Downloaded via UNIV OF FLORIDA on October 23,2020 at 15:21:34 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

JOURNAL OF
CHEMICAL INFORMATION
AND MODELING

pubs.acs.org/jcim

TorchANI: A Free and Open Source PyTorch-Based Deep Learning

Implementation of the ANI Neural

Network Potentials

Xiang Gao, Farhad Ramezanghorbani, Olexandr Isayev, Justin S. Smith, and Adrian E. Roitberg*

Cite This: J. Chem. Inf. Model. 2020, 60, 3408-3415

I: I Read Online

ACCESS |

[l Metrics & More

| Article Recommendations |

ABSTRACT: This paper presents TorchANI, a PyTorch-based
program for training/inference of ANI (ANAKIN-ME) deep
learning models to obtain potential energy surfaces and other
physical properties of molecular systems. ANI is an accurate neural
network potential originally implemented using C++/CUDA in a
program called NeuroChem. Compared with NeuroChem,
TorchANI has a design emphasis on being lightweight, user
friendly, cross platform, and easy to read and modify for fast
prototyping, while allowing acceptable sacrifice on running
performance. Because the computation of atomic environmental
vectors and atomic neural networks are all implemented using

TR 1wy — FlW)

Iyl
THORCH

PyTorch operators, TorchANI is able to use PyTorch’s autograd engine to automatically compute analytical forces and Hessian
matrices, as well as do force training without requiring any additional codes. TorchANI is open-source and freely available on

GitHub: https://github.com/aiqm/torchani.

1. INTRODUCTION

The potential energy surface (PES) of atomistic systems plays
a major role in physical chemistry: it is a core concept in
molecular geometries, transition states, vibrational frequencies,
and much more. Existing approaches for obtaining a molecular
PES can be roughly categorized into two general classes:
quantum mechanics (QM) and molecular mechanics (MM)."
The correct physics for obtaining the PES of molecules is given
by QM, or more specifically by solving the many-body
Schrodinger equation (MBSE), which takes the interaction of
electrons and nuclei into account. However, solving the MBSE
is QMA-Hard.” That is to say, on any computer that humans
have theorized, including quantum computers, obtaining an
exact solution of the MBSE is intractable.” In practice,
numerous approximations have been developed to obtain
solutions to the MBSE. Depending on the accuracy of the
approximation, the computational cost varies drastically across
methods. Kohn—Sham density functional theory (DFT)* and
coupled cluster theory” are two popular approximations. These
methods tend to be accurate compared to MM methods but
computationally very expensive; for example, DFT scales as
O(N?) and CCSD(T) scales as O(N’), where N is the number
of electrons in the molecule. A general trend is, the better the
accuracy, the worse the computational scaling with the system
size.

The MM approach does not directly account for electrons. It
obtains an approximate PES by defining bonds, angles,
dihedrals, nonbonded interactions, and so forth and then
parameterizing specific functions for describing these inter-

© 2020 American Chemical Society

\ 4 ACS Publications 3408

actions. The obtained potentials are called force fields. Because
of a restrictive functional form and limited parameterization,
force fields often yield nonphysical results when molecules are
far from equilibrium geometry, or when applied to molecules
outside their fitting set. For example, in most force fields,
bonds cannot break due to the use of a harmonic functional
form for bonding. Despite these problems, force fields have the
advantage of scaling as O(N?) with respect to the number of
atoms in the system N, which leads to their wide use in the
study of large systems like proteins and DNA.

Recent deep learning developments in many fields® have
shown that an artificial neural network is generally a good
approximator of functions.” Being aware of this fact,
researchers in the field of computational chemistry have been
deploying neural networks and other machine-learning-based
models for the prediction of QM computed properties.® "
These models aim to bypass solving the MBSE by directly
predicting QM properties. In recent years, a few of these
models have been released as open source codes, many in
machine-learning frameworks such as TensorFlow or PyTorch.

Received: April 29, 2020
Published: June 22, 2020

https://dx.doi.org/10.1021/acs.jcim.0c00451
J. Chem. Inf. Model. 2020, 60, 3408—3415

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiang+Gao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Farhad+Ramezanghorbani"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Olexandr+Isayev"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Justin+S.+Smith"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Adrian+E.+Roitberg"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.0c00451&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?goto=recommendations&?ref=pdf
https://github.com/aiqm/torchani
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=abs1&ref=pdf
https://pubs.acs.org/toc/jcisd8/60/7?ref=pdf
https://pubs.acs.org/toc/jcisd8/60/7?ref=pdf
https://pubs.acs.org/toc/jcisd8/60/7?ref=pdf
https://pubs.acs.org/toc/jcisd8/60/7?ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00451?ref=pdf
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

Radial function

all C atoms

2
A 1)

Maximum radial function output

-2

X (R)
Angular Part

Angular function

All (C,N) pairs

i

(1 + cos (6i]~k - 05(")))(exp [—77 (Ril' "2' Ry Rép))z]fC(Rij)fC(Rik)]

Figure 1. Structure of the ANI AEVs. The sum of j and k is on all neighbor atoms of selected species/pair of species. R, and 6, are hyperparameters

called radial/angular shifts. f is called the cutoff cosine function, defined as f_ (R) = %[cos(;—R) + l] for R < R¢ and 0 otherwise, where R is
C

called the cutoff radius, a hyperparameter that defines how far we should reach when investigating chemical environments.

In this article, we introduce an open source implementation
of the ANT*” style neural network potential in PyTorch. ANT is
a general-purpose neural network-based atomistic potential for
organic molecules. To date, four ANI models have been
published, the ANI-1,>* ANI-1x>* ANI-lccx,>* and ANI-2x*
potentials. The ANI-1 model was developed by random
sampling conformational space of 57k organic molecules with
up to eight heavy atoms, C, N, and O, plus H atoms to have
proper chemistry, then running DFT calculations to obtain
potential energies for training. ANI-1x was trained to a data set
of molecular conformations sampled through an active learning
scheme. Active learning is where the model itself is iteratively
used to decide what new data should be included in the next
iteration. ANI-lccx was trained to the ANI-1x data set, then
retrained to a 10% smaller data set of accurate coupled cluster
calculations, resulting in a potential that outperformed DFT in
test cases. ANI-2x was trained by adding many millions of data
points to the ANI-1x data set, at the same level of theory, but
now including elements S, F, and Cl. We include the ANI-Ix,
ANI-1lccx, and ANI-2x potentials with our framework. The
general philosophy of our software is to provide the public with
an easily accessible and modifiable version of the ANI
framework for deploying our existing and future ANI models,
for training new models to new data sets, or for fast
prototyping of new ideas and concepts.

Similar to traditional force fields, ANI does not explicitly
treat electrons and defines the potential energy directly as an
explicit function of coordinates of atoms. However, unlike
force fields, ANI does not predefine concepts like bonds, and
the functional form of potential energy in ANI is an artificial
neural network. Because ANI does not solve the Schrodinger
equation, the computational cost of ANI is comparable to that

3409

of force fields, which makes ANI able to scale to large
molecules like proteins. Being trained on synthesized data
computed by quantum chemical methods, such as DET*>**3¢
and CCSD(T)/CBS,** ANI can predict most parts of the PES
at a quantum level. Because the level of accuracy is at the
quantum chemical level, it should be able to capture important
properties such as bond breaking that traditional force fields
cannot model.

As discussed by Behler,”” there are symmetries that the
predicted potential energy has to obey: it has to be invariant
under the transformations of translation, rotation, and
permutation of the same type of atoms. Behler and Parrinello
presented an architecture that satisfies this type of symmetry.'?
In that work, for each atom, a fixed-size representation of its
chemical environment called an atomic environmental vector
(AEV) is computed. AEVs are invariant under translation and
rotation. The AEV of each atom is further passed through a
neural network to get a scalar, the atomic contribution of this
total energy. The total molecular energy is obtained by adding
up these atomic energies. If the neural networks applied to the
AEVs of the same type of atoms are the same as each other, the
permutation symmetry is also satisfied.

The AEVs in ANI are modified from those in Behler and
Parrinello.'® The structure of the AEV in ANI, which is
composed of radial and angular parts, is shown in Figure 1.
The radial AEV is further divided into subAEVs according to
atom species. Similarly, angular AEV is further divided into
subAEVs according to pairs of atom species. Each subAEV
only cares about neighbor atoms of its corresponding species/
pair of species. Loosely speaking, we can think of AEV as
counting the number of atoms for different species/pair of

https://dx.doi.org/10.1021/acs.jcim.0c00451
J. Chem. Inf. Model. 2020, 60, 3408—3415

https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=fig1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00451?ref=pdf

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

species, at different distances and angles. Interested readers are
referred to”” for more details.

As shown in Figure 2, after computing the AEV for each
atom, these AEVs are further passed forward through the

~

f b [41]42]]

»The inputs are the chemical symbols

NNP (0) and coordinates of each atom
E‘a:: c‘:};r @@ »Compute AEV, a descriptor of the

ros ‘ chemical environment for each atom
ecal AV é@ éﬁ »AEVs are passed through neural

networks to obtain atomic energy

> Each different chemical symbol has a
distinct neural network

> Atomic energies are summed to
compute molecular energy as output

Atomic
Energies

e
Total @

Energy ——)

Figure 2. From AEV to Molecule Energy. Figure reproduced from ref
32 with permission from the Royal Society of Chemistry.

neural network to obtain atomic energies, which will be further
summed together for each molecule to obtain the total energy.
The AEVs of the atoms with the same atomic numbers are
passed through the same neural network.

In the first version of ANI, aka ANI-1, the training data are a
set of the synthesized data, called the ANI-1 dataset,>®
obtained from DFT wB97X/6 — 31G(d) computations of
energies of near equilibrium structures of small organic
molecules using normal mode sampling. Only elements H,
C, N, and O are supported.

ANI was originally implemented in C++/CUDA in a
program called NeuroChem, which allows us to do lightning
fast training and inference on modern NVIDIA GPUs. High
performance of the NeuroChem code is obtained as a trade-off
with fast prototyping, lossy maintenance, simple installation,
and cross platform. This motivated us to implement a
lightweight and easy to use version, that is TorchANL
TorchANI is not designed to replace NeuroChem. But instead,
it is a complement to NeuroChem with different design
emphasis and expected use case.

2. METHODS

2.1. PyTorch-Based Implementation. In terms of
software for neural network potential research, both perform-
ance and flexibility are important. But unfortunately, perform-
ance and flexibility usually cannot be achieved together. Trade-
offs have to be made when designing a software.

There are researchers trying to use neural network potentials
to study large biomolecules like proteins at a highly accurate
level, which has a high demand on the inference performance
of the software. Also, the quality of a neural network potential
highly depends on the quality of the dataset on which the
potential is trained. Research on improving dataset quality
involves using accurately synthesized data to cover the
chemical space more complete and balanced. To achieve this
goal, we have proposed to use active learning™ to
incrementally expand the dataset, from HCNO to
HCNOSFCL* and from near equilibrium structures to
reaction pathways, and from DFT to coupled-cluster.’* The
fact that active learning requires a large number of samples
makes the training performance also critical in such a kind of
research.

3410

For researchers prototyping neural networks of different
architectures, loss functions, and optimizers, the software
should be highly flexible. It should also be cross platform so
that researchers could try their ideas both on a GPU server and
on a laptop. The best technology selection for this purpose is
to use a deep learning framework, which allows employing the
implementations of the most modern methods in the rapidly
growing field of machine learning. Since its release, PyTorch38
has gained a great reputation on its flexibility and ease to use,
and has become the most popular deep learning framework
among researchers. TorchANI is an implementation of ANI on
PyTorch, aimed to be light weight, user-friendly, cross
platform, and easy to read and modify.

Major deep learning frameworks could be categorized as
layer-based frameworks like Caffe’ and compute graph-based
frameworks like PyTorch,38 TensorFlow,” and MXNet.*'
Layer-based frameworks consider a neural network as several
layers of neurons stacked together. The software usually
allocates memory buffers to store inputs and outputs, as well as
the gradients obtained during back-propagation, for each layer.
The core of the software is a CPU code and CUDA kernels
that fill in these buffers. Frameworks of this type are simple in
design and fast in performance. However, considering deep
learning models as a stack of layers is a very restrictive
assumption. As a result, not all deep learning models fit into
the framework of layers. Also, the lack of data structure to store
the computation history makes it very hard to implement
higher-order derivatives.

Compute graph-based deep learning frameworks, such as
PyTorch, usually contain an automatic differentiation
engine.*”* The engine stores the data dependency as a
graph and contains API that allows users to invoke algorithms
to investigate the mathematical operations of the history and
compute the derivatives in one line of code. NeuroChem is
coded as a layer-based program.

Unlike most deep learning research in the field of computer
vision and natural language processing, and so forth, in which
the automatic differentiation engine is only used in computing
the derivatives of the loss function with respect to model
parameters, the automatic differentiation engine could be more
useful in chemistry: many physical properties are defined as the
derivative of two other properties, say C = 0A/0B. Because of
this nature of science, higher-order derivatives are also more
important than in the general artificial intelligence community.
By using the automatic differentiation engine of PyTorch,
people can write down the code that computes A from B, and
the framework provides tools to automatically compute C.
Table 1 shows a list of common physical quantities that are
derivatives of other quantities.

Table 1. List of Physical Quantities That are Derivatives

quantity formula

force F = 0E/dR
Hessian Hy = 0°E /0x,0x;

1 ()AUE

0. = —-
stress tensor i v an]
2
1 Ny | om

infrared intensity = - A%, _.ﬂ(;

471'80 3c aqu

https://dx.doi.org/10.1021/acs.jcim.0c00451
J. Chem. Inf. Model. 2020, 60, 3408—3415

https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00451?ref=pdf

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

Scheme 1. Compute Stress”

displacement = torch.zeros (...)
scaling_factor
new_cell , new_coordinates

cell , coordinates

1 + displacement
scale_system_and_unit_cell(
scaling_factor)

Numerically new_cell and new_-coordinates has the same values as

old wvalues, i.e. cell,

the system by zero.

how they are related to displacement

coordinates because the are just distorting
But the new wvalues contain compute graph on

so that the autograd engine

can compute the gradient from the graph.

energy
stress

compute_energy (new_cell , new_coordinates)
torch.autograd.grad (energy, displacement)[0] / volume

“See the source code of the stress implementation in the atomic simulation environment (ASE)** interface of TorchANI for more details.

Scheme 2. Vibrational Analysis”

_, energies = model((species, coordinates))
hessian = torchani.utils.hessian(coordinates, energies=energies)
element_masses = torch.tensor (]
1.008, #H
12.011, #C
14.007, #N
15.999, # O
|, dtype=torch.double)
masses = element_masses[species |
freq , modes = torchani.utils.vibrational analysis(masses, hessian)

“See also https://aiqm.github.io/torchani/examples/vibration.html.

Scheme 3. Train to Force”

forces

—torch.autograd.grad(energies .sum(),

coordinates ,

create_graph=True, retain_graph=True)[0]

force_loss mse(true_forces ,

loss

“See also: https://aiqm.github.io/torchani/examples/nnp.html.

forces).sum(dim=(1, 2)) / num_atoms
energy_loss + alpha % force_loss

Scheme 4. Compute IR Intensity

cartesian_coordinates
dipole_moment
grad_dipole

ir_intensity

to_cartesian (normal_coordinates)

dipole_model (cartesian_coordinates)

torch.autograd. grad (dipole_moment, normal_coordinates)[0]
coefficient * grad_dipole xx 2

Higher-order derivatives could also be computed within a
few lines of code. We will show some example on how the
automatic differentiation engine could be used with
TorchANI:

Example 1: For a periodic system, the stress tensor is defined
as the per area force pulling the system on surfaces of different

1 ‘)E('ii') .
=2 0/1:‘;} , where E(/l,-]-) is

directions. It can be computed as 0; =

the energy as a function of the factor 4; of shearing the system
and cell simultaneously in a direction defined by i, while
keeping the direction of the surfaces defined by j unchanged.
On PyTorch, the pseudocode of implementing stress can be as
simple as shown in Scheme 1.

Example 2: An important task in computational chemistry is
the analysis of molecular vibrations. To compute the normal
modes and frequencies of vibrations, we need to compute the
Hessian matrix first and then compute the eigenvalues and
eigenvectors of the mass scaled Hessian matrix. In TorchANI,
thanks to the autograd engine of PyTorch, achieving such a
task is as simple as shown in Scheme 2.

3411

In the above code, the torchani.utils.hessian is a short
function that first computes forces using torch.autograd, and
then loop on every element of the forces to compute the
Jacobian matrix of forces with respect to coordinates. The
torchani.utils.vibrational scales the Hessian with mass, and
diagonalizes to obtain the frequencies and normal modes.

Example 3: Compared with energy, force is more critical in
molecular dynamics because energy is just an observer (print
its value at each step), but the force is a player of the game
(velocities are updated according to force). Training to energy
solely does not necessarily lead to good forces (see the
experiment in Section 3.1). A straightforward solution to make
the model predicting good forces is training to force. Because
the force itself is a derivative of the energy, force training
requires taking the derivative of the loss of forces, which is a
second derivative of the predicted energies. Implementing
force training is trivial in PyTorch: we just need to add a few
lines of code to our energy trainer, as shown in Scheme 3.

Example 4: The infrared (IR) intensity is computed as

https://dx.doi.org/10.1021/acs.jcim.0c00451
J. Chem. Inf. Model. 2020, 60, 3408—3415

https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=sch2&ref=pdf
https://aiqm.github.io/torchani/examples/vibration.html
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=sch3&ref=pdf
https://aiqm.github.io/torchani/examples/nnp.html
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=sch4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=sch4&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00451?ref=pdf

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

Scheme S. Compute Energy and Force Using the ANI-1ccx Model”

import torch
import torchani

model = torchani.models.ANIlcex(periodic_table_index=True)
To use a single model instead of an ensemble,

replace the above line with:

#
#

In periodic table =06 an
species = torch.tensor ([[6, 1,

_, energy = model((species
force

print (’Energy:
print (’Force:’

’, energy.item())

“See also: https:// aigm.github.io/torchani/examples/energy.html.

)
ires

, force.squeeze())

model = torchani.models. ANIlccx(
periodic_table_index=True)[0]

0.006, 0.01],
0.4, —0.3],
0.8, 0.2],
0.5, 0.8],
~0.2, —0.9]]],

grad=True)

coordinates))
—torch.autograd.grad(energy .sum(), coordinates)[0]

2
1 Ny

a 4rme, 3c

o

R

where i is the dipole moment, and R is the vibrational
coordinate. As long as we could train a neural network
predicting dipoles, the computation of IR intensity using
PyTorch would also be straightforward. Starting from the
normal modes, which could be computed as shown in Scheme
2, the pseudocode to obtain its IR intensity is shown in
Scheme 4.

2.2. Design. TorchANI is composed of the following major
parts:

e The core library, including AEV computer, species-
differentiated atomic neural network, and some other
utilities.

The dataset utilities to prepare datasets and add
necessary padding to be used in the training and
evaluation of ANI models. This utility is designed mainly
for helping users that want to use the datasets published
in refs 36 and 4S. If users wish to use their own dataset,
they can write their own wrapper that converts their raw
data into PyTorch tensors and feed them into the
training pipeline.

The NeuroChem compatibility module that can: (1)
read networks trained on NeuroChem, and (2) read
NeuroChem’s training configuration files and train on
PyTorch with precisely the same procedure.

The ASE* interface that allows the users to use ASE for
common atomic simulation tasks including structure
optimization, molecular dynamics, trajectory analysis/
exporting, and so forth, with ANIL. TorchANI's ASE
interface comes with full periodic boundary condition
and analytical stress support.

The ANI model zoo that stores public ANI models

The major part of the core library consists of three classes,
AEVComputer, ANIModel, and EnergyShifter, which are used
to build the coordinate-AEV-energy pipeline

3412

AEV computer

coordinates —————— AFEVs

ANI model .
———— raw energies

energy shifter
—————— molecular energies

All three of these classes are subclasses of torch.nn.Module.
The inputs of all these classes are tuples of size 2, where the
first elements of the tuple are always species, a LongTensor
storing the species of each atom in each molecule. The species
are passed through to the output unchanged, which allows us
to pipeline objects of these classes using torch.nn.Sequential.
The energies computed by ANIModel (called raw energies)
are different from the real molecular energy by a number that
scales linearly with the number of atoms of each species.
EnergyShifter is the class responsible for shifting the raw
energies to real molecular energies.

The dataset utilities provide tools to read the published
dataset of the same format as in ref 36 and prepare it for
training in TorchANI. The trick here is padding. Training of
ANI models uses stochastic gradient descent, which requires
creating minibatches containing different molecules. A natural
way to design this is to make the model have an input that is a
tensor of shape (molecules, atoms, 3) as coordinates and
(molecules, atoms) to store the type of elements of atoms.
However, each minibatch contains molecules with a different
number of atoms. The nature of a tensor being an n-
dimensional array makes it impossible to make the whole batch
a single tensor. Our solution was to “invent” a new ghost
element type —1, which does not exist on the periodic table.
When batching, we pad all molecules by adding atoms of the
ghost element to make all molecules in the batch have the
same number of total atoms.

The code in Scheme 5 shows how to use TorchANI to
compute the energy and force of a methane molecule, using an
ensemble of eight different ANI-lccx® models. From the
example, we can see that the whole coordinate — energy
pipeline is part of the computational graph so the gradients and

https://dx.doi.org/10.1021/acs.jcim.0c00451
J. Chem. Inf. Model. 2020, 60, 3408—3415

https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=sch5&ref=pdf
https://aiqm.github.io/torchani/examples/energy.html
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=sch5&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00451?ref=pdf

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

higher-order derivatives can be computed using PyTorch’s
automatic differentiation engine.

Taking advantage of the power of PyTorch’s autograd
engine, training to force becomes trivial. Scheme 3 shows the
additional code added to the energy training script to train an
ANI model to force. We can see training a network to forces
requires only a few additional lines of code, as demonstrated in
Scheme 3.

TorchANI provides tools to compute the analytical Hessian
using autograd engine and to perform vibrational analysis, as
shown in Scheme 2. TorchANI also provides analytical stress
support, and it will be automatically used when the user is
using the ASE interface to do a NPT simulation with periodic
boundary conditions. A set of detailed example files and
documentations for training and inference using TorchANI is
available at https://aiqm.github.io/torchani/.

3. RESULTS AND DISCUSSION

3.1. Benchmark. All benchmarks are done on a work-
station with NVIDIA GeForce RTX 2080 GPU and Intel i9-
9900K CPU. Training on the whole ANI-1x dataset® with a
network architecture identical to the one used by NeuroChem
takes 54 s per epoch. Within the 54 s, 16 s are spent on
computing AEV, 28 s are spent on neural networks, and the
rest are on backpropagation. In comparison, NeuroChem takes
18 s for each epoch using the same GPU/CPU architecture.

We also measured the number of seconds it takes to do 1000
steps of molecular dynamics. All models are run in double data
type on GPU. We tested both periodic and nonperiodic
systems. We use water boxes with densities between 0.94 and
1.17 g/mL (except for the very small system with only eight
waters, which has a density of 0.72 g/mL) of different sizes for
all periodic tests. The time versus size of the system for both
the periodic system and the nonperiodic system, as well as for
both single ANI model and ANI model ensembles, is shown in
Table 2.

We also report the training behavior on the ANI-1x”
dataset. The whole ANI-1x dataset is split into 80 + 10 + 10%
where 80% of the data are used as the training set, 10% are
used as validation, and the other 10% are used as testing. We

Table 2. Seconds for 1000 Molecular Dynamics Steps

total single ensemble of
system PBC atoms network 8 networks
benzene no 12 5.80 14.80
PHE-GLU-ILE no 58 7.14 22.69
tripeptide
ALA14 no 143 7.00 23.83
ALA28 no 283 7.24 24.52
ALA42 no 423 7.32 24.32
ALAS6 no 563 7.98 27.00
ALA84 no 843 8.58 27.12
ALA126 no 1263 9.36 27.45
ALA2S2 no 2523 14.87 35.14
ALAS04 no 5043 30.87 53.37
water box yes 24 13.27 21.30
water box yes S1 12.53 22.02
water box yes 150 13.54 22.38
water box yes 300 16.10 24.39
water box yes 501 19.65 28.28
water box yes 801 32.19 41.47
water box yes 1200 56.10 65.58

3413

compare the results of training only to energy and to both
energy and force. When training with force, the loss function
we use is similar to that reported in ref 46. We define our loss
as loss = (energy loss) + a X (force loss), where

i i))2
l 1 Ninolecules (EI()r)e q— t(nzth)
energy 0SS = i
molecules i m
and
=(i) =) \2
1 Nisolecules (1-'«'131_e - thth)
force loss = '
N(’)

molecules i atoms

with different & values. For the training to energy experiment,
the MSE loss is scaled by the square root of the number of
atoms per each molecule, as described in ref 32. The
performance on the COMP6 benchmark™ for the resulting
models of these training is shown at Table 3. Energies are in

Table 3. COMP6 Benchmark Results for Different Models.
MAE/RMSE (kcal/mol)

model energy (@ =0) a =05 a=025 a=0.1
energy 2.27/3.62 3.10/3.93 2.73/450 2.43/3.93
relative energy 2.29/3.51 1.95/3.09 1.93/3.07 1.90/3.00
forces 4.41/6.96 2.33/3.75 2.30/3.75 2.35/3.88

kcal/mol and forces are in kcal/(mol-A). Error keys are MAE/
RMSE. From the table, we can see that although enabling force
training might hurt the RMSE of absolute energies, the
prediction of the relative energies always improves. The
relative energy is a more important quantity than the absolute
energy because it is related to reaction barriers and
conformational changes.

3.2. Application. In addition to its mentioned training/
inference capabilities, we use TorchANI to train a fully
connected neural network to predict the NMR chemical shifts
of a and f carbons of proteins on the dataset used by
SHIFTX2."” NMR chemical shifts in proteins are used to
determine the protein structure. It is an atomic property that
depends on many factors, including the local protein structure
as well as environmental factors such as hydrogen bonding and
pH.*” SHIFTX2 is a program that predicts chemical shifts by
combining different methods, including machine learning. The
dataset used to train SHIFTX2 is publicly available and can be
downloaded at http://www.shiftx2.ca.

Protein chemical shift databases usually contain chemical
shift data of different types of hydrogens, carbons, and
nitrogens. Among these atoms, @ and f carbons are mostly
related to structural information of the protein itself, rather
than environments like hydrogen bonding of nearby water
molecules,”’ making them an excellent choice for a simple
application of predicting a property solely based on the local
structure.

Because NMR chemical shifts are atomic properties, they are
well suited to the ANT architecture. We build a fully connected
neural network with only one hidden layer, which contains 256
neurons. We use the exponential linear unit*® activation
function to add nonlinearity to this network. The input of the
network is solely the AEV for the atom to be predicted, and the
output is the chemical shift we are predicting. The AEV
computer only supports five elements: HCNOS. The length of
each AEV is 560. Ligands and ions in the protein structures are

https://dx.doi.org/10.1021/acs.jcim.0c00451
J. Chem. Inf. Model. 2020, 60, 3408—3415

https://aiqm.github.io/torchani/
http://www.shiftx2.ca
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00451?ref=pdf

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

predicted chemical shifts (ppm)

T T T

55 60 65

T
50

true chemical shifts for *C (ppm)

45

10!

10°

70 A Fl
10?

60 " e

10!

10°

T T

60 70

true chemical shifts for /¢ (ppm)

Figure 3. The 2D Histogram for the Prediction of Chemical Shift. Note that the color scale is logarithmic, yellow means 100X more populated than

deep blue.

deleted so that each atom of interest only contains these five
elements in its neighborhood.

SHIFTX2 dataset contains a training set, which we use to
train our models, and a testing set, which we use to evaluate
our trained models. We train two different neural networks,
one for a carbons and the other for §# carbons. After training,
the resulting models can predict the chemical shift of “C with a
coefficient of determination R* = 0.96 on the testing set, which
for 7C this number is R?> = 0.99. The 2D histogram on the
logarithm scale for the true values versus predicted values is
shown in Figure 3.

4. CONCLUSIONS

In this manuscript, we have introduced Torchani, a lightweight
and highly modular implementation of our neural network
potentials. The software is free and open, and available in
github. We present some of the theory, implementation, and
provide some examples of extensions and usage. Future work
will be focused toward new methods and speed improvements.

B AUTHOR INFORMATION

Corresponding Author
Adrian E. Roitberg — Department of Chemistry, University of
Florida, Gainesville, Florida 32611, United States;
orcid.org/0000-0003-3963-8784; Email: roitberg@ufl.edu

Authors

Xiang Gao — Department of Chemistry, University of Florida,
Gainesville, Florida 32611, United States

Farhad Ramezanghorbani — Department of Chemistry,
University of Florida, Gainesville, Florida 32611, United
States; ® orcid.org/0000-0002-7545-4416

Olexandr Isayev — Department of Chemistry, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States;

orcid.org/0000-0001-7581-8497

Justin S. Smith — Center for Nonlinear Studies and Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New
Mexico 875485, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.0c00451

3414

Author Contributions

TorchANI has been public as a free and open source software
at GitHub since Oct 2018. The authors would also like to
thank all the users of TorchANI for using and providing
feedback to them. Contributions of code improvements from
Ignacio J. Pickering and Jinze Xue’s improvements on ANI
data loader are also worth mentioning.

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

F.R. would like to thank the Molecular Sciences Software
Institute (MolSSI) for a fellowship award under NSF grant
ACI-1547580. AER. would like to thank the NSF CHE-
1802831 award. Olexandr Isayev would like to thank the NSF
CHE-1802789. J.S.S. was supported by LDRD program and
the Center for Nonlinear Studies (CNLS) at Los Alamos
National Laboratory (LANL). We gratefully acknowledge the
support and hardware donation from NVIDIA Corporation
and express our special gratitude to Jonathan Lefman.

B REFERENCES

(1) Leach, A. R; Leach, A. R. Molecular Modelling: Principles and
Applications; Pearson Education, 2001.

(2) Aaronson, S. Why quantum chemistry is hard. Nat. Phys. 2009, S,
707.

(3) Watrous, J. Quantum Computational Complexity. Encyclopedia
of Complexity and Systems Science; Springer, 2009; pp 7174—7201.

(4) Kohn, W,; Sham, L. J. Self-consistent Equations Including
Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133.

(5) Bartlett, R. J.; Musial, M. Coupled-cluster Theory in Quantum
Chemistry. Rev. Mod. Phys. 2007, 79, 291.

(6) Alom, M. Z.; Taha, T. M.; Yakopcic, C.; Westberg, S.; Sidike, P.;
Nasrin, M. S.; Van Esesn, B. C.; Awwal, A. A. S,; Asari, V. K. The
History Began From AlexNet: a Comprehensive Survey on Deep
Learning Approaches. 2018, arXiv:1803.01164 2018. arXiv preprint.

(7) Hornik, K. Approximation Capabilities of Multilayer Feedfor-
ward Networks. Neural Network. 1991, 4, 251—-257.

(8) Blank, T. B.; Brown, S. D.; Calhoun, A. W.; Doren, D. J. Neural
Network Models of Potential Energy Surfaces. J. Chem. Phys. 1995,
103, 4129—4137.

(9) Hobday, S.; Smith, R; Belbruno, J. Applications of Neural
Networks to Fitting Interatomic Potential Functions. Modell. Simul.
Mater. Sci. Eng. 1999, 7, 397—412.

https://dx.doi.org/10.1021/acs.jcim.0c00451
J. Chem. Inf. Model. 2020, 60, 3408—3415

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Adrian+E.+Roitberg"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-3963-8784
http://orcid.org/0000-0003-3963-8784
mailto:roitberg@ufl.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiang+Gao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Farhad+Ramezanghorbani"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-7545-4416
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Olexandr+Isayev"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-7581-8497
http://orcid.org/0000-0001-7581-8497
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Justin+S.+Smith"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?ref=pdf
https://dx.doi.org/10.1038/nphys1415
https://dx.doi.org/10.1103/physrev.140.a1133
https://dx.doi.org/10.1103/physrev.140.a1133
https://dx.doi.org/10.1103/revmodphys.79.291
https://dx.doi.org/10.1103/revmodphys.79.291
https://dx.doi.org/10.1016/0893-6080(91)90009-t
https://dx.doi.org/10.1016/0893-6080(91)90009-t
https://dx.doi.org/10.1063/1.469597
https://dx.doi.org/10.1063/1.469597
https://dx.doi.org/10.1088/0965-0393/7/3/308
https://dx.doi.org/10.1088/0965-0393/7/3/308
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00451?fig=fig3&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00451?ref=pdf

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

(10) Behler, J.; Parrinello, M. Generalized Neural-network
Representation of High-dimensional Potential-energy Surfaces. Phys.
Rev. Lett. 2007, 98, 146401.

(11) Han, J; Zhang, L.; Car, R;; E, W. Deep Potential: A General
Representation of a Many-Body Potential Energy Surface. Commun.
Comput. Phys. 2018, 23, 629—639.

(12) Lubbers, N.; Smith, J. S.; Barros, K. Hierarchical Modeling of
Molecular Energies Using a Deep Neural Network. J. Chem. Phys.
2018, 148, 241715.

(13) Schiitt, K. T.; Sauceda, H. E.; Kindermans, P.-J.; Tkatchenko,
A.; Miiller, K-R. SchNet - A Deep Learning Architecture for
Molecules and Materials. J. Chem. Phys. 2018, 148, 241722.

(14) Gastegger, M.; Schwiedrzik, L.; Bittermann, M.; Berzsenyi, F.;
Marquetand, P. wACSF—Weighted Atom-centered Symmetry
Functions as Descriptors in Machine Learning Potentials. J. Chem.
Phys. 2018, 148, 241709.

(15) Zubatyuk, R; Smith, J. S.; Leszczynski, J.; Isayev, O. Accurate
and Transferable Multitask Prediction of Chemical Properties with an
Atoms-in-molecules Neural Network. Sci. Adv. 2019, S, No. eaav6490.

(16) Rupp, M.; Tkatchenko, A.; Muller, K-R.; von Lilienfeld, O. A.
Fast and Accurate Modeling of Molecular Atomization Energies with
Machine Learning. Phys. Rev. Lett. 2012, 108, 58301.

(17) Thompson, A. P.; Swiler, L. P.; Trott, C. R; Foiles, S. M,;
Tucker, G. J. Spectral Neighbor Analysis Method for Automated
Generation of Quantum-accurate Interatomic Potentials. J. Comput.
Phys. 2015, 285, 316—330.

(18) Faber, F. A.; Hutchison, L.; Huang, B.; Gilmer, J.; Schoenholz,
S. S;; Dahl, G. E;; Vinyals, O.; Kearnes, S.; Riley, P. F.; Von Lilienfeld,
O. A. Prediction Errors of Molecular Machine Learning Models
Lower Than Hybrid DFT Error. J. Chem. Theory Comput. 2017, 13,
5255—-5264.

(19) Glielmo, A.; Sollich, P.; De Vita, A. Accurate Interatomic Force
Fields via Machine Learning with Covariant Kernels. Phys. Rev. B
2017, 95, 214302.

(20) Botu, V.; Batra, R; Chapman, J.; Ramprasad, R. Machine
Learning Force Fields: Construction, Validation, and Outlook. J. Phys.
Chem. C 2017, 121, 511-522.

(21) Kruglov, L; Sergeev, O.; Yanilkin, A.; Oganov, A. R. Energy-free
Machine Learning Force Field for Aluminum. Sci. Rep. 2017, 7, 1-7.

(22) Jiang, B; Li, J.; Guo, H. Potential Energy Surfaces from Hhigh
Fidelity Fitting of Ab initio Points: The Permutation Invariant
Polynomial-neural Network Approach. Int. Rev. Phys. Chem. 2016, 35,
479-506.

(23) Gassner, H.; Probst, M.; Lauenstein, A.; Hermansson, K.
Representation of Intermolecular Potential Functions by Neural
Networks. J. Phys. Chem. A 1998, 102, 4596—4605.

(24) Morawietz, T.; Sharma, V.; Behler, J. A Neural Network
Potential-energy Surface for the Water Dimer Based on Environment-
dependent Atomic Energies and Charges. J. Chem. Phys. 2012, 136,
064103.

(25) Kolb, B,; Zhao, B.; Li, J,; Jiang, B.; Guo, H. Permutation
Invariant Potential Energy Surfaces for Polyatomic Reactions Using
Atomistic Neural Networks. J. Chem. Phys. 2016, 144, 224103.

(26) Handley, C. M.; Popelier, P. L. A. Potential Energy Surfaces
Fitted by Artificial Neural Networks. J. Phys. Chem. A 2010, 114,
3371-3383.

(27) Yao, K; Herr, J. E.; Toth, D. W.; Mckintyre, R.; Parkhill, J. The
TensorMol-0.1 model chemistry: a neural network augmented with
long-range physics. Chem. Sci. 2018, 9, 2261—2269.

(28) Bleiziffer, P.; Schaller, K; Riniker, S. Machine Learning of
Partial Charges Derived from High-quality Quantum-mechanical
Calculations. J. Chem. Inf. Model. 2018, 58, 579—590.

(29) Nebgen, B.; Lubbers, N.; Smith, J. S.; Sifain, A. E.; Lokhov, A;
Isayev, O.; Roitberg, A. E.; Barros, K; Tretiak, S. Transferable
Dynamic Molecular Charge Assignment Using Deep Neural Net-
works. J. Chem. Theory Comput. 2018, 14, 4687—4698.

(30) Gastegger, M.; Behler, J.; Marquetand, P. Machine Learning
Molecular Dynamics for the Simulation of Infrared Spectra. Chem. Sci.
2017, 8, 6924—6935.

3415

(31) Chmiela, S.; Tkatchenko, A.; Sauceda, H. E.; Poltavsky, L;
Schiitt, K. T.; Miiller, K.-R. Machine Learning of Accurate Energy-
conserving Molecular Force Fields. Sci. Adv. 2017, 3, No. e1603015.

(32) Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1: an Extensible
Neural Network Potential with DFT Accuracy at Force Field
Computational Cost. Chem. Sci. 2017, 8, 3192—3203.

(33) Smith, J. S.; Nebgen, B.; Lubbers, N.; Isayev, O.; Roitberg, A. E.
Less is More: Sampling Chemical Space with Active Learning. J.
Chem. Phys. 2018, 148, 241733.

(34) Smith, J. S; Nebgen, B. T.; Zubatyuk, R; Lubbers, N,;
Devereux, C.; Barros, K; Tretiak, S.; Isayev, O.; Roitberg, A. E.
Approaching Coupled Cluster Accuracy with a General-purpose
Neural Network Potential Through Transfer Learning. Nat. Commun.
2019, 10, 2903.

(35) Devereux, C.; Smith, J.; Davis, K,; Barros, K,; Zubatyuk, R;;
Isayev, O.; Roitberg, A. Extending the Applicability of the ANT Deep
Learning Molecular Potential to Sulfur and Halogens. J. Chem. Theory
Comput. 2020.

(36) Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1, A Data Set of 20
Million Calculated Off-equilibrium Conformations for Organic
Molecules. Sci. Data 2017, 4, 170193.

(37) Behler, J. Constructing High-dimensional Neural Network
Potentials: A Tutorial Review. Int. J. Quantum Chem. 2018, 115,
1032—1050.

(38) Paszke, A; et al. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. Advances in Neural Information
Processing Systems; Neural Information Processing Systems, 2019; Vol.
32, pp 8024—803S.

(39) Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J;
Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional
Architecture for Fast Feature Embedding. Proceedings of the 22nd
ACM international conference on Multimedia; Association for
Computing Machinery, 2014; pp 675—678.

(40) Abadi, M.; et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. 2015, https://www.tensorflow.org/(accessed
on 05.31.2020). Software available from tensorflow.org.

(41) Chen, T.; Li, M,; Li, Y.; Lin, M.; Wang, N.; Wang, M.; Xiao, T.;
Xu, B,; Zhang, C; Zhang, Z. MXNet: A Flexible and Efficient
Machine Learning Library for Heterogeneous Distributed Systems.
Neural Information Processing Systems, Workshop on Machine Learning
Systems; Neural Information Processing Systems, 2015.

(42) Paszke, A; Gross, S; Chintala, S.; Chanan, G.; Yang, E;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic
Differentiation in PyTorch; NeurIPS Autodiff Workshop, 2017.

(43) Baydin, A. G.; Pearlmutter, B. A,; Radul, A. A;; Siskind, J. M.
Automatic Differentiation in Machine Learning: a Survey. J. Mach.
Learn. Res. 2018, 18, 1—43.

(44) Larsen, A. H.; Mortensen, J. J.; Blomgqvist, J.; Castelli, I. E.;
Christensen, R.; Dutak, M.; Friis, J.; Groves, M. N.; Hammer, B,;
Hargus, C. The Atomic Simulation Environment — A Python Library
for Working with Atoms. J. Phys.: Condens. Matter 2017, 29, 273002.

(45) Smith, J. S.; Zubatyuk, R.; Nebgen, B.; Lubbers, N.; Barros, K;
Roitberg, A. E.; Isayev, O.; Tretiak, S. The ANI-1ccx and ANI-1x Data
Sets, Coupled-cluster and Density Functional Theory Properties for
Molecules. Sci. Data 2020, 7, 1—-10.

(46) Zhang, L.; Han, J.; Wang, H; Car, R;; E, W. Deep Potential
Molecular Dynamics: A Scalable Model with the Accuracy of
Quantum Mechanics. Phys. Rev. Lett. 2018, 120, 143001.

(47) Han, B.; Liy, Y,; Ginzinger, S. W.; Wishart, D. S. SHIFTX2:
Significantly Improved Protein Chemical Shift Prediction. J. Biomol.
NMR 2011, 50, 43.

(48) Clevert, D.; Unterthiner, T.; Hochreiter, S. Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs). 4th
International Conference on Learning Representations, ICLR 2016: San
Juan, Puerto Rico, May 2—4, 2016, Conference Track Proceedings,
2016.

https://dx.doi.org/10.1021/acs.jcim.0c00451
J. Chem. Inf. Model. 2020, 60, 3408—3415

https://dx.doi.org/10.1103/physrevlett.98.146401
https://dx.doi.org/10.1103/physrevlett.98.146401
https://dx.doi.org/10.4208/cicp.oa-2017-0213
https://dx.doi.org/10.4208/cicp.oa-2017-0213
https://dx.doi.org/10.1063/1.5011181
https://dx.doi.org/10.1063/1.5011181
https://dx.doi.org/10.1063/1.5019779
https://dx.doi.org/10.1063/1.5019779
https://dx.doi.org/10.1063/1.5019667
https://dx.doi.org/10.1063/1.5019667
https://dx.doi.org/10.1126/sciadv.aav6490
https://dx.doi.org/10.1126/sciadv.aav6490
https://dx.doi.org/10.1126/sciadv.aav6490
https://dx.doi.org/10.1103/physrevlett.108.058301
https://dx.doi.org/10.1103/physrevlett.108.058301
https://dx.doi.org/10.1016/j.jcp.2014.12.018
https://dx.doi.org/10.1016/j.jcp.2014.12.018
https://dx.doi.org/10.1021/acs.jctc.7b00577
https://dx.doi.org/10.1021/acs.jctc.7b00577
https://dx.doi.org/10.1103/physrevb.95.214302
https://dx.doi.org/10.1103/physrevb.95.214302
https://dx.doi.org/10.1021/acs.jpcc.6b10908
https://dx.doi.org/10.1021/acs.jpcc.6b10908
https://dx.doi.org/10.1038/s41598-017-08455-3
https://dx.doi.org/10.1038/s41598-017-08455-3
https://dx.doi.org/10.1080/0144235x.2016.1200347
https://dx.doi.org/10.1080/0144235x.2016.1200347
https://dx.doi.org/10.1080/0144235x.2016.1200347
https://dx.doi.org/10.1021/jp972209d
https://dx.doi.org/10.1021/jp972209d
https://dx.doi.org/10.1063/1.3682557
https://dx.doi.org/10.1063/1.3682557
https://dx.doi.org/10.1063/1.3682557
https://dx.doi.org/10.1063/1.4953560
https://dx.doi.org/10.1063/1.4953560
https://dx.doi.org/10.1063/1.4953560
https://dx.doi.org/10.1021/jp9105585
https://dx.doi.org/10.1021/jp9105585
https://dx.doi.org/10.1039/c7sc04934j
https://dx.doi.org/10.1039/c7sc04934j
https://dx.doi.org/10.1039/c7sc04934j
https://dx.doi.org/10.1021/acs.jcim.7b00663
https://dx.doi.org/10.1021/acs.jcim.7b00663
https://dx.doi.org/10.1021/acs.jcim.7b00663
https://dx.doi.org/10.1021/acs.jctc.8b00524
https://dx.doi.org/10.1021/acs.jctc.8b00524
https://dx.doi.org/10.1021/acs.jctc.8b00524
https://dx.doi.org/10.1039/c7sc02267k
https://dx.doi.org/10.1039/c7sc02267k
https://dx.doi.org/10.1126/sciadv.1603015
https://dx.doi.org/10.1126/sciadv.1603015
https://dx.doi.org/10.1039/c6sc05720a
https://dx.doi.org/10.1039/c6sc05720a
https://dx.doi.org/10.1039/c6sc05720a
https://dx.doi.org/10.1063/1.5023802
https://dx.doi.org/10.1038/s41467-019-10827-4
https://dx.doi.org/10.1038/s41467-019-10827-4
https://dx.doi.org/10.1038/sdata.2017.193
https://dx.doi.org/10.1038/sdata.2017.193
https://dx.doi.org/10.1038/sdata.2017.193
https://dx.doi.org/10.1002/qua.24890
https://dx.doi.org/10.1002/qua.24890
https://www.tensorflow.org/
https://dx.doi.org/10.1038/s41597-020-0473-z
https://dx.doi.org/10.1038/s41597-020-0473-z
https://dx.doi.org/10.1038/s41597-020-0473-z
https://dx.doi.org/10.1103/physrevlett.120.143001
https://dx.doi.org/10.1103/physrevlett.120.143001
https://dx.doi.org/10.1103/physrevlett.120.143001
https://dx.doi.org/10.1007/s10858-011-9478-4
https://dx.doi.org/10.1007/s10858-011-9478-4
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00451?ref=pdf

