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ABSTRACT: Machine learning (ML) methods have become powerful, predictive tools in a wide range of applications, such as
facial recognition and autonomous vehicles. In the sciences, computational chemists and physicists have been using ML for the
prediction of physical phenomena, such as atomistic potential energy surfaces and reaction pathways. Transferable ML potentials,
such as ANI-1x, have been developed with the goal of accurately simulating organic molecules containing the chemical elements H,
C, N, and O. Here, we provide an extension of the ANI-1x model. The new model, dubbed ANI-2x, is trained to three additional
chemical elements: S, F, and Cl. Additionally, ANI-2x underwent torsional refinement training to better predict molecular torsion
profiles. These new features open a wide range of new applications within organic chemistry and drug development. These seven
elements (H, C, N, O, F, Cl, and S) make up ~90% of drug-like molecules. To show that these additions do not sacrifice accuracy,
we have tested this model across a range of organic molecules and applications, including the COMP6 benchmark, dihedral
rotations, conformer scoring, and nonbonded interactions. ANI-2x is shown to accurately predict molecular energies compared to
density functional theory with a ~10° factor speedup and a negligible slowdown compared to ANI-1x and shows subchemical
accuracy across most of the COMP6 benchmark. The resulting model is a valuable tool for drug development which can potentially
replace both quantum calculations and classical force fields for a myriad of applications.

B INTRODUCTION the speed versus accuracy gap between quantum mechanics
and classical methods.
Many ML methods have been developed with the aim of

redicting an atomistic potential energy surface for a variety of
such as robotic chemical synthesis,' drug and material P I °8 f lp gy suriac lt}’l
diction>? and tum mechanical broperty prediction. applications, for example, geometry optimization or molecular
prediction, = and quantu ical property prediction. dynamics simulations. ML potentials for both materials****~*"
The latter area of research aims to provide high accuracy

o ) and biological'"*"** (organic) systems have been published.
predictions of quantum mechanical (QM) reference calcu- Two classes of methods have been proposed for learning the

potential energy of organic molecules: dedicated ML potentials

The application of machine learning (ML) methods in
chemistry is rising in popularity because of success in areas

lations, while maintaining a computational cost comparable to

classical force fields. ML-based property predictors have been and transferable ML potentials. Dedicated ML potentials are
employed to predict molecular atomization energies,””’ designed to describe the potential energy surface of a single
forces,® ¢ potential energy surfaces, > ™! atomic partial

charges,””~** dipoles, and quadrupoles”"**~*” with accuracies Received: February 6, 2020 JCTC e
greatly surpassing classical physics-based techniques. Some Published: June 16, 2020

researchers have shown that models can be trained to multiple

properties simultaneously.”® The speed, accuracy, and trans-

terability of ML property predictors promise to revolutionize

the computational design of drugs and materials by bridging
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system or a small class of systems using as little QM reference
data as possible. These models tend to provide highly accurate
energies and forces for molecules with a relatively low number
of degrees of freedom. For dedicated ML potentials, QM
calculations are required prior to any application. Therefore,
the effective computational scaling of dedicated models is that
of the underlying QM method, making their use in applications
to large biological systems, for example, proteins and large drug
molecules, intractable. As the number of degrees of freedom
within a system increases, the amount of QM data needed to
fully cover configurational space increases greatly. For large
enough systems, this method could become impractical. The
added time for QM data generation also makes such models
unfeasible for high throughput studies on databases of small
molecules.

Transferable ML potentials aim to accurately simulate an
entire class of molecules, with the objective of avoiding direct
QM calculations prior to an application. That is to say, once
the model has been trained, it can be applied to a multitude of
systems with no new QM calculations being needed. This
yields a linear scaling method in most cases. Current
transferable methods for organic molecules work by generating
a very large and highly diverse data set of molecular
conformations from small molecules as a training data set.
Model locality is employed to ensure that training to small
systems yields extensibility to larger systems. Much of
chemistry admits a nearsightedness principle. As a conse-
quence, one can often achieve both linear scaling in system size
and extensible potentials by computing atomic energies as a
function of the atom’s local environment, as pioneered by
Behler and Parinello.”® The overall philosophy behind
transferable models is to provide enough data diversity during
the learning process that the model is trained only once and is
forced to learn the local atomic physics at play, rather than
only describing the potential energy surface in a limited subset
of atomic configuration space. Transferable models can
generalize features learned from different systems. Interaction
types that are learned from some molecules in the training set
do not need to be sampled for all molecules, decreasing the
amount of data needed for each system when training.
Although transferable ML potentials are vastly more general
than dedicated ML potentials, they tend to be somewhat less
accurate, on the order of chemical accuracy (1 kcal/mol error),
or better under near ambient conditions. However, for many
practical applications, the level of accuracy achieved by
transferable ML potentials is more than sufficient to provide
quantitative results.** >’

The ANAKIN-ME (ANI) method'' is one example of a
technique for building transferable neural network-based
molecular potentials. The key components of ANI models
are the data set and Behler and Parrinello-type descriptors™
with a modified symmetry function.'" The ANI-1 data set”®
(used to train the ANI-1 potential) was built from 57,000 small
CHNO-containing molecules perturbed into 22 million
randomly selected molecular conformations. Test cases
showed ANI-1 to be chemically accurate compared to
reference density functional theory (DFT) wB97X/6-31G*
calculations. However, random normal-mode sampling is based
on a harmonic approximation, which leads to sparse coverage
of chemical space, for example, torsion space. In response, an
active learning algorithm using query by committee (QBC) for
selecting new data was employed to automatically diversify the
data set.”>*” This QBC method uses the disagreement of an
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ensemble of models to accurately predict energies for a given
molecule. When poorly described structures are identified, QM
data are generated for these conformations. A massive search
of conformational space was carried out using this QBC active
learning algorithm, resulting in the ANI-1x potential. Because
of the vastness of chemical space, the early proof-of-concept
ANI-1x data set only sampled molecules with a limited number
of atomic elements H, C, N, and O. Although these four
elements cover a large swath of interesting organic chemistry,
further expansion and diversification of this data set will lead to
even greater applicability.

In this study, we extended the previously developed ANI
model using our automated active learning algorithm to
include the elements S, F, and Cl. These specific elements are
chosen because of their ubiquitous applicability, for example, in
protein simulation and small-molecule drug design. The
resulting potential, ANI-2x, is chemically accurate compared
to reference DFT calculations in multiple test cases. These test
cases include the original COMP6 benchmark® (with C-, H-,
N-, and O-containing molecules) combined with a new sister
version, COMP6v2, which contains all seven chemical
elements (C, H, N, O, S, F, and Cl). The applicability of the
ANI-2x potential on relaxed torsion scans involving the new
chemical elements and on a small drug-like molecule
conformer search are shown. Interaction energies were also
predicted by ANI-2x and compared to reference DFT
calculations. The ANI-2x potential is available for free on
our GitHub repository package integrated with the atomic
simulation environment (ASE) library [github.com/isayev/
ASE_ANI and github.com/aiqm/torchani/tree/master/torch-
ani/resources].

All the codes and data needed to reproduce all figures and
tables in this manuscript can be found in github.com/aiqm/
Scripts_for ani2x jtct paper.

B METHODS

Atomic Environment Vectors. ANI-2x uses the same
method for the construction of its atomic environment vectors
(AEVs) as previous ANI models,'" but new terms have been
added to account for the additional chemical elements. These
AEVs are a form of Behler and Parrinello-type descriptors®
with a modified symmetry function. An AEV,

éix = {G,, G,, Gy, .., Gy}, composed of elements Gy is
computed using original Behler and Parrinello symmetry
functions (BPSFs)*® for each ith atom of the molecule with
atomic number X. The AEV examines the atom’s radial and
angular chemical environment and is a numerical representa-
tion of its local chemical environment. The following piecewise
cutoff function executes the local atomic environment
approximation

7R,
0.5 X cos(—) + 0.5 forR; <
fc(Ri,') = R,

0.0

RC

for Rl] > RC (1)

where R is the distance between atom i and atom j and R, is
the cutoff radius. To examine the local radial environment for
atom i, the following original radial BPSF is used, which

produces radial elements G& of éix.

https://dx.doi.org/10.1021/acs.jctc.0c00121
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Each element is over a set of parameters, 7 and R,, where 5
changes the width of the Gaussian distribution and R shifts the
center of the peaks.

The ANI method'"' uses a modified version of the angular
BPSF,*® where arbitrary number values are allowed for the
parameter 6, and an exponential factor has been added that
allows an R, parameter. When examining atoms i, j, and k,
angle 0y is computed with two distances, R;; and R;. The local
angular environment for atom i is examined through the single

element G/'»¢ of éix, which is the product of angular and
radial factors

all atoms
G::mod — 21_6: z (1 + COS(gijk - @))Cexp[—r]
j k#i
R..

ij + Rik 2
(? - R }/C(Rg)fc (Ry)

()

Now, each element is over a set of our parameters: ¢, 0, 7,
and R, where 17 and R; are the radial terms. { changes the
width of the peaks in the angular environment. 6, serves a
similar purpose to R, in radial function, by probing specific
regions of the angular environment.

Building a Database of S-, F-, and Cl-Containing
Molecules. The database of molecules used to build the active
learning-based ANI-2x training data set is composed of
molecules from a variety of sources, including the GDB-
11*** database, the CheMBL* database, and the s66x8**
benchmark. The GDB-11 data set contains an enumeration of
chemically feasible organic molecules containing the heavy
elements C, N, O, and F. From this database, we
combinatorially replaced the chemical symbols O with S and
F with Cl for all molecules containing up to eight non-
hydrogen atoms. From the ChEMBL" database, molecules
containing S, F, and Cl were sampled. Also, conformers of
amino acids and dipeptides containing S were randomly
generated using the Rdkit** chem informatics package. These
sampling techniques mirror those used in building the ANI-1x
data set.”

In the Results and Discussion section below, we commonly
show the mean absolute error (MAE) and root mean square
error (RMSE) as a measure of accuracy of various properties.
The properties we measure are the relative energies of
molecular conformers, the force components acting on
atoms, the absolute potential energies, and errors for various
geometric features such as bonds, angles, and torsions. For
each test set, all calculations were performed using the DFT
functional ®B97X with the 6-31G™* basis set, using Gaussian
09 and Gaussian 16. All ANI-2x optimizations were performed
using the LBFGS algorithm, as implemented in the ASE
Python package.

Active Learning in Chemical Space. The active learning
process used in this work directly mirrors that of the active
learning process published in the development of the ANI-1x
and ANI-1ccx potentials.**** Therefore, we point all interested
parties to this work for a detailed description of the active
learning processes. The primary difference in this work’s
process is that all molecules sampled during active learning,
except for the s66x8 nonbonded interaction sampling, were
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required to contain S, F, or CL. To generate nonequilibrium
conformations, we employed dimer sampling, normal-mode
sampling, N trajectory molecular dynamics sampling, and ML-
driven torsion sampling in all iterations of active learning. A
detailed description of these methods is provided in our earlier
work.**** As with the ANI-1x active learning process, only
small molecules are searched in early iterations with molecule
size increasing as the process proceeds. We began by adding
molecules with two heavy atoms and iterated at this number
until the number of molecules added per iteration began to
decrease; then, the process was repeated by adding one heavy
atom at a time. In the end, more than S0 active learning cycles
were carried out, yielding a data set of 4,695,707 molecular
conformations from 13,405 chemical isomers. Combined with
the original ANI-1x data set and torsion refinement data set
from the ANI-1ccx work, the final ANI-2x data set consists of
8.9 million molecular conformations.

Active Learning Torsion Refinement. As previously
presented in our work on developing the ANI-1ccx potential, ™’
we carried out an active learning torsion refinement on a
randomly selected subset of molecules from the ChEMBL drug
molecule database.***® In the development of ANI-2x, 250
SMILES strings were selected at random and then embedded
into 3D space using the RDKit cheminformatics package. A
rotatable torsion was selected at random for each molecule. If a
torsion contained hydrogens or was a member of a ring, then it
was not selected. During the active learning cycles, the latest
version of the ANI potential ensemble was used to relax the
selected torsion every 10°, resulting in 36 conformations. All
conformations that have an ensemble disagreement over a set
threshold were selected, and normal modes were computed
using the ANI ensemble. Four data points were then generated
using normal-mode sampling (as presented in our previous
work'"), and QM calculations were performed for each and
then added to the training data set. This process is referred to
as “torsional refinement”. A torsional refinement was carried
out during each iteration of the active learning process.

Active Learning Nonbonded Interaction Refinement.
To improve sampling of nonbonded interactions, we use the
s66x8*" benchmark to generate training data. s66x8 contains
eight structures along the dissociation path of 66 C-, H-, N-,
and O-containing dimer systems. Such systems must be
sampled to improve the accuracy of nonbonded interactions
because these dimers represent the smallest systems containing
their respective interaction. This active learning cycle was
bootstrapped from the ANI-1x data set and potential. We first
generate normal modes using DFT for each of the eight
structures along the path. We then use normal-mode sampling
to generate random structures along the path of dissociation
for each dimer. We carried out 26 active learning cycles to
generate 195,291 conformations of random dimers.

Active Learning for Improved Bulk Water. A novel type
of sampling was employed to improve the ANI-2x description
of bulk water. Water molecules with random position and
orientation were placed within a bounding box with random
edge lengths. The density of these systems was restricted to be
between 0.8 and 1.20 g/ cm®. The resulting box of water
molecules was optimized using the current ANI potential and
LBEGS, as implemented in the ASE*® package. NVT molecular
dynamics simulations were then carried out using the latest
ANI potential. Every five time steps, the simulation was
paused, and the box was broken into N small clusters, where N
is the number of water molecules in the box. The N clusters

https://dx.doi.org/10.1021/acs.jctc.0c00121
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were generated by taking all water molecules within 6 A from
the center of the Nth water. A random selection of water
molecules was then deleted from each cluster until 2 to 15
molecules remained. Finally, the active learning selection
process was carried out, and QM calculations were performed
for any selected clusters. The ensemble disagreement used for
selection was p = 0.32 kcal/mol/atom"%. When any single
cluster has an ensemble disagreement larger than 3p, the
simulation is terminated. These termination criteria help
prevent highly unphysical configurations from forming during
the simulation. During each iteration of the ANI-2x active
learning process, 10 random boxes of water were sampled, as
described above.

Force Training. ANI-2x was trained to molecular energies
and forces. The forces predicted by the model are the
analytical derivatives of the molecular energies, assuring that
energy is conserved when running simulations. Force training
was not used during the active learning process because of the
increased computational costs associated with training the
model to forces. However, a force-trained model predicts at the
same computational speed as a model trained to just energies
when predicting energies and forces. This force training was
done with the intent to improve model accuracy during
molecular dynamics. This is accomplished by providing
additional information about the molecule’s potential energy
surface to the model. ANI-2x was trained using the loss
function

1N I M;
L==-Y|E-E+2Y (¢ -f)
lezl(t ’) MZ(); ft])

o= @)
where E, and_Afi;- are the energies and forces predicted for a given
molecule, respectively, and E; and f;; are the QM energy and
forces, respectively. [, is chosen to balance the force and energy
terms during training, and a value of 0.1 is used for ANI-2x. N
is the number of systems, and M is the atoms per system. The
balancing term between the energy and force components of
the loss function is important because the molecular forces do
not contain information about the molecule’s absolute energy.
Without a balance between these two terms, the model may
neglect to learn about energies all together in favor of forces.
When training a model, the derivative of the loss function must
be taken with respect to all weights in the model. The loss
function involves forces and thus involves the derivative of the
energy with respect to atomic positions. To train the model,
we require the gradient of the loss function with respect to the
model parameters. In other words, we require second
derivatives of the energy. Frameworks such as Tensorflow or
Pytorch can perform iterated back propagation and thus
automate the procedure of calculating the gradient of the loss
function. Such a code transformation would be extremely
challenging to perform on our CUDA/C++ implementation of
ANIL. For this reason, a finite differentiation is used to
approximate the model’s forces during training. This numerical
method of force training has been detailed in other work.*’

B RESULTS AND DISCUSSION

To illustrate the utility of the ANI-2x potential, we have
conducted case studies mimicking typical molecular modeling
applications: (a) molecular dynamics simulations, (b) potential
energy scans, (c) conformer search and ranking, (d)
challenging benchmark COMP6v2 database developed in this
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work, and (e) accuracy of nonbonded interactions from
existing benchmarks. For MD simulations, we selected the
GSK1107112A (CHEMBLI1527187) compound as a real-life
industrial compound open sourced with the GSK Tuberculosis
Screening campaign.”® It is much larger than any molecules
contained in the training set and contains all atomic elements
(C,H, N, O, S, F, and Cl) considered in this work, something
not true for most of the model’s training set. For the 2D
potential energy scans, we selected four molecules (bend-
amustine, cysteine-dipeptide, dichlorodiphenyltrichloroethane
(DDT), and hexafluoroacetone) that provide diverse structures
containing both sulfur and halogens. For the conformer search
program, we selected 20 molecules from the recent benchmark
set of low-energy conformer evaluations.”’ This collection
includes drug-like ligands used to assess performance of
conformer-generating methods such as OMEGA or ETKDG.

Torsion Profiles. The Genentech torsion benchmark® was
used to assess the ability of the ANI-2x model to predict
torsion profiles. This benchmark consists of 62 molecules
containing H, C, N, O, F, Cl, and S. For each molecule in the
test set, 36 conformations were generated by rotating one of
the bonds in 10° increments. Each structure was then
optimized, and energies were computed to produce relaxed
torsion profiles at various levels of theory. The reference data
are the CCSD(T)/CBS calculations provided by Sellers et al**
The error between ANI-2x, our reference DFT, and OPLS3
against CCSD(T)/CBS are shown in Table 1. ANI outper-
forms OPLS3 and has only a slightly higher error than its
reference DFT.

Table 1. MAE and RMSE between ANI-2x, ®B97X/6-31G¥*,
and OPLS3 against CCSD(T)/CBS on the Genentech
Torsion Benchmark®”

method MAE (kcal/mol) RMSE (kcal/mol)
DFT 0.36 0.51
ANI-2x 0.42 0.59
OPLS3 0.67 1.02

To validate the predictive performance of ANI-2x on real-
world molecules, 2D torsion profiles were computed for four
different systems containing some combination of the chemical
elements C, H, N, O, S, F, and Cl. Two dihedrals were chosen
for each molecule and rotated in ten-degree increments in turn
to create a 36 by 36 dihedral profile of the molecules, 1296
structures in total per molecule. The resulting structures were
then optimized with our reference level of theory, freezing the
appropriate dihedrals along the rotation path. Each structure
optimized with DFT was then reoptimized with ANI-2x.

This was done so that the time-consuming QM
optimizations could be performed in parallel and to assure
that the structures generated from each method, DFT and
ANI-2x, were in the same local minimum. Very minor
differences in potential energy surfaces can lead to large
differences in final structures, especially when using two
different optimizers and starting from conformations far from
the desired minima. The results of these scans are shown in
Figure 1. DFT optimizations of the cysteine dipeptide were
performed using the Gaussian 09> software package, while
DDT, hexafluoroacetone, and bendamustine DFT optimiza-
tions were performed using Gaussian 16.°* ANI-2x accurately
predicts the location of the minima and maxima for all four
molecules. For DDT, hexafluoroacetone, and bendamustine,

https://dx.doi.org/10.1021/acs.jctc.0c00121
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Figure 1. Relaxed 2D torsion profiles for ANI-2x (left) and DFT (right). Two dihedrals (shown in bold) were rotated in ten-degree increments
about one another to generate the confirmations to be optimized with DFT. Each confirmation was optimized with the appropriate dihedrals
frozen; then, these structures where again optimized with ANI-2x. The bonds composing the scanned dihedrals are bolded in the second column,
and the third and fourth columns show the MAE and RMSE, respectively, of the relative energies in kcal/mol between ANI and DFT.

ANI shows subchemical accuracy. ANI shows a greater error
on the cysteine dipeptide, but the energy range covered by the
scan is much greater for the dipeptide than for the other three
systems. For the cysteine dipeptide, ANI-2x has the correct
placement for the minima and maxima but does not get the
barrier height of the maxima correct, most likely because high-
energy configurations are more sparse in the training data. In
the Supporting Information, FS3 shows a 2D plot of ANI-2xs
error on each molecule compared to the ensemble standard
deviation of the 2x model. The standard deviation is divided by
the square root of the number of atoms in the system to
account for error cancelation between the individual atomic
networks. This standard deviation is used as a measure of
uncertainty for the ANI-2x model, where high standard
deviation/sqrt(N) means the model is less reliable. It is
important to note that this uncertainty metric is not the same
as a conventional error bar and does not say how far or close to
the true answer ANI-2x is, but rather how familiar the network
is with the type of system it is being applied to.

For the four 2D torsions shown, ANI-2x performs
remarkably well, especially considering the number of chemical
elements and total number of atoms in these systems. Larger
systems such as the cysteine dipeptide can experience a higher
error overall because the error grows with the number of
atoms. This produces the following per atom error
cancellation-corrected MAE for each of the four torsion
scans: 0.35, 0.10, 0.03, and 0.08 kcal/mol/atom™"/% Because
many publications on ML potentials present results as the
uncorrected per atom MAE, we also provide these results:
0.07, 0.02, 0.01, and 0.01 kcal/mol/atom. However, we stress
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that the latter metric of comparison is unreliable because larger
systems will experience more error cancellation and will thus
appear to have a significantly lower error.

Conformer Search and Ranking. Optimizing molecules
using higher levels of theory, such as coupled cluster, is often
impractical because of the high cost of force calculations with
these methods. For this reason, MP2 is often used to optimize
molecules before using other methods for energy calculations
because of its relatively accurate forces and efliciency.
However, even MP2 is too costly to perform high-throughput
conformer searches across large data sets. Classical force fields
and semi-empirical methods are often employed to siphon
through molecules to find the best candidates for drug
development before performing costly QM calculations.
Unfortunately, because of the limited accuracy of such
methods, this often leads to several false negatives, missed
candidates, and wasted computational time on false positives.

A test set of 20 molecules was used to determine how well
ANI-2x predicts the relative energies of different local minima
for drug-like molecules. These molecules were taken from the
test set used in recent work on validating force fields by Kanal,
Keith, and Hutchinson.”' We choose the 7 molecules with the
highest and 13 molecules with the lowest conformer relative
energy correlation between empirical methods and DFT
B3LYP ground truth. The SMILES strings for each of these
molecules were embedded in 3D space using the Rdkit*
software package, and a conformational search was performed
to generate between 10 and 35 conformations of each
molecule. We used an earlier version of the ANI model during
the conformational search to optimize each conformer to
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ensure that each conformation was near a different, unique
local minimum. These conformations were then optimized
with ANI-2x, PM6, MMFF94, ©wB97X/6-31G*, and MP2/cc-
PVTZ. We compared the optimized geometries predicted by
each method with the MP2-optimized structures. These results
are shown in Table 2.

Table 2. Geometry Comparison of the Optimized Structures
Predicted by DFT, ANI, PM6, and MMFF94 with the
Optimized Structures Predicted by MP2

property DET ANI-2x PM6 MMFF9%4
bond length MAE (A) 0.0050  0.0053 0.015 0.0076
angles MAE (degree) 0.19 0.28 0.66 0.48
torsion MAE (degree) 3.36 541 11.15 5.28
rmsd (A) 0.30 043 0.69 0.44

Single-point calculations were then carried out on each of
the ANI-2x-optimized structures using DFT and on the DFT-
optimized structures using ANI-2x. We then determined the R*
correlation and Spearman rank of relative conformer energies
predicted/computed by ANI-2x, PM6, MMFF94, and wB97X/
6-31G* and compared with those obtained with MP2. The
same comparison was also carried out between ANI-2x and
wB97X. These results are shown in Table 3. In Table 3, ANI@
DFT refers to the single-point energies of ANI-2x and DFT on
the structures optimized by DFT, DFT@ANI refers to the
single-point energies of ANI-2x and DFT on the structures
optimized by ANI, and ANI DEFT refers to the ANI single-
point energies on the ANI-optimized structures with the DFT
single-point energies on the DFT-optimized structures. All
MP2 calculations were performed using the Orca software
package,”® and all MMFF94 calculations were performed using
the Open Babel software package.’® MAE and RMSE are
reported for each method compared to MP2 and between
ANI-2x and DFT. Errors reported represent the errors in the
relative energies between all conformations of each molecule.

ANI-2x shows a lower error compared to MP2/cc-PVTZ for
both the relative energy and optimized geometry than both
PM6 and MMFF94, without needing to rely on any specific
atom typing or connectivity information. Not surprisingly,
ANI-2x shows better correlation compared to wB97X in the
ANI@DFT and DFT@ANI comparison than in the
ANI_DFT because in the latter, the energies being compared
come from different structures. The speed and high correlation
of ANI-2x with QM methods make it a useful tool for
conformer scoring and for generating structures to be further
optimized with levels of theory beyond DFT. As an example of
the speed of the ANI model, the average time for ANI-2x to

perform a single-point calculation on any of the conformations
was ~0.02 s compared to 552 s with @B97X/6-31G*. While it
is important to note that these calculations were done using
different hardware (ANI-2x on a GPU and DFT on a CPU),
we believe that this illustrates the potential of ANI-2x for large-
scale and high-throughput studies. We have shown that ANI-2x
is capable of outperforming both semi-empirical and classical
methods, while still operating several orders of magnitude
faster than QM methods.

COMP6V2. The COMP6 benchmark from our recent work
on applying active learning techniques to build general-purpose
ML potentials** has been extended in this work to include the
chemical elements S, F, and Cl. This benchmark is now
referred to as COMP6v2. Figure 2 shows the relative energy
between all conformers (AE), the absolute potential energy
(E), and the force component (F) accuracy of ANI-2x on the
combined COMP6v2 benchmark. In COMP6v2, the
GDB10to13 set has been split into GBD10toll and
GDBI12to13. All GDB sets, excluding GDB12to13, have been
augmented to contain S, F, and Cl. The DrugBank test set has
also been augmented to include these new atomic elements.
The tripeptide test set now includes cysteine and methionine,
both of which contain sulfur. The number of molecules and
conformers in COMP6v2 is provided in the Supporting
Information, TS8.

The errors shown in Figure 2a—c are for conformations
restricted to within 200 kcal/mol from the nearest energy
minima for a given molecule. This energy range is significantly
higher than the energy range of conformers visited in room
temperature MD simulations. Varying this range allows us to
gauge the performance generality of a potential for simulations
at a specific temperature. For example, if we restrict this range
to 30 kcal/mol, then the data set corresponds to the conformer
space visited in near ambient temperature dynamical
simulation. In Figure 2a, within the 200 kcal/mol energy
range, most of the benchmarks achieve subchemical accuracy
(1 kcal/mol) errors, while total energy errors (Figure 2b) tend
to be larger because of the bias error for different molecules.
However, for many applications which depend on torsional
energy barriers and relative populations of conformers, only
accurate relative energies are required. Another trend to note
here is that the error grows as the number of atoms per
molecule grows, for a given benchmark. This trend is expected
with atomistic ML potentials because each atomic energy
prediction has an error associated with it.

Figure 2d—f shows that as the relative energy range of
conformers in the test set is reduced, the overall error drops.
This phenomenon can be explained by the fact that near
equilibrium, conformers represent the average over the entire

Table 3. Mean Spearman Rank, R? Correlation, MAE, and RMSE of Relative Conformer Energies Predicted by DFT, ANI,
PM6, and MMFF94 Compared with Those Obtained with MP2“

comparison to MP2

comparison to DFT

metric DFT ANI-2x PM6
mean R* 0.79 0.68 0.35
mean spearman 0.86 0.75 0.45
MAE (kcal/mol) 1.24 1.93 3.00
RMSE (kcal/mol) 2.03 2.71 3.83

MMFF94 ANI@DFT DFT@ANI ANI_DFT
0.52 0.83 0.83 0.74
0.56 0.86 0.87 0.77
3.84 1.45 1.69 1.77
5.19 1.92 2.32 2.50

“MAE and RMSE are computed across all conformers of all molecules. ANI@DFT compares the single-point energies of ANI-2x and DFT on the
structures optimized by DFT. DFT@ANI compares the single-point energies of ANI-2x and DFT on the structures optimized by ANI. ANI_DFT
compares the ANI single-point energies on the ANI-optimized structures with the DFT single-point energies on the DFT-optimized structures.
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Figure 3. Energies (shifted to the mean) and force magnitudes along with the corresponding errors for a 25 ps NVT molecular dynamics (MD)
trajectory using the Langevin thermostat at 300 K. This figure represents the final 25 ps of a 1.5 ns MD simulation in vacuum. The drug ligand
GSK1107112A was chosen as an example because it contains all atomic elements (C, H, N, O, S, F, and Cl) considered in this work. Energies were
shifted to the mean energy over the trajectory. Black shows the DFT-computed properties, green is the ANI-2x-computed properties, and red is the

absolute difference between the values.

data set because of the sampling techniques used, that is, MD
sampling and normal-mode sampling. This fact is important to
remember as it can lead to misconceptions that the errors
shown on full benchmarks considering a high energy range
does not necessarily represent the error obtained in room
temperature simulation.>”

Molecular Dynamics Trajectory. For a machine learning-
based potential to be applicable in molecular dynamics (MD)
simulations, it must represent a mathematical potential and
ensure conservation of energy and momentum. By con-
struction, ANI models are guaranteed to be conservative to
numerical precision. Furthermore, to achieve meaningful
sampling time scales, the potential must be computationally
efficient. As the first step, we investigate the feasibility of
applying the ANI-2x model in MD simulations by generating
an MD trajectory of the GSK1107112A compound. This is a
much more challenging task than traditional error evaluation as
it requires a sampling of the vast configuration space and
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computing dynamical observables. We then ran single-point
DFT calculations on the final 25 ps of the simulation to
calculate the energy and forces according to our reference level
of theory, ®B97X-6-31G*.

Figure 3 provides energy and force magnitudes along with
errors for the final 25 ps of a 1.5 ns NVT MD simulation. The
simulation used a time step of 0.4 fs, and the thermostat was
set to a temperature of 300 K. This trajectory shows the
applicability of ANI-2x to MD simulations for systems
containing the chemical elements C, H, N, O, §, F, and CL
Energy errors compared to DFT reference calculations for the
provided portion of the trajectory are 0.86/1.10 MAE/RMSE
in kcal/mol. This error represents chemical accuracy for a
molecule that was not explicitly added to the training data set.
Force magnitude errors are 2.03/2.96 MAE/RMSE in kcal/
mol/A. The simulation ran for 1.5 ns, and the final 25 ps were
chosen to show that even after long time scale simulations,
ANI-2x is still sampling structures that agree well with
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reference DFT. The ANI potential took approximately 12.0
GPU hours to run the 3.75 million steps required for the 1.5 ns
simulation in the NeuroChem package (https:// github.com/
isayev/ASE_ANI). At 27 atoms, this system is too small to
saturate the GPU for peak efficiency; therefore, efficiency will
grow with larger system sizes. The DFT calculations for the
final 25 ps (2500 frames of the trajectory) took 192 CPU core
hours.

Nonbonded Interactions. Two data sets were chosen to
show that ANI-2x accurately predicts nonbonded interaction
energies. The X40 data set was obtained from the Benchmark
Energy and Geometry Database.”® It consists of noncovalent
complexes that participate in a variety of interaction types,
such as London dispersion, dipole—dipole interactions, and
hydrogen bonds.” Only the systems containing C, H, N, O, F,
and Cl were used in this study; those containing I and Br were
omitted. The second data set was taken from work done by
Thomas A. Halgren in 1996 to measure the performance of
MMFF94 for intermolecular interactions,”” primarily hydrogen
bonds. Avogadro® was used to create the systems, using the
same bond distances as the literature. Structures containing
charged species were excluded in these tests. The following
elements were used in the Halgren data set: C, H, N, O, S, and
E.

Each data set was optimized using ANI-2x, and the energy
was calculated using the same potential. The same was done
for DFT. The interaction energy is defined as the difference
between the energy of the complex (E,g) and the sum of the
energies of the individual molecules (E, + Eg) at the same
geometries, as in the dimer complex (eq S). This is the
common approach in the field (not including deformation
energy in the interaction energy) because it allows for the
contribution to the total energy from nonbonded interaction to
be studied independently of the molecules’ other properties.

IE = E\y — (Ey + Ep) (s)

Table 4 shows the MAE and RMSE of the interaction
energies calculated with ANI-2x and DFT. The results in this

Table 4. MAE and RMSE Comparing ANI-2x To DFT
Interaction Energies for the X40 Data Set and the Data Set
from Halgren and the MAE and RMSE of the Interaction
Energies Calculated by ANI-2x and DFT Compared to
CCSD(T)/CBS Calculations from the X40 Data Set”

ANI vs DEFT vs
error metric  ANIvs DFT  ANI vs CCSD(T) CCSD(T)
(kcal/mol) Halgren DFT X40 (X40) (X40)
MAE 1.24 1.51 1.71 1.93
RMSE 1.77 2.44 2.43 2.71

“All in kcal/mol.

table do not include deformation energy. Error metrics of
interaction energies with deformation energy included are
shown in the Supporting Information, TSS. The Supporting
Information, TS6, provides a deeper look into the X40 data set,
showing the error metrics for each interaction type and how
many systems were provided for each. It was found that the
interaction type with the highest error is hydrogen bonding.
However, when comparing these values, it is important to note
that the Halgren data set is larger in size and contains a more
diverse set of systems with only hydrogen bonds, where the
X40 data set is smaller and contains a large range of interaction
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types, with only eight systems representing the hydrogen bond.
To reduce the errors across separate interaction types, more
strategic dimer sampling is necessary. Table 4 also shows the
same error metrics for the X40 data set comparing ANI and
DFT to CCSD(T)/CBS energy values. ANI shows a lower
error than DFT compared to CCSD; however, the values are
comparable. This shows that ANI-2x can be substituted for
DFT when studying these types of systems.

Discussions and Concluding Remarks. Continued
development of new and improved deep learning molecular
potentials promises to change the way molecular simulation is
conducted for years to come. As these potentials improve, their
range of applicability grows. The presented ANI-2x potential
provides chemically accurate energy predictions for molecules
containing seven atomic elements (H, C, N, O, S, F, and Cl)
within the thermal applicability range of interest to biochemists
and computational drug designers. It has been tested across a
wide range of applications relevant to drug development on
diverse test sets. When compared to trusted QM methods,
ANI-2x shows similar accuracy to DFT and outperforms
MMFF94 and PM6 for conformer scoring. Another model has
been developed by Stevenson et al. using a similar method-
ology (Schrodinger-ANI) that incorporates S, F, Cl, and p.o!
Although ANI-2x shows a slightly higher error on the
Genentech torsion benchmark than Schrodinger-ANI, we
believe that the inclusion of force training and the diverse
sampling techniques used when training ANI-2x makes it
better suited for applications such as molecular dynamics. Still,
Schrodinger-ANI is further evidence that general-purpose
machine learning models can be extended to new chemical
elements without sacrificing accuracy on previously sampled
systems.

The ANI-2x potential retains the same computational scaling
as classical force fields, providing a 10° speedup over the DFT
level it has been trained against. Furthermore, the addition of
more atomic species has a negligible impact on the overall
numerical speed of ANI potentials, despite O(N?) growth in
the size of the atomic environment descriptors. Parameter-
ization to new chemical elements has been shown to have no
noticeable negative impact on the accuracy of ANI-2x. In fact,
the addition of molecules containing new chemical elements to
the training set can improve the model’s accuracy by increasing
the diversity of chemistry in the training data set.

Looking forward, the addition of long-range interactions by
combining ANI-2x and ML-based charge models, such as the
affordable charge assignment (ACA)®* model, can provide
corrections to missing long-range interactions. Further studies
need to be carried out with models such as HIP-NN,°
AIMNet,*® and Schnet® to determine if iterative long-range
information transfer scheme provides advantages in the realm
of general-purpose potentials and to quantify these advantages
versus overall computational cost. To further increase the
applicability of general-purpose ML potentials, techniques and
data sets need to be developed to allow the models to describe
more than just singlet spin and neutral charge states.

Small-molecule force field development is a challenging,
labor-intensive effort and cannot be easily automated. Force
fields are usually developed by large consortia of academic and
industrial groups working together over an extended period of
time to parametrize a model addressing a particular class of
problems. The ANI-2x potential developed in this work and
other ML potentials provide an appealing alternative approach
to traditional methods. The ANI methodology, coupled with
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active learning data sampling, provides a systematic approach
for generating such methods. It drastically reduces the human
effort required for fitting a force field, automates the method
development, and provides systematic improvement. Using a
neural network, as universal approximators, does not require
one to choose a functional form. These capabilities will
dramatically accelerate development of new models, while also
producing more accurate force fields with clear dependencies
on reference QM data and tools for uncertainty quantification.
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