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Layer-to-Layer Predictive Control
of Inkjet 3-D Printing

Uduak Inyang-Udoh

Abstract—This article develops and experimentally vali-
dates a distributed predictive control algorithm for closed-
loop control of inkjet 3-D printing to handle constraints,
e.g., droplet volume bounds, as well as the large-scale
nature of the 3-D printing problem. The large number
of decision variables, i.e., droplet volumes at each grid
point, in high resolution inkjet 3-D printing makes cen-
tralized methods extremely time-consuming, thus, a dis-
tributed implementation of the controller is necessary. First,
a graph-based height evolution model that captures the lig-
uid spreading dynamics is described. Based on this model,
a scalable closed-loop control algorithm using distributed
model predictive control (MPC) that can reduce computa-
tion time significantly is designed and experimentally im-
plemented. The performance and efficiency of the algorithm
are shown to outperform open-loop printing and closed-
loop printing with existing centralized MPC methods.

Index Terms—Additive manufacturing (AM), inkjet 3-D
printing, model predictive control (MPC).

|. INTRODUCTION

NKIJET 3-D printing is a type of additive manufacturing

(AM) process, which builds 3-D parts layer by layer. In inkjet
3-D printing, photocurable plastic resins are directly deposited
by ejection from a nozzle to build 3-D parts, with ultraviolet
(UV) light curing in between layers. Several commercial printers
build parts using this process (PolyJet printers by Stratasys and
MultiJet printers by 3-D Systems).

The need for closed-loop control has been well-recognized
in the AM literature. There have been significant advances in
geometry-level feedback control in many AM processes (such
as laser metal deposition [1], [2], laser metal-wire deposition [3],
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laser cladding [4], and exposure-controlled projection lithogra-
phy [5]), where height measurement feedback has been used for
model-based control of layer geometry. For inkjet 3-D printing,
real-time control of process parameters such as building plate
temperature, nozzle back pressure [6], and jetting frequency [7]
has already been demonstrated in prior literature. However,
related work on geometry level in-process feedback control is
sparse. The number of layers to be deposited and droplet patterns
for each layer are determined in advance and are not adjusted
through feedback. This open-loop printing strategy makes the
printing process vulnerable to process uncertainties such as
droplet shapes, sizes and locations, resulting in parts that have
poor geometric accuracy.

Early work on geometry-level control of 3-D printing started
from partial (local) geometry control, for example, to regulate
the droplet shape [8], or on a higher level, to control the bead
width and height [9]. More recently, closed-loop control meth-
ods that directly monitor the whole-part geometry have been
proposed. In [10], a greedy geometric feedback algorithm that
iteratively searches for locations to deposit droplets based on
the tracking error of geometric shape is proposed and demon-
strated. Naturally, this greedy search approach cannot account
for interactions between droplets and the surface evenness since
it does not model these effects.

In other more recent work, each droplet deposition is modeled
as a spatial impulse response or 2-D convolution kernel [11].
The height evolution is then assumed to be a superposition of
the droplets [12]-[14]. While the model parameters in [11]-[13]
are linear time-invariant (LTI), those in [14] vary spatially and in
time. This enables [14] to capture nonlinearities associated with
deposition and the effect of the surface below. However, as with
the LTI models, it assumes no neighboring droplet interactions.
Nonetheless, control algorithms based on such LTI models have
been developed and shown to improve geometry tracking. Lu
et al. [15] present an empirical model that incorporates the effect
of neighboring droplets. The predictive control algorithm based
on this model can address both geometry tracking and surface
evenness; but because of the nonlinearity of the model, it suffers
from poor scalability for high-resolution printing. Even with a
linear model, as the size of the printing region increases, the
number of grid points increases exponentially and the control
problem becomes computationally burdensome.

To address this issue, a distributed model predictive control
(MPC) scheme for inkjet 3-D printing was proposed in [16].
Here, a linear model that incorporates interaction between
droplets was used. It was shown in simulation that in comparison
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Fig. 1. (a) Schematic block diagram of the closed-loop layer-to-layer

printing process. (b) lllustration of closed-loop printing process with
layer-to-layer height evolution model.

to centralized MPC, the distributed controller offers significant
reduction in computational time without compromise in tracking
accuracy. This article extends the work presented in [16] through
experimental demonstration and validation of the MPC scheme.
Furthermore, we prove analytically that the proposed MPC
algorithm stabilizes the closed-loop system. The computational
and tracking performance of the control algorithm is evaluated
by printing various geometries. We show that the closed-loop
scheme provides significant performance improvement over
open-loop printing, while being computationally scalable.

The rest of this article is organized as follows. The general
printing control problem is described in Section II. Next, the
model used in the control algorithm design is presented in
Section III. The MPC problem is formulated in Section IV, while
the distributed MPC-based algorithm is developed in Section V.
Then, in Section VII, experimental printing results using the pro-
posed algorithm is compared with open-loop printing. Finally,
Section VIII concludes this article.

[I. PROBLEM DESCRIPTION

The general formulation of the printing control problem is
presented in this section. The printing region is discretized into
an n; X n, grid space based on the printing resolution: total
number of points n = n, - n,. After printing each layer, the
height profile of the printed part is measured and the con-
troller uses the measurement to generate an appropriate grid
pattern of droplets for the next layer. This closed-loop layer-to-
layer printing process is as shown in Fig. 1(a). Rp, Hr, and
Ur, € R"=*™ are matrices denoting the final height profile, the

Fig. 2. Printing process for one layer. The nozzle moves along a
predetermined path and deposits droplets sequentially.

current height profile, and the input sequence (droplet pattern) at
layer L.

For effective geometric control of the shape of the part, a
model that captures the printing dynamics is necessary. To model
the dynamics, we express Rr, Hy, and Uz, in vectorized form
re, hr, and ur, € R™. Fig. 1(b) illustrates the printing process
for a 3 x 3 grid size and the printer replaced with a height-
evolution model (presented in Section III). The control objective
is to generate a droplet pattern u, that tracks a reference geome-
try rz, for each layer. The input droplet volume deposited at each
grid location i is constrained by: ur, (i) € [Vinin, Vinax),» Where
Vinin and V5 are the minimum and maximum droplet volumes.
Specifically, the goal is to minimize the geometric tracking
error e+ = hy+1 —rp+ based on feedback of the height
profile Ay

IIl. MODEL DESCRIPTION

In this section, the height evolution model to capture deposi-
tion and spreading of the ink droplets in [17] [see Fig. 1(b)] is
presented. The key idea is that fluid flows from higher to lower
heights proportional to the height differences.

A. Layer-to-Layer Height Evolution Model

During the printing process, droplets are sequentially de-
posited along a predetermined printing path, which usually is
araster path, as shown in Fig. 2. It is shown in [17] that by using
adirected graph, the height evolution from time step to time step
can be written as

hi1 = Aghy + Bruy, (D

where hy, € R"™ is the column vector that represents the height
profile at the kth time step; Ay, = (I — DF}, D7) is the state ma-
trix that captures the effect of liquid flow between neighboring
locations, D € R™*! being the incidence matrix corresponding
to a digraph with [ links, and F' € R™!, a diagonal positive defi-
nite matrix containing the flowability parameters; and, B, € R"
is the vector containing a unit droplet’s shape and location at the
kth time step.

Moreover, when the printing trajectory is repeated, the time-
step height evolution of (1) can be lifted for each layer to yield
a layer-to-layer height evolution model

T
h(L+1)-n =Ahp,+Blu; w ... up un} 2)
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where A € R is [[,_, A; and B € R™ " is
() () 2 (1120

(Hf:fb Ai) Bri1+- AnBnoa Bn]

Henceforth, for brevity, we abuse notation and denote
hr.n = hp, the height profile of the Lth layer.

B. Model Properties

Since this model is based on fluid flow from higher to lower
heights and volume conservation, the open-loop system is stable
at each time step. Note (p(Ay) < 1Vk and furthermore, since
Ay is symmetric, omax(Ar) = p(Ax) < 1Vk. As a result,
A =T]._, A; satisfies:

1) Ais Schur, that is, p(A) < 1 where p(A) is the spectral

radius of A;
2) the layer-to-layer height evolution is passive, that is,
Umax(A) S 1.
Proof: Since oymax (Ag) <1VE, omax(A) < H;:n Tmax(A;)
<1.
Furthermore, p(A) < omax(A). Hence, both statements
mentioned above hold true. |

V. MODEL PREDICTIVE CONTROL

In this section, a model predictive controller for the inkjet
printer is formulated. Several features of the printing process
make a predictive controller suitable for the geometry-level
control: the reference profiles of all future layers are known a
priori; the profile of each layer can be measured after itis printed;
the reference profile and control space are high dimensional; and
the control input is constrained.

A. Centralized MPC

Suppose we wish to find a sequence of optimal control inputs
that track the reference over the next /N layers. This may be
formulated as a standard MPC problem, where a cost-function
is minimized over a finite receding horizon of N layers

min J(HL, UL)
Ur

S.t. hi+l\L:Ahi\L+Bui\Lv i:{O,l,...,N—l} €)]

5ULT <c

where Up = [ug|f,, - . .,uN_”L]T, uyr, is the idth layer
control in the receding horizon, UL, = UL, while Hj =
iy hN‘L]T, h 1, is the ith layer height profile in the same
horizon, with hq , = hy, being the current measurement.

The cost function is designed to penalize tracking error

J(Hy,Ur) = (hny —rin) " Plhi — rair)

+Z (hijp —rip) " Qi — i)+, Ruy ]
“)

where r; 7, is the corresponding ith reference profile in the
receding horizon at layer L. P, ), and R € R™*™ are (semi)

|ooo’*\ooo|
L) IO
looo e 0o 0
|ooo LK)
e e o e e o
|ooo ,ooo|

Fig. 3. To decompose the optimization problem, the printing region is
separated into [ subregions (here, four subregions).

positive-definite matrices; () and R are the state and input cost
matrices, respectively, and P is the terminal cost matrix that
can be designed to guarantee MPC stability. In (3), £ and c are,
respectively, a matrix and a column vector defined by

Ey -~ 0 bo
e=1: : : c=1 ®)
0 - Eno bn-1
where E; = [—I I]7, and b; = [~ujow Unigh] defines the

upper and lower constraints on the input. The optimization is
performed each layer, and u(‘;‘ ;, is applied.

This MPC problem can be solved using well-known (central-
ized) MPC design methods for quadratic convex problems [18].
However, for increasing size of the optimization problem (pre-
diction horizon NV, grid size n), computation times using stan-
dard MPC can become unfeasible. Centralized formulations,
scale with O(N>n?) using, for example, interior-point convex
solvers [19]. In the following section, a distributed approach to
the problem that reduces computation time is developed.

V. DISTRIBUTED MPC

In this section, we present a distributed control algorithm that
provides efficient solution to the large predictive control that was
presented in [12]. First, the centralized control problem is par-
titioned with the printing region. Then, the dual decomposition
method is used for the distributed algorithm. Finally, we certify
stability of the closed-loop system.

A. Partitioning of the Optimization Problem

The whole printing region is separated into [ subregions, as
shown in Fig. 3. Consider the partitioning of the layer evolution
model (2) introduced in Section III

h . A An A [RY
h . B Ay Ax Aoi| |13
Ry A Ap Au | |RY
B Bz Bii| [ul
Bo Bn -+ By UZL

+ 1 . . . e ©
Bu Bp - Byl |[ub
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For the partitioned system (6), the cost function becomes

!
J(hy,UL) = Z ((hg\f\L - TgV\L)TPj(hng - Tgv|L)

j=1
+ [<hz\L - TzJ'\L)TQj(hZM - r§|L)

=0
+ (uf) )" Ry (u]))]). @)

Thus, a partitioned quadratic program (QP) is constructed
minimize 2z’ Hx
x
subjectto Fx =z
Tz <q 3

where the optimization variable consists of both the predicted
tracking error and future inputs

S
oL = o

i
P —=mi

T | —
. = [ME MR i (10 (9)

J

’U’O\L
J

x UL

J
UN_1|L

The Hessian H consists of the tracking penalty matrices. It is
a diagonal matrix that is described by

[Hy 0 0 0
0 Hp 0 0
H= :
0 0 . 0
[0 0 0 Hy
[(Q; 0 0 0] 0 0 0]
0O~ 0 0|0 0 0
0 0@ 0[]0 0 0
Hy;=|0 0 0 P | 0 0 0 |je{1,. .. i}
00 0 O0]R 0 0
00 0 0|0 " 0
(0 0 0 0| 0 0 R

The equality constraint captures the layer dynamics and can be
partitioned similarly

Fii Fip Fiy | |z 21
Iy Py Byl |z %

=1. (10
Fy Fpo oo Iy |lm 2

where
Fy
(-1 0 0 o0 0 0 0
A -1 0 0 Bii 0O 0
— 10 A - 0 0 0 B 0 (11)
L0 0 Ay —1 0 O Bi;
o 0 -~ 0 0 0 o0 0
Ay 0 -« 0 0] B;; O 0
| 0 O Ai; 0 0 0 - By
The column vector z is defined as
21 Wi Iy
Z W, I
z = = - F (13)
2] Wi | Iy
where the elements in z are composed of
- Ta\L -
oo I
oL 1L
0, :
W= |02 | ,0;= | e | Vie{l,... ). (14
. 0o
. 01
| On | .
LON-1 ]
The inequality constraint in the QP (8) is decomposed similarly
Tw 0 0 0] [z Q
0 Tn 0 Of |2 "5
: <. 15)
0 o0 .0 :
0 0 0 Ty| |m qQ

where T} and ¢; are described by

0|0 0 ,
Tjj[o gjl,qj{c—j] vie{l,... 1}

In this formulation, x, H, F', z, T, and g remain separable
into [ building blocks such that the problem is naturally decom-
posable. For a large optimization problem that is coupled, dual
decomposition allows for separation of the minimization-step of
the central problem [20]. This method solves the optimization
problem by price discovery using a gradient step. For a set price,
the problem becomes separable and can be solved in parallel,
which allows for distributed optimization.

(16)
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B. Distributed MPC

This subsection provides the algorithm for distributed MPC
for the height tracking problem. The algorithm uses the dual
decomposition method discussed in [20] to solve the decompos-
able optimization problem of Section V-A. For the partitioned
optimization problem in (8), we construct the Lagrangian

L(z,2) = Z [J??Hjl‘j -‘r)hf (Zj - Z [Fjpxp}>] .7

Jj=1 P

The decomposed optimization problem is now given by [21]

l
s w3 o, 47 (5= S50 )|

j=1 p
subjectto Tx < q. (18)
This optimization problem may be rewritten as
!
Z mm xHasj—l—k zj — T ZFPJA
j=1 P
L;
subjectto Tj;x; < qj. (19)

Notice that the new problem involves maximizing a sum of [
separate and smaller QPs L j over “price” A. When the maximum
is obtained, the constraints are, by definition, satisfied. The
optimal price is found by gradient ascent with the “price update”:

AT =% 4 45Vg* (1) (20)

where 7° is the step size. We compute the step size using
an approximate Newton’s method given in [22], avoiding the
expensive computation of the Jacobian Vg

. _(vgs _ vgsfl)T()\s o )\1571)
(Vg* = Vg )T(Vg* = Vg*~!)’

21

With the defined local minimization in (19) and price update
method in (20) and (21), an algorithm for distributed MPC can
be constructed. The algorithm is summarized by the pseudo
code presented in Algorithm 1 and presented briefly in the
following:

1) In lines 1-4, the input and initialization of the algorithm
is defined. The input includes the current height profile
hr,, reference profile r Ly, (1f applicable) the optimal price
of the previous layer AT 7%, the MPC problem matrices
(H,F,T,q), the number of partitions ! and the price
convergence criterion A.

2) In lines 5-7, the local minimization is performed based
on the current price A°.

3) Inlines 8-10, the price update is performed by a gradient
ascent step.

4) In lines 11-16, the stopping condition is posed based
on convergence of the price L. After convergence, the
optimal input for the next layer is extracted.

Algorithm 1: Distributed MPC Algorithm.
1: Input: hL,rL,AL L (H F,T,q), Smaxs M

2:  Output: uz,
) ce e 0 .S

3: Initialize: ~(), )L(L) = A7",
4: fors=1,2,...,8max do
5: forj=1,2,...,ldo
6: Solve x;sﬂ) =

argmin,,_ x Hjxj + ()" 2 —xz] Z [ijkz(f)}

p
Lj(x;, 1))
subject to T} x; < g;

7. end for
8:  Compute Vg(*) = (Fz — 2),
9:

V(S) _ —(Vg(s) _ vg(sfl))T()L(s) _ )\(5,1))

(Vg = VglemD)T(Vgl) — vgls-1)

10:  Update AT = A(s) 4 ~45v74(%)
. s ([ HD A=)
11: if e < AHAH then

12: SL=s

13: Extract u;, from x5¢
14: Break;

15: end if

16: end for

C. Stability of MPC

Stability of MPC algorithms for LTI systems has been well-
studied since early 1980s [23], where the value function of a
finite horizon optimization problem is used as a Lyapunov func-
tion to establish stability. Here, the so-called direct method [24]
based on the idea employed in [25] and [26] is applied to show
stability. For an MPC with the cost function

J(hi,UL) = (hnyr — i) " P(hr — maiz)

D1

i=0

Q(hi|L - Ti\L)

i L — ’rl\L

+ (wiL — U;’]L)TR(%'\L — )] (22)
where ho = hr. u;“ ;, is the ideal input that satisfies
TiL4+1 = ATZ‘|L + Bu;“L (23)
Stability Lemma: The closed-loop MPC system
hry1 = Ahr + BEKwpc(hz) (24)

is asymptotically stable at the point hy = rp,u; = uj, if the
following conditions are satisfied:

1) @ >0and R > 0;

2) the terminal cost weight P satisfies P > 0 and

(A+BEK)TP(A+BK)—-P < -Q - KTRK (25)
where K is any matrix with p(A + BK) < 1.
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Fig. 4. Algorithm 1 computation time for various number of partitions
I. Simulations are run for three 64 x 64 geometries with N = 2. (Left)
Average time taken for the local minimization in lines 5-7 of Algorithm 1.
(Right) Mean time taken for the solving the entire dual problem at each
layer (lines 4—16). Lowest computational times lie in 2 < I < 2°.

Proof: The proof is standard and is in the Appendix. |

Remark: This proof is contingent on finding a stabilizing
feedback control K, such that (25) can be used to obtain P
from @. Since A is stable, K can be trivially chosen to be 0.
Furthermore, since A is passive, K can be any passive feedback
controller, thereby expanding the design space of P and Q.
Finally, because the open-loop system is passive, the algorithm
is inherently robust to small parametric variations.

VI. ALGORITHMIC PERFORMANCE

This section evaluates the algorithmic performance of the
distributed MPC against centralized MPC. First, we discuss the
effect of partitioning the MPC. Next, we compare performance
based on layer height tracking and the computational expense
of the distributed and centralized schemes at different grid sizes
and prediction horizons.

A. Effect of Partitioning

In Algorithm 1, the number of partitions ! influences both
how many quadratic subproblems Iij will be solved for a given
price update and how many price updates are required for
convergence. Increasing the number of partitions increases the
number of subproblems but lowers the cost of each. Fig. 4 shows
how the number of partitions affect computational time of the
distributed algorithm for three different five-layered parts sim-
ulated on a n = n; - ny, = 64 x 64 grid space with prediction
horizon N = 2. The average time taken for each subproblem
decreases with number of partitions. However, the average time
for all subproblems only slightly decreases with increase in
partitioning; beyond 2% = /n, the computational cost rises.

In general, for a given price A, it is computationally less expen-
sive to minimize the set of quadratic problems {f/j 1 <5<}
than the primal problem in (8). However, the minimization of all
L ; must be recomputed iteratively till the price A converges. The
right plot in Fig. 4 show the total time taken (averaged across
layers) to solve the dual problem till convergence for different
partition numbers. Note that the convergence criterion was kept

TABLE |
NUMBER OF ITERATIONS (PRICE UPDATES) AND TRACKING ERROR ON
SOLVING ALGORITHM 1 FOR A 64 x 64 FIVE-LAYERED GEOMETRY AT
VARIOUS NUMBER OF PARTITIONS [

I 2 4 8 | 16 | 32 | 64 | 128 | 256
Tterations 1o 1 g ¢ [ 98 | 10.6 | 106 | 10.6 | 104 | 104
(Average)
[lell2 Tracking | 43 103 [ 032 [ 032 | 032 | 032 | 032 | 032
Error (mm)

TABLE I

TwoO-NORM OF THE LAYER HEIGHT TRACKING ||e||» FOR OPEN-LOOP,
CENTRALIZED, AND DISTRIBUTED MPC

OL [mm] CMPC [mm] DMPC [mm]

oy | Nelle [Telle [ Tellz [1iells | Tiello [ Tellz | llell
(N=1) | (N=3) | (N=5) | (N=1) | (N=3) | (N=5)

80 1.14 0.85 0.69 0.67 0.84 0.69 0.68

90 1.22 0.92 0.73 0.71 0.92 0.73 0.72

100 1.31 0.99 0.77 0.75 0.99 0.77 0.76

110 1.41 1.05 0.82 0.79 1.05 0.81 0.80
120 1.51 1.14 0.86 0.84 1.14 0.85 0.84

constant for all partitions. The plot shows similar trend as that on
the left suggesting that the number of iterations (recomputations
to update price) required for convergence does not vary much.
This is in fact shown in Table I. Table I additionally shows that
the tracking error is not changed by the number of partitions. In
the rest of this work [ is kept less than (N — 1)/n.

B. Height Tracking Performance

Next, we simulate open-loop and closed-loop MPC printing
for 15 layers of a cross-shaped part. At each layer, we evaluate
the optimal input for the successive layer(s). In the open-loop
simulation, a predetermined input profile of the next layer is
used. On the other hand, the centralized MPC is implemented by
solving (3) with knowledge of the current height profile and ref-
erence profiles of NV subsequent layers. The distributed MPC is
implemented following Algorithm 1 with [ = (N — 1)4/n/10.
For capturing jetting uncertainty, droplet shapes for By, are se-
lected randomly from a set of experimentally measured droplets.
Meanwhile, in the nominal model used for MPC, the average
droplet shape is used.

Table II summarizes the open-loop, centralized MPC and
distributed MPC performances in terms of layer height tracking
for different grid sizes and prediction horizons. The centralized
MPC and distributed MPC improve the layer height tracking
compared to open-loop printing. We observe that the distributed
MPC provides nearly identical tracking performance compared
to the centralized MPC, as deviations in terms of layer height
tracking are within margins of uncertainty for all simulations
conducted. This implies that the solution to the distributed
problem is close to the centralized solution.

C. Computational Performance

We now compare the computation times for the centralized
and distributed MPC algorithms for different grid sizes and pre-
diction horizons. The computation time results are summarized
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TABLE IlI
AVERAGE COMPUTATION TIME (ONE LAYER) FOR
CENTRALIZED AND DISTRIBUTED MPC

CMPC in [s] DMPC in [s]
vn | N=1 N=3 N=5 N=1 | N=3 | N=5
80 124 | 1664 | 461.6 3.1 149 | 275
90 159 | 204.8 644.9 3.8 195 | 359
100 | 21.5 | 2804 | 853.7 4.6 243 | 459
110 | 269 | 3548 | 1169.8 | 54 283 | 55.6
120 | 34.7 | 484.8 | 1663.4 6.3 333 | 68.3
s Square Prism s Square Frustum Cross Frustum
0.12
6 6 6
— —_ — 0.1
£ £ € E
£4 E4 E4 008 E
>2 >2 >2 0.06 -
0.04
% 2 4 6 s % 2 4 s & %0 2 4 6 8 @

X [mm] x [mm] x [mm]

Fig. 5. Reference profiles for three geometries printed.

in Table III for the two methods for comparison. It is evident that
the distributed approach significantly reduces the computation
time; in most of the cases, by over an order of magnitude. The
distributed approach also shows better scaling in terms of grid
size: the computation time scales only linearly with the grid size
in case of distributed MPC; the scaling is exponential with the
centralized MPC.

VII. EXPERIMENTAL RESULTS

In the previous section, it was shown through simulation stud-
ies that the distributed algorithm significantly reduces computa-
tional time as to make feedback control in real-time practicable.
It was shown that this significant reduction in computational time
does not compromise layer height tracking accuracy. Hence,
it suffices in practice to implement feedback control with the
distributed algorithm. In this section, we present results from
experimental implementation of the distributed controller on
several printed parts.

Experiments are conducted on the inkjet 3-D printer setup
described in [15]. The setup comprises an ink-jetting system
that dispenses the liquid polymer, a motion system to drive the
substrate as printing proceeds, an UV curing box that solidifies
the liquid material and a 2-D laser sensor, which measures the
printed part’s height profile. The components are controlled from
a computer.

1) Candidate test parts: To validate the DMPC algorithm,
we demonstrate the performance of the closed-loop algorithm
under different experimental scenarios. Three geometries (a
square prism, a square frustum, and a cross-shaped frustum)
with references shown in the Fig. 5 were printed. The sides of
all geometries slope since vertical walls cannot be fabricated
with straight edges using an inkjet printer. The first geometry is
basic, sloping only slightly as is necessary for fabrication and
measurement. The second shape is less prismatic, that is, the
cross section of each layer is varying. Finally, for the third case,

TABLE IV
NORMALIZED DIFFERENCE BETWEEN CMPC
AND DMPC CONTROL INPUT (d,,)

Part Shape Layer 1 | Layer 2 | Layer 3
Square prism 0.027 0.037 0.036
Square frustum | 0.049 0.057 0.052
Cross frustum 0.060 0.054 0.057

we print a thin and tall cross-shaped part where inward corners
(nonconvex geometry) are present.

2) Algorithm parameters: The distributed algorithm was
initialized with the following parameters: partitioning [ = 4,
receding horizon N = 2, grid size n = n, X n, = 64 x 64,
maximum number of iteration Sy,.x = 300, and price conver-
gence value A = 107%. The cost function weights are selected as
P =(Q = 10°R € R™*" for control emphasis on height track-
ing. The algorithm was implemented on a 3.4 GHz Intel Core i7
16 GB SDRAM computer.

3) Control implementation: The controlled printing process
proceeds as follows. At each layer, the current height profile is
measured. With the given reference profile and the abovemen-
tioned parameters, Algorithm 1 is solved to find the next layers
control input u .. Since the printing setup accepts only quantized
values for uy, each QP f/j in the algorithm is solved using
Gurobi’s mixed-integer solver on MATLAB. For comparison,
all three geometries are also printed in open loop.

A. Comparison of Control Inputs Produced by
Centralized MPC and Distributed MPC

We first establish that the centralized and distributed MPC
algorithms effectively produce the same control input. In order
to do so, for each of the test parts, we compare the control input
produced by the CMPC and the DMPC algorithms from the same
experimental height profile measurement. We then evaluate them
by determining the normalized error between the two

5 — |[ucmpc — upmec|2

w =

||UCMPC| |2

in Table I'V. We note that the worst-case difference is within 6%.
Thus, these results demonstrate that the inputs from the CMPC
and DMPC are identical to within the precision of what can
be commanded to the printer. Hence, we proceed only with the
DMPC given the computational burden imposed by the CMPC.

B. Comparison With Open-Loop Control

We now present a comparison of printing accuracy between
open-loop and closed-loop distributed MPC. The reference ge-
ometry and printing results for the square prism and cross frus-
tum are shown in Figs. 6 and 7, respectively. The error profiles are
shown in Figs. 8 and 9. These profiles emphasize the improve-
ment in geometric accuracy. The RMS errors from the open- and
closed-loop printings are summarized in Table V. The table also
shows the side-wall RMS error of each part, indicating that both
side-wall accuracy and overall surface accuracy are significantly
improved. RMS errors of 16.4 ym, 11.3 ym, and 13.8 um are

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on September 04,2020 at 21:36:54 UTC from IEEE Xplore. Restrictions apply.



1790

IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 25, NO. 4, AUGUST 2020

Reference

M
'Z/,’,'fm////;/l/, Il
6 " /f,’fllll,f{//{!!///////
4

&
S

"y

y [mm]

Open-Loop

Ay
//////,'0 N

Closed-Loop

T v
\\\\}\‘R“&“ﬁ\\\\}.‘&‘é\\:&.‘;

T

Fig. 6. Printing results comparison between open-loop printing and distributed MPC printing for the square prism.
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Fig. 7. Printing results comparison between open-loop printing and distributed MPC printing for the cross-shaped part.
Open-Loop Printing Distributed MPC Printing TABLE V
RMS Error = 16.4 um RMS Error = 10.5 um COMPARISON OF RMS ERROR OF PRINTED PARTS
_ Overall RMS % RMS Error -
£ Error (pm) 7 Side Wall (pm)
= Part Shape OL CL Improv. | OL CL
Square prism | 16.4 | 10.5 36 12.1 8.7
Square frustum | 11.3 6.9 39 9.1 52
) Cross frustum | 13.8 | 10.6 23 13.1 10.1

ylmm} 0 o ylmm 0 ¢

x [mm] x [mm]

Fig. 8.  Error profiles of open-loop printing and distributed MPC printing
for the square prism.

Open-Loop Printing
RMS Error = 13.8 um

Distributed MPC Printing
RMS Error = 10.6 um

y[mm] 0 o

X [mm]

X [mm]

Fig.9. Error profiles of open-loop printing and distributed MPC printing
for the cross frustum.

obtained with open-loop printing, while the corresponding RMS
errors using distributed MPC are 10.5 pim, 6.9 ym, and 10.6 pm.
Similar performance improvement is noted for side-wall error
accuracy as well.

The first row and third rows displays results from parts shown earlier.

C. Layer-to-Layer Behavior

An interesting phenomenon observed during open-loop print-
ing (see Figs. 6 and 7, middle plot) is that the height profile
typically exhibits a bulging effect at the edges. For the open-loop
printed cross in Fig. 7, each arm, in fact slopes upward though
the droplets are evenly distributed. This behavior is due to the
fluid’s surface tension and is the main source of the deviation of
the part from the reference. Fig. 10 shows cross-sections through
the first, third, and fifth layers of the square and cross frustums
for both the open-loop and closed-loop cases. For the open-loop
printing case, the cross sections indicate that the bulge due to
surface tension is growing across the layers (see Fig. 10 top).
However, the evolution of the part never becomes unstable since
volume is conserved. On the other hand, the distributed MPC
compensates for the surface tension dynamics allowing the part
conform to the reference geometry through all the layers (see
Fig. 10 middle). This is highlighted in the layer to layer RMS
error evolution plot (see Fig. 10 bottom) comparing open-loop
with closed-loop control.
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Fig. 10. Comparison between cross-sections of open-loop printing

and distributed MPC printing for square and cross frustums. Cross-
sections through the first, third, and fifth layers are shown. The RMS
Error across the five layers is plotted at the bottom.

D. Discussion

By implementing the distributed MPC algorithm for inkjet
3-D printing, we have demonstrated the following:

1) For practical printing applications with large grid sizes,
predictive feedback control of the process is numerically
tractable and may be efficiently solved on a standard
personal computer.

2) The distributed controller is demonstrably capable of
handling disturbances and model uncertainties associated
with a variety of actual printing scenarios.

3) The time required for solving the DMPC to determine
the control input is much smaller than print time. Typical
print time for a 64 x 64 grid size layer is about 3 min
while the control algorithm implementation (including
feedback measurement layer scanning and computation)
requires about 15 s.

The value of implementing feedback control in 3-D printing
is dependent on application; that is, the additional cost and
time required for feedback should be offset in value by the
precision added by control. In this article, we have demonstrated
that we can in fact substantially improve the printing precision
in inkjet 3-D printing on the geometry level using MPC, and
that the otherwise computational expense associated with such
geometry-level feedback control can be sufficiently expedited so
this improvement in printing precision is practicable in real time.
This resultis particularly relevant in 3-D printing of polymers (as
conducted in this work) since polymer parts, unlike printed metal
parts, may not require or be suitable for mechanical finishing.

VIIl. CONCLUSION

This article investigated advanced modeling and closed-loop
control for high resolution inkjet 3-D printing. Specifically, this
article has presented the printing control objective as a graph-
based MPC problem. Then, a distributed control scheme is used
to efficiently solve this computationally expensive problem. We
demonstrated that this distributed control scheme offers a similar
performance as centralized MPC at significantly reduced ex-
pense. The scheme was experimentally validated in closed-loop
printing of various parts and showed substantial improvement
in printing accuracy over open-loop printing.

APPENDIX

We start with the assumption there exists an optimal control
input u} suchthatry | = Arp 4+ Buj.Letxr = hy — rp and
wpr, = ur, — u},, then the cost function in (22) is

N-1
J(xL, WL) = x%‘LPxN“; + Z |:$£LQ$1‘L + ’LUg‘HLRU}Z-‘L}

i=0

(26)
where ToL = TL- Thus, we want to show that the closed-loop
MPC system 41 = Axy, + BKwpc(zr) is asymptotically
stable at the equilibrium origin. Here, the following Lyapunov
function is used to prove the stability

V(zp) = min J(zg, Wg,). (27)
WL
Since () > 0 and R > 0, it follows that:
D V(0) =0;
2) V() <ETQ¢E VE#0;
3) V(§) = o as ||£]| — oo.
We need to show that
V(xLJrl) — V(xL) <0 Vzp 75 0. (28)
Consider the optimal input sequence
Wi(xp) = argnv%/igl J(@r, W) = {wgp, wijps - Wy_y Lt
(29)
The following shifted input sequence at layer L + 1 is
I/T/LH(UL"LH) = {wﬁL’w;\L’ e 7w§v71\L7K93}6V|L} (30)

Note WL_H is not necessarily the optimal input at layer L + 1
forzp41. Let V(zp41) = J(xr41, Wr41), we have

V(zpsr) = V(zr) = =z, wy) — fr(zy;)
Uy, Koy ) + fr((A+ BK)zy ) GD)

where l(a,b) = a” Qa + bT Rbis the stage cost, fr(a) = a’ Pa
is the terminal cost. If we can show the sum of the last three terms
is nonpositive, then

V(zpn) = Vier) < —l(ep, wy,) < —7Qer.

Let £ represent a:’]*\,‘ 1» then the sum of the last three terms is

(32)

EN(A+BE)TP(A+BK)— P+ Q+ KTRK)¢.  (33)
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Since we have

(A+BEK)'P(A+BK)-P=<-Q—-KTRK  (34)

as a condition in (25), the sum of last three terms is nonpositive,
hence

Vizry) —V(zr) < —2fQup <0 Vap #0. (35

Recall that WL_H is not the necessarily the optimal atlayer L + 1
for x4, thus

V(.Q?L_H) — V(l‘L) < ‘N/(J?L_H) — V(J?L) <0 Vo 7é 0

(36)

which completes the proof. |
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