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A Learning-based Approach to Modeling and Control of Inkjet 3D
Printing

Uduak Inyang-Udoh! and Sandipan Mishra?

Abstract— This paper presents a learning-based approach to
modeling and control of inkjet 3D printing. First, we propose
and experimentally validate a learning-based model for inkjet
3D printing. The proposed model uses a physics-based model
paradigm that has been reformulated into a neural-network-like
structure. This formulation enables back-propagation and the
associated benefits of data-driven model identification while re-
taining physical interpretation of the learned model itself. Next,
we propose and demonstrate a predictive control algorithm
that leverages the neural-network-like structure of the model.
Back-propagation is used for efficient gradient calculations to
determine optimal control inputs, namely droplet patterns for
subsequent layer(s), to optimize a quadratic cost function.

I. INTRODUCTION

Inkjet 3D printing is an additive manufacturing technique
that builds parts by ejecting liquid material onto a substrate.
Due to its ability to form complex patterns especially of
polymers, ceramics and metal-based parts, the technique is
attractive for manufacture of organic electronics as thin-film
transistors and diodes and solar cells; sensors and detectors;
and parts for biomedical applications (including building
synthetic tissues and scaffolds) [1]-[3]. The printing process
involves jetting photo-polymers or suspensions from a nozzle
- by thermal or piezoelectric action - onto a substrate, and
curing the ejected material as shown in Fig. 1. As droplets
are sequentially deposited layer after layer, and cured, the
desired 3D part forms. [1], [4]-[6]

The inkjet printing dynamics involves deformation of the
liquid droplets on deposition, spreading, and coalescence
with previous depositions to form beads or lines. These
dynamics occur at the interplay of surface tension, contact
line motion, gravity and fluid viscosity [7]-[11]. The inherent
complexity of the interplay makes the development of purely
physics-based model difficult or computationally expensive,
especially since the depositions are swift and the dynamics
are non-planar.

For geometry-level (3-dimensional) control of several
droplet-based additive manufacturing processes, control-
oriented models have been developed that simplify or ap-
proximate the complex physics to capture only essential dy-
namics of the problem. In some models, the height topology
is assumed to grow simply by a super-position of droplets
[9], [12]-[15]. Others assume interaction between the liquid
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Fig. 1: Steps in printing a layer. First, the nozzles deposit
ink on an existing layer following a predetermined trajectory.
Then, the printed layer is cured under ultraviolet (UV) light.
Finally, a 2D laser sensor scans the layer. Adapted from [18].

material as the topology grows [16]-[18]. In either case,
with linear (time-invariant or parameter-varying) behavior as-
sumed, the droplet-to-droplet height evolution may be lifted
to give a layer-to-layer height evolution model [12], [15],
[17], [18]. In [17] and [18], a fixed droplet shape and linear
liquid flow are assumed; then a lifted representation relating
the height profiles across layers is derived. The model is
valuable for layer-to-layer control but the assumption of
constant drop shape and linear flow limits how much printing
feature the model can capture. In [15], no prior liquid
interaction is assumed; rather the model is estimated for each
layer by running a numerical simulation and performing a
model fitting on the data obtained from the simulation. Given
the layer input, this approach yields greater model accuracy
since it can capture actual non-linearities associated with the
height evolution because of surface tension. However, this
numeric simulation may prove very expensive and requires
accurate calibration of physical properties of the ink and
substrate. In addition, the approach assumes an estimate of
the droplet volume at each point of deposition; but from a
control standpoint, this estimate may differ significantly from
the optimal volume at the point.

In this paper, we consider the height evolution from one
deposition to another and capture the evolution by time-
invariant parameters. While we still avoid explicit complex
dynamics associated with the morphology of the droplet de-
position, a machine learning-based model is used to embody
the effect of those dynamics. The model we present lends
itself to a recurrent neural network (RNN), which may be
trained (and further refined online) to predict subsequent
layer height profiles. Though the model parameter identifica-
tion is data-driven, our insight into the process in formulating



the model (i.e., geometric proximity of nodes, ink flowability,
and surface tension) results in a specific model structure and
thus lowers the need for large amounts of data for training the
model. We show the ability of the model to capture essential
evolution dynamics by comparing its prediction with that of
[18] on experimental data.

We then demonstrate how the model may be employed
for feedback control of the printing process in a predictive
control framework. To find the controlled input, we parame-
terize our model by the input pattern, and seek to identify this
input ‘parameter’. Hence, both model learning and predictive
control are complementary optimization problems: in one
case, the model constants are to be learned given the input
and output profile; in the other, the input is optimized given
the model constants and a reference profile; thus gradient
calculations used for one are in fact useful for the other. In
other words, model-prediction error is used to update the
model parameters meanwhile the reference-feedback error is
used to generate optimal input based on updated parameters.

The key contributions of this paper are

o the formulation and experimental validation of a

learning-based (constrained-flow RNN) model of the
inkjet 3D printing process; and

o the development of a predictive control framework for

implementing feedback geometry-level control in 3D
printing for reference profiles and geometries that vary
from layer to layer.

The paper is organized as follows. We describe the form
of the model function we intend to develop in Sec IL. In
Sec III, we present the learning-based model and highlight
strategy for learning model parameter. We pose the control
problem based on the developed model in Sec IV. The fifth
section shows results from learning and validation of model
parameters. Simulation result for the model-based feedback
control is presented in Sec VI. We conclude and preview
further work in Sec VIIL.

II. PROBLEM DESCRIPTION

The basic scheme of the closed-loop inkjet 3D printing
process we develop is shown in Fig. 2. The solid object
to be printed is sliced in horizontal layers and each layer
is resolved into a n, by n, grid space to obtained a
discretized height distribution (or profile) for each layer.
The reference height profile, input pattern and output are
given by R UL Y(E) ¢ R"%*"y 1In this paper, we
aim to obtain a phenomenological model that relates a given
pattern U () to the new substrate (height) profile Y (%), Also,
because the reference height profile R(™) for each layer is
unique, we propose to utilize feedback information (that is,
the measured profile) to update the model parameters. Then,
we find the optimal control input for subsequent layer(s)
using the updated model.

Since the droplets are deposited in sequence, suppose that
Ny, time steps (or sequences) are required to build layer L,
then, we may define U, € R™*" k € [0, Ny — 1] as
the admissible input space at time step k. Note that Uy is
sparse, holding only a non-zero number at (x,y)-position
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Fig. 2: 3D inkjet printing scheme. For each layer, a reference
profile based on the desired part geometry is fed to a
controller which generates suitable input sequence for the
printing module to execute.

(r € ng,y € ny) where deposition occurs at k, that is,

cetuy, = UK. Similarly, let Hy € R™*™ denote
the height profile at k' step. Then, we seek the function
® parameterized on 6 such that Hy 1 = ®(0, Hy,Uy), k €
[0, Ny —1] and YE) = Hy, . We find 6* that minimizes the
error ||y () —y (1) (9)||§

For model predictive control, we re-write the form of ¢
such that the control input becomes the optimization variable,
that is, Hi4q1 = ©(0, Hg, U(L)). Given the reference height
profile R(™), the control objective then effectively becomes
to find the optimal control input gattern UE)* that minimizes
the error ||[R(F) — V() (U (F))|[5.

In the following sections, the function ¢ will be estab-
lished. We revisit the time-varying graph-based model of [18]
and modify the model to incorporate a threshold function to
capture unmodeled surface tension effects. We thus eliminate
the time dependence of the model parameters, making the
model amenable to online learning.

III. GEOMETRY LEVEL DYNAMIC MODELING OF
INKIJET 3D PRINTING

In this section, we present a constrained-flow model for the
printing process that combines physics-based model structure
with a neural network modeling strategy. First, we discuss a
geometry-level graph-based model of [18] in the context of
the problem description. In this model, the flow of the liquid
material is driven by gravity. We then present a reformulated
structure in which the flow is restricted and the model
parameters are now rendered time-invariant.

A. Graph-Based Dynamic Model

The graph-based dynamic model assumes that the height
distribution at a given time step is a linear combination of
a deposited droplet’s height distribution, and gravity-driven
flow within the already-deposited material from the previous
time step. Let n = n, x n, and the profile H, € R"=*"y
be written as vector hy € R™, the height evolution is given
by

his1 = Aghg + Bruy. (1)



() (b) ()

a(l) o(l)

k

o y
/ 1

/

Fig. 3: Potential activation functions to capture surface ten-
sion inhibition to flow across links. The leaky soft-threshold
function (c) is used.

A = (I — DF,DT) is the state matrix that captures the
effect of liquid flow from higher to lower grid points, D €
Rnx! being the incidence matrix for the grid with [ links,
and F € RY!, a diagonal positive (semi-) definite matrix
containing flowability parameters determined empirically.
(The reader is referred to [18] for more details). B € R"
is the vector containing a unit droplet shape and location at
this time step; uy is the droplet volume.

Remark 1: With the construct of this model, the A matrix
is continuously updated from time step to time step to
dissociate links active with flow from those with no flow.
Also B is updated to place the height distribution values at
positions corresponding to current point of deposition. In the
following subsection, we reformulate this model structure so
that parameters stay time independent.

B. Constrained-Flow RNN Model

In this subsection, we constrain the ubiquitous liquid flow
in the graph-based model. We impose the condition that the
spread of interacting (contacting) droplets is inhibited by
surface tension. To capture this behavior, we introduce an
activation function to threshold flow across links. Also, the
droplet distribution parameter is kept constant by using a
kernel convolution. We thus obtain a convolution-recurrent-
neural-network-like model where the spatial dynamics of the
process is described by a kernel convolution and a soft-
threshold activation function; and the temporal evolution can
be constructed upon a recurrent neural network.

The height evolution is re-written as

his1 = hi, — Do(FDThy) + vec(b* Uy). (2)

D and F are as described earlier, however the diagonal
positive definite matrix F' containing the flowability parame-
ters is now constant. Together, F DT h;, indicates the effective
height differences across links. ¢ is the activation function
that thresholds what effective height difference across a link
would cause flow. We suggest this threshold is set by surface
tension and may be embodied using an activation function.
Fig. 3 shows potential activation functions. The soft threshold
of Fig. 3b is preferred to the function of Fig. 3a as it
is continuous and holds a threshold value explicitly in its
formulation. Yet, (as we highlight in the following section),
identifying the model parameters by gradient based methods
requires the stability of our activation function’s gradient
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Fig. 4: Height evolution as a recursion. At each timestep,
the kernel b is convolved over the current input space which
holds entry only at the current deposition spot (yellow spot
in the figure), and the result is added to the evolving height
distribution

[19], [20]. The function of Fig. 3c, which we term leaky
soft-threshold allows for gradients stability over long time
steps and hence is used in this work. Denoting F'D”'h;, by
li, the leaky soft-threshold function can be written as

lk—(l—é)a if Iy > «,
o(ly) & {614 if —a <lp <a, 3)
lk+(1—-0)a ifl < —a,

where « is the threshold below which height differences
cause no flow and 6 < 1 . Instead of the vector B, used
in (1), we convolve the droplet height distribution kernel b
over input space Uy. Uy, holds only an entry in the position
of deposition; hence we implement a sparse convolution, and
vectorize the resulting matrix.

Remark 2: Since this model is defined at each time step
of the height evolution, the parameters are independent of
reference geometry or printing trajectory as well as time. In
Fig. 4, we illustrate how the model lends itself to a soft-
threshold recursion. As described in following subsection,
this formulation is valuable for gradient-based online param-
eter learning.

C. Parameter Learning for the Constrained-Flow RNN
Model

This subsection discusses how the proposed model struc-
ture conforms to a RNN. Then, we highlight how the
network, and hence, the model parameters may be updated
online.

Re-writing (2) as

hit1 = ¢(hk) + vec(b * Uk), “)
where ¢(hy) = hy, — Do(FDThy,), the recursion in Fig. 4
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Fig. 5: Strategy for online identification in a closed-loop printing scheme. Note the height evolution unrolled as a Recurrent

Neural Network (RNN).

may be unrolled as a RNN with output only at the network’s
final time step (Fig. 5) since layer measurement becomes
available only after the entire layer has been printed. Each
measured layer provides additional data for training the
RNN. In training, we aim to minimize the 2-norm error with
respect to the parameter 6§ € {«,b, F'} over all measured
layers, that is, find

VL

)

0* = argmin E®) = Hy(L) - Q(L)(9)||§
) (5)

S.t. Omin < 0 < Omaa

where y(F) is the vectorized measured height profile of the
Lt layer, and (%) () is the corresponding computed height
of the RNN’s forward pass; 0,,,;, and 6,,,, are respectively
the lower and upper bounds for 6. {«, b} are constrained to
be non-negative. Meanwhile constraint on F' is such that
||F|lmaz < 1/p(DDT), where p(DDT) is the spectral
radius of the Laplacian DDT. The flow across links may be
assumed to be isotropic such that F' = fI, f < 1/p(DDT).
For a given layer L, the desired parameter 6 is updated
following @iter+1 ¢ giter nalgg”’ where 1) is the descent
step size or learning rate, iter is the iteration number and %—g
is obtained by back-propagation through time. The gradient
of the error with respect to the variable 0 € {«, F'} is

0L _ 5~ O Ohw, O
00 Ohn, Ohg
1<k<NL

20 (6)

h
where oF

Ohn,

II

Np—1>i>k

= 2(y(L) - hNL)T7

Ohn,

Ohy

(I - Ddiag(a’(li))FDT)

d
an O

OF
Ohy,

Oa

= —Ddiag(o’ (I-1)) D" by,

—Ddiag(c'(lx—1))o’ (),
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0
1

if I, > «a,
if —a <l <a,
if [ < —a,

o' (ly) =
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§—1 ifly > «a,
d(a)=¢0 if —a <l <a,
1-0 ifly < —a.

We note the effect of the derivative term o’(l) on the
gradient. Because o'(l;) < 1, the gradient is kept from
exploding. Also, the network is never ‘inactive’ [20] as
o'(ly) > 0 Vk. The gradient of the error with respect to
the kernel b is

vec1<

1<kz<:NL

where vec™! denotes the vector matricization and rot;sg
denotes a 180 degrees rotation. Given the gradient directions,
the optimization may be implemented with a gradient or
(approximate) Hessian-based numeric solver [21]. Once 6*
over the measured layers is obtained, the set of parameters
is then useful for predicting the height profile of succeeding
layers. Hence, this new, or updated parameter may be fed to
a model-based controller as illustrated in Fig. 5.

o8 _
ob

OE Ohy,
Ohn, Ohi

) xrotigo(Ux)  (7)

IV. PREDICTIVE CONTROL OF INKJET PRINTING

Instead of using the model presented in (2) for determining
the optimal control input, a more convenient form can be
used for the optimizer of Fig. 5 by leveraging the same
gradients as were used for the model identification. In this
section, we re-express the model so that the input is time-
invariant and show how the optimal input may be obtained.

A. Constrained-Flow RNN Model Reconstructed for Predic-
tive Control

Since we can express the convolution b *« Uy, as a matrix
multiplication, we now rewrite (2) as

hs1 = ¢(hi) + Bru'D) k€ [0, N — 1] ®)

where u() is the input vector for the entire layer; B, = BI},
where B is the convolution matrix for the learned kernel b,
and I is a sparse matrix holding only a one at the position
corresponding to where a deposition may take place at the
time, that is, Iru®) = w; which is the vector for U in
(2). With this construct, once the model parameters in (2)



are identified, and given a reference profile, we may find a
optimal input for layer L, u(L)* by gradient-based means.

B. Predictive Control using the Reconstructed Model

In the Sec III, we had constant parameters whose optimal
values were to be determined. We also showed how we could
obtain descent direction via back-propagation. Now, we
follow a similar pattern to evaluate optimal input. The input
vector is independent of time; hence we are to determine the
optimal vector for this time-invariant input. Assuming layer
L has been printed and we are concerned with output of the
next N layers, the optimization problem may be written as

2

U} = argmin J(Ug) 2 HP(T(N\L) _ @(NlL))Hz
UL

N-1 ) ) 2
+3 HQ(T(M _ gmm)HQ
j=1

s.t. hpy1 = éf)(hk) + BkU(L)a ke [07 N(j\L) - ”’

GIL
Ut = hnGisy»

Umin < u(le) < umaz7vj S {17 e 7N}7

€))

where U = [u(D) .. oWIB)] 4G5 indicates the ;"
layer control input in the receding horizon; P and @ are
positive-definite weighting matrices; and Uy, and Uy,q, are
the lower and upper bounds to the values in U7 . The gradient
of the cost function J with respect to the j** layer control
input is similar to (7) and is written as

0J dJ  Ohng .,
9 & T lump, (10)
OulilL) 1@2}%_”) GthL) Ohy,
where
oJ , AT
_ 7Y (Ul _ G viedl--- . N—1
ahN(J‘L) (’r y ) Q’ j { b ) }7
and
oJ T
R (T(N\L) — z)(NIL)) P.
ahN(N\L)

Note that since the gradients are expressed analytically
rather than by finite difference, the computation to find U}
is expedited.

V. EXPERIMENTAL MODEL VALIDATION

In this section, we first ascertain that the proposed
constrained-flow model essentially captures the actual height
profile of printed parts by identifying and validating the
model parameters on experimental data. (The reader is re-
ferred to [16] for the experimental setup). We take measured
profile data from a few printed layers of a part, and identify
the model based on this data.

We find the identified model parameters to yield profiles
that better match the experimental data than the graph-based
model parameters does. This is in addition to the fact that
the constrained-flow model structure is amenable for update
as printing proceed.

Experiment

200

h [em]

100 -

y [mm] x [mm]

Graph-Based Dynamic Model
RMS Error = 30.536 xm

200

h [em]

100 -

% [mm]

Constrained-Flow Model
RMS Error = 22.922 um

Fig. 6: Comparison of predicted height profiles obtained from
models with experiment for a 8 mm x 8 mm cross-based
frustum. 3 layers are printed.

A. Model Parameter Identification

To identify the model parameters, we print a cross-shaped
frustum with base dimension 10 mm x 10 mm. Both the
input grid resolution and line spacing (or distance between
droplets) is 0.125 mm. It is observed that although the
droplets are uniformly deposited, the liquid material retreats
inwards (Experiment in Fig. 6). We intend to essentially
capture this liquid behavior with our model.

The model parameters to be identified § € {«, b, F'} are
obtained by minimizing the 2-norm error of (5). However, we
apply ‘standard coarsening’ twice to increase the resolution
of both the input and output space by four [22]. In addition
to saving computational cost, this helps us learn only the
overall liquid material behavior, and ignore details that may
only be peculiar to a printing session. The optimization
is implemented over 3 layers. Each layer has a smaller
surface area than the preceding one. On identification of the
parameters, we self-validate the values obtained, and re-mesh
the output to yield original resolution.

On self-validation (in-sample), the identified parameters
yield a RMS error of 22.9 pm on the printed frustum, an
improvement in accuracy of 25% over the prediction of the
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graph-based dynamic model (Fig. 6). Further, we observe
that the identified parameters of the constrained-flow model
reflects the elevation of interior observed in the experiment
while the graph-based model does not. Note that the graph-
based model has indeed identical volume with the printed
part, however it fails to capture the inner elevation profile
well.

RMS Error(um) %
Part Shape | Graph-Based | Constrained-Flow | Improv.
Cross-shape 30.54 22.92 25.0
T-shape 28.93 23.70 18.0
L-shape 23.59 20.83 11.7

TABLE I: Comparison of RMS error of predicted height
profiles obtained from models. The first row displays results
from verification of the identified parameters; the next two
rows are for validation.

B. Model Validation

Next, we use the identified parameters in the previous
subsection to predict the height profiles for other shapes as
shown in Table I (for out-of-sample testing). The shapes
are printed in the same manner as was the cross-shape
part already described. We note, however, that due to the
geometry shape, the printing trajectory followed differs from
that for the cross-shape. We find the prediction error over the
third layer of this build. Accuracy improvements of 18% and
12% over the predictions of the graph-based model are noted.

VI. SIMULATION RESULTS FOR CONTROL
IMPLEMENTATION

In this section we implement the closed-loop printing
strategy of Fig. 5 in simulation on the cross-shaped part
of Sec V-A. To closely conform simulation to the actual
print, we fit parameters specifically for each layer of the
pre-printed cross, that is, the simulation model varies from
layer to layer based on identified model parameters from
the multi-layer printing experiment. The recurrent network
parameters are learned based on accumulated layers hitherto
printed (in simulation). In other words, the output obtained
for each layer when the layer-specific parameters are used
is assumed the ground truth. Our goal is to then find the
optimal controlled input that minimizes the reference output
error as described in Sec I'V-B.

After each layer is simulated, the model parameters
are learned, then the controlled input that minimizes the
reference-output error as in (9) is computed for one predic-
tion horizon. For comparison, we also simulate the open-loop
process based on the layer-specific parameters. The feed-
forward input here is based on the superposition model in
[18]. The reference, and open-loop and closed-loop outputs
for four successive layers are shown in Fig. 7. Again, each
layer has a larger surface area than its antecedent. At the first
layer, we have no feedback information yet, hence we assume
no flow and the kernel b to simply have the spherical shape
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Fig. 7: Comparison between cross-section of open and closed
loop profiles after each layer of a cross-shaped part.

of the superposition model. As we begin to obtain output
data, the controller performance quickly improves. Though
the reference profile for each layer is changing, the controller
tracks the profiles closely. At the fourth layer, the RMS error



Reference

Open-Loop
RMS Error = 7.43 pm

Closed-Loop
RMS Error = 3.02um

Fig. 8: Comparison of height profiles obtained from closed-
loop control with that from open-loop after 4 cross-shaped
layers. In this simulation, the controller results in 60% error
reduction.

is about 3.0 um, a 60% drop in accuracy from the open-loop
(Fig. 8). Also, the desired crest in the reference, not captured
by the open-loop print, is achieved by the closed-loop control
(Fig. 7d).

VII. CONCLUSIONS AND FUTURE WORK

We have developed an adaptive predictive control scheme
for inkjet 3D printing. First, we demonstrated that the time-
step to time-step evolution of parts’ height profile during
the inkjet 3D printing may be essentially captured using a
dynamic model with a few time-invariant parameters. We
also showed that such a model structure fits into a recurrent
neural network, and hence makes it amenable for learning
during printing. In addition, because the model possesses
a geometric and physically interpretable structure, learning
may proceed with only small amount of available data. The
model has been validated experimentally. Second, we have
presented a gradient-based approach to learning a controller
for the system in similar fashion as the model identification.
The strategy has been demonstrated in simulations with
notable results. In future work, we shall experimentally
demonstrate the learning process within the adaptive predic-
tive control scheme and evaluated how this in-process model
learning effectively enhances control.
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