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Abstract—Minimization of the expected value of age of in-
formation (Aol) is a risk-neutral approach, and it thus cannot
capture rare, yet critical, events with potentially large Aol. In
order to capture the effect of these events, in this paper, the
notion of conditional value-at-risk (CVaR) is proposed as an
effective coherent risk measure that is suitable for minimization
of Aol for real-time IoT status updates. In the considered
monitoring system, an IoT device monitors a physical process
and sends the status updates to a remote receiver with an
updating cost. The optimal status update process is designed
to jointly minimize the Aol at the receiver, the CVaR of the Aol
at the receiver, and the energy cost. This stochastic optimization
problem is formulated as an infinite horizon discounted risk-
aware Markov decision process (MDP), which is computationally
intractable due to the time inconsistency of the CVaR. By ex-
ploiting the special properties of coherent risk measures, the risk-
aware MDP is reduced to a standard MDP with an augmented
state space, for which we derive the optimal stationary policy
using dynamic programming. In particular, the optimal history-
dependent policy of the risk-aware MDP is shown to depend
on the history only through the augmented system states and
can be readily constructed using the optimal stationary policy
of the augmented MDP. The proposed solution is shown to be
computationally tractable and able to minimize the Aol in real-
time IoT monitoring systems in a risk-aware manner.

I. INTRODUCTION

Time-sensitive Internet of Things (IoT) applications [1],
such as real-time surveillance and monitoring, drone naviga-
tion, and autonomous driving, must rely on a timely delivery
of status information updates of the physical processes that
are being monitored or operated by the IoT devices for control
and monitoring purposes. In light of this, the concept of age of
information (Aol) has been recently proposed to evaluate the
freshness of the status updates at the information destination
(e.g., an IoT control center or base station) [2], [3]. The Aol is
a performance metric that quantifies the time elapsed since the
latest received status update at the information destination was
generated. Since the Aol captures the information freshness
from the perspective of the remote destination and depends
on both the generation and transmission of the status updates,
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it is fundamentally different from conventional performance
metrics, such as throughput or delay.

Recently, there has been a growing body of research on
minimizing the Aol in various communication systems [4]—
[9]. In [4], the authors study the optimal status sampling
and updating policy to minimize the average Aol for an
IoT monitoring system under device energy constraints. The
problem of Aol minimization for IoT monitoring systems with
non-uniform status packet sizes is studied in [5] and [6]. The
works in [7], [8] investigate the problem of Aol minimization
for wireless status updating systems with noisy channels. The
authors in [9] propose an online sampling policy to minimize
the average Aol for energy harvesting systems.

These existing works, e.g., [4]-[9], adopt a risk-neutral
approach, by focusing only on minimizing the expected value
of the (random) Aol cost functions, e.g., the average Aol, the
average peak Aol, and the average age penalty. Although the
obtained algorithms through this approach can result in Aol
performance that is minimized over a long run, they do not
capture the risk of the uncertainty of the Aol cost function,
e.g., the variability of the Aol distribution and the effects of
rare but potentially detrimental Aol events. For example, for
safety and state monitoring in industrial production scenarios,
a certain status update with a very large Aol could result in
a complete shutdown of the production. Thus, it is critical
to focus on the Aol not only in the average sense, but also
in a risk-related sense. Recently, the works in [10] and [11]
considered the tail of the Aol distribution (with extremely
large Aol) for vehicular networks and wireless industrial
networks, respectively. Meanwhile, the work in [12] analyzed
the violation probability of the peak Aol for a point-to-point
communication system with short packets. However, these
approaches in [10]-[12] focus on the probability that the
peak Aol exceeds a certain threshold, and, thus, they can
neither quantify nor minimize the expected losses that might
be incurred in tail events in which the Aol is very large.
Clearly, how to design the optimal status updating policy so
as to jointly minimize the average Aol and the expected tail
loss of the Aol, remains an open problem.

The main contribution of this paper is a novel design
of a risk-aware status updating control policy that jointly
minimizes the Aol at the receiver, the expected tail loss of
the Aol at the receiver, and the energy cost, for a real-time
IoT monitoring system. Specifically, we use a popular and
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Fig. 1: Illustration of a real-time monitoring system.

effective coherent risk measure, called the conditional value-
at-risk (CVaR) [13], to measure the tail average of the Aol
distribution exceeding a given risk level. We formulate this
stochastic control problem as an infinite horizon discounted
risk-aware Markov decision process (MDP) and seek the opti-
mal history-dependent updating control policy. This risk-aware
MDP is challenging to solve due to two reasons: 1) Because
of the time inconsistency of the CVaR, dynamic programming
cannot be directly applied and 2) History-dependent policies
are generally intractable due to the substantial requirements
on the computation time and memory. By exploiting the
dual representation and the temporal decomposition properties
of the coherent risk measures, we reduce the risk-aware
MDP to a standard MDP on the state space augmented by
a two-dimensional risk level space and propose a dynamic
programming based solution to derive the optimal stationary
policy through a risk-aware Bellman operator. Thus, instead of
working on the intractable space of history-dependent policies,
it is sufficient to focus on the optimization over stationary
policies of the augmented MDP. In particular, we show that
the optimal history-dependent policy depends on the history
only through the dynamics of the two risk levels, and can
be constructed with the optimal stationary policy for the
augmented MDP. The proposed solution can explicitly account
for rare events with very large Aol in an IoT monitoring
system and is computationally tractable to obtain the generally
intractable history-dependent policies.

II. SYSTEM MODEL

We consider a general real-time IoT monitoring system
composed of an IoT device and a remote receiver node
(see Fig. 1). The IoT device monitors an underlying time-
varying physical process and sends the associated real-time
status information to the receiver. We assume that the status
information updates of the underlying process arrive at the
IoT device stochastically and are queued at the device before
being transmission to the receiver. We consider a discrete-
time system with time slots indexed by ¢ = 0,1, 2,---. At the
beginning of each time slot, the status update (if any) of the
underlying process arrives at the IoT device randomly. Similar
to [5] and [6], the process of the status update arrivals is
modeled by an independent and identically distributed (i.i.d.)
Bernoulli process with mean rate A\ € [0,1]. The device is
equipped with a buffer to store the arriving status update and
the newly arriving most up-to-date status update will replace
the older one (if any) in the buffer, as the receiver will not
benefit from obtaining an outdated status update. Hence, there
is at most one status update at the device.

We consider a wireless packet erasure channel between the
IoT device and the receiver, and, upon transmission, each
status update will be successfully delivered to the receiver
with probability p. As in [6]-[8], we further assume that the
IoT device will be notified immediately upon a successful
transmission, through a perfect feedback channel between the
device and the receiver.

A. Monitoring Model

Due to the possible failure of each transmission, the status
update currently in the buffer at the device may be outdated
at the receiver. Thus, in each slot, the IoT device must decide
whether to transmit the locally available status update or stay
idle to wait for a possibly arriving fresher status update. Let
sy € S £ {0,1} be the updating control action of the device
at slot ¢, where s; = 1 implies that the device transmits its
locally available status update at slot £ and s; = O indicates
the device stays idle. S denotes the control action space. Let
C be the energy cost for transmitting a status update.

B. Age of Information Model

We adopt the Aol as the key performance metric to quantify
the freshness of the status information update at the receiver.
The Aol is defined as time elapsed since the most recent
status update delivered at the receiver. Let A, be the Aol
at the receiver at the beginning of time slot ¢. By definition,
we have A,; = t — U], where U] is the time stamp of
the freshest status update that was delivered to the receiver
before t. Note that, the device can only transmit its currently
available status update to the receiver and, thus, the Aol at
the receiver depends on the age of the status update in the
buffer at the device. We define A4 as the Aol at the device
at the beginning of slot ¢, to capture the freshness of the
status information update at the device. Let Ad and AT be
the upper limits of the Aol at the device and the Aol at the
receiver, respectively. Since a status update with an infinite
age is not meaningful for real-time IoT monitoring systems,
we assume that fld and AT are finite. Mathematically, fld and
A, can be arbitrarily large. Let A; £ {1,2,--- ,Ad} and
A, 2 {1,2,---, A} be, respectively, the state space of the
Aol at the device and the Aol at the receiver. We denote by
A s (Ag, Apy) € A £ A4 x A, the system Aol state at
slot ¢, where A is the system Aol state space.

Now, we present how A; evolves with the updating control
action s;. For the Aol at the device, if there is a status update
arriving at the device during slot ¢, the Aol at the device will
be reset to one, otherwise, the Aol will increase by one. Then,
the dynamics of A;; will be given by:
if an update arrives at ¢,

(€]

1
A = ’ ~
bt {min{Ad,t +1,A4}, otherwise.

For the Aol at the receiver, if the device transmits the
status update to the receiver at slot ¢ and the transmission
is successful, then the Aol at the receiver in the next slot will
be the current Aol at the device plus one (due to the one slot
transmission), otherwise, the Aol will increase by one. Note



that, the latter case includes the scenarios in which, the device
attempts to send the status update while fails, or the device
decides to stay idle. Thus, we have the dynamics of A, ;:

min{Aq:+ 1, A,}, if s; = 1 and the update
transmission succeeds at ¢, (2)
min{A,, +1,A,}, otherwise.

Ar',t+1 ==

By comparing (1) and (2), we observe that A, ; > A, ; holds
for all ¢, and, hence, we only need to focus on the system Aol
state space A with A, > Ay. Moreover, we also see that if
Aqy = Ay, for some ¢, then there is no need to choose the
action s; = 1, as the currently available status update at the
device has already been delivered to the receiver before .

III. PROBLEM FORMULATION

The existing literature, e.g., [4]-[9], focuses only on mini-
mizing the expected value of the (random) Aol cost function,
and, thus, fails to capture the variability of the Aol distribution
and accounts for rare events with potentially very large Aol.
Hence, we consider a risk-aware approach, by taking into
account the expected value of the Aol and the expected tail
loss of the Aol based on the CVaR [13] — a popular and
effective risk measure.

A. Preliminaries on CVaR and risk measures

For a bounded-mean random variable Z on a probability
space (€2, F, P), the CVaR of Z at risk level a € (0,1] is
defined as the expectation of Z in its «-tail distribution [13]:

N 1
CVaR,(Z) = min {q + aE[max{Z —q, O}]} , (3

where the expectation is taken over the probability distribution
P. Note that, CVaR,(Z) decreases with «, CVaR;(Z) =
E[Z], and lim,—,0 CVaR,(Z) = sup(Z). Thus, « can be seen
as a kind of degree of risk aversion. It has been shown that
the CVaR is a coherent risk measure [14]-[16].

Definition 1: A coherent risk measure p(Z) is a mapping
from the space Z of the random variable Z to R that obeys
the following four axioms [14]-[16]. For any Z, Z’ € Z:

1) Monotonicity: if Z < Z’, then p(Z) < p(Z');

2) Subadditivity: p(Z + Z) < p(Z) + p(Z');

3) Translation invariance: p(Z + a) = p(Z) + a,Va € R;

4) Positive homogeneity: if b > 0, then p(bZ) = bp(Z).

Note that, based on the translation invariance and positive
homogeneity axioms of a coherent risk measure p, we can
easily obtain p(c) = c¢ for all constants c. One important result
in risk measure theory is that each coherent risk measure has
its dual representation as the maximum of certain expected
value over a risk envelope [15, Theorem 6.4], i.e.,

p(Z) = max Ee[Z], 4

where E¢[Z] £ Zweﬂ ¢(w)P(w)Z(w) denotes the {-weighed
expectation of Z and Z is a specific set of probability density
functions, referred to as the risk envelop. For example, the
risk envelop of the CVaR is Z = {£ : {(w) € [0,1/a],Vw €

Q, and ) o ¢(w)P(w) = 1}.

B. Risk-Aware MDP Formulation

We consider history-dependent updating control policies,
and the updating action at each time slot depends on
the past history of the system, as represented by the se-
quence of the previous system Aol states and updating
actions. For each time slot ¢ = 0,1,---, let h, £
(Ao, S0, Al, S1, 0, Atfl, St—1, At) S Ht be the hiStOI'y up
to slot ¢, which satisfies the recursion h; = (hy—1, s;—1, Ay)
for all t > 1. Here, H, is the space of all histories up to slot
t, where Ho 2 Aand H; 2 H; 1 x S x Aforall t > 1.

Definition 2: A history-dependent updating control policy
7 is a sequence of decision rules for each time slot, i.e., ™ £
(10, pt1, -+ ), where i, is a mapping from the set of histories
H, at slot ¢ to the control action space S, i.e., s; = p¢(hy).
Let 1Ty be the set of all history-dependent policies 7.

By the dynamics in (1) and (2), and the i.i.d. assumptions
on the status updates arrival process, the induced random
process {A;}i=o,1,... under a history-dependent policy 7 is
a controlled Markov chain, with the transition probability:

Pr[A’|A, s] ®)
=Pr[A; 1 = A'|Ay = A, 5, = 5]

11— if A’ =(AY, A% and s =0,

A, if A/ = (Aé,AO) and s = 0,

(1—N)p, if A’ = (A%, A}) and s =1,
=q(1-N(1-p), if A=(A9 A% ands=1,

AP, if A’ = (AL Al) and s = 1,

A1 —p), if A’ = (AL A% and s =1,

0, otherwise.

AY and A} are for the cases that a new status update arrives
and no status update arrives, respectively. A% is for the case
that either the device stays idle or the transmission fails, and
Al is for the case that the transmission succeeds. From (1)
and (2), we have 4% = min{Ay + 1,44}, A}, =1, A0 =
min{A4, +1,4,}, and Al =min{A, +1,4,}.

For a given history-dependent policy 7, an initial system
Aol state A, and a discount factor v € (0,1), the infinite
horizon expected total discounted Aol at the receiver and
the infinite horizon expected total discounted energy cost are,
respectively, given by:

Al (A) = E[thUPZW Ani|Ag=A w] (6)

T~>oot0

CI(A) = E{limsupZ’ytstCWAo = A,w}, (7)
T—o00 —0

where the expectation is taken under the measure induced by

policy 7. By using the discounted Aol and energy cost, we

weight the immediate cost more heavily than expected future

costs. We use CVaR to capture the expected tail loss of the

infinite horizon total discounted Aol at the receiver, given by:

W) )

T
pl(A) & CVaR, ( lim sup Z YA | Ag = A

T—o0 =0



where « € (0, 1] is the risk level. Note that, v € (0, 1) ensures
that AY_(A), C7(A), and p)(A) are upper-bounded.

Our goal is to find the optimal history-dependent policy
that jointly minimizes the infinite horizon expected total
discounted Aol at the receiver, the infinite horizon expected
total discounted energy cost, and the CVaR of the infinite
horizon total discounted Aol at the receiver. By adopting
the weighted-sum method, which a widely used method for
multi-objective optimization problem [17], we formulate the
following problem:

min A7 (A) +np3(A) +vC7(A), ©9)
where A is a given initial system Aol state, and n,v > 0
are the weighing factors on the CVaR of the Aol and the
energy cost. 77 and v can be regarded as the penalty factors,
mimicking the soft constraints on the CVaR of the Aol and the
energy cost. Thus, we can think 7 and v as the corresponding
Lagrange multipliers.

We refer to problem (9) as an infinite horizon discounted
risk-aware MDP. Note that, for standard MDPs with expected
cost objectives (e.g., [18]), it is generally sufficient to focus
on the optimization over deterministic stationary Markovian
policies without loss of optimality. However, for the consid-
ered risk-aware MDP in (9), the more general class of history-
dependent (non-stationary) policies could be required. This is
because the CVaR measure is time-inconsistent, which intu-
itively implies that a policy that is optimal at the current stage
is not necessarily optimal in subsequent stages [16]. Such
time-inconsistency could further couple risk preferences over
time, and, thus prevents us from directly applying dynamic
programming to decompose the problem in stages [19].

IV. OPTIMAL RISK-AWARE AOI SOLUTION

In general, computing the optimal history-dependent up-
dating policy m € IIy for the risk-aware MDP in (9) is
practically intractable due to the substantial requirements in
terms of memory and computation time. Inspired from [16],
[20], we show that the risk-aware MDP in (9) can be reduced
to a standard MDP with an augmented system state space, by
exploiting the properties of dual representation and temporal
decomposition of coherent risk measures. In particular, the
optimal history-dependent policy for (9) depends on the
history only through the augmented system states and can
be constructed with the optimal stationary policy for the
augmented MDP.

A. Reduction of a Risk-Aware MDP to an Augmented MDP

According to [15, Equation (6.69)], we know that, for
any o, 8 € (0,1], the coherent risk measure p(Z) = (1 —
B)E[Z] + BCVaR,(Z) has the dual representation in the
form of (4), where the risk envelop is = = {¢ : {(w) €
[1-8,1+B(1/a=1),Yw € Q, and }_ o &(w)P(w) = 1}.
Then, we can transform AY (A) +np}(A) in the objective
function of (9) to a coherent risk measure:

A} (A) +1p2(A)

<—u+n>01—"wmAAw+ n

T(A
L 1+n%<>>

T
2 (1+ n)p51¢<lim sup Z'ytAm|A0 = A, 7T>, (10)
T

— 00 t=0

where ps4(-) is a coherent risk measure with a risk

envelop: £(0,¢,P) = {§ : &w) € [6,1/¢],vw €
Qand ) oé(W)P(w) = 1}, 0 = ﬁ € (0,1] and
P = ag}f? € (0,1]. (9, ¢) are the risk levels of ps ¢(-).

Now, we present the key temporal decomposition property
of the coherent risk measure. First, for each k£ =0,1,---, we
define Ty, = (fit)i=k k+1,.. as a k-th tail history-dependent
policy, where the action ji; at slot ¢ > k is a mapping from
‘Hy,+ to the control action space S. Here, Hj,; denotes the set
of all histories from slot & to slot ¢, satisfying Hy, 441 = Hi,e ¥
SxAfort>k+1 and Hyp £ A. A generic element hy .
of Hy,, takes the form hy ¢ L (Ap, s, Ar_1,80-1, Ayp).
From Definition 2, we know that 7y = w. Then, we have
the following temporal decomposition of ps4(-), based on
Theorem 2.6.1 in [20].

Lemma 1: Given slot &, system Aol state Ay € A, control
action s € S, and risk levels (0x, o) = (6, ¢) € (0, 1]?, for
any (k- 1)-th tail history-dependent policy 71, we have the
following temporal decomposition property of the conditional
coherent risk measure of ps,¢(-):

max
§EE(6,0,Pr(-|Ag,sk))

E [£(Aks1)P6/¢(Apsr) 06 (Ansy) (Zrs1|Akrr, Trg)| Ak, sk

05,6(Zrt1| Ak, Sky Thg1) =

where Zj,1 £ limsupp Ztho Y Ay 1441 denotes the
(random) total discounted Aol at the receiver from time &k + 1
such that the system Aol state evolves under policy 741 via
the Aol dynamics in (1) and (2) conditioned on (Ay, si),
and the expectation is taken with respect to the probability
distribution of A1 conditioned on (Ag, si).

Note that, the difference between Lemma 1 and Theorem
2.6.1 in [20] is that we remove the dependency on the history
prior to time k. This is because Ay, sj, and (0, ¢y are given,
Zk+41 is conditioned on A1, and the system Aol state is
Markov. Based on the temporal decomposition of the coherent
risk measure in Lemma 1, by following the state space aug-
mentation approach in [20, Chapter 2], we augment the system
Aol state space A to include additional two dimensional state
space X x Y = (0, 1]2, which correspond to the two risk
levels (9, ¢). We refer to as A x X x Y as the augmented
system state space. The dynamics of the augmented system
state (A, z,y) € Ax X x Y are as follows: The system Aol
states {A;}i=0,1,... still evolve as per the Aol dynamics in
(1) and (2) as well as the transition probability in (5), and
the evolution does not depend on the risk levels. The risk
levels {x¢,y:}i—0,1,... evolve deterministically according to
Ti41 = It/f*(At,xt,yt, St) and ;41 = yté*(At,xt,yt, St),
where £*(-) is a known deterministic function that will be
specified in (13). Now, we introduce a new class of policies
with the augmented system state space.



Definition 3: An augmented stationary updating control
policy 7 is a sequence of decision rules for each time slot, i.e.,
7 = (1,1, -+ ), where fi is a mapping from the augmented
system state space A x X x Y to the control action space
S.ie., s = ji(A,z,y). Let IIg be the set of all augmented
stationary policies 7.

Given an augmented stationary policy 7, an initial aug-
mented system state (A,x,y), and a discounted factor =,
we define A7 - (A, z,y), C2(A, x,y), and pl (A, z,y), in the
same manner as in (6)-(8), respectively, and formulate the
corresponding augmented MDP as follows:

V*(A,x,y) £ min Viz(A, z,v), (11)
wells

where Vi(A,z,y) £ Al _(A,z,y) + npl(A,z,y) +
vCY(A,r,y). Next, we show that the optimal history-
dependent updating control policy 7 € 1l in Definition 2 for
the risk-aware MDP in (9) can be constructed by obtaining the
optimal augmented stationary updating control policy 7 € Mg
in Definition 3 for the augmented MDP in (11).

B. Optimality Equations

According to (10) and Lemma 1, for any function V' : A x
X xY — R, we define the following risk-aware Bellman
operator T : AX X XY - Ax X xY onV as follows:

TV]|(Ax,y) = ném [(1 +n)A, +vsC
T (z,y, Pr( |A,s)) A;_A (5
V(A o/ p6(A) A4 )| 12)

Here, from (12), we introduce £*(-) as follows:

> (e

A'eA
X V(A 2/¢(A), y§(A) PrA|A, o] ) VA, 2y, (13)

£ (A z,y,8) = arg

max
£€E(x,y,Pr(-]A,s)

We denote T% by the composition of the mapping 7' with
itself &k times, ie., T*[V](A, z,y) & T[T*V](A, z,7y).
According the definition of the risk envelop of the coherent
risk measure ps 4, we can show that the risk-aware Bellman
operator T'[V] has the monotonicity and constant shift proper-
ties [18, Chapter 1.1.2].! Given the definition of T[V] in (12),
we next provide the expression of T*[V] for k = 1,2, -.

Lemma 2: For any (A, z,y) € Ax X xY and any function
V:Ax X xY — R, we have

TFIVI(A,x,y)
k—1
= min pmy< 1+mn) Z'ytA L +HYV(A xy|Ag = A, 7T)
wells =0
k—1
+VE[th$tC|AO - A,fr}, VE=1,2,---, (14
t=0

'All proofs are omitted due to space limitations.

where the action s; is induced by 7( Ay, xy, y¢).

Based on Lemma 2, we can obtain the optimal augmented
stationary updating control policy 7*:

Theorem 1: For any given (A,z,y) € A x X x Y, the
optimal function V*(-) in (11) satisfies that:

V(A x,y) =T[V*](A, z,vy).

Moreover, V*(-) is the unique solution to (15) within the class
of bounded functions.

Proof Sketch: We first show that, for any bounded
functions V : AXx X xY = R,

V(A z,y) = lim TV[V](A,z,y),

15)

(16)

holds for all A,xz,y. To prove (16), we break Vz(A,z,y)
into the portions incurred over the first IV stage and over the
remaining stages. Then, by using the monotonocity and the
subadditivity of the coherent risk measure p, ,(-), the fact
pr.y(c) = c for a constant ¢, the upper-limit A, of the Aol at
the receiver, and Lemma 2, we can obtain

Vi (A, 2,y) = TN [V](A, 2,y)|
N ~
< 7o (A +0C 4 ax V(A z.)l), (7)
— oy
based on which, we can prove (16).
Next, considering a zero function Vj(-) such that

Vo(A,z,y) = 0 for all A,z,y, and by the monotonicity
and constant shift properties of T[V], we can show that
Ve =T[V].
Finally, the uniqueness of the solution to (15) can be proved
by the monotonicity property of T'[V] and (16). [ |
Now, we have the optimal augmented stationary policy 7*
to the augmented MDP in (11), given by:

Az, y) = argmm {(1 +n)A, +vsC

I
EG (xyPr( |A,s)) AgA (5 A

V(Ao €A, p6(A) PrLAYA )| )

We now show that 7* can be used to construct the optimal
history-dependent policy 7 for the risk aware MDP in (9).

Theorem 2: Forany A € A, x = +n andy = (H") , the
optimal function V*(+) in (11) equals to the optlmal solutlon
of the risk-aware MDP in (9), i.e.,

V(A ,y) = min AL (A)+np3(A) +vCT(A). (19)
ks H ’
Moreover, the optimal history-dependent policy 7* =
(15, 13, -+ ) of (9) is given by:
/'L: (ht) =7 (Atu Tt, yt)7 (20)

with the initial system Aol state Ag = A and risk levels
(z0,y0) = (x,y). Here, the dynamics of A; are given by (1)
and (2), and the dynamics of (x,y;) are given by:

ﬁ—*(Atu:Etayt))u (21)

Tep1 = 4 /E (A, T4, Yy,



Yep1 = Y& (As, T, Ye, T (A, 4, Y1) (22)

where £*() is given by (13).

Proof Sketch: First, we show that the optimal solution
of the risk-aware MDP in (9) is also a solution to (17),
by exploiting the k-th tail history dependent policy and the
temporal decomposition of pg (). Then, by the uniqueness of
the solution to (17), we can immediately have (19). Then, we
show that, the history-dependent policy constructed with the
associated augmented stationary policy, is optimal, by using
similar approaches as in Proposition 1.2.5 in [18]. [ ]

From Theorems 1 and 2, we observe that, although the
original risk-aware MDP in (9) is defined over the intractable
space of history-dependent updating policies, we only need
to focus on finding the optimal augmented stationary policy
defined in Definition 3, which depends on the original system
Aol state A and two additional risk levels (z,y). Moreover,
from the dynamics of the two risk levels (x4, ;) in (21) and
(22), it can be seen that the values of (x;,y;) contain the
historical information that is necessary to make the optimal
decision, and thus can be seen as a certain kind of sufficient
statistics. Furthermore, the optimal history-dependent updat-
ing control policy 7* € Il can be derived, by first obtaining
the optimal augmented stationary 7% € IIg in (18) and then
using the construction procedure in Theorem 2. Here, to derive
derive 7*, we can apply the value iteration algorithm [18] to
obtain V*(-). Let V}, be the value function at iteration & which
is updated according to Vi(A,z,y) = T[Vi-1](A,x,y).
By (16), under any initialization of a bounded V;(-), the
generated sequence {Vj(A,z,y)} converges to V*(A,x,y),
ie, V*(A,z,y) = limk_ 00 Vi (A, z,y).

In a nutshell, we have proposed a novel approach that
explicitly accounts for rare events with very large Aol in a
IoT status updating system and developed a dynamic program-
ming based solution to obtain the optimal history-dependent
updating policy.

Remark 1: The proposed solution framework is significant,
as it can be applied to design optimal solutions for risk-aware
Aol minimization in other [oT scenarios, in which the optimal
policy should be history-dependent, and, thus, is generally
intractable. Moreover, the kernel of the proposed solution is
dynamic programming, which further allows for the design
of more efficient algorithms by levering advanced machine
learning in real-time [oT monitoring systems.

V. CONCLUSION

In this paper, we have studied the optimal process update
policy that minimizes the Aol at the receiver, the CVaR of the
Aol at the receiver, and the energy cost. We have formulated
this stochastic optimization problem as an infinite horizon
discounted risk-aware MDP. To obtain the optimal history-
dependent policy of the risk-aware MDP, we first reduce it
to a standard MDP with an augmented system state space
consisting of the original system Aol state space and the
state space of two additional risk levels. For the augmented
MDP, we have shown that the optimal stationary policy can

be derived through dynamic programming based on a risk-
aware Bellman operator. Then, we have shown that the optimal
history-dependent policy of the risk-aware MDP depends on
the history only through the augmented system states and
can be constructed, by first obtaining the optimal stationary
policy of the augmented MDP and then using a special
construction procedure. The proposed solution is shown to
be computationally tractable and can be applied in real-time
IoT monitoring systems to minimize the Aol.
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