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ABSTRACT

The concept of “big” data is nothing new to archaeologists; we have long made a profession of collecting,
organizing, and analyzing a surfeit of data describing everything from minute artifact attributes to
landscape-wide environmental characteristics. Regardless of this abundance, we have and continue to
confront the self-same problem inherent in “big” data, namely what analyses will actually help us use
these data to advance understandings of past human behaviors. With burgeoning remote sensing
technologies archaeology faces a new wave of “big” data, but how do these techniques improve our
ability to make the inferential leaps to bridge the present to the past and bring new insights forward?
We argue that, to date, remote sensing techniques (satellite, aerial, and unpersonned aerial imagery)
have been applied somewhat narrowly to mostly high-resolution site-based research in archaeology.
To truly unleash the capabilities of these techniques, and expand our capacity for wrangling “big” data
to more fully investigate past patterns, we need to conduct iterative analyses incorporating remotely
sensed data on bounded archaeological sites and regions and unbounded landscapes. A case study
from the Late Precontact (ca. A.D. 1200-1600) period in the northern Great Lakes of North America
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detailing how such an iterative approach can be initiated is explored here.

Introduction

Archaeology has long been in the realm of “big” data, a field
of study focused on the capture, analysis, information extrac-
tion, storage, and privacy of large and complex data sets.
Archaeologists recover numerous artifacts during excavation;
each artifact has numerous attributes that can be variously
described, measured, and quantified. An array of techniques
can be applied to analyzing archaeological materials that pro-
duce even more data outputs, from geochemical to genomic
analyses. There is no shortage of measurements we can
make, statistics we can run, or analytic approaches we can
adopt to produce a plethora of data on past artifacts and
sites. Inherent in all of archaeological data is the perennial
ambiguity of whether there is a direct relationship between
past human activities and the patterns we identify in our ana-
lyses of these data (Cowgill 1989, 137).

While archaeology has long been involved in generating,
analyzing, and interpreting big data, geospatial methodologies
have more recently transformed archaeology—in terms of the
questions we ask and the techniques used to investigate them—
and ushered in a distinctly expansive wave of “big” data for the
field (see Bevan 2015; Cooper and Green 2016; Hacigiizeller
2012; Huggett 2015; Kintigh et al. 2014; Lock and Pouncett
2017; McCoy 2017). With constantly expanding varieties and
capacities of geospatial collection strategies and analytical
methods, we have access to more and better geospatial data.
Yet the old question remains: do we gain improved insights
into the past from the seemingly ever-expanding geospatial
data available to us as archaeologists? How does geospatial
data impact archaeological knowledge creation (Huggett

2015, 89)? These questions return us to the perpetual problem
with all archaeological data: does more data mean we are get-
ting closer to understanding the actual activities in the past we
are interested in as archaeologists?

In this paper, we focus on one component of the geospatial
data boom in archaeology, remote sensing (satellite, aerial,
and unpersonned aerial imagery). Advancements in remote
sensing technology and its availability have led to a particu-
larly popular flavor of analysis, what could be called a kind
of “massification” of archaeological site detection and high-
resolution site-based imaging (VanValkenburgh and Dufton,
this volume). Remote sensing technologies are most frequently
applied with the aim of increasing the expediency of archaeo-
logical site detection over traditional archaeological field-based
survey, or for enhancing high-resolution imaging of known
sites’ intrasite features and organization. Such work has been,
and continues to be, significant for advancing our understand-
ing of the documented archaeological record, especially in
understudied regions and/or places where sites are particularly
vulnerable to destruction (e.g, Casana and Laugier 2017;
Franklin and Hammer 2018; McLeester et al. 2018; Parcak
et al. 2016). While these applications are undoubtedly signifi-
cant, as we have argued elsewhere, we feel it is also critical
for geospatial applications in archaeology, including remote
sensing, to go beyond the site concept—that is, to become
unbound from an overreliance on analyses tethered to fixed
points in space (Howey and Brouwer Burg 2017).

Ecology, another geospatially-engaged discipline, has been
at the forefront in calling attention to the ways fixed site-
based or “point-to-point” geospatial modeling result in criti-
cally incomplete understandings of how ecological processes
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flow across large areas (Estes et al. 2008; Treat et al. 2018).
Ecological geospatial efforts pushing beyond point-to-point
analyses are often called “wall-to-wall” modeling (cf. Pelletier
et al. 2014; see Amaral et al. 2016; Crooks and Sanjayan 2006;
McRae et al. 2008; Shirk et al. 2010; Spear and Storfer 2010),
techniques that by dint of their broader sample area tend to
yield more accurate and encompassing explanations of eco-
logical processes (Chambers et al. 2007).

Archaeology has been slower to implement similar wall-
to-wall modeling in the form of landscape-scale, culture
process-based geospatial analyses, although efforts at such
total surface (or wall-to-wall) modeling are emergent (cf.
Brouwer Burg 2013; Connolly and Lake 2006; Gillings
2015; Llobera 2003, 2012; Lock, Kormann, and Pouncett
2014; Kohut 2018). We suggest this is, in part, a result of
the relationship between available and affordable remote
sensing technologies, resolution limitations, extent of cover-
age, and the nature of the connection between remotely
sensed data and archaeological sites or features. In Figure
1, we chart the relationship between an array of remote
sensing technologies at three analytic spatial scales: site,
region, and landscape. We also include the temporal cycles
of each technology’s data collection/availability. Archaeolo-
gists have tended to use remote sensing technologies best
suited to site-based and regional-scale analysis and explored
the technologies on the landscape process-based analysis
side of this chart less frequently.

Challenges of Landscape in Remotely Sensed Data

Archaeological applications of remote sensing technologies
tend to feel “safer” on the left side of the chart in Figure
1 and this safety decreases as you move right on the bottom
axis of spatial scale. By “safe,” we mean where the connec-
tion between remotely sensed data and the archaeological
record relies on less inference building. Detecting sites is
an obvious use of remote sensing data for an archaeological
end; exploring the distribution of sites across a region is a
bit more attenuated but still a clear use of remote sensing
data for an archaeological result. The investment in learn-
ing and deploying remote sensing technologies at these
scales offers the potential of a clear pay-oft for archaeologi-
cal research programs and so, archaeologists have tended to
harness those remote sensing technologies best suited to
site-based and regional-scale analysis. This is not that sur-
prising as sites and regions are bounded archaeological
units. Regions contain sites and have extents defined typi-
cally by physical boundaries such as rivers or mountain
chains, but boundaries can also be social, political, or
religious.

Landscape, in contrast to site and region, is an unbounded
concept that includes the full extent of all area(s) people
might move through and interact in (cf. Basso 1996; Ingold
1993). Both the vastness of landscape and the complexity of
ways landscape impacts sociocultural behaviors is widely
recognized (such as the way landscape inhabits Apache
peoples [see Basso 1996]; or the “big rough spaces” of the
Labrador Innu-Naskapi or Montagnais [see Lovis and Dona-
hue 2016]; or the totemic significance of dreamscapes among
the Walbiri of Central Australia [Meggitt 1962]). While you
can ask of a site or region how much of it there is, you cannot
ask that of a landscape, rather, you can ask what it is like
(Ingold 1993, 154; emphasis added). Remote sensing

technologies that cover vast geographic areas are available
but these have data output resolutions that do not offer the
opportunity for direct detection of archaeological remains.
So, as you move further along the spatial resolution spectrum
presented in Figure 1 to landscape process-based analyses,
archaeological applications become less frequent even as the
significance of landscape in the past is well recognized.

Moderate-resolution instruments have been employed
much less frequently in archaeology than their high-resol-
ution counterparts (Howey et al. 2014; Palace et al. 2017).
Moderate-resolution instruments have high temporal fre-
quency, with daily or near-daily repeat intervals, but contain
less detailed spectral and spatial information about the land
surface (Frolking et al. 2009; Palace et al. 2018). These facts
limit their utility for direct detection of archaeological fea-
tures, bringing us back to that perennial ambiguity of data
analysis in archaeology which is also, then, a perennial
quest in archaeology—that is, for a direct relationship
between data/data patterning and past human activities.
Added to this, additional knowledge and/or collaborative
research with environmental scientists is necessary to provide
interpretive understandings of processes and events at this
scale (Palace et al. 2017). The net effect is these moderate-res-
olution data sets have been less frequently deployed in
archaeology. Using remote sensing to image known sites,
find new sites and understand inter-site relationships across
a region are all analyses where the relationship between
remote sensing “big” data and archaeology is, or at least
feels, more direct. As the resolution of remote sensing instru-
ments decreases, there is an increasingly indirect relationship
to archaeological sites/features, more inferential steps in
analysis, and the concurrent need for additional, outside
knowledge.

Despite the challenges this may pose, we suggest archaeol-
ogy can productively utilize remotely sensed data to conduct
landscape process-based analyses of past landscapes by a)
approaching landscape-scale climatic and ecological variables
not as absolute equivalents to past conditions but as indices
(or bounded spectra of variation that slide over time on the
absolute scale) that can be examined for relative patterns
that would have been significant in the past (i.e., places
with persistently higher annual mean temperatures than sur-
rounding areas would have maintained that quality/condition
even if the absolute measure of annual mean temperature
differs; of course, such relative patterns cannot be extended
into periods in which there is evidence to suggest sufficiently
different geomorphological and ecological conditions) and b)
focusing on physical factors (landforms, ecological habitats)
that remain stable over centuries to millennia, thereby isolat-
ing features that likely impacted past activities (rather than
landforms or habitats known to change relatively rapidly
given widespread landscape change or climate perturbations,
for example).

Using moderate-resolution remotely sensed data may not
allow for direct identification of new archaeological features
but it can be used to relate archaeological, ecological, and cli-
mactic data, which can, then, help archaeologists ask an array
of important questions. What range of social and ecological
possibilities inhered across space that past peoples could
have experienced? How did landscape matrix composition
relate to past land use, site location, and regional interactions?
Landscape-scale remotely sensed data can be harnessed to
conduct research that moves from asking how much of a
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Figure 1. A chart of the relationship between an array of remote sensing technologies and analytic spatial scale as well as temporal cycles of each technology’s data
collection/availability. GPR: ground penetrating radar; UAS: unmanned aerial survey; MODIS: moderate resolution imaging spectroradiometer; AVHRR: advanced very

high resolution radiometer.

landscape there is to asking what a landscape was like (sensu
Ingold 1993, as above). Such work can advance new insights
into the ways past peoples made decisions and adapted their
behaviors in relation to the potentialities their landscapes pre-
sented to them.

An Iterative Approach to High-Resolution
Site-Based and Landscape Process-Based Analyses

We turn to a case study that explores landscape process-based
geospatial modeling using remotely sensed data for archaeo-
logical research. We aim to show through our case study, and
our own learning and research refinement, the importance of
adopting a flexible and iterative approach to different spatial
and temporal scales of remote sensing “big” data work in
archaeology. That is, while we encourage archaeologists to
unbind from the site concept and conduct more regional
and landscape-based analyses, this unbinding process does
not mean abandonment of site-based analyses. Rather, we
suggest that the more archaeology can be creative and
thoughtful in combining different remote sensing technol-
ogies and analyses together, and the more research can
move back and forth across the chart we presented in Figure 1,
the better we will become at developing multivalent, robust,
and meaningful insights into the past. High-resolution site-
based data and landscape process analyses are not mutually
exclusive; rather, they can and should be crossed and
combined in ways that are mutually enriching for archaeolo-
gical research.

Airborne lidar (Light Detection And Ranging) is a remote
sensing tool that uses pulses of light to measure the distance
to reflecting surfaces (allowing for generation of an elevation
map), as well as forest structural attributes (Palace et al.
2015). Lidar is one of the more commonly-used tools by

archaeologists allowing for high-resolution site-based ima-
ging. Lidar has furthered archaeological research across the
world and often in incredible ways, revealing detailed features
on the land surface long obscured by forest canopy (Canuto
et al. 2018; Chase et al. 2012; Evans et al. 2013; Lasaponara,
Coluzzi, and Masini 2012; Liebmann et al. 2016; McCoy,
Asner, and Graves 2011). The majority of these efforts have
focused on complex, stratified, sedentary societies with sub-
stantial archaeological features like buildings, monuments
and terraces.

In ongoing research, our team has been focusing on
finding novel ways to use lidar to target the identification of
microtopographic features made by mobile, relatively low
density, egalitarian hunter-gatherer (and low-level horticul-
tural) societies in order to expand understandings that
these societies too had the capacity to modify their landscapes
to ensure community well-being and survival (Howey et al.
2016). More specifically, we are examining the role of physical
food storage in these societies. Recognizing that among
mobile hunter-gatherer societies food storage was a process
that played out across an unbounded landscape, as we explain
more below, we chose not to conduct a standard point-by-
point feature identification process with lidar. Instead, we
developed a total surface analytic approach working with
lidar that proved successful but also presented scaling chal-
lenges, which have required us to develop an iterative
approach to our analyses.

Physical Food Storage Practices of Mobile
Hunter-Gatherer Societies

Physical food storage emerges through the dynamics of
mobile hunter-gatherer society’s adaptation to the conditions
of their environment, particularly when conditions, both
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Figure 2. Map of the northern Great Lakes with the location of the Inland Waterway project area indicated.

natural and cultural, carry increased risk of severe and unpre-
dictable food scarcity (Cunningham 2011, 143; Halstead and
O’Shea 1989, 5; Ingold 1993, 171). Diverting social and
material resources day-to-day as well as over the course of
the annual round to support larger-scale food storage prac-
tices restricts the ability of spatially and temporally diffuse
mobile societies to pursue other scarcity-mitigation strategies
(Halstead and O’Shea 1989). This means, if these food storage
practices fail, a community’s most basic well-being is threa-
tened. To understand the conditions that lead groups to
adopt storage practices even with the associated pressures
and social, economic, and ecological ramifications, we need
more complete archaeological records of the physical food
storage practices of hunter-gatherer and low-level horticul-
turalist societies across the globe.

Unfortunately, finding these archaeological features can be
difficult. When food is stored, a “storer’s intent is to re-access
and eat stored food” (Morgan 2012, 716). This means the
food evidence itself will be gone. Food storage facilities offer
another line of evidence to document when mobile societies
engage in larger-scale storage practices, but these too can be
hard to find. This is because when mobile societies build sto-
rage facilities, they place them in locations they will move
through, and/or purposefully to, in their annual rounds (Bin-
ford 1980; Ingold 1983; Morgan 2012). This means many of
their physical food storage features will be spatially dispersed
across the landscape, along paths and routes, and will not be
near archaeologically dense locales like village sites. In com-
parison, when sedentary societies build immovable food sto-
rage facilities, they generally place them in, or in close
proximity to, the settlements where they reside long-term

(often including directly within houses) (Barrier 2010; DeBoer
1988; Hendon 2000; Law 1999). Artifact density at dispersed
storage facilities is likely to be low and so, when they are far
from living sites, standard ground reconnaissance methods
are likely to miss them. In addition, modern land use and
cover can reduce both the preservation and visibility of widely
spaced, small, low artifact density archaeological features.

Documenting storage features at settlement sites of seden-
tary societies can provide an imperfect but robust record of
physical food storage practices, but when dealing with mobile
hunter-gatherer and low-level horticulturalist societies, food
storage features far from settlements must be documented.
The construction of physical food storage features, while rou-
tine and practical, was still one way past mobile hunter-gath-
erers shaped the landscapes they inhabited in order to
mitigate against episodes of scarcity, ensure survival, and
increase social well-being (Howey and Frederick 2016). With-
out more complete records of these features—and of their dis-
tribution across past landscapes—archaeologists will continue
to overlook the full scope, scale, and extent of food storage prac-
tices and associated landscape modifications in these societies.

Given that standard archaeological field-based methods
carry limitations for finding these storage features, archaeol-
ogists have to seek new ways of documenting dispersed food
storage features. Remote sensing offers one productive ave-
nue. We recently turned to lidar to advance the study of a
region where mobile, relatively low density, hunter-gatherer
communities are known to have built dispersed food storage
facilities: the Late Precontact period (ca. A.D. 1100/1200-
1600) in the northern Great Lakes region of North America
(Figure 2).



Dispersed Food Storage Features in the Northern
Great Lakes Region

While there is evidence for some physical food storage in ear-
lier time periods, the Late Precontact was marked by a notable
rise in physical food storage realized through the construction
and use of dispersed cache pit clusters (Dunham 2000, 2009;
Holman and Krist 2001; Holman and Lovis 2008; Howey and
Frederick 2016; O’Shea 2003). Historic Anishinaabeg groups
continued to construct cache pits to some degree through the
early 1900s. Ethnohistoric accounts indicate that cache pits in
active use were subterranean u-shaped features, ranging from
1 to 2 meters wide and deep, lined with birch bark, filled with
multiple foodstuffs in containers with grass-type fill in
between, and capped with mounded dirt (Densmore 1929;
Kinietz 1947; Tanner 1940 [1830]).

Today in the northern Great Lakes, cache pits survive as
microtopographic archaeological features in forested areas
subject to less EuroAmerican disturbance. Microtopographic
features exhibit “topographic variability on the scale of indi-
vidual plants [... and] describe soil surface variation within
an elevation range from roughly one centimeter to as much
as one meter, encompassing both vertical relief and surface
roughness” (Moser, Ahn, and Noe 2007, 1081). Cache pits
are subtle, low-relief circular depressions with diameters ran-
ging from one to two meters and current surface depths
between 0.3 to 0.6 meters. Cache pits almost always occur
in clusters, typically with 10 to 25 pit depressions although
some clusters encompass hundred(s) of pits (Brown 1917;
Dunham 2000; Dustin 1966; Greenman 1926; Hambacher
and Holman 1995; Howey 2015; Schneider 1942; Schumacher
1918) (Figure 3).

Cache Pit Field Research and Airborne Lidar
Delineation at Douglas and Burt Lakes

While cache pits are recognized as being a distinct part of the
archaeological record of the Late Precontact period, they have
not seen extensive archaeological research. To counteract this
scenario, we initiated a long-term archaeological field
research program on cache pits located in an inland lake
landscape in the northern lower peninsula of Michigan, and
surrounding Douglas and Burt Lakes. Douglas Lake is located
on the northern tip of the lower peninsula, roughly 25 km
south of the Mackinac Straits, where Lake Michigan and
Lake Huron meet (Figure 2). Douglas Lake drains into the
topographically lower and larger Burt Lake some three kilo-
meters south. Burt Lake is within the Inland Waterway, a
series of lakes, rivers, and streams that creates an inland
route between Lakes Michigan and Huron, providing an
alternate route to the oft-dangerous passage through the
Mackinac Straits (Lovis 1976, 366) (Figure 2).

The first systematic archaeological survey carried out in
this area was the NSF-funded 1974/1975 Inland Waterway
Project, focused on finding prehistoric habitation sites
(Lovis 1976, 1978a,b). No cache pits were found in this foun-
dational survey work, which is not surprising given both the
numerous obstacles of finding dispersed storage features of
mobile societies in field survey (discussed above) and the
microtopographic archaeological signature of Great Lakes
cache pits. Cache pits from this inland lake landscape were
first documented adjacent to Burt Lake during a University
of Michigan Biological Station (UMBS) research program
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on pre-EuroAmerican landcover (Albert and Minc 1987).
UMBS preserves 10,000 forested acres along Douglas and
Burt Lakes providing a unique opportunity to find relatively
undisturbed archaeological sites. Follow-up research on
cache pits began in 2007 with the Cultural Landscapes of
Douglas Lake (CLOD) field-based archaeological research
program stationed out of UMBS.

CLOD’s program prioritized finding more dispersed cache
pit clusters, understanding their distribution across the land-
scape, and contextualizing their significance in past local and
regional social, economic, and ideological processes (Howey
2015; Howey and Frederick 2016; Howey and Parker 2008).
Conducting a field survey targeted at documenting cache
pits came with various challenges, as might be expected
given the above discussion. Field-based archaeological sur-
veys in forests can be arduous and time-intensive. Cache
pits, being microtopographic features, are easily obscured
by leaf litter and groundcover, making it difficult to see
them until standing almost right on top of them (Figure 3).
Moreover, cache pits share morphological similarities with
“treethrow,” or pit-and-mound topography, a type of natural,
non-anthropomorphic microtopography very common in
eastern deciduous naturally forested ecosystems (Brubaker
et al. 2013; Schaetzl and Follmer 1990). Two key factors
make it possible to distinguish cache pits as anthropogenic
microtopographic features distinct from the much more
abundant natural treethrows. One factor is the fact that
cache pits have a more uniform circular shape and lack the
mounding up of treethrow pits; the other factor is that, as dis-
cussed above, cache pits almost always occur in regularized
clusters. While these factors make it possible to distinguish
cache pit topographic features from pit-and-mound ones, it
still requires a trained eye to do so reliably in archaeological
field survey.

We identified the optimal season to survey for cache pit
clusters to be late spring, as snow laying in surface
depressions melts slower than on the ground, making
cache pits stand out. UMBS Resident Biologist Robert Van-
deKopple led the UMBS Camp Stewards, a team of volun-
teer citizen scientists who live in the area, in a springtime
survey starting in 2008 (results confirmed during summers
between 2008 and 2013). Survey methodology involved
walking out from the lakeshore with GPS units in 50
meter transects (standing water/steep gradients excluded).
Through this work, 69 clusters of cache pits were found.
Pit clusters were defined when no additional pits were
found within a 75 meter buffer of the cluster. This buffer
distance was based on the existing spatial extent of field
surveyed cache pits. Most clusters we found have 10 to
25 pits although one had 60+ pits and another had over
220 pits (see Howey 2015; Howey and Frederick 2016).

To contextualize these features, we cross-sectioned pits,
performed shovel-test survey around pit clusters, and located
and excavated occupation sites in the vicinity of pits. The
results of this work indicate that cache pit clusters date to
the Late Precontact period (ca. A.D. 1100/1200-1600)
which is when, as discussed, cache pits are understood to
have become used by mobile hunter-gatherer and low-level
horticulturalist communities in the northern Great Lakes
(Howey and Frederick 2016). What is most significant
about this research is that if we had not specifically looked
for and documented these cache pits they would be over-
looked entirely, or erroneously considered an insignificant
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- Cache plt cluster on lidar DTM Cache pit on ground cleared
for cross-section excavation

Cache pit after cross-section
excavation

Figure 3. Three images of cache pits illustrating (A) how they appear as detected in a lidar derived DTM, (B) when found in field-based survey, and (C) when exca-

vated in cross-section.

part of the area’s archaeological record. The fact that physical
food storage formed a major aspect of past life is critical to
ongoing and future research and greatly informs understand-
ings and interpretations of this period in the Great Lakes.

Unfortunately, the time- and labor-intensive process
described above has been slow to produce results, and across
only a relatively small area. As a result, large areas around
these two lakes and, of course, across the rest of the northern
Great Lakes region remain unexamined for these types of sto-
rage features. To try to produce a landscape-wide analysis of
food storage behavior among mobile societies, and achieve a
much deeper understanding of how and why these features
were placed in the landscape and used in daily practice, we
realized that a different research strategy was required. By
integrating the results of this field research program with
lidar we found that, indeed, current records of storage fea-
tures are markedly incomplete and in dire need of
improvement.

The State of Michigan recently launched a lidar collection
program, Michigan Statewide Authoritative Imagery &
LiDAR (MiSAIL). The University of Michigan Biological
Station (UMBS) became an early partner with MiSAIL,
which enabled acquisition of lidar data to occur within the
extent of UMBS property on Douglas and Burt Lake (flown
during leaf-oft conditions in the spring of 2015). With early
access to these data, we saw an opportunity to test the utility
of lidar to provide new insight on the presence and distri-
bution of cache pits around these lakes. The lidar output res-
olution standard for MiSAIL is a one-meter Digital Terrain
Model (DTM), which would leave many cache pit microtopo-
graphic features unidentifiable. However, we found the result-
ing lidar data, acquired as an LAS Dataset (the industry
standard, binary format for storing airborne lidar data),
were in fact suitable for generation of a one-foot (0.305
meter) DTM.

We generated this higher resolution DTM and developed
an analytic workflow to delineate candidate cache pit clusters
for the entire DTM we had produced. We did not use known
cache pits, rather our process examined the entire DTM for
candidate cache pits based on physical aspects of cache pit
microtopography. The full details of our cache pit delineation
workflow are published in PLOS One and we refer the reader
to this open access publication for this information (Howey,
Palace, and McMichael 2016). After the application of our
cache pit delineation workflow, we had a total of 543 candi-
date cache pit clusters. It was at this stage we turned to
user-led, knowledge-based interpretation of these candidate

locations, examining each one manually. We visually ident-
ified 139 of these 543 candidate clusters as having high poten-
tial to be anthropogenic cache pit features (Figure 3 shows the
DTM visual appearance of one field-identified cache pit clus-
ter). All of our field-surveyed cache pit clusters were picked
up by the lidar delineation routine. We also ground-truthed
eight previously unknown candidate cache pit clusters that
were found in our lidar workflow and all were verified as
cache pits.

Developing a Landscape Cache Pit Detection Program
for the Northern Great Lakes

Given we identified several new cache pit clusters in an area
that has seen some of the most intensive archaeological
field surveys ever done for these features, the possibility of
numerous currently unknown cache pit clusters across the
rest of the northern Great Lakes region is very high. Conduct-
ing archaeological field survey to find these dispersed storage
features is time consuming, as our program around Douglas
and Burt Lakes has shown, and does not allow examination of
the vast geographic swaths necessary to establish a more com-
prehensive record of microtopographical archaeological
cache pit features. Thus, we began an additional program to
expand the high-resolution lidar detection workflow estab-
lished with the early release MiSAIL data of UMBS property
around Douglas and Burt Lake to all MiSAIL lidar data cur-
rently available in the northern lower peninsula and eastern
upper peninsula of Michigan.

The State of Michigan is collecting these data on a county-
by-county basis as funding becomes available and they con-
tract with the Sanborn Map Company. Sanborn has been
tasked by the State of Michigan in their collection process
to deliver high point density returns with Nominal Point Spa-
cing of 0.71 m. Data are collected using a Leica ALS80 sensor
flown onboard an aircraft at an altitude of approximately
1200 meters with a maximum scan angle of 32 degrees.
Lidar acquisition is in compliance with Quality Level 2 of
the United States Geologic Survey (USGS) National Geospa-
tial Program (NGP) Base LiDAR Specifications. While the
Digital Terrain Model (DTM) output standard for this MiS-
AIL data is one meter these collection standards have pro-
duced data suitable for much higher resolution DTMs, as
our pilot work has shown (Howey, Palace, and McMichael
2016).

Having developed a successful workflow to identify cache
pit clusters, we selected Emmet County, adjacent to
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Figure 4. MaxEnt cache pit probability output model. Higher probability areas in yellow and lower probability areas in purple.

Cheboygan County (where Douglas and Burt Lakes are
located), to begin scaling our cache pit cluster detection
state-wide. While the area of our pilot study was approxi-
mately 120 square kilometers, Emmet County has a total
area 2,284 square kilometers. Needless to say, the compu-
tation of DTMs for an entire county is much more demand-
ing. Traditionally, lidar data is delivered to end-users as tiled
point clouds. In this case, Emmet County is composed of 224
tiles of approximately 16.2 square kilometers. Generating a
single DTM with natural neighbor interpolation at a spatial
resolution of one foot for a 16.2 square kilometer tile with
approximately 1.6 million ground returns using our Python
(v 2.7) script and machine takes approximately two weeks.
With multiprocessing techniques, we were able to calculate
eight DTMs at a time utilizing eight cores of a multi-use sys-
tem. Even at this rate, generating DTMs for the county would
have taken us on the order of one year to complete. With a
goal of processing an entire state worth of lidar data within
the time constraint of a two-year project, we encountered a
computational reality of remotely sensed “big” data. Our sys-
tem was not sufficient to deal with all of the data, and redu-
cing our area of interest was imperative to prevent the
research program from gridlock. We evaluated pursuing the
use of more processors or cloud computing, but given the
temporal and budgetary limitations of our grant, we pursued
a novel and nuanced approach.

Our original aim was to take a high-resolution imaging
approach and do it at a landscape scale within appropriate
time constraints. While our aim was to stay on that safe
side of Figure 1 and create a landscape-scale detection
workflow using high-resolution imaging detection of cache
pits, this proved a computationally unrealistic goal. Faced
with this reality, we decided to cross over from the more com-
fortable, but proving to us computationally unfeasible, side of

the chart in Figure 1 and harness the power of coarser resol-
ution, more indirect landscape-process geospatial modeling.
While various landscape-process geospatial modeling
approaches are available, Maximum Entropy modeling was
chosen as a particularly powerful technique for working
with presence-only data, characteristic of the cache pit data
set we have established around Douglas and Burt Lakes
(Howey, Palace, and McMichael 2016; McMichael et al.
2014a; McMichael et al. 2014b).

Maximum Entropy Modeling of Cache Pit Suitability

The principle of maximum entropy (or MaxEnt) originates in
statistical mechanics but its application has been expanded to
many disciplines (Phillips, Anderson, and Schapire 2006).
MaxEnt has been especially developed as a species distri-
bution modeling approach in ecology used for predicting
habitat suitability of plant and animal species from pres-
ence-only records (Amaral et al. 2016; Algeo et al. 2017).
MaxEnt allows for any number of continuous or discrete spa-
tio-environmental factors to be used as predictor variables for
the species of interest. Predictor variable values are extracted
from occurrence locations and randomly located background
points across the sampling area to develop a statistical model
that extrapolates a species habitat probability map across the
landscape (McMichael et al. 2014a; McMichael et al. 2014b).

We constructed a maximum entropy model of Late Pre-
contact (ca. A.D. 1200-1600) subterranean food storage
(cache pit) distribution across northern Michigan to under-
stand what landscape processes influenced cache pit geo-
graphical placement (Figure 4). We used all cache pits
found around the Inland Waterway in Northern Michigan
from our ground survey and lidar work. We incorporated
12 spatio-environmental variables derived from remotely
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Table 1. Input spatio-environmental variables and MaxEnt permutation
importance outputs.

Variable

Percent Contribution  Permutation Importance

Landcover 1800 51.9 47.1
Distance to inland lake 28.8 429
Slope 10 3.8
Ruggedness 34 4
Sin(aspect)*slope 13 1

Sin (flow direction) 1.1 7
Sin(lake direction) 1 .8
Curvature 1 6
Sin(aspect) 8 1.1
Topographic Wetness Index 5 7
Slope Steepness 2 6
Slope Length Steepness 2 3

sensed data (Table 1). These variables were processed and
organized using Google Earth Engine, QGIS, and ArcGIS in
order to develop a geospatial database where raster layers
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would have the same projection, pixel resolution, and domain
edges. In selecting input variables, we focused on those with
landscape stability in order to strengthen the inferential
bridge to the Late Precontact period. We eliminated variables
that showed non-normal distributions based on our known
cache pit sample to reduce inclusion of atypical patterning
in our scaled-up model of cache pit suitability across northern
Michigan.

To quantify and compare the relative importance of input
spatio-environmental variables to cache pit landscape suit-
ability, we: computed a table of variable overall contribution
to MaxEnt model fit, ran jackknife tests for the training and
testing datasets, and created individual variable response
curves. We also ran 50 permutations of the model using a
replicate cross validation, in essence withholding some of
the pit locations and running the model using the withheld
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locations as a validation exercise. Each model was run using
500 maximum iterations. We also performed a jackknife rou-
tine to measure each variables’ importance or contribution to
the model and how the variable performed by itself. What
that means is each variable was excluded in turn, and a
model was created with the remaining variables. Then, a
model was created using each variable in isolation. Using
these jackknife tests, we identified which input variable pro-
duced the largest gain value when it was excluded and
which one produced the largest gain value when it was used
as a single predictor. This allowed us to see the importance
of each individual variable for model predictive abilities.

Our overall output model for cache pit probability is
shown in Figure 4. Overall model fit was strong; our MaxEnt
model had an average test area under the curve (AUC) for the
replicate runs of 0.910 and the standard deviation of 0.080.
The results help us understand which spatio-environmental
variables factored most heavily into cache pit landscape suit-
ability. We found that land cover ca. 1800 A.D. (an historic-
modeled land cover data layer) and distance to inland lake
were the most important factors in cache pit placement
(Table 1). Figure 5 shows the geospatial input of these two
variables into the model.

Our working MaxEnt model for cache pit probability has
allowed us to start identifying key driving ecological processes
behind cache pit geographical location during the Late Pre-
contact in the northern Great Lakes. While this is significant
in its own right, we are also able to now apply the results of
this landscape process-based modeling iteratively and
enhance our lidar high-resolution cache pit feature detection
routine. Now, rather than geospatially processing entire
counties, we are focusing on processing lidar data for smaller
areas of interest determined by the MaxEnt model to have
highest cache pit suitability (yellow in Figure 4). Clusters
identified will be ground-verified and added to our growing
cache pit database. Periodically, we will re-run our MaxEnt
modeling with the additional input of these new, known
cache pit locations. In this way, we are iteratively refining
both our landscape process-based analysis and cultural fea-
ture detection.

Conclusion

Our case study helps illustrate that to harness the full power
of remote sensing “big” data in archaeology we must be will-
ing to be flexible with research design, to move between high-
resolution and moderate-resolution data in order to examine
bounded sites and regions as well as unbounded landscapes,
and to conduct iterative analyses. We began our project, hav-
ing had success in our pilot research, with the intent of using
high-resolution lidar imaging to identify actual archaeological
cache pit features directly with remotely sensed data across all
of northern Michigan. We soon had to let go of that original
idea when the remotely sensed “big” data led us to “big com-
putational time.” We faced a dilemma. We could, with time
and budget available to us, produce high-resolution imaging
and conduct our lidar cache pit delineation workflow for
one county in northern Michigan, or we could develop a
new research approach. Working in only one county felt
like a narrow outcome for what started as an ambitious pro-
ject aimed at producing an appreciation of past storage pit
placement across a large area. So, we pivoted toward land-
scape process-based modeling. While dependent on
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moderate-resolution data and thus more indirect in terms
of archaeological interpretations, this has allowed our
research to move forward in unplanned yet fruitful ways.

In crossing from the safe side of Figure 1 to the less
direct, coarser-resolution side, we gained not only a novel
yet feasible way to advance our high-resolution lidar ima-
ging, but also new appreciations of the dynamic mix of eco-
logical factors at play in cache pit suitability across the
region. Our maximum entropy modeling has allowed us to
identify landscape matrix variables critical to hunter-gath-
erers’ decisions around food storage during the Late Precon-
tact that we had not previously considered. While we had
understood inland lakes as important to cache pit place-
ment, our maximum entropy modeling emphasized it is
even more a factor than we previously appreciated, with
areas without inland lakes having almost no probability of
cache pits. We had not considered landcover ca. 1800 before
this modeling and now we are interested in exploring
further how land cover interfaced with the way groups
made decisions about when and how to harvest, process
and store food for their well-being. Were people placing
cache pits in forest compositions with storable resources,
like oak trees, or were there technical considerations at
play, for instance in what kind of forests are easier to dig
through to make subterranean pits. We turned to this land-
scape process-based modeling to help develop an efficient
approach to finding more cache pit sites. We were asking
the Late Precontact landscape how much of it there was;
how many cache pit sites were there? With our broader
approach, we have been able to expand beyond a focus on
bounded sites and ask rather of this landscape, what it
was like. What potentialities inhered in the landscape for
food storage and how did Late Precontact hunter-gatherer-
fishers engage in a dialectical relationship with the landscape
to ensure well-being?

Taking a more flexible and iterative approach to remotely
sensed big data is critical for archaeological applications.
Archaeology must venture beyond the safe side of Figure 1,
that comfort zone of high-resolution, site-based analyses
and unlock landscape process-based analytic potentials.
This is especially critical given future satellite plans of organ-
izations like NASA, which are largely landscape-scale instru-
ments, and the flood of “big” data these new technologies will
produce. If archaeology does not find creative ways to harness
moderate-resolution data to answer archaeological research
questions of enduring significance, we will be missing a
major aspect of the global geospatial revolution. Though we
may study the past, our techniques should not be relegated
to the past. Instead, the future of studying the past is in fol-
lowing the lead of sister fields like ecology and earth sciences
to meaningfully grapple with and pioneer novel applications
of burgeoning remote sensing methods.
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