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Abstract— Selective laser melting (SLM) can be used to
manufacture functional metal parts with complex geometries
that cannot be produced by traditional manufacturing methods.
However, SLM process control cannot yet guarantee the end
part quality required for critical applications. The application
of model-based control strategies to SLM is complicated by both
the closed architecture of industrial SLM machines and the lack
of suitable control-oriented process models. In this paper we (1)
present an open-source SLM printer that allows implementation
of the on-the-fly power adjustment and (2) use a data-driven
method, iterative learning control (ILC) to learn the suitable
laser power profile using the melt pool emission measurements
from a coaxial camera. We demonstrate the effectiveness of
the proposed ILC approach through experiments on the open-
source SLM machine.

I. INTRODUCTION

Additive manufacturing (AM) is an umbrella term for a
variety of manufacturing technologies that work by gradually
adding material to a part being built in a layer-by-layer
fashion. ASTM categorizes 7 families of the AM processes,
powder bed fusion (PBF) being one of them [1]. One type
of such PBF process employs a high-power laser to melt and
fuse metal and is known as selective laser melting (SLM).
In the SLM process, a recoater spreads a thin layer of metal
powder over the build plate. The laser scans this metal
powder, which locally melts and then solidifies. The build
plate is then lowered, and the recoater spreads a new layer of
powder on top of the just melted material. To focus the laser
onto a precise location on the build plate, a combination of
a lens and a computer-controlled scanner is commonly used.
Fig. 1 illustrates a schematic of a generic SLM machine.

SLM promises unprecedented flexibility in the design of
fully-functional metal parts. However, high thermal gradients
and cooling rates inherent to the process frequently cause
defects such as thermally-induced deformations, porosity,
and cracks [2]. Currently, process parameters to achieve
the desired end part quality are determined by trial-and-
error, with power level kept constant within predefined scan
segments.
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Fig. 1. Generic SLM machine diagram showing a laser, laser delivering
optics, and contents of a process chamber. Darker gray depicts a solid part,
while lighter shade shows unmelted powder. Each layer, the powder piston
moves upwards to supply the recoater with fresh powder. Simultaneously,
the build piston lowers so a new powder layer can be spread onto the part.

Implementation of other power control strategies is com-
plicated for several reasons. First, industrial SLM printers
do not allow adjusting the power within a single scan line.
Second, there is the lack of the control-oriented SLM process
models, with existing finite element models being extremely
computationally demanding [3]. Last, in-situ measurement
of SLM process is also challenging, even though significant
breakthroughs were reported recently [4].

As a result, reported control strategies for SLM are limited,
even though feedback control of AM processes in general
has seen significant interest [5]. The seminal work in SLM
control to date is the PID controller presented in [6]. One
approach to circumvent modeling issue is to use in-situ
process measurements in combination with model-free data-
driven control methods to improve process performance.

In this paper, we experimentally investigate the use of a
model-free design approach to laser power control in SLM.
Using our in-house built open-source machine, we command
a power profile that varies within scan segments, based on
in-situ coaxial camera measurements. We use a feedforward
data-driven control method, namely iterative learning control
(ILC), to update the commanded power profile for a single
part layer. ILC is a control method frequently used in the
high-precision motion control [7]. We experimentally show
the applicability of the selected control approach to the SLM
process.

The paper is structured as follows: the problem of con-
trolling a non-uniform process signature is mathematically
formulated in Section II. We introduce iterative learning
control (ILC), and motivate its application to our problem,
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Fig. 2. The setup of the control problem. Signals of interest are in bold.

in Section III. The experimental SLM setup that allows us
to change power within a single scan line is described in
Section IV. Section V describes experimental design. We
report results of the ILC application to SLM control in
Section VI and conclude with future work in Section VII.

II. PROBLEM STATEMENT
Consider the scenario where the laser scans the powder

bed along the predefined trajectory. Let {ti, i = 1, 2, . . . , N}
be discrete time instants, where tN is the time it takes to
scan the whole cross-section. Define discretized laser power
profile as P̃ = [p(t1), ..., p(tN )], where p(ti) ∈ [pmin, pmax]
∀i, and pmin, pmax are the lower and the upper limits of the
achievable laser power, respectively.

Furthermore, suppose M ∈ R+ denotes a process output.
For example, it could be a maximum melt pool temperature
or another process signature. Discretized measurement pro-
file over the entire scan is then M̃ = [M(t1), ...,M(tN )].
Suppose that a target level for this signature is a profile M̃d.

We seek the power profile P̃ ∗ such that error ẽ between
M̃ and M̃d is minimized in the sense of l2-norm:

ẽ � M̃d − M̃

J � 1

2
‖ẽ‖22 ≡ 1

2N

N∑
i=1

(Md(ti)−M(ti))
2

P̃ ∗ = argmin
P̃

J (1)

such that ∀i p(ti) ∈ [pmin, pmax]

Equation (1) then defines the power profile to force signature
M towards the desired level all over the part cross-section.

III. ITERATIVE LEARNING CONTROL
The control problem from Section II is a generic optimiza-

tion problem. Given the full knowledge of the relationship
between measurement M(t) and power input p(t) (i.e. white-
box model), we can find optimal control input P̃ ∗ using well-
established optimization methods. For example, we could use
a gradient descent search:

∇P̃J = (∇P̃ ẽ)
T ẽ

P̃k+1 ← P̃k − η∇P̃J = P̃k − η(∇P̃ ẽ)
T
k ẽk (2)

where η is the learning rate (or step size), k is the step
number, and ∇P̃ ẽ is the properly defined Jacobian.

As was mentioned earlier, modeling of the SLM process
is challenging. Consequently, we do not have a reliable and

simple way to calculate the error gradient with respect to the
commanded power profile. In the absence of the white-box
model, we resort to data-driven approaches to approximate
∇P̃ ẽ. Iterative Learning Control (ILC) is one such approach.

The underlying idea behind ILC results from the fact
that many manufacturing processes (including SLM) are
repetitive in some form and go through same “tasks” (trials,
iterations) with predictable (though unknown) disturbances.
For example, a positioning system might go through the
same motions run after run after run and encounter the same
straightness errors at the same places on the motion guides.
These repetitive disturbances manifest themselves in the
output error. Therefore, outcomes of past process iterations
hold the information about those disturbances. Essentially,
ILC uses input-output data from past iterations to shape the
input for the current iteration, i.e.

ũk+1 = f(ũk, ẽk)

where ũk ∈ U is the input profile that was fed into the plant
at the iteration k, ẽk ∈ M is the deviation of the observed
output profile from the target profile at the same iteration,
and ũk+1 ∈ U is the input profile that will be used at the
next iteration k+1. U and M denote the feasible input and
output sets, respectively.

Several applications of ILC to AM processes are reported
in the literature: ILC for selective laser sintering (SLS) of
polymers in [8], and ILC for the directed energy deposition
of metals in [9], [10]. Of particular relevance is the ILC
law applied to SLM by Spector et al. [11]. They considered
a reduced-order model of the SLM process based on heat
balance equations (with conduction and convection) without
melting. The objective was to find the input power profile
to drive the temperature signature to a desired one. In effect,
[11] showed that it is possible to drive the process output
to the desired level by adjusting the laser power using the
proportional ILC update law

ũk+1 = ũk + Lẽk, (3)

where L ∈ R is called the learning gain. Specifically, they
proved that if there exists a power profile P̃d such that the
resulting temperature profile T̃ ≡ T̃d, then P̃k → P̃d if 0 <
L < Lmax for update law (3). Here, Lmax depends on the
material properties and the laser power distribution over the
powder bed.

Comparing (3) with (2), we can observe that (3) ap-
proximates the true Jacobian of the error with a constant.
Generally, such substitution is not guaranteed to converge,
but we can rely on theoretical results from [11] to assume that
ILC law (3) will converge if the learning gain L is sufficiently
small.

Thus, in this paper, we experimentally investigate if the
ILC law (3) can be used to find the power profile P̃ ∗ from
(1).

IV. OPEN-SOURCE SLM MACHINE TEST BED

We evaluate the ILC learning law as an approach to solve
the problem (1) experimentally on an open source SLM
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machine built in-house at Rensselaer Polytechnic Institute
(RPI) in Troy, NY. The test bed used for this study is shown
in Fig. 3. The list of primary components is summarized in
Table I. The architecture of the system can be decomposed
into the following subsystems:

1) The laser beam delivery subsystem
2) Process chamber with the controlled atmosphere
3) Powder delivery & the build plate actuation subsystem
4) Process monitoring & sensors
5) Control software & GUI.

We now briefly discuss each of these parts.
1) Laser beam delivery: The laser beam is delivered to the

build plate through the following: a laser collimator, a beam
expander, a scanner, and a fθ lens. The collimator is the
standard one supplied by the laser manufacturer. The beam
expander is used to widen the laser beam so it gets focused
into a smaller laser spot on the build plate. The galvanometer
scanner head is the 2-axis system designed specifically for
the laser processing applications. The fθ lens is the lens
that is specifically designed to provide flat focusing surface,
unlike standard focusing lenses.

2) Process chamber: A repurposed vacuum chamber
works as the process chamber in our case. For each build, the
chamber is vacuumed down and then back-filled by an inert
gas (Argon) to prevent oxidation of the powder and avoid
fire hazard.

3) Powder delivery and the build plate actuation: The
build plate supports parts with up to 50 × 50 mm cross-
sections. Both the build piston and the powder piston are
actuated by the servomotors located outside of the process
chamber. To spread the powder over the build plate, a silicone
blade recoater is used. The recoater motor sits outside of the
process chamber and couples to the recoater via a magnetic
coupling through the chamber wall, a worm gear, and a chain
drive.

Fig. 3. Open-source SLM machine. 1 - oxygen analyser, 2 - off-axis
camera (not visible), 3 - scanner, 4 - coaxial camera, 5 - mirrors for the
off-axis camera, 6 - dust collector, 7 - recoater, 8 - powder piston (left) and
build platform piston (right), 9 - motion controller, 10 - recoater drive, 11
- roughing pump, 12 - industrial PC cabinet, 13 - laser.

Fig. 4. A sample part produced on the SLM test bed (post-processed).

4) Sensors: The machine currently employs two sensors
for in-situ process monitoring and real-time sensing: a ther-
mal camera overlooking the whole build area (referred to
as the “off-axis”), and a near-infrared camera looking at the
build area through the laser focusing optics (referred to as
the “coaxial”).

The off-axis thermal camera (FLIR model A320) observes
the whole build area through a vacuum viewport. The instan-
taneous field of view (IFOV) of the camera is 1 mm per pixel,
with a frame-rate of 60 Hz.

The coaxial camera (Thorlabs model DCC3240N) is used
to observe the melt pool area. The optical setup is similar
to the ones reviewed in literature [4], [5]. Process emissions
from the melt pool area are transmitted through the laser
focusing optics, are redirected by a long-pass beam splitter
and a folding mirror towards the camera, and are focused by
an achromatic lens in combination with an extension tube.
The resulting system has IFOV of 21 microns per pixel.
Therefore, depending on process conditions, the melt pool
width is 5 or more pixels. To increase the temporal resolution
of the sensor, we limit the camera’s region of interest and
achieve frame rates up to 800 Hz. By design (i.e. use of the

TABLE I
EQUIPMENT LIST

Laser
IPG Photonics
1070 nm

40− 400 W power range

Beam expander
Sill Optics S6EZM5076/328
motorized, up to 8× magnification

Scanner
SCANLAB intelliSCANde 20
typical marking speed 1 m/s

step response (1% full scale) 0.7 ms

Focusing lens
Sill Optics S4LFT1420
focal length 420 mm

nominal spot �60 μm (�14 mm beam)

Off-axis imaging
FLIR A320
waveband 7.5− 13 μm

320× 240, 60 Hz

Coaxial imaging
Thorlabs DCC3240N
filter waveband 880± 35 nm FWHM
40× 40 subwindow, 800 Hz

Scanner controller SCANLAB RTC5 PCI control board
Motion controller Galil DMC-4080
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Fig. 5. (a) Example of a coaxial image (false color). (b) Example evolution
of the MDL signal within a single scan line.

same scanner mirrors for both laser scanning and process
observation), the camera’s FOV always follows the heat-
affected zone, thus subwindowing of the camera does not
limit the machine’s workspace.

5) Control software & GUI: All the different hardware
components of the system, from the laser to the recoater
motor to the sensors are synchronized and controlled using
LabVIEW interface contributed by America Makes [12].
Communication with the laser and the scanner is performed
from within LabVIEW interface using RTC5 control board
API. When a part is being built, LabVIEW code reads
layer scan files and repeatedly sends lists of scan lines
to the scanner. Additionally, for each layer, the coaxial
measurements are acquired using a software trigger and are
stored in RAM. Once a layer is completed, those images are
saved to a hard drive.

V. EXPERIMENT DESIGN

We elaborate upon exact details of the experimental eval-
uation of the ILC algorithm 3 in the following subsections.

A. Process signature, M

The coaxial camera provides us with a 2D intensity
image I(x, y) (Fig. 5a) each time ti it is triggered. Several
alternative signatures can be extracted from such an image.

It is widely believed that the maximum melt pool temper-
ature is an important contributor to the end part quality. If
the coaxial image is treated as a proxy for the temperature
distribution in the proximity of the melt pool, we believe
that temperature convergence guarantees established in [11]
can be extended to the brightness of the coaxial images.
Therefore, we selected the maximum digital level (MDL)
as the process signature M :

M = MDL(ti) = max
x,y

I(x, y, ti)

Example MDL data with corresponding coaxial images is
given in Fig. 5b.

B. Test layer geometry

We chose a square cross-section with a diagonal scan
pattern (shown in Fig. 6a) as the test case in this study. Such
scan sequence is standard for producing SLM parts. The side

(a)

0 0.5 1 1.5 2 2.5
0

20

40

60

(b)

Fig. 6. (a): scan pattern in our test. The red circle shows a snapshot of
the laser location, while the solid and the dashed lines represent segments
already scanned and to be scanned, correspondingly. Hatch spacing and laser
spot size not to scale. (b): coaxial process signature (MDL) for the open-
loop scanning of the test layer geometry. The bowl-shape trend is clearly
visible in the filtered signal. Trend is extracted using moving average filter,
window size 200.

length of the pattern was equal to 15 mm, and scan speed
was kept at 600 mm/s. Nominal open-loop power level was
set to 250 W1. This was the constant power sent for the first
ILC iteration k = 0. We repeated diagonal scan pattern for
iterations k = 1, 2, ... and updated commanded power profile
based on the coaxial measurements. The sampling time for
updating laser power was set to 1.25 ms to match the coaxial
data acquisition rate.

MDL for the open-loop layer scanning of the scan pattern
in Fig. 6a is shown in Fig. 6b. We set the learning gain L and
the target level M̃d based on this measurement. Short scan
segments at the corners (in the beginning and at the end of the
scan) cause the local change in the coaxial process signature
M . As the measurement is very noisy, we only show the
filtered version of the coaxial data (with filter always stated
in the caption) from now on.

C. Target output profile

To enforce uniformity across all scanned locations, the
target profile M̃d was chosen to be a constant Md. From
Fig. 6b, we chose Md = 30. In general, the target profile
M̃d should envelop the notion of “good” part quality, and
should be selected accordingly (e.g. to get suitable melt pool
size, grain size, or other desired outcome, based on trial-and-
error or appropriate simulations). In this paper, we assume
that target profile is properly selected, and the problem of
ensuring print quality is equivalent to the problem stated in
Section II.

D. ILC update law

We limited the laser power level to values between 190 W
and 310 W based on safety and hardware constraints. Thus,
ILC update law was set to

P̃k+1 = Sat[pmin,pmax]

(
P̃k + Lẽk

)
(4)

where index k denotes the iteration number, and Sat repre-
sents point-wise profile saturation, i.e. out-of-bounds values

1It should be noted that all powers mentioned in this section are the
nominal commanded values. The actual power that reaches the powder bed
is smaller due to the losses in the optical path.

�� 

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on October 23,2020 at 13:25:55 UTC from IEEE Xplore.  Restrictions apply. 



are reset to the corresponding boundary value. As before,
ẽk ≡ [Md −Mk(t1),Md −Mk(t2), . . . ,Md −Mk(tN )].

We selected the learning gain L heuristically: as the span
of the coaxial signature M was around 60, and the power
was constrained to 250±60 W, a reasonable estimate for the
learning gain was L ≈ 1 Watt per digital level. We started
with a conservative choice of L = 0.2 and then transitioned
to L = 2 once it was established that L = 0.2 does not cause
any adversarial effects. In this paper, we seek to prove that
there exists some learning gain that will work with ILC law
4. Selection of the optimal learning gain, or establishing the
convergence bounds, are out of the scope of this paper and
are subject of the future work.

The coaxial signature M clearly has high frequency fluc-
tuations. Therefore, (4) can result in a noisy power profile.
One way to address this is to use a filter, which is a common
practice in ILC [7]. If we denote low-pass filtering operation
as Q : U → U , then ILC update (4) takes the form

P̃k+1 = Sat[pmin,pmax]

(
Q
[
P̃k + Lẽk

])
(5)

We have run the tests with and without low-pass filtering
(i.e. Q ≡ 1 and Q being moving average filter with window
size 50) and with two different values of gain L. The results
from these tests are described in the following section.

VI. RESULTS

A. Lower gain L = 0.2, no Q-filter in ILC law

We implemented ILC for 10 iterations (i.e. repeated diag-
onal square scans 10 times), and observed that power profile
changed the trend of M to track Md. Thus, with the use of
(4), the systematic bowl-shape trend observed in the coaxial
process signature was removed.

From the observation of unfiltered error profiles, it was
clear that while the error span did not decrease, the mean
level error disappeared. This is to be expected as ILC can
only remove repeating (systematic) sources of error. Since
the error profiles were very noisy, to quantify the rate of
ILC convergence (if any), we filtered the error profiles using
a moving average (as in Fig. 6b), and used the norm of the
resultant filtered error profile F (ẽ) as the measure of ILC
success. Filtered error profiles for a number of iterations are
shown in Fig. 8 (left), and the evolution of corresponding
norm is shown in Fig. 8 (right). Using (4), high frequency
components in ẽk propagated to the commanded power
profile, as clearly visible in Fig. 7. However, once the
trend in power profiles was extracted, steady development
towards dome-like shape was observed. As the commanded
power profiles were very noisy, we chose not to analyze the
convergence of their norms.

Based on the above results, it was evident that the appli-
cation of a Q-filter was necessary to limit the propagation of
the high-frequency components of the coaxial MDL signal
to the commanded power profile. We also increased the gain
L, as the value of 0.2 appeared to lead to comparatively slow
convergence, thus safety concerns were unwarranted.

0 0.5 1 1.5 2 2.5
220

250

280

0 0.5 1 1.5 2 2.5
220

250

280

Fig. 7. Commanded power profiles, no Q-filter, iteration k = 2 and k = 9.
Span of the control input drastically increased.
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Fig. 8. Convergence of ILC law (4), for L = 0.2, no Q-filter. Left:
evolution of the error profile trend. To get the trend, error profiles are
aggressively post-processed with moving average filter, window size 200.
Right: Evolution of the norm of the filtered error profile with iteration.
Fluctuating downward trend is clearly visible, which aligns with observation
of error profiles themselves.
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Fig. 9. Commanded power profiles for selected iterations, L = 2 with
Q-filter. Note that the smallest power increment is 1 W.

B. Higher gain L = 2, moving average Q-filter

The difference between (4) and (5) lies in the use of
a low-pass filter to all updates to the power profile P̃k.
We chose a moving average filter with window size 50 as
Q. As expected, resultant power profiles were significantly
smoother than in non-filtered case, and the range of com-
manded powers was smaller (Fig. 9).

Meanwhile, error profile shapes resembled the ones ac-
quired with lower gain and no Q-filtering (Fig. 10). As
before, the error profile exhibited large bowl-like shape in
the beginning and eventually ceased to have any mean level
displacement. However, the behavior of the filtered error
norm was different: the decrease appeared to be smoother
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Fig. 10. Convergence of ILC law (5), L = 2, with Q-filter. Left:
representative errors in M for the several iterations, filtered the same way as
in Fig. 8. Right: convergence of the norm of the filtered error with iteration.

and sharper.
Interestingly enough, the input power profiles exhibited

sawtooth-like shape, with “teeth” not necessarily aligning
from iteration to iteration. This non-repetitive behavior ef-
fectively prevented further convergence of the ILC update.
Less aggressive filtering of the coaxial signature M (i.e.
moving average filter with window size 50 instead of 200)
also showed the same sawtooth-like shape.

Naturally, large changes in the observed error cause large
changes in the commanded power profile. In Fig. 11, ob-
served error (blue) corresponds to power commanded on
the next iteration (red) pretty well as the peaks and valleys
align. However, the result of the next iteration (black dashed
line) still has the sawtooth-like shape but “teeth” are now
misplaced with respect to the original locations. Further
investigation into the root cause of this behavior is outside
the scope of this paper.
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Fig. 11. Observed error ẽk , subsequently calculated power profile, and
resultant error ẽk+1, scaled to their respective ranges. We plot the difference
between P̃k and Pnom ≡ 250 W . Iteration k = 6. Note how original error
and power follow each other but subsequent error and power do not.

In summary, we have demonstrated that ILC can be used
to correct systematic errors in the coaxial signature and that
low-pass filtering to remove non-repetitive error components
is extremely important for achieving this result.

VII. CONCLUSION AND FUTURE WORK

In general, a uniform process signature for a generic scan
pattern cannot be achieved with a constant laser power level.
Furthermore, the selection of the power profile is complicated
due to the modeling difficulties. In this work, we have

reported the successful use of the on-the-fly within-layer
laser power control. We have also demonstrated that data-
driven methods (for example, ILC) can be used to circumvent
modeling issues and to control the process outcomes. We
showed this by using ILC update law to drive an example
process signature (maximum brightness of the coaxially
acquired image) to the desired level for an example layer
geometry. Thus, data-driven approach to the real-time SLM
process control is a viable option for further investigation.

To practically apply these results, one has to note that for
a whole build, following considerations become important:

1) ILC requires exact repetition of system trajectories
from iteration to iteration. However, layer geometries
generally do not repeat exactly.

2) Initial conditions should also repeat between iterations.
But in a part with multiple layers, the state of a layer
might be affected by the previous layers (due to the
heat build-up, for example).

We believe that some continuity between subsequent layer
scan patterns is reasonable to assume, therefore a power input
profile generalization based on a learned “basis” subset could
be possible. Such generalization, as well as a study of the
sensitivity of our approach to the layer’s initial conditions,
will be the subject of the future work.
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