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Abstract—In this paper, the problem of associating reconfig-
urable intelligent surfaces (RISs) to virtual reality (VR) users is
studied for a wireless VR network. In particular, this problem
is considered within a cellular network that employs terahertz
(THz) operated RISs acting as base stations. To provide a seamless
VR experience, high data rates and reliable low latency need
to be continuously guaranteed. To address these challenges, a
novel risk-based framework based on the entropic value-at-risk
is proposed for rate optimization and reliability performance.
Furthermore, a Lyapunov optimization technique is used to refor-
mulate the problem as a linear weighted function, while ensuring
that higher order statistics of the queue length are maintained
under a threshold. To address this problem, given the stochastic
nature of the channel, a policy-based reinforcement learning (RL)
algorithm is proposed. Since the state space is extremely large,
the policy is learned through a deep-RL algorithm. In particular,
a recurrent neural network (RNN) RL framework is proposed
to capture the dynamic channel behavior and improve the speed
of conventional RL policy-search algorithms. Simulation results
demonstrate that the maximal queue length resulting from the
proposed approach is only within 1% of the optimal solution.
The results show a high accuracy and fast convergence for the
RNN with a validation accuracy of 91.92%.

Index Terms— Virtual Reality, Terahertz, Reliability

I. INTRODUCTION

Virtual reality (VR) applications will revolutionize the way
in which humans interact by allowing them to be immersed, in
real time, in a range set of virtual environments [1]. Neverthe-
less, unleashing the potential of VR requires their integration
into wireless networks in order to provide a seamless and
immersive VR experience [2]. However, deploying wireless VR
services faces many technical challenges, the most fundamental
of which is providing high rate wireless links with high relia-
bility. On the one hand, VR communication requires high data
rates to guarantee a seamless visual experience while delivering
360◦ VR content. On the other hand, providing reliable haptic
VR communications will also require maintaining a very low
end-to-end (E2E) delay in face of extreme and uncertain
network conditions.

Guaranteeing this dual performance requirement constitutes
a major departure from classical ultra reliable low latency
communications (URLLC) services limited to low-rate sensors

This research was supported by the U.S. National Science Foundation under
Grant CNS-1836802, and in part, by the Academy of Finland Project CARMA,
by the Academy of Finland Project MISSION, by the Academy of Finland
Project SMARTER, as well as by the INFOTECH Project NOOR.

[3], or traditional enhanced mobile broadband (eMBB) services
limited to high capacity delivered to dense networks [4]. In
order to overcome the rate challenge of VR communications,
one can explore the high bandwidth available at the terahertz
(THz) frequency bands [5]. However, the reliability of the
THz channel can be impeded by its susceptibility to blockage,
molecular absorption, and communication range. This, in turn,
can violate the reliability requirements of VR systems. In order
to alleviate these reliability concerns, one can deploy reconfig-
urable intelligent surfaces (RISs) [6] acting as a base station
(BS) that can provide a nearly continuous line-of-sight (LoS)
connectivity to VR users. The RIS concept can be viewed as
a scaled-up version of conventional multiple-input multiple-
output (MIMO) systems beyond their traditional large array
concept, however, an RIS exhibits several key differences from
massive MIMO systems [6]. Most fundamentally, RISs will be
densely located in both indoor and outdoor spaces, making it
possible to perform near-field communications through a line-
of-sight (LoS) path. Hence, coupling RISs with THz communi-
cations can potentially provide connectivity that exhibits both
high data rates and high reliability (in terms of guaranteeing
LoS communication). Moreover, VR users will always be at
a proximity of physical structures with high rate wireless
capabilities. Thus, it is imperative to understand whether THz-
operated RISs can indeed provide an immersive VR experience
by delivering continuously reliable connectivity with low E2E
delay and high data rate.

A number of recent works attempted to address the chal-
lenges of VR communications [1], [7]–[9]. In [7], the authors
study the spectrum resource allocation problem with a brain-
aware quality-of-service (QoS) constraint. The work in [1]
proposes a VR model that captures the tracking and delay
components of VR QoS. Meanwhile, the work in [8] proposes
a novel framework that uses cellular-connected drone aerial
vehicles to collect VR content for reliable wireless transmis-
sion. In [9] the authors study the issue of concurrent support of
visual and haptic perceptions over wireless cellular networks.
However, the works in [1] and [7]–[9] do not account for
realistic delays and their statistics, and their solutions cannot
satisfy high rates and low latency simultaneously. In contrast, to
provide reliable VR, it is of interest to explore the possibility of
deploying RISs. If properly operated, serving VR users through
existing walls and structures with wireless capabilities will
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unleash the potential of reliable VR. Specifically, equipping

RISs with THz will guarantee the overall seamless experience.

We also note that despite the surge of recent works on THz

communications (e.g., see [10] and [5], and references therein)

and RIS design and optimization (e.g., see [11], [12], and

references therein), these works focus on the physical layer

and do not address VR or networking challenges of THz

communications.

The main contribution of this paper is a novel rate and

reliability optimization framework for VR systems leveraging

THz-operated RISs. We consider the downlink of a cellular

network in which THz-operated RISs serve VR users. In this

network, due to the mobility of users and the stochastic nature

of the channel, the RISs must be dynamically and intelligently

scheduled to VR users. Also, to guarantee reliability and

capture a full knowledge of delay statistics, we propose a novel

approach that exploits the economic concept of entropic value-

at-risk (EVaR) which coherently measures the risk associated

to a random event [13]. Hence, the EVaR is employed so as to

capture higher order statistics of the delay and, thus, allowing

us to define a concrete a measure of the risk associated to

delay unreliability. We then formulate a high reliability and

sum rate maximization scheduling problem by combining both

Lyapunov optimization and deep neural networks (DNNs).

Using the Lyapunov optimization technique, the problem is

transformed into a linear weighted function, which ensures

that the maximum queue length and the maximum queue

length variance among VR users remains bounded. To solve

the proposed Lyapunov optimization problem, we propose

a reinforcement learning (RL) algorithm based on recurrent

neural networks (RNNs) that can find the user associations to

RISs while capturing the dynamic temporal behavior of the

users in the channel. Simulation results show that the gap

between the proposed approach and the optimal solution is

minimal.

The rest of this paper is organized as follows. The system

model is presented in Section II. The risk aware association

for VR users is proposed in Section III. The RL approach

is presented Section IV. In Section V, we provide simulation

results. Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

Consider the downlink1 of an RIS-based wireless network in

a confined indoor area, servicing a set U of U mobile wireless

VR users via a set B of B RISs acting as THz operated

BSs as depicted in Fig. 1. The VR users are mobile and

may change their locations and orientations at any point in

time. We consider discrete time slots indexed by t with fixed

duration τ . Each RIS is a BS, that is provided with a feeder

(antenna) with a corresponding transmit power denoted by p.

Hence, the transmitted data is encoded onto the phases of the

signals reflected from different reconfigurable meta-surfaces

that compose the RIS [6]. Henceforth, if the RIS consists

1The uplink of VR requests is assumed to follow an arbitrary URLLC
scheme and is outside of the scope of this paper

Fig. 1: Illustrative example of our system model.

of N meta-surfaces whose reflection phase can be optimized

independently, then an N -stream virtual MIMO system can

be realized by using a single radio frequency (RF) active

chain [6]. We assume that the RF source is close enough

to the RIS surface so that the transmission between each

pair of RF source and RIS is not affected by fading. Then,

the electromagnetic response of the N meta-surface elements

can be programmed by using a centralized controller, which

generates input signals that tune varactors and change the

phase of the reflected signal [11]. Let Φbu,t = [φbun,t]N×1

be the phase shift vector of RIS b , with respect to the user

equipment (UE) u, at time slot t, where φbun,t ∈ Φ, n is

the index corresponding to the meta-surface of each RIS, and

Φ = {−π + 2zπ
Z−1 |z = 0, 1, ..., Z − 1}. Z is the number of

possible phase shifts per meta-surface element.

A. Channel Model

Due to the mobility of the VR users, the THz link between

a VR user and its respective RISs may be blocked by self-

blockage, i.e., the event of blocking the signal received by

UE u’s own body, or by dynamic blockages, i.e., blocking

the signal by other VR users’ bodies respectively. Let sbu,t
be a random binary variable where sbun,t = 1 if there is a

LoS link between RIS b and VR UE u at time slot t, and

sbun,t = 0, otherwise. As a byproduct of directional beam-

forming and propagation differences, the network considered

is noise limited. Thus, the random channel gain between RIS

b and VR UE u at time slot t is given by [14]:

hbu,t =

{(
λ

4πdbu,t

)2(
e−k(f)dbu,t

)2
, with Pr(sbun,t = 1),

0, with Pr(sbun,t = 0).

dbu,t is the distance between RIS b and the VR UE u at time

slot t, k(f) is the overall molecular absorption coefficients of

the medium at THz band, and f is the operating frequency.

Let ψbun,t be the phase shift of the channel between VR UE

u and the meta-surface n of RIS b at t. Then, for a given

reflection phase shift vector, Φbu,t, the transmission rate from

RIS b to VR UE u will be (under an approximate average

signal-to-noise ratio (SNR) value across the THz band):



r̃bu,t = W log2

(
1 +

phbu,t|
∑N
n=1 e

(φbun,t−ψbun,t)j |2sbun,t
N(dbu,t, p, f)

)
,

(1)
where N(du,t, p, f) = N0 +

∑B
b=1 pA0d

−2
bu,t(1− e−K(f)dbu,t),

N0 = Wλ2

4π kBT0, kB is the Boltzmann constant, T0 is the
temperature in Kelvin, A0 = c2

16π2f2 , and c is the speed of
light [14], [15]. Note that the optimal choice for φbun,t for
every RIS association is equal to ψbun,t, thus maximizing the
rate r̃bu,t, as shown in [6]. This selection will be made by the
controller after learning the RIS association and optimizing it,
as shown in subsequent sections.

B. Queuing Model

Each RIS is equipped with mobile edge computing (MEC)
capabilities, and, thus, we model the queuing and transmission
of each VR content as an M/G/1 queue at the MEC server of
the RIS. We define a decision binary variable xbu,t that is equal
to 1 if RIS b is scheduled to serve the VR content queue of user
u at time slot t, otherwise xbu,t = 0. Note that, multiple users
can be associated to one RIS, however, each user is connected
to a single RIS. Let Qu(t) be the queue length corresponding
to UE u’s requested VR image at the beginning of slot t, then
the queue dynamics are given by:

Qu,(t+1) = max{Qu,t − R̃bu,t, 0}+Au,t, if xbu,t = 1, (2)

where Au,t is the number of VR images queued for trans-
mission at time slot t. The arrival of VR content follows a
Poisson arrival process with mean rate λu. R̃bu,t is the rate of
VR image transmission over THz link between RIS b and VR
UE u at time slot t. R̃bu,t =

r̃bu,tτ
M where M is the size of the

VR image. Given that the availability of the THz LoS link is
a random variable, R̃bu,t is a stochastic random variable with
respect to time.

III. RISK-AWARE RIS-VR USER ASSOCIATION

A. Problem Formulation

Our goal is to characterize the RIS-UE association policy
which determines the system parameters over a finite horizon
of length T . The objective of this optimal policy is to max-
imize the sum-rate while maintaining reliable transmission.
Formally, we define a policy Πt = {xbu,t|∀b ∈ B,∀u ∈ U}
for the controller that associates each RIS to its respective
VR users. The control policy at a given slot t depends on
unknown environmental changes, which is a consequence of
the stochastic nature of the channel and the sudden changes that
might block the LoS signal between RISs and mobile VR UE.
Thus, Pr(sbun,t = j|sbun,(t−1) = i),∀b ∈ B,∀u ∈ U , over the
LoS THz links. Furthermore, the reliability metric is satisfied
as long as the cumulative distribution function (CDF) of the
E2E delay does not exceed the reliability constraint associated
with its respective network. Subsequently, to account for the
risk of loss incurred when reliability is not satisfied, the value-
at-risk (VaR) concept defined as VaR1−α = − inft∈R{P (X ≤
t) ≥ 1−α} [13], can be used. However, VaR is an uncoherent

risk measure, making its analysis intractable. Thus, we define
the EVaR as φt = log E[exp(−γQt)]

γ , which is a coherent risk
measure that corresponds to the tightest possible upper bound
obtained from the VaR. In the EVaR, Qt := maxu∈U{Qu,t}
and 0 < γ � 1. Subsequently, to ensure reliability, the fol-
lowing condition needs to be met: limt→∞ φt < κ. Expanding
the Maclaurin series of φt with respect to the log and exp
functions we obtain, φt = E[Qt] + ϑ(Qt) − 1 + O(Q3

t ),
where ϑ(Qt) = E[Q2

t ] − E[Qt]
2 is the variance of the

maximum queue length. Thus, to minimize limt→∞ φt, it is
sufficient to minimize the first two terms of its Maclaurin
series. Consequently, we formulate the RIS association and
phase shift-control problem for an RIS-assisted THz indoor
network as follows:

max
{Πt}

∑
b∈B

∑
u∈U

xbu,tR̃bu,t, (3)

s.t. lim
T→∞

1

T

T∑
t=1

E[Qt] < ε, (4)

lim
T→∞

1

T

T∑
t=1

E[Q2
t ] < η, (5)

φbu,t ∈ Φ,∀b ∈ B,∀u ∈ U ,∀t ∈ T , (6)∑
u∈U

xbu,t ≤ 1,∀b ∈ B,∀t ∈ T , (7)

xbu,t ∈ {0, 1},∀b ∈ B,∀u ∈ U ,∀t ∈ T . (8)

Here, maximizing the objective function in (3) ensures that the
visual component of the VR experience is guaranteed, thus,
delivering a seamless experience. On the other hand, (4) and
(5) ensure that the constraint of mitigating the risk will be
satisfied, where η = ε2 + 2 [γ(κ+ 1)− ε], this further guar-
antees that the haptic component of the VR will be delivered
successfully. Given that the length of the queues changes with
random events and their probability distribution is not known
a priori, the optimization problem in (3) cannot be solved
using traditional stochastic optimization techniques [16]. Next,
we propose a tunable minimum-drift-plus-penalty optimization
problem based on Lyapunov optimization to reformulate the
problem stated previously.

B. Lyapunov Optimization

We use a Lyapunov optimization approach [16] to solve
problem (3). This approach allows us to convert the constraints
into a tractable form. Henceforth, to ensure (4) and (5), we
define two virtual queues Z1 and Z2, having with the following
dynamics:

Z1,(t+1) = max{Z1,t +Qt − ε, 0}, (9)

Z2,(t+1) = max{Z2,t +Q2
t − η, 0}. (10)

Moreover, given that our initial optimization problem is a
maximization problem, our aim is to minimize the drift-plus-
penalty expression given by:

∆t − V
∑
b∈B

∑
u∈U

xbu,tR̃bu,t, (11)



where ∆t = E[Lt+1 − Lt|Qt], Lt is the Lyapunov function
given by Lt = 1

2 (Z2
1,t+Z

2
2,t+

∑
u∈U Q

2
u,t). Next, we transform

problem (3) into one whose objective is a linear weighted
function, and its constraints are no longer a function of Qt
as in (4) and (5).

Proposition 1. The conditional Lyapunov drift-plus-penalty
bound under any feasible control policy πt is formulated as
follows:

∆t ≤Υ +
U∑
u=1

Qu,t(Au,t −Rbu,t) + Z1,t(Qt − ε)

+ Z2,t(Q
2
t − η)− V

∑
b∈B

∑
u∈U

xbu,tR̃bu,t (12)

Proof: Given that for ∀x ∈ R,max{x, 0}2 ≤ x2, we
subtract Qu,t on both sides and square (2) as follows:

Q2
u,t+1 −Q2

u,t ≤(Qu,t − R̃bu,t)2 +A2
u,t + 2Au,t(Qu,t − R̃bu,t)

−Q2
u,t.

Simplifying the equation leads to the following:

Q2
u,t+1 −Q2

u,t

2
≤

(
R̃bu,t −Au,t

)2

2
+Qu,t(Au,t − R̃bu,t)

Similarly,

Z2
1,t+1 − Z2

1,t

2
≤ (Qt − ε)2

2
+ Z1,t(Qt − ε),

Z2
2,t+1 − Z2

2,t

2
≤
(
Q2
t − η

)2
2

+ Z2,t(Q
2
t − η).

After some mathematical manipulation, we obtain:

Lt+1 − Lt ≤Υ +

U∑
u=1

Qu,t(Au,t − R̃bu,t) + Z1,t(Qt − ε)

+ Z2,t(Q
2
t − η). (13)

where Υ =
U(maxb∈B,u∈U,t R̃bu,t)

2
+ε2+η2

2 .

Thus, instead of minimizing the drift-plus-penalty expres-
sion, we minimize the maximum bound of the one-time slot
conditional Lyapunov drift plus penalty in (12). The initial
optimization problem is reformulated as:

max
{Πt}

V
∑
b∈B

∑
u∈U

xbu,tR̃bu,t −
U∑
u=1

Qu,t(Au,t − R̃bu,t)−

Z1,t(Qt − ε)− Z2,t(Q
2
t − η), (14)

subject to
φbu,t ∈ Φ,∀b ∈ B,∀u ∈ U ,∀t ∈ T , (15)∑
u∈U

xbu,t ≤ 1,∀b ∈ B,∀t ∈ T , (16)

xbu,t ∈ {0, 1},∀b ∈ B,∀u ∈ U ,∀t ∈ T . (17)

Thus, employing virtual queues and Lyapunov optimization
allowed us to transform our optimization problem into a
linear weighted function. Nevertheless, solving problem (14)
using integer programming will be very complex due to its

combinatorial nature and the stochasticity of the variables.
Given that the distribution of system parameters is not char-
acterizable, the problem cannot be solved using stochastic
matching theory or stochastic optimization. Next, to solve
(14) we propose a centralized and low-complexity RNN RL
framework that provides the optimal policy for the RIS-UE
association. Moreover, RNN RL is suitable for this problem
since it can reduce the dimensionality of the large state space,
while capturing dynamic temporal behaviors [17].
IV. RECURRENT NEURAL NETWORKS RL FOR WIRELESS

VR IN THZ OPERATED RIS NETWORK

In this section, an adaptive control policy based on a deep RL
framework is proposed. The proposed framework will allow us
to learn the policy to solve the problem of RIS-UE associations
in (14). We model (14) as a Markov decision process (MDP)
represented by the tuple {S,A, P,R}, where S is the state
space, A is the action space, P is an unknown state transition
function, P (s′, s,a) = Pr(st+1 = s′ | st = s,at = a), and
R(at, st) is the reward function [18]. Our action space is the
set of all possible RIS associations VR UEs, A = {[xbu]B×u |
xbu ∈ {0, 1}, b = 1, ..., B, u = 1, ..., U} and the reward is
R(at, st) = V

∑
b∈B

∑
u∈U xbu,tR̃bu,t −

∑U
u=1Qu,t(Au,t −

Rbu,t) − Z1,t(Qt − ε) − Z2,t(Q
2
t − η) which is the current

objective function in (14). The state is the set of VR UE
queue lengths, virtual queue lengths, and the state of LoS links
between RISs and VR UEs, S = {[sbu]B×u, [Qu]U×1, Z1, Z2, |
sbu ∈ {0, 1}, {Qu, Z1, Z2} ∈ {Z+, b = 1, ..., B, u = 1, ..., U}.

We represent the class of parameterized policies of our
MDP as Πt = {πθ(at|st) | θ ∈ Rm}, where πθ(at|st) =
Pr{a = at|s = st,θ}. The stochastic reward function
R(at, st) during next time slot has a transition probability of
ρt =

∏
s′∈S πθ(at|st) Pr(st+1 = s′|st = s,at = a). To

solve the optimization problem in (14), the controller needs
to have full knowledge about the transition probability and all
possible values of R(at, st) for all possible states of MDP un-
der a given policy πθ. Given that our model is highly dynamic
due the mobility of users and the nature of the channel, the
transition probability of states cannot be characterized through
probability distribution functions (PDFs). Thus, it is necessary
to use an RL framework to solve (14). We particularly use
a policy-search approach to find the optimal RIS to VR user
association while maintaining a high reliability and a high data
rate formulated in (14). For each policy, we define its value as:

J(θ) =
∑

s′∈SR(at, st)ρt. (18)

Hence, to find the optimal policy, we need to find θ∗ =
arg max

θ
J(θ). To do so, we need to perform a gradient ascent

on the policy parameters. Subsequently, we need to derive
∇θJ(θ). Similarly to [18], by writing ∇θ log πθ(at|st) =
∇θπθ(at|st)
πθ(at|st) we can reformulate (18), as follows:

∇θJ(θ) ≈ EΛt
{∇θ log πθ(at|st)R(at, st)}, (19)

where Λt = {at, st+1 = s′ | s′ ∈ S} is the trajectory of the
MDP for the next time slot. Subsequently, we can use (19)



Fig. 2: Illustrative example of the RNN architecture.

to solve the optimization problem in (14) using a gradient

ascent algorithm such as REINFORCE [18]. Nevertheless,

given that the number of states is considerably high, this

procedure will be intractable, which motivates the need for

a function approximator through the use of DNNs. Given

that the reliability depends on the prediction of the VR users

mobility pattern that will determine their associations to RISs,

it is important to implement a framework that is capable of

capturing the dynamic behavior exhibited. To address these

challenges, using an RNN to represent the policy of RL will

extract the channel’s dynamic features and learn an optimized

sequence guaranteeing reliability at each time instant, based on

the input features [17]. Since we deal with time-varying poli-

cies, it is natural to resort to RNNs. Indeed, RNNs are known

to be effective in processing time-related data and capture

dynamic temporal behaviors. As such, we represent the policy

πθ(a|s) by an RNN [19] that can learn the user associations to

RISs. In particular, we use a many-to-many RNN as shown in

Fig. 2. The overall RNN consists of an encoder and a decoder

network: The encoder network comprises three long short-term

memory (LSTM) layers, two fully connected layers and two

rectified linear unit (ReLu) layers. The state of the MDP is

thus encoded in the output of LSTM 3, h. As for the decoder

network, it consists of the last fully connected layer and the

B softmax layers. Moreover, the input consists of the states

st ∈ S of the MDP that are fed to the first LSTM layer of

h hidden layers. Subsequently, the B softmax layers output

the actions of the MDP at ∈ A, i.e., the bth softmax layer

outputs {xbu | xbu ∈ 0, 1, b = 1, . . . , B, u = 1, . . . , U}. This

architecture was chosen given that the LSTM layers allow us to

avoid the problem of vanishing gradients [18]; more precisely

compared to other DNNs, it provides a faster RL algorithm via

Fig. 3: The training and validation process of the RNN.

a slow RL. That is, instead of depending on the convergence

speed of the RL algorithm through conventional gradient

ascent, its policy is represented by an RNN. Subsequently,

given that the RNN receives all the typical information that

a regular RL algorithm would receive, the activations of the

RNN store the state that would improve the speed of the RL

algorithm on the current MDP [20].

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider the following parameters:

T = 300K, p = 1W, M = 10Mbits, f = 1THz,

W = 30GHz, K(f) = 0.0016m−1 with 1% of water vapor

molecules as in [21]. The RISs are deployed over the 4 walls

of an indoor area modeled as a square of size 40m × 40m.

All statistical results are averaged over a large number of

independent runs. In order to train the network, we consider

the RNN architecture shown in Fig. 2 with a maximum epoch

of 1000 and a minimum batch size of 128. Furthermore,

the network was trained with data generated from VR users

moving according to a random walk which constitutes the

most general scheme characterizing users’ mobility2 [19]. In

Fig. 3, we analyze the convergence of our proposed RNN-RL

algorithm, in terms of accuracy and training loss. Note that,

80% of our dataset is used for the training process, 10% is

used for the validation, and the remaining 10% is used for

testing. In particular, the training process uses data generated

from users’ random walks and the optimal solution to fit the

model. Subsequently, throughout the validation process, the

random walks’ data is used to provide unbiased estimators of

the hyper-parameters corresponding to the RNN. Fig. 3 shows

a validation accuracy of 91.92%. Both the accuracy and loss

of the training and validation processes show smoothness in

the curve. Finally, after obtaining all the hyper-parameters of

the RNN, the test dataset can provide an unbiased evaluation

of a final model fit. As such, simulation results show a testing

error of 0.97%.

2Our approach can accommodate any other mobility model.
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We compare our RNN RL policy to the optimal solution for
different number of users. In Fig. 4, the maximum queue length
over the number of iterations is plotted. Given that the RNN
was capable of capturing the dynamic behavior of the channel,
for U = 7, the maximum queue length for the policy-approach
is only 0.52% higher than the optimal maximum queue length.
Meanwhile, for U = 3 it is nearly equal to the optimal solution.
Thus, this confirms that combining the risk-based approach
with the RNN RL leads to highly reliable results. Clearly, the
maximum queue length increases as the number of VR users
in the network increases. Fig. 5 shows the sum-rate of VR
content, which constitutes the objective function in (14), over
time. Here, the policy-based controller offers a solution that is
considerably farther than the optimal solution in comparison
to the results obtained for the maximum queue length in
Fig. 4. The reason for this is that a sum-term rate is being
compared rather than individual rates; thus, the inaccuracy in
every measure propagates into a higher inaccuracy when terms
are added. As we can see, for U = 7, the sum-rate for the
policy-approach is 22% less than optimal sum-rate. As for
U = 3, it is 35% less than the optimal solution. Clearly, as
the number of VR users increases, the sum-rate increases, and
so does the gap between the optimal solution and the policy
approach.

VI. CONCLUSION

In this paper, we have investigated the problem of RIS-
VR user association while guaranteeing reliable, low latency
and high rate communications. We have proposed a risk-
based aware optimization problem that takes into account the

higher order statistics of the queue length, thus guarantee-
ing continuous reliability. The proposed problem was further
transformed using Lyapunov optimization to a linear weighted
function. Furthermore, the problem was solved using an RNN
RL framework to reduce the dimensionality of the state space
and capture channel dynamics and user mobility.
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