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An experimental study on process modeling for selective laser melting*

Aleksandr Shkoruta!, Sandipan Mishra' and Stephen Rock?

Abstract— This paper addresses process modeling for the
selective laser melting (SLM) process. We experimentally in-
vestigate the response of the SLM process output (measured
by a coaxial near-infrared camera) to changing input laser
power. We determined that first and second order models
can be used to capture this input-output behavior. Next, we
studied the dependency of this transfer function on laser scan
speed and other process variables that evolve over a typical
part build, such as thermal properties of surrounding medium
(bulk powder, build plate, or solidified part) or layer number.
The transfer function was found to strongly depend on the
material environment (solidified material or bulk powder).
Further, transfer function also depended on the layer number,
exhibiting transient behavior. We report identified 1st order
transfer functions for different scan speeds, locations on the
build plate, and different layer numbers. Identified models and
quantification of their variability will serve as foundational
work for the future implementation of advanced real-time
process control algorithms.

I. INTRODUCTION

Additive manufacturing (AM) is a set of processes that
produce parts by adding, not subtracting, material. There are
at least 7 distinct families of such processes, “powder bed
fusion” (PBF) being one of them [1]. In laser PBF (L-PBF),
also known as selective laser melting (SLM), bulk material
in the form of the powder is contained within the process
chamber with a controlled atmosphere and is supported by
a vertically traveling platform. A tightly focused high-power
laser scans the powder surface according to the part geom-
etry, selectively melting the material, as shown in Figure 1.
Upon completion of the scan, the build platform lowers, and
a new layer of powder is deposited on top of the freshly
scanned surface. This way, a part is created in a layer by
layer fashion.

Thermal effects inherent to SLM (high cooling rates, non-
uniform heating, and temperature cycling) are known to
produce defects: porosity, deformation, and cracking [2]. It
is universally agreed upon that to achieve better final part
quality, in-situ real-time control is necessary. However, as
of now, process control of SLM is lacking, mainly due to
(1) challenges in real-time temperature measurement and (2)
lack of control-oriented process models [3].

SLM presents significant challenges for real-time mea-
surement. The melt pool is small and its dynamics are
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Fig. 1. Schematic of the L-PBF (SLM) process.

fast, requiring high spatial (on order of 10 microns per
pixel) and temporal (on order of 10 kHz) sensor resolution.
However, such demands are challenging even for state-of-
the-art temperature monitoring instrumentation.

The lack of control-oriented process models in SLM is
a well-documented challenge [3]. Existing SLM process
models are computationally intensive and not suitable for
real-time process control. A variety of different control
strategies have been reported for other laser AM processes
(for example, [5]). For SLM, however, only a PI controller
based on photodiode measurements has been experimentally
demonstrated [6], [7]. Recently, feedforward strategies such
as iterative learning control [8] have shown promise for
optimizing laser power profiles for specific scan patterns.

In this work, we sought to establish transfer function
models linking the laser power input with the available melt
pool emission measurements. We have also investigated the
potential dependence of such models on the process stage
(i.e. layer number) and the surrounding material properties.
We found strong differences between transfer functions for
solid material and powder. Transfer functions also behaved
differently with respect to scan speed. We also observed
transient behavior of the transfer function in the initial layers
of the build.

The paper is structured as follows: we state the modeling
and control problem and introduce process nomenclature in
Section II. Then, we review the experimental setup (open-
source SLM testbed) in Section III. Section IV describes
the approach to model identification. Experiments performed
are discussed in Section V. Model identification results are
presented and discussed in Section VI.

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on October 23,2020 at 13:26:26 UTC from IEEE Xplore. Restrictions apply.



II. PROBLEM STATEMENT

Consider a laser scanning the build area. Let {t;,i =
1,2,...} be discrete time instants and denote laser power
input at ¢; as p(t;). Let I(¢;) € R™ be a (multi-dimensional)
process output, and denote its reduced 1D signature as
M(t;) = F(I(t;)), F : R" — R. For example, I could be an
intensity image, and M be an image statistic, e.g. mean. We
seek to identify a suitable transfer function G(s) from the
laser power input P(s) to the output signature M (s) from
the experimentally collected input-output data.

In this paper, we identify first and second order transfer
function models of the form:

K K/t
Gls) = R N T E

Ts+1 " s+w.
where all symbols have their commonly accepted interpre-
tation. Further, we investigate the effect of various process
parameters (e.g. scan speed) on these identified transfer func-
tions and discuss the variability caused by these changing
process parameters.

Kw?

ITII. OPEN-SOURCE SLM TESTBED

In this section, we describe the hardware used to obtain
the control-oriented process models. The process modeling
experiments were conducted on an open-source SLM testbed
that was built in-house at Rensselaer Polytechnic Institute.
The testbed adheres to the conventional SLM machine archi-
tecture, where an Nd-YAG laser beam is redirected by two
rotating mirrors of a servo-controlled scanner. Subsequently,
the laser is focused onto the build area by a flat-field lens.
This testbed is constructed with an open architecture that
enables full synchronized access to all motor input signals,
scanner and laser control command signals and all process

TABLE I
EQUIPMENT LIST

IPG Photonics

1070 nm

40 — 400 W power range

Sill Optics S6EZM5076/328
motorized, up to 8 X magnification
SCANLAB intelliSCAN 4. 20

typical marking speed 1 m/s

step response (1% full scale) 0.7 ms
Sill Optics S4LFT1420

focal length 420 mm

nominal spot 60 um (@14 mm beam)
FLIR A320

waveband 7.5 — 13 um

320 x 240, 60 Hz

Basler acA2000-165umNIR

filter waveband 800 — 950 nm

32 x 32 subwindow, 3500 Hz
SCANLAB RTCS PCI control board
General Electric RXi-XP Industrial PC
2.5 GHz CPU, 8 GB RAM, Windows 7
Galil DMC-4080

Laser

Beam expander

Scanner

Focusing lens

Off-axis imaging

Coaxial imaging

Scanner controller

Main PC

Motion controller
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parameters (for example layer thickness, hatch spacing, or
scan speed) in real time. The testbed has two cameras
for in-process measurement and feedback: a larger field-
of-view (FOV) thermal camera in a staring configuration
(“off-axis”), and a smaller FOV near-infrared (NIR) camera
for the melt pool area observation (“‘coaxial”), as shown
in Figure 1. The machine operation is controlled from an
industrial PC. Large parts of the process control code were
implemented in LabVIEW and are courtesy of America
Makes [9], while the coaxial camera image acquisition and
the dynamic power control codes are written in-house in
C++. The full equipment list is presented in Table I.

In this work, we use real-time measurements from the
coaxial NIR camera as the output signal to find the transfer
functions (TFs) associated with the SLM process. Process
emissions from the melt pool area (orange waves in Figure
1) reflect back through the scanner mirrors and impinge
on a beam-splitter (in gray at 45° to laser line), which is
transparent for the laser radiation (shown in red) but reflects
shorter wavelengths. Then, these process emissions can be
imaged by the NIR camera. Such a setup is widely employed,
with most recent installments reported in [10], [11].

Coaxial NIR monitoring has several advantages. First, the
camera’s FOV is always aligned with the laser location
thanks to the scanner mirrors. As such, the melt pool is
always centered in the image, and the camera frame can
be cropped (sub-windowed), which allows for higher frame
rates. Second, as the imaging wavelengths are shorter than 1
micron, inexpensive Si-based detector-based camera can be
used, which also allows for higher frame rates.

The coaxial camera operates in a hardware triggered mode.
An image is transmitted via USB3 cable to the industrial PC
(running under Windows OS), where the image is saved for
the later analysis. We empirically evaluated resultant sample
time to be 290 us, e.g. 3448 Hz sampling frequency (for a
nominal 3500 Hz setting).

The laser power is controlled from a real-time PCI con-
troller board, which is plugged into the same industrial PC
and is driven by a LabVIEW program. Therefore, synchro-
nized power control capabilities are at 1 kHz update rate,
as determined by the internal Windows/LabVIEW timer (1
ms interval). The synchronization of the image acquisition
(on the PC) and power update command is compromised
by non-real-time OS. However, we command laser power
and acquire camera frames (on the camera) with consistent
frequencies. As such, acquired data and the power signal are
repeatable and synchronized, once they are aligned off-line,
which compensates for non-real-time jitter of the scan start
time.

The camera has an internal buffer storage of a pro-
grammable size (currently set to 5 frames), which eliminates
the frame dropout but also introduces delays into the mea-
surement setup. Empirically, a combination of the current
buffer size and non-deterministic Windows scheduler-related
delays appears to result in the acceptable system perfor-
mance.

A typical image acquired by the coaxial camera during the
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SLM process is shown in Figure 2a. At 3500 fps, a simple
rectangular part (30 x 10 x 1 mm?) generates 2 GB of data,
necessitating some form of data reduction. In this work, we
use the average intensity (mean digital level) M of the entire
image as the process signature (which has strong correlation
to the melt pool size):

M(t) = R—lcz.f(nc,t)

where € {1...R},c € {1...C} are the row and column
indices within a single image, ¢ is the time of an image
acquisition, and I(r,c,t) is the intensity of the pixel at the
position r, ¢ in the frame acquired at ¢.

In the next sections, we present the methodology for
identification of the process TFs, as well as investigation
of the dependence of these functions on various evolving
process parameters.

IV. IDENTIFICATION METHODOLOGY

We identified TF models from input-output data obtained
in a set of single line scan experiments. For each line,
we commanded a time-varying input power profile and
collected corresponding coaxial images. The input power
profile was generated in MATLAB using pseudo-Gaussian
mode of idinput function. An example of the acquired
data is shown in Figure 3. For each line, we fit a TF model
using MATLAB’s System Identification Toolbox. First, we
synchronized the camera measurement and power commands
in time. Then, the mean values were subtracted from data
to remove DC-bias, and several candidate TF models were
identified using MATLAB’s tfest. A detailed discussion
of the model order selection is presented in Section VI-A
below. The quality of the fit was measured by normalized
root mean square error:

[|M = M

fit = (1 — ) x 100%
|[M — M||2
where M € R" is the measurqd output, ‘M is the mean value
of the measured output, and M € R" is the identified model

output.
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Fig. 2. (a) Example coaxial image. Note the logarithmic scale of intensity.
(b) Mean layer signature M decreases with layer number. Observable
oscillations are due to the changing scan pattern (two scans are diagonal and
one is lateral). Values that fall out of order are explained by the build process
interruption for the single line runs, see the description of Experiment D.
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V. EXPERIMENT DESIGN

The process response (i.e., melt pool emissions measured
by the NIR camera) to laser power input will necessarily
depend on the laser scan speed but may also vary with the
(1) location on the build plate (due to location-dependent
proximity to solid metal chamber walls) or (2) the type of
surrounding medium: if the current location rests on the
solid build plate, previously built-up part, or bulk powder.
Furthermore, (3) height of the built-up part e.g. number of
layers might also play a role.

The first two sources of variation are the result of sig-
nificantly different thermal properties of bulk powder and
bulk solid metal. Due to the lower thermal conductivity of
the surroundings, locations that are completely surrounded
by powder accumulate heat. On the other hand, if a location
is close to a solid metal region, that metal acts as a heat
sink. Thus, it is reasonable to expect that coaxial signature’s
behavior might depend on the surrounding material.

The effect of layer number requires further elaboration.
Our prior studies [12] have noted that coaxial signatures
often show decreasing trends with increasing layer number.
This effect is further underscored by the data acquired during
this study. In Figure 2b, the mean value of signature M
for the whole layer is plotted against layer number. It can
be clearly seen that the process signature evolves as layers
are built, ultimately settling into a steady state behavior
after 10-20 layers. Thus, it is of interest to evaluate how
experimentally identified process model changes from layer
to layer.

To select the TF model structure and to investigate poten-
tial dependence of identified TFs on scan speed, build plane
location, material state, and layer number, we performed the
following sets of experiments:

A: The same line (20 mm, scan speed 300 mm/s) was

scanned over the bare solid plate four times. A spatial
separation between these 4 repetitions was kept at 1 mm
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Fig. 3. Example input power profile, corresponding output, and model fit.
The measurement data is noisy, thus fit values of 50-60% are considered
‘acceptable’.
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Fig. 4. (a) Experiment B: laser-scanned lines are shown in red, with the
direction of the scan indicated by arrows. (b) Experiment C: 7 pairs of lines
correspond to 7 different scan speeds. Solid line from each pair was used
for identification, while dashed line was used for validation. (c) Experiment
D: part-supported and powder-supported lines evolving with layer number.
Powder is shown in light gray and built-up part is in dark gray.

to limit the effects of spatial location on the results.

B: 10 instances of the same line (20 mm, scan speed 600
mm/s) were scanned in different locations on the build
plate. In one case, we used bare solid plate, and in the
other, lines were scanned over deep powder bed! (Figure
4a).

C: 7 pairs of long (45 mm) lines were scanned over both
solid plate and deep powder bed. Following scan speeds
were used: 200, 400, 600, 800, 1000, 1200, and 1400
mm/s (Figure 4b).

D: A simple prismatic SLM part was built with 40 layers
total®. For layers 1, 2, 5, 10, 20 and 40, we paused the
process and scanned two lines: a single line over the
deep powder area and a single line over the built-up
part (Figure 4c).

Experiments A and B allowed us to select the model
structure, evaluate model uncertainty, and study the model
dependence on the build plane location. Influence of scan
speed on identified TF parameters was evaluated based on
the results of Experiment C. Finally, input-output data for
different depths of underlying powder and SLM-produced
substrates from Experiment D provided insight into evolu-
tion of identified TF models with layer number and their
dependence on underlying material.

VI. RESULTS

A. Model order selection

To determine the appropriate model order, we used input-
output data from first 3 lines from Experiment A for model
identification and retained the last one for validation pur-
poses. From prior literature [6] and simplified heat-transfer
models [13], it is expected that the model should be of 1st
or 2nd order. Therefore, we identified TFs with (1) a single
pole (1P) and (2) two poles, with and without a zero (2P1Z
and 2P, correspondingly). The 2P1Z models showed pole-
zero cancellations, which indicated a poor choice of model

'We ensured that more than 2 mm of CoCr powder separated the top
surface from the solid substrate of the build platform in any of the “deep
powder” tests.

2250 W, 600 mm/s nominal parameters; 45°, —45°, and 0° layer scan
orientations. Layer thickness is 30 um.

-200

Phase, deg
Phase, rad
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10! 10 10° 0 5000 10000

Frequency, rad/s

Frequency, Hz

Fig. 5. Phase of frequency response drops drastically. Linear trend (on the
right) w.r.t. frequency indicates constant delay, which is 825 us (based on
the slope) in this case.

structure and over-parameterization®.

Delays are expected from the camera image acquisition
process, which is further supported by the Bode phase plot
(Figure 5), where the presence of a constant delay is evident.
Thus, we have also identified 1P and 2P models with delays
(1PD and 2PD).

A comparison of these identified models’ outputs is shown
in Figure 6. It is evident that introduction of the delay did not
significantly improve the corresponding 1P and 2P models,
thus delayed models are omitted from now on.

For the identified model parameters, we refer the reader to
Tables A.1 (1st order) and A.2 (2nd order) in the Appendix.

1P and 2P models had quantitatively similar fits. From
a simplicity standpoint, the Ist order model is superior.
However, an overshoot was sometimes observed in the
output response when laser power increased. Interestingly,
corresponding output overshoot when power decreases is
rarely seen, as evident from Figure 7. Therefore, we were
left with a choice between (a) 1st order model that did not
capture this effect at all or (b) 2nd order model that predicted

3This is further supported by the TF identification on the data from latter
Experiments B, C.

Mean digital level
2

——1P: 59% fit
——2P: 67% fit
1PD: 62% fit
—=—2PD: 69% fit
- - ~Measurement | |

0 5 10 15 20 25 30

Fig. 6. Model order selection. Non-delayed and delayed TFs are almost
identical. However, there is an observable difference between identified
Ist and 2nd order models. Inset at the top right corner shows zoomed-in
response to the first step power change.
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Fig. 7. Characteristic example of the output behavior: large overshooting
spikes with step-wise increase in laser power, monotonic decrease with the
laser power drop. Data: Experiment B, solid plate. Qualitatively similar
behavior is also observed in deep powder tests.

spurious overshoot when power dropped. We thus proceeded
with the Ist order TF because it was simpler while providing
a fit comparable with 2nd order TF. However, overshoot and
undershoot in step response to laser power change should be
investigated further.

It is important to stress the high variability of the output
signal, even when laser power input is held constant*. This
issue is more prevalent in tests with powder than with solid
metal plate due to the discrete powder particles’ effects e.g.
Spatter.

B. Effect of the location on the build plate

One potential source of the variability in the identified TF
is the location on the build plate (in the XY plane, with
Z being vertical direction). If the location on the build plate
does indeed affect the process response significantly, one can
expect the TFs identified from the outer lines (1, 5, 6 and
10 in Figure 4a) to systematically differ from the inner ones
(2-4, 7-9).

4Standard deviation depends on process parameters and is generally in the
0.8 - 1.8 range, with lowest values corresponding to lower energy densities
and solid material substrate.

Gain, dB

10 10° 10 10°

Frequency, rad/s Frequency, rad/s
(@) (b)

Fig. 8. Bode magnitude plot for the 1st order TFs identified in Experiment
B, for solid plate (a) and deep powder (b).
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We used data acquired from Experiment B (both on solid
plate, and in deep powder) to identify 1st order TF for each
scan line>. Identified model parameters did not exhibit any
obvious trends or particular consistent spatial patterns, in
both solid plate and deep powder cases. Based on this, we
believe that spatial location on the build area has at best a
marginal influence on the process TF. Superimposed Bode
magnitude plots for all identified 1st order TFs are shown in
Figure 8. Identified parameters are listed in Tables B.1, B.2
in Appendix.

C. Effect of the laser scan speed

After laser power, laser scan speed is arguably the second
most important process parameter in SLM and its influence
on the identified TFs is of particular interest for any laser
power control design strategy. In Experiment C, wide range
of speeds was tested both on solid plate and in deep powder,
which allowed us to evaluate the influence of speed on
identified TF parameters. We used the first line in each pair
for model identification and validated resulting model on the
input-output data from the second line in a pair.

Figure 9 shows dependence of identified gains and time
constants on scan speed. Interestingly, gains for deep powder
and solid plate cases exhibit opposite trends: the gain (in
dB) for solid plate linearly decreases with increasing scan
speed while the gain for deep powder slightly increases with

SWe used the results from the previous subsection (averaged model) as
an initial guess for the identification algorithm.

800
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B Solid plate
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Fig. 9. (a) Dependence of the gain on the scanning speed.
of the time constant on the scan speed.

(b) Dependence
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Fig. 10. Fits of the identified 1st order TFs: (a) solid plate, 400 mm/s (b)
deep powder, 1200 mm/s.

80 20 30 40

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on October 23,2020 at 13:26:26 UTC from IEEE Xplore. Restrictions apply.



scan speed. The time constants exhibit some variability but
seem to generally increase with scan speed. Viewed in spatial
domain, this effect persists i.e. this trend is not due to the
increased distance travelled per acquired sample. Figure 10
shows two of the identified models (solid plate 400 mm/s on
the left and deep powder 1200 mm/s on the right) that are
particularly out of trend. Their quality of fit does not seem
to explain scatter of time constants.

Results are presented in Tables C.1 (solid plate) and C.2
(deep powder) in Appendix.

D. Effect of the supporting material and layer number

From previous sections it is clear that process output (mea-
sured by the coaxial camera) behaves differently depending
if bulk powder or solid plate are scanned. In the actual
SLM process, scans typically occur over the part-supported
or powder-supported areas. In the former, SLM-produced
surface lays directly underneath current line scan. In the
latter, there is only powder under the laser. For SLM process
control, both of these modes are of interest. Using data
from Experiment D, we identified 1st order TF models for
part- and powder-supported output data, for different layer
numbers.

Powder-supported and part-supported TF are initially over-
lapping, as is evident from the Bode magnitude plots (Figure
11). This is understandable, as one or two layers of powder
do not prevent melt pool from penetrating all the way down
to the solid build plate. There is clearly a transient behavior,
as TFs take around 5-10 layers to settle and achieve steady
shapes. In the end, powder-supported and part-supported TF
are clearly separated by 4 dB.

Figure 12 shows evolution of the identified model param-
eters with layer number. In both powder- and part-supported
cases, gains are clearly decreasing as the part builds up and
depth of the powder bed grows (Figure 12a). All identified
model parameters are listed in Table D in Appendix.

Remark. 40 layers of powder amount to 1.2 mm of total
powder thickness, thus the powder-supported TF identified
at layer 40 should have been similar to the ones identified in
previous deep powder tests (namely, Experiments B and C).
However, there is observable difference in gain values (-25
dB for Experiment B and -28 dB for Experiment D). As those
were different tests (different powder recoating, for example),
there are many possible reasons for such a discrepancy, i.e.
potential residual heat accumulation. Indeed, in Experiment
D laser scanning was occurring for the prolonged period of
time, and total energy input is large. On the contrary, total
amount of energy emitted by laser is negligible in the single
line tests. The discrepancy between identified deep powder
gains is currently under investigation.

VII. CONCLUSION

In this paper, we have identified TF models from the laser
power input to coaxial signature of the melt pool emissions
in SLM. Output data appears to have high variation, which
could be explained by the influence of discrete powder par-
ticles’ effects on the process emission. We have established
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powder- and part-supported cases.

that 1st order TF models are the preferable model structure,
given the nature of input-output data and achievable fits.
Identified TFs clearly and predictably depend on laser scan
speed and material state (solid plate, SLM-produced part, or
bulk powder). We have also shown that TF do not achieve
consistent shapes instantly but exhibit transient behavior
during layer build-up, i.e. for the first 5 - 10 layers of a build
TFs are settling into steady-state. This work provides the
necessary background information on SLM process outputs
for the ongoing work in implementation of the advanced
real-time data-based control strategies in SLM.

APPENDIX

We acquired “merged” models using MATLAB’s merge
command, while “averaged” used averaged model param-
eters. Validation process was the same as for 3 original
models. Asterisk (e.g. #5%) denotes an outlier. Mean and
standard deviation are calculated based on data with outliers
excluded.

TABLE A.1
1ST ORDER MODELS, SOLID PLATE

Line K, dB T, us | we, rad/s fit, % | validation %

#1 -21.481 476 2099.2 75 63.4

#2 -21.037 563 1776.6 59 63.4

#3 -21.606 631 1583.8 52 63.6
Merged -21.556 704 1421.2 63.2
Averaged | -21.374 557 1795.7 63.3
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TABLE A.2
2ND ORDER MODELS, SOLID PLATE

Line K, dB ¢ wn, rad/s | fit, % | val, %
#1 -21.559 | 0.480 2690.9 76 67.3
#2 -21.522 | 0.553 25404 67 67.4
#3 -21.820 | 0.671 2229.7 62 66.8

Merged -22.345 | 0.452 1853.3 67.1
Averaged | -21.634 | 0.568 2487.0 56.4
TABLE B.1

1ST ORDER MODELS: INFLUENCE OF LOCATION, SOLID PLATE

Line K, dB T, us | we, rad/s | fit, %
#1 -18.002 684.9 1460.0 64
#2 -18.874 226.7 4410.5 74
#3 -18.220 | 438.6 2279.8 65
#4 -18.380 126.2 7923.2 70
#5% -19.205 28.5 35131.3 68
#6 -19.316 257.6 3882.5 58
#7 -19.332 344.7 2901.5 66
#8 -18.589 622.1 1607.5 59
#9 -18.249 406.5 2459.9 66
#10 -18.438 337.3 2964.8 56

-18.60 383 3321

+0.45 +170 +1862

TABLE B.2

1ST ORDER MODELS: INFLUENCE OF LOCATION, DEEP POWDER

1ST ORDER MODELS: INFLUENCE OF SCAN SPEED, SOLID PLATE

Line K, dB T, 4S we, rad/s | fit, %
#1 -23.867 876.2 1141.3 60
#2 -24.094 816.8 1224.3 59
#3 -23.365 924.0 1082.2 54
#4 -23.641 961.1 1040.5 56
#5 -22.645 751.7 1330.2 54
#6 -25.424 559.5 1787.4 63
#7 -24.219 1046.3 955.8 59
#8 -24.881 686.8 1456.1 62
#9 -24.220 825.5 12114 62
#10 -24.292 579.0 1727.2 61

-24.06 803 1296

+0.73 +152 +268

TABLE C.1

1ST ORDER MODELS: INFLUENCE OF SCAN SPEED, DEEP POWDER

V, mm/s K, dB T, us | we, rad/s | fit, % | val, %
200 | -16.203 307.0 3256.9 54 59
400 | -17.059 | 673.1 1485.7 56 49
600 | -19.005 | 473.6 2111.6 60 60
800 | -20.575 | 459.6 2175.8 57 58
1000 | -22.331 451.0 2217.1 60 54
1200 | -23.720 | 4144 24129 50 46
1400 | -24.229 745.4 1341.5 43 42
TABLE C.2

V, mm/s K, dB T, us | we, rad/s | fit, % | val, %
200 | -27.557 163.5 6116.2 36 28
400 | -27.676 | 247.3 4043.7 47 44
600 | -25.859 | 399.2 2504.8 54 52
800 | -25.811 432.6 2311.6 53 42
1000 | -25.871 398.5 2509.2 61 45
1200 | -24.635 709.6 1409.2 56 57
1400 | -24.994 | 560.5 1784.1 57 58
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[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

TABLE D
LAYER DEPENDENCE

Layer K, dB T, uS | we, rad/s | fit, %

1 -21.630 | 449.5 2224.8 43

2 -23.685 | 629.6 1588.3 33

powder 5 -27.209 | 450.1 2221.5 61

10 -28.267 | 359.6 2781.0 57

20 -27.864 | 186.7 5356.6 33

40 -28.730 | 166.1 6022.0 53

1 -21.975 | 2493 4010.9 33

2 -20.686 | 422.1 2368.9 38

part 5 -23.769 | 522.6 1913.4 46

10 -23.147 | 455.1 2197.3 61

20 -23.842 | 440.2 2271.9 64

40 -23.502 | 704.7 1419.0 57
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