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ABSTRACT

Next-generation wireless systems are expected to combine

millimeter-wave (mmWave) and massive multi-user multiple-

input multiple-output (MU-MIMO) technologies to deliver

high data-rates. These technologies require the basestations

(BSs) to process high-dimensional data at extreme rates, which

results in high power dissipation and system costs. Finite-

alphabet equalization has been proposed recently to reduce the

power consumption and silicon area of uplink spatial equaliza-

tion circuitry at the BS by coarsely quantizing the equalization

matrix. In this work, we improve upon finite-alphabet equal-

ization by performing unbiased estimation and soft-output

computation for coded systems. By simulating a massive

MU-MIMO system that uses orthogonal frequency-division

multiplexing and per-user convolutional coding, we show that

soft-output finite-alphabet equalization delivers competitive

error-rate performance using only 1 to 3 bits per entry of the

equalization matrix, even for challenging mmWave channels.

1. INTRODUCTION

Future wireless communication systems are likely to combine

millimeter-wave (mmWave) communication [2] with massive

multi-user multiple-input multiple-output (MU-MIMO) [3]

as they enable one to serve multiple user equipments (UEs)

simultaneously in the same frequency band with high through-

put. The extreme bandwidths offered at mmWave frequen-

cies combined with the strong path loss, however, require the

deployment of hundreds of antennas at the basestation (BS)

and computationally complex baseband processing circuitry.

Consequently, power and system costs are key concerns for

designing mmWave MU-MIMO systems in practice.
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A journal version of this paper is currently under review [1]. The present

work extends [1] by providing an unbiased equalizer with soft-output capabili-

ties as well as results for a coded mmWave massive MU-MIMO system.

In order to keep power consumption of MU-MIMO sys-

tems within reasonable bounds, energy-efficient hybrid analog-

digital solutions [4–6] have been proposed in the past. Such

hybrid approaches are, however, limited in their ability to cap-

ture and resolve multiple arriving signal paths [6–8], which

degrades spectral efficiency. In contrast, all-digital BS archi-

tectures [9–11] are able to overcome this issue, but are com-

monly perceived as energy inefficient. Recent results [8, 10]

have demonstrated that, by reducing the resolution of the data

converters, the power consumption of radio-frequency (RF)

circuitry and data converters in all-digital BS architectures is

comparable to hybrid solutions. However, the power consump-

tion and system costs of baseband processing in all-digital BS

architectures are largely unexplored.

1.1. Finite Alphabet Equalization

In the uplink (UEs transmit to BS), all-digital spatial equal-

ization is required to recover the signals transmitted by each

of the U UEs from the data converters at the B BS anten-

nas. Spatial equalization performs complex-valued matrix-

vector products between a U × B equalization matrix and

a B-dimensional received vector at the rate of the incoming

samples. For a system with B = 256 BS antennas and U = 16
UEs, performing a single matrix-vector product at a rate of

2G samples/s consumes already 28W and 129mm2 of sili-

con area in 28 nm CMOS [1]. For wideband systems that use

orthogonal frequency-division multiplexing (OFDM), these

power and area numbers are expected to increase even further.

Clearly, efficient spatial equalization circuitry is necessary to

lower the power consumption and silicon area of all-digital BS

architectures, without hampering their spectral efficiency.

The power consumption and silicon area of matrix-vector

products can be decreased by reducing the bit resolution of

their constituent multiplications and additions. Existing work

has mainly focused on the use of low-resolution (e.g., 1 to 8
bits) data converters at the BS antennas of massive MU-MIMO

systems [6, 8–10, 12, 13], which reduces the precision of the

received vectors. However, even when using low-resolution

vectors, the equalization matrix is typically represented with

high-resolution numbers, e.g., 10 to 12 bits [14, 15]. In the

recent work [1], we proposed finite-alphabet equalization, a
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Fig. 1. Uplink of a massive MU-MIMO mmWave system. The

U UEs transmit data to the B-antenna BS. After estimating the

channel, the all-digital BS uses spatial equalization to recover

the UEs’ individual signals. Finite-alphabet equalization [1]

consists of using low-resolution spatial equalization matrices.

novel paradigm that uses low-resolution numbers to represent

the entries of the equalization matrices. To mitigate the loss in

performance caused by low-precision equalization matrices,

we introduced the finite-alphabet minimum mean-square error

equalization (FAME) problem in [1]. This new approach en-

ables the computation of low-precision equalization matrices

that minimize the post-equalization mean-square error (MSE).

1.2. Contributions

In this paper, we extend finite-alphabet equalization as put

forward in [1] by unbiased estimation and soft-output computa-

tion. We derive a compact expression of the post-equalization

MSE, which can be used to efficiently compute log-likelihood

ratio (LLR) values. We demonstrate the effectiveness of our

methods by providing error-rate simulation results for a coded

massive MU-MIMO-OFDM system, for two unbiased soft-

output finite-alphabet equalizers, both in line-of-sight (LoS)

and non-LoS mmWave channel scenarios.

1.3. Notation

Uppercase and lowercase boldface letters denote matrices and

column vectors, respectively. For a matrix A, the Hermitian

transpose is AH , the Frobenius norm is ‖A‖F , the real part

is <{A}, and the imaginary part is ={A}. IM is the M ×M
identity matrix. For a vector a, the kth entry is ak, the `2-norm

is ‖a‖2, and the entry-wise complex conjugate is a∗. The kth

standard basis vector is ek. The signum function sgn(a) re-

turns +1 for a ≥ 0 and −1 otherwise. Ex[·] is the expectation

operator with respect to the random vector x.

2. SYSTEM MODEL AND EQUALIZATION

2.1. Uplink System Model

As illustrated in Fig. 1, we focus on a massive MU-MIMO

system where U single-antenna UEs transmit data to a BS

with B antennas. The system uses OFDM with W subcarriers,

where the frequency-domain input-output relation per subcar-

rier w ∈ {1, . . . ,W} is yw = Hwsw + nw. At subcarrier w,

yw ∈ C
B is the vector received at the BS, Hw ∈ C

B×U is

the uplink MIMO channel matrix, sw ∈ SU is the transmit

data vector, where S is the constellation (e.g., 16-QAM), and

nw ∈ C
B is i.i.d. circularly-symmetric complex Gaussian

noise with covariance matrix Cnw
= Enw

[

nwn
H
w

]

= N0IB .

To simplify notation, we will omit the subcarrier index w and

focus (without loss of generality) on a single subcarrier. We

assume that the transmit signals su, u = 1, . . . , U , of the UEs

are i.i.d. with zero mean and variance Es; this ensures that

Cs = Es

[

ssH
]

= EsIU . We also assume that the channel

remains constant over several symbol transmissions, so that

the BS is able to estimate the channel matrix—for simplicity,

we assume perfect channel state information at the BS.

2.2. Unbiased L-MMSE Equalization

A central task at the BS is to generate estimates of the transmit

data vector s using the received vector y and knowledge of

the channel matrix H. At the high bandwidths offered by

mmWave systems, linear estimators are preferable due to their

simplicity. We therefore focus on linear spatial equalizers that

compute estimates s̄ of the transmit signals s as s̄ = WHy.

Here, WH ∈ C
U×B is the linear minimum MSE (L-MMSE)

equalization matrix, which minimizes the MSE defined by

MSE = Es,n

[

‖s̄− s‖22
]

. (1)

Under the statistical assumptions on s and n listed above, the

L-MMSE equalization matrix is given by [16]

WH = (ρIU +HHH)−1HH , (2)

where ρ = N0/Es. The rows wH
u , u = 1, . . . , U , of the

L-MMSE equalizer WH can be computed by solving

wu = arg min
w̃∈CB

‖eu −HHw̃‖22 + ρ‖w̃‖22. (3)

Spatial equalization with the biased L-MMSE estimate for

each user u = 1, . . . , U amounts to computing

s̄u = wH
u y = wH

u husu +wH
u ñu, (4)

where hu is the uth column of H and ñu =
∑U

i=1,i 6=u hisi+n

is the noise-plus-interference (NPI) vector. In general, the

L-MMSE equalizer has rows for which wH
u hu 6= 1. Thus,

to perform unbiased estimation, our goal is to compute the

estimates for each UE u = 1, . . . , U as follows:

ŝu =
s̄u

wH
u hu

=
wH

u y

wH
u hu

= su +
wH

u ñu

wH
u hu

. (5)

In general, the biased s̄u and unbiased ŝu estimates differ:

Biased estimates minimize the MSE in (1), whereas unbiased

estimates typically achieve lower error rates [14].
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3. FINITE-ALPHABET EQUALIZATION

For the high dimensions and data rates generated by mmWave

massive MU-MIMO-OFDM systems, spatial equalization with

matrix-vector products (e.g., using s̄ = WHy) leads to power-

hungry circuitry and large silicon area. To lower power and

area, finite-alphabet equalization, proposed in [1], uses low-

resolution numbers to represent the entries of WH , which

enables the use of low-power and low-area multipliers and

adders. Unfortunately, a naı̈ve quantization of the entries of

the L-MMSE matrix WH would result in a significant error-

rate performance degradation. To mitigate this issue while still

being able to reduce hardware complexity, we proposed in [1]

to use finite-alphabet equalization matrices described next.

3.1. Unbiased Finite-Alphabet Equalization

As defined in [1], a finite-alphabet equalization matrix is a

U ×B matrix that has the following form:

VH = diag(β∗)XH . (6)

Here, the vector β ∈ C
U contains post-equalization scaling

factors and XH ∈ XU×B is a low-resolution equalization ma-

trix with entries taken from a low-cardinality finite alphabet X .

By applying the structure of (6) to the equalization procedure

in (5), per-user unbiased equalization corresponds to

ŝu =
vH
u y

vH
u hu

=
β∗
ux

H
u y

β∗
ux

H
u hu

=
xH
u y

xH
u hu

. (7)

Here, vH
u ∈ C

1×B and xH
u ∈ X 1×B are the uth rows of VH

and XH , respectively. Although unbiased equalization as in (7)

differs from biased equalization β∗
ux

H
u y as originally proposed

in [1], we emphasize that (7), as its biased counterpart, also

reduces hardware complexity. Concretely, the inner product

xH
u y (formed by B scalar products) can be computed with

low-resolution multipliers and adders. The resulting inner

product is then scaled by 1/(xH
u hu), which requires only one

high-resolution scalar multiplication per user.

3.2. FAME: Finite-Alphabet MMSE Equalization

To compute finite-alphabet equalization matrices that minimize

the post-equalization MSE as in (1), the work in [1] formulates

the FAME problem. Analogous to (3), the rows vH
u = β∗

ux
H
u ,

u = 1, . . . , U , of a FAME matrix are obtained by solving

{βu,xu} = arg min
x̃∈XB , β̃∈C

‖eu −HH β̃x̃‖22 + ρ‖β̃x̃‖22. (8)

For a fixed βu, the FAME problem in (8) is NP-hard [17, 18].

To develop practical algorithms, reference [1] reformulates the

problem in (8) using a two-step procedure: First, compute

xu = arg min
x̃∈XB

‖HH x̃‖22 + ρ‖x̃‖22
|hH

u x̃|2
. (9)

Then, extract the scaling factor βu(xu) using

βu(xu) =
xH
u hu

‖HHxu‖22 + ρ‖xu‖22
. (10)

This formulation can be used to derive approximate, low-

complexity algorithms; see Section 4 for more details.

3.3. Soft-Output Finite-Alphabet Equalization

While the paper [1] focuses on hard-output data detection,

coded communication systems benefit from spatial equaliz-

ers that compute soft-outputs. To fully exploit forward error

correction, we first extract the post-equalization NPI variance,

which is then used to generate LLR values. For the uth UE, the

NPI variance is given by the MSE of the unbiased estimate ŝu,

which is computed as follows:

ν2u = Es,n

[

|ŝu − su|
2
]

(11)

(a)
=

Es,n

[

∣

∣xH
u H(IU − eue

H
u )s+ xH

u n
∣

∣

2
]

|xH
u hu|

2 (12)

=
Es

(

‖HHxu‖
2
2 − |xH

u hu|
2
)

+N0‖xu‖
2
2

|xH
u hu|

2 (13)

=
Es

hH
u xu

‖HHxu‖
2
2 + ρ‖xu‖

2
2

xH
u hu

− Es (14)

(b)
= Es

(

(βu(xu)h
H
u xu)

−1 − 1
)

. (15)

Here, (a) follows from (5) and (b) from (10). Note that this

result applies to any finite-alphabet equalizer as in (6), as long

as βu(xu) is computed as in (10).

With this, we can compute soft outputs in the form of

LLR values, by assuming that the residual error ŝu − su is

circularly-symmetric Gaussian with variance ν2u. Concretely,

we compute the LLR values as follows [14, 19]:

Λu,q = log
(

∑

s∈S
(1)
q

exp
(

− |ŝu−s|2

ν2
u

))

− log
(

∑

s∈S
(0)
q

exp
(

− |ŝu−s|2

ν2
u

))

. (16)

Here, S
(1)
q and S

(0)
q are the subsets of the constellation S

in which the qth bit is 1 and 0, respectively. We note that

computing soft outputs for finite-alphabet equalizers entails

the same complexity as for infinite-precision L-MMSE [14].

4. COMPUTING FINITE-ALPHABET EQUALIZERS

We now summarize two algorithms put forward in [1] to obtain

the rows xH
u of XH in (6). For both algorithms, once xH

u is

known, the associated βu(xu) is computed using (10); this

factor is required to compute the variance ν2u using (15), which

is then used to compute LLR values with (16).
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Fig. 2. BER of a B = 256 BS antenna, U = 16 UE, 16-QAM, rate-3/4 coded OFDM system. FAME-FBS runs tmax ≤ 5
iterations for all but the 1-bit non-Rayleigh and 2-bit non-LoS cases, for which tmax = 20. For these last scenarios and the

Rayleigh case, FAME-FBS is initialized with the MRC equalizer HH ; otherwise, it is initialized with the FL-MMSE XH .

4.1. Finite-Alphabet L-MMSE (FL-MMSE)

As described in [1], a simple way of computing finite-alphabet

equalization vectors xH
u is to take a row of the infinite-

precision L-MMSE equalizer wH
u in (2) and quantize its

entries to low resolution. Note that this approach, dubbed

FL-MMSE, does not need to solve the FAME problem in (9).

To quantize a row of the L-MMSE matrix wH
u , we follow the

procedure described in [1]: We find the maximum-magnitude

entry wmax in [<{wH
u },={wH

u }], and quantize the entries of

<{wH
u } and ={wH

u } using uniform-width bins across the

range [−wmax, wmax]. Each bin is represented by its centroid

value. Then, the centroid values are scaled by the same factor

so that all of them are integers, which can be represented in

hardware using few bits. Note that such scaling does not affect

the value of the objective function in (9).

4.2. FAME via Forward-Backward Splitting (FBS)

As detailed in [1], the FAME problem in (9) can be approxi-

mately solved with FBS [20, 21], resulting in the FAME-FBS

procedure executed for t = 1, . . . , tmax iterations:

z̃(t+1) =
(

IB − τ (t)H(IU − γ(t)eue
H
u )HH

)

x̃(t) (17)

x̃(t+1) = proj(z̃(t+1)). (18)

The proximal operator proj(z̃) = sgn ({z̃})min
{

ν(t)|{z̃}|, 1
}

is applied element-wise and separately to <{z̃} and ={z̃}.

Here, {τ (t)}, {ν(t)}, and {γ(t)} are per-iteration parameter

sets that are tuned empirically. This iterative process can

be initialized with the maximum ratio-combining (MRC)

equalizer x̃(1) = hu or with the result xu of FL-MMSE.

The output of the final iteration, x̃(tmax+1), is quantized to

the finite-alphabet set X by using the same approach as for

FL-MMSE but with wmax = 1 for all UEs.

5. SIMULATION RESULTS

Fig. 2 shows coded bit error-rate (BER) for FL-MMSE and

FAME-FBS using 1 to 3 bits per real and imaginary part

for each entry of the low-resolution equalization matrix XH .

The simulation results correspond to a B = 256 BS antenna,

U = 16 UE, 16-QAM system, with OFDM transmission over

W = 1200 subcarriers. We use per-UE rate-3/4 convolutional

codes and soft-input Viterbi decoding. The BER curves are

obtained for three propagation conditions: (a) Rayleigh fading,

(b) non-LoS, and (c) LoS. To model mmWave systems, the

non-LoS and LoS channels are obtained using the QuaDRiGa

model [22] with the “mmMAGIC UMi” scenario; we consider

a uniform linear array with half-wavelength antenna spacing

and transmission at a carrier frequency of 60GHz. Each sub-

carrier has a bandwidth of 240 kHz and power control ensures

a ±3 dB power variation among UEs.

From Fig. 2, we see that the coded BER performance

of FAME-FBS meets or exceeds that of FL-MMSE for all

of the considered scenarios. The discrepancy between these

two methods decreases when increasing the number of bits

used for the finite-alphabet equalization matrix. While with

1-bit, FAME-FBS offers more than 10× lower BER at 6 dB

SNR compared to FL-MMSE for the non-LoS channel, the

performance of the 3-bit FL-MMSE and FAME-FBS is prac-

tically the same and approaches that of the infinite-precision

L-MMSE by less than 1.5 dB for all considered scenarios.

6. CONCLUSIONS

We have extended the finite-alphabet equalization paradigm

introduced in [1]. Specifically, we have proposed an unbiased

soft-output finite-alphabet equalizer that can be used in coded

communication systems. We have derived a post-equalization

MSE expression that can be computed efficiently and is used to

compute LLR values. Simulation results for a coded mmWave

massive MU-MIMO-OFDM system have shown that finite-

alphabet equalization delivers a competitive error-rate that

approaches that of the infinite-precision L-MMSE equalizer,

so much as virtually reaching it with as few as 3 bits, even

for realistic mmWave channels. These results pave the way

for all-digital BS architectures that reduce power consumption

and silicon area, while preserving high spectral efficiency.
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