that reduces read and bit-line

computation energy.

Although CRAM achieves 2–3× higher energy efficiency

in 8-bit and 32-bit mac, the gap between BS-VRAM and

CRAM can easily be closed by scaling the BS-VRAM sup-

ply voltage. Considering BS-VRAM achieves around 16–

18× higher throughput, by scaling the voltage to 0.6 V, BS-

VRAM can achieve similar energy efficiency to CRAM while

maintaining higher throughput.

TABLE IV. COMPARSION TO PRIOR WORK

Paper
VRAM ISSCC’19 JSSC’16 VLSI’17

BS BP [19] [9] [21]

Technology 28nm 28nm 28nm 28nm 40nm
Voltage 0.9V 0.9V 0.9V 0.9V 0.9V
SRAM Capacity 128kB 128kB 128kB 128kB 128kB
SRAM Macro 4kB 4kB 16kB 0.5kB 8kB
SRAM Bitcell 6T 6T 8T 6T 10T
Precision Arb. 32b Arb. Arb. Arb.
Freq (MHz) 900 645 225 594 90

Area (mm2)* 1.1 1.1 2.7 0.7 1.28

Logic Ops � � � �(a) �(b)
Basic Int Ops � � �

Cmplx Int Ops � � �(c)
Cmp Ops � � �(d)
Search � �

FX Ops � �

FP Ops �

8b MAC GOPS 76.0 4.5 4.2 n/a n/a
8b MAC GOPS/W 115.5 17.2 245.5 n/a n/a

32b MAC GOPS 6.4 1.2 0.4 n/a n/a
32b MAC GOPS/W 9.0 4.5 22.5 n/a n/a

* Area is extrapolated to a full chip with 128kB total capcaity considering 80% density;
BS-VRAM and BP-VRAM consider 10% overhead for a controller. Cmplx = Complex,
Cmps = comparators, FX = fixed-point, FP = floating-point. Logic ops: and, nand, or,
nor, xor, xnor. Basic int ops: add, sub. Cmplex int ops: mul, udiv, rem. Cmps ops:
slt, sle, sgt, sge, seq. FX Ops: addfx, subfx, mulfx, udivfx. FP Ops: addfp,
subfp, mulfp, udivfp. (a) limited to and, nor. (b) limited to and, nor, xor. (c)
limited to mul, udiv (d) limited to slt, sgt, seq. n/a = the corresponding work does
not support this functionality.

VI. CONCLUSION

Leveraging in-situ processing-in-SRAM opens a rich de-

sign space for vector accelerators by reducing area and energy

costs. Considering BS-VRAM and BP-VRAM as represen-

tative design points for bit-serial and bit-parallel approaches,

our exploration shows that bit-serial achieves higher through-

put compared to bit-parallel, while bit-parallel has lower la-

tency. Both approaches incur comparable area overhead. Al-

though the bit-serial has lower energy, we believe adding bet-

ter µop support for some macro-operation can bridge the gap.

Finally, both designs share a significant amount of circuitry.

A reconfigurable design is possible by adding multiplexing

to break the addition chain into individual adders, thus trans-

forming bit-parallel into bit-serial and vice-versa.

ACKNOWLEDGMENT

This work was supported in part by NSF E2CDA Award

#1740136, the Semiconductor Research Corporation (SRC)

as nCORE task 2758.002 and 2758.004, and the Center for

Applications Driving Architectures (ADA), one of six cen-

ters of JUMP, a SRC program co-sponsored by DARPA, as

well as equipment, tool, and/or physical IP donations from In-

tel, Synopsys, Cadence, and ARM. The authors acknowledge

and thank Al Molnar for his advice on SRAM design, and

José Martínez and Helena Caminal for useful discussion on

various processing-in-memory architectures. The U.S. Gov-

ernment is authorized to reproduce and distribute reprints for

Government purposes notwithstanding any copyright nota-

tion thereon. Any opinions, findings, and conclusions or rec-

ommendations expressed in this publication are those of the

author(s) and do not necessarily reflect the views of any fund-

ing agency.

Authorized licensed use limited to: Cornell University Library. Downloaded on October 23,2020 at 04:23:05 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw,
and R. Das. Compute Caches. Int’l Symp. on High-Performance

Computer Architecture, Feb 2017.

[2] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. PIM-Enabled Instructions: A
Low-Overhead, Locality-Aware Processing-in-Memory Architecture.
Int’l Symp. on Computer Architecture, Jun 2015.

[3] J. B. Brockman, S. Thoziyoor, S. K. Kuntz, and P. M. Kogge. A Low
Cost, Multithreaded Processing-in-Memory System. Proc. of

Workshop on Memory Performance Issues, Jun 2004.

[4] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer†,
D. Sylvester, D. Blaauw, and R. Das. Neural Cache: Bit-Serial
In-Cache Acceleration of Deep Neural Networks. Int’l Symp. on

Computer Architecture, Jul 2018.

[5] D. Fujiki, S. Mahlke, and R. Das. Duality Cache for Data Parallel
Acceleration. Int’l Symp. on Computer Architecture, Jun 2019.

[6] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sarwar.
OpenRAM: An Open-Source Memory Compiler. Int’l Conf. on

Computer-Aided Design (ICCAD), Jan 2016.

[7] M. Ishida, T. Kawakami, A. Tsuji, N. Kawamoto, M. Motoyoshi, and
N. Ouchi. A Novel 6T-SRAM Cell Technology Designed with
Rectangular Patterns Scalable Beyond 0.18/spl mu/m Generation and
Desirable for Ultra High Speed Operation. International Electron

Devices Meeting, Dec 1998.

[8] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw. A Configurable
TCAM/BCAM/SRAM Using 28nm Push-Rule 6T Bit Cell. Symp. on

Very Large-Scale Integration Circuits (VLSIC), Jun 2015.

[9] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw. A 28 nm
Configurable Memory (TCAM/BCAM/SRAM) Using Push-Rule 6T
BitCell Enabling Logic-in-Memory. IEEE Journal of Solid-State

Circuits, Apr 2016.

[10] T. Jhaveri, A. Strojwas, L. Pileggi, and V. Rovner. Enabling
Technology Scaling with "In Production" Lithography Processes.
Optical Microlithography XXI, Feb 2008.

[11] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay.
Neurocube: A Programmable Digital Neuromorphic Architecture
with High-Density 3D Memory. Int’l Symp. on Computer

Architecture, Aug 2016.

[12] M. Oskin, F. T. Chong, and T. Sherwood. Active Pages: A
Computation Model for Intelligent Memory. Int’l Symp. on

Computer Architecture, Jun 1998.

[13] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick. A Case for Intelligent
RAM. IEEE Micro, Mar 1997.

[14] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian,
V. Srinivasan, A. Buyuktosunoglu, A. Davis, and F. Li. NDC:
Analyzing the Impact of 3D-Stacked Memory+Logic Devices on
MapReduce Workloads. Int’l Symp. on Performance Analysis of

Systems and Software (ISPASS), Jun 2014.

[15] RISC-V Foundation. RISC-V "V" Vector Extension.
https://github.com/riscv/riscv-v-spec/releases/download/0.7.1/riscv-

v-spec-0.7.1.pdf, Jun
2019.

[16] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,
G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and
T. C. Mowry. RowClone: Fast and Energy-Efficient In-DRAM Bulk
Data Copy and Initialization. Int’l Symp. on Microarchitecture, Dec
2013.

[17] N. Stephens. ARMv8-A Next-Generation Vector Architecture for
HPC. Symp. on High Performance Chips (Hot Chips), Aug 2016.

[18] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, A. Reid,
A. Rico, and P. Walker. The ARM Scalable Vector Extension. IEEE

Micro, Mar 2017.

[19] J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw,
and D. Sylvester. A Compute SRAM with Bit-Serial
Integer/Floating-Point Operations for Programmable In-Memory
Vector Acceleration. Int’l Solid-State Circuits Conf., Feb 2019.

[20] D. P. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu,
and M. Ignatowski. TOP-PIM: Throughput-Oriented Programmable
Processing in Memory. Proc. of Int’l Symp. on High-Performance

Parallel and Distributed Computing, Jun 2014.

[21] Y. Zhang, L. Xu, K. Yang, Q. Dong, S. Jeloka, D. Blaauw, and
D. Sylveste. Recryptor: A Reconfigurable In-Memory Cryptographic
Cortex-M0 Processor for IoT. Symp. on Very Large-Scale Integration

Circuits (VLSIC), Jun 2017.

[22] Q. Zhu, B. Akin, H. E. Sumbul, F. Sadi, J. C. Hoe, L. Pileggi, and
F. Franchetti. A 3D-Stacked Logic-in-Memory Accelerator for
Application-Specific Data Intensive Computing. Int’l 3D Systems

Integration Conf., Jan 2014.

Authorized licensed use limited to: Cornell University Library. Downloaded on October 23,2020 at 04:23:05 UTC from IEEE Xplore. Restrictions apply.

