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Abstract—Scheduling fast uplink grant transmissions for ma-
chine type communications (MTCs) is one of the main challenges
of future wireless systems. In this paper, a novel fast uplink grant
scheduling method based on the theory of multi-armed bandits
(MABs) is proposed. First, a single quality-of-service metric is
defined as a combination of the value of data packets, maximum
tolerable access delay, and data rate. Since full knowledge of these
metrics for all machine type devices (MTDs) cannot be known
in advance at the base station (BS) and the set of active MTDs
changes over time, the problem is modeled as a sleeping MAB
with stochastic availability and a stochastic reward function.
In particular, given that, at each time step, the knowledge on
the set of active MTDs is probabilistic, a novel probabilistic
sleeping MAB algorithm is proposed to maximize the defined
metric. Analysis of the regret is presented and the effect of
the prediction error of the source traffic prediction algorithm
on the performance of the proposed sleeping MAB algorithm
is investigated. Moreover, to enable fast uplink allocation for
multiple MTDs at each time, a novel method is proposed based
on the concept of best arms ordering in the MAB setting.
Simulation results show that the proposed framework yields
a three-fold reduction in latency compared to a maximum
probability scheduling policy since it prioritizes the scheduling
of MTDs that have stricter latency requirements. Moreover, by
properly balancing the exploration versus exploitation tradeoff,
the proposed algorithm selects the most important MTDs more
often by exploitation. During exploration, the sub-optimal MTDs
will be selected, which increases the fairness in the system, and,
also provides a better estimate of the reward of the sub-optimal
MTD.

Index Terms—Machine Type Communications, Scheduling,
Fast Uplink Grant, Multi-armed Bandits, Internet of Things

I. INTRODUCTION

The next-generation of wireless networks is expected to
support Internet of Things (IoT) [2], [3] services and ap-
plications such as autonomous vehicles [4] and unmanned
aerial vehicles [5]. To enable such emerging 10T applications,
next-generation wireless systems must have native support
for machine type communications (MTCs). In MTC, a large
number of machine-type-devices (MTDs) must communicate
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small data packets [6]. Due to the heterogeneous nature of
IoT applications, MTC data packets have fundamentally novel
requirements in terms of latency, reliability, and security [7]. In
particular, reducing the signaling overhead and latency, while
avoiding random access channel congestion is an important
open problem for MTC.

MTC access schemes can be categorized into three groups:
a) Coordinated transmission, in which MTDs send scheduling
requests to the BS by using a random access process and
the BS schedules MTDs. This approach can be inefficient for
MTC since the data packets are small and, hence, the signaling
to data packet size ratio is large, b) grant-free transmission,
in which MTDs choose a random uplink radio resource and
transmit their data without sending any scheduling request,
to reduce the signaling overhead, and c) fast uplink grant, in
which the MTDs do not send random access based scheduling
requests, and, instead, the BS sends an uplink grant to MTDs
based on a prediction of the set of active MTDs. Schemes a)
and b) can suffer from severe collisions among transmissions
because the number of MTDs is often much larger than
the number of available resources. In a massive MTC [8]
scenario, collision problems become even more challenging
to address. The authors in [9] and [10] provide an extensive
overview of several proposed solutions for such problems. The
authors in [11] use non-orthogonal multiple access for the
random access process so as to identify random access requests
from multiple MTDs with the same preamble. Correlation
between transmission patterns of different MTDs is exploited
in [12] to optimize the random access process by reducing the
collisions. To avoid wasting radio resources in random access
collisions, the authors in [13] propose to attach the MTD
identity information in the physical random access channel
which will prevent the BS from allocating uplink resources
to devices that collided. In summary, the works [11]-[13]
are focused on optimizing random access process for MTC
and solving problems associated with collisions. For grant-free
transmission, in [14], the authors present a resource allocation
approach for a massive number of devices with reliability and
latency guarantees. Meanwhile, the work in [15] presents a
game-theoretic model for optimizing the coexistence of MTDs
with cellular users in the uplink period. Since 10T applications
have diverse range of QoS requirements, dynamic resource
allocation is used in [16] for mission critical MTC. The authors
in [17] provide a dynamic QoS aware resource allocation for
narrow band IoT networks. Although these prior solutions can



improve the performance of MTCs, coordinated access still
suffer from heavy signaling overheard and collisions [8], [9],
[12], [13], [18]. Moreover, grant-free transmissions still also
experience non-negligible collisions, particularly in massive
access scenarios [14], [15], [19], [20]. The main drawback of
this prior art is that it relies solely on random access process
(for sending scheduling requests in coordinated transmission
or sending data packets in the grant-free scheme) whose
performance is optimal only when the number of competing
devices is equal to the number of available resources [21]. This
clearly does not hold in massive MTC cases since the number
of radio resources is limited, and hence, novel solutions are
needed to address the uplink resource allocation problem for
massive MTCs.

To address the challenges of random access congestion,
collisions, and high signaling overhead, a middle ground
from the point of view of the uplink resource allocation
method between a) fully coordinated transmission by using
random access based scheduling requests and b) grant-free
transmission, can be achieved by using the concept the fast
uplink grant [22] and [23]. In the fast uplink grant scheme,
if the MTDs have data to transmit, they proceed with the
transmission, otherwise, the radio resource is wasted [23],
[24]. An overview of challenges and opportunities of the fast
uplink grant is provided in [25]. As a first step to implement
the fast uplink grant, one must investigate the problem of
source traffic prediction. In this regard, in [26], an MTD traffic
prediction method based on the so-called directed information
is presented for source traffic prediction. By using the method
proposed in [26] upon detection of an irregular transmission,
a set of future active MTDs facing the same event can be
detected. The authors in [27] propose a predictive resource
allocation scheme for event-driven MTC in which MTDs are
physically located across a line where their traffic pattern can
be predicted.

The second step after predicting the source traffic is the
optimal allocation of the fast uplink grants which is the
focus of this work. If the BS has full knowledge of the
QoS requirements of all the MTDs, this task is rather trivial.
However, in practice, the MTDs might not reveal the nature
of the application to the BS. Moreover, the QoS requirements
of the MTDs might change at different times, due to changes
in channel quality between the MTDs and the BS and the
presence of various applications that must send data through
a single MTD. Therefore, the BS must perform fast uplink
grant allocation, with limited or no prior knowledge about
the QoS requirements of the MTDs, and use the information
revealed to the BS after the transmission for future fast uplink
grant allocation purposes. One suitable tool for such a task is
multi-armed bandit (MAB) theory. MABs are a class of rein-
forcement learning problems [28] in which an agent interacts
with an environment and learns from its actions. MABs have
been previously used in wireless communications problems
(e.g., see [29] where a review of applications of MABs in
small cells is provided.) The authors in [30] use MABs for
channel selection in device-to-device (D2D) communications
and in [31], MABs are used for distributed user association in
energy harvesting small cell networks. MAB is also proposed

for multi-user channel allocation for cognitive radio networks
in [32].

The main contribution of this paper is to address the
problem of optimal fast uplink grant allocation when the
number of active devices is larger than the number of available
resources, there is no prior information about QoS requirement
of the MTDs, and the source traffic prediction algorithm is
imperfect. We consider that the BS is not able to perfectly
predict the set of the active MTDs and hence, a probability
of activity is associated with each MTD at any given time.
Therefore, the BS has probabilistic knowledge on the set of
active MTDs and we propose a novel MAB algorithm for
allocating the fast uplink grant under these conditions. The
contributions of this paper can, therefore, be summarized as
follows:

« In order to capture a diverse set of QoS metrics during
scheduling, we introduce a compound QoS metric that
is a combination of three MTD-specific metrics: a) the
value of the data packets, b) maximum tolerable access
delay, and c) the data rate. We concretely define this
metric by proposing a novel method to model the access
delay by mapping it to a value between zero and one
using a sigmoid function known as Gompertz function. To
find the optimal MTD that the BS must schedule at each
time slot, a novel probabilistic sleeping MAB algorithm
is proposed. Sleeping MABs are appropriate to address
problems in which the set of of active MTDs change over
time. To account for imperfect source traffic prediction
algorithm, we introduce a Bayesian inference mechanism
at the output of the source traffic prediction algorithm to
learn prediction errors. The posterior probabilities of the
Bayesian inference method are then combined with the
concept of upper confidence bound (UCB) in the context
of sleeping MABs.

« We rigorously analyze the regret of the proposed MAB
algorithm and decouple the effect of the MTC source
traffic prediction errors and the learning process on the
regret. We analytically derive the conditions under which
the errors in MTC source traffic prediction lead to select-
ing an MTD with lower utility value thereby increasing
the regret of the proposed MAB algorithm.

« Simulation results show that for any source traffic pre-
diction algorithm with good accuracy, the proposed al-
gorithm is optimal since it achieves logarithmic regret.
For example, the proposed framework achieves up to
three-fold improvement in the access delay compared to
a baseline random scheduling policy.

« We extend the proposed probabilistic sleeping MAB from
single MTD selection to several MTD selection by using
the concept of best ordering of bandits and provide an
algorithm for scenarios where multiple MTDs can be
scheduled at any given time. In this method, MTDs with
highest UCB value are selected for transmission, which
achieves much better performance in terms of delay and
throughput compared to the baseline maximum prediction
probability allocation policy. Here, our simulation results
show two-fold performance improvement in terms of
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Fig. 1: Illustration of system model. First, the set of active
MTDs are predicted. Next, selected MTDs receive the fast
uplink grants and transmit their data.

latency compared to a baseline maximum prediction
probability allocation policy.

The rest of the paper is organized as follows. Section II
presents the system model and problem formulation. In Section
III, we introduce the proposed probabilistic sleeping MAB
solution and its extension to multiple MTDs and provide
the regret analysis and study the effect of the source traffic
prediction accuracy on the performance of the MAB algorithm.
Numerical results are presented in Section IV and conclusions
are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the uplink of a cellular system composed of one
BS and a set M of M MTDs that use a fast uplink grant.
Scheduling is done at the BS and a fast uplink grant is sent
to each scheduled MTD. We assume that the total available
bandwidth is divided into resource blocks, each of which is of
size W and duration 7. Without loss of generality, we consider
the problem of selecting one MTD for the fast uplink grant
at each time duration 7. Hereinafter, we use ¢ for indexing
MTDs and ¢ for time. Due to the heterogeneous nature of
IoT applications, packets are assumed to have different QoS
requirements. The system model is presented in Fig. 1.

A. Performance Metrics

We now define three performance metrics that are combined
to build a single metric that is used in the problem formulation.

1) Value of information: At time t, for each MTD i, we
define the value of information as the assessment of the utility
of an information product in a specific usage context [33].
Hence, each packet that arrives at the queue of an MTD 7 will
have an associated value v;(¢). According to [33], this value
can be determined by relative pairwise comparison of all IoT
applications and the use of the so-called analytic hierarchy
process (AHP) to calculate the importance weight for each

packet. This normalized value is derived in the form of a
percentage of importance, and hence we choose v;(t) € [0, 1].

2) Maximum tolerable access delay: Delay in a wireless
communication network consists of different components: Pro-
cessing delay T}, which is a function of hardware and software
used by the MTDs, queuing delay Ty, and transmission delay
T; which pertains to the delay for the transmission of the
data packets through the physical medium. Once the data is
transmitted and received at the BS, the time needed for the
packet to travel to the final destination through a network
of wireless, wired, or fiber link is called routing delay T.
Finally, the access delay T, which is the main focus of this
work, is the time duration from the moment that the packet
is ready for transmission, until the MTD receives the uplink
resource blocks to transmit the packet. For each data packet
of MTD i, we consider a maximum tolerable access delay
d;(ts) defined as the total delay that can be tolerated from
the time instance ¢, at which the data packet is ready to be
transmitted at the MTD queue until it is scheduled to be sent.
To calculate the total access delay that can be tolerated for each
MTD, we first assume that all the other delay components are
modeled and subtracted from the total tolerable delay of the
packet. We assume T}, and T} to be constant since the packets
are small and always generated by the same devices, and the
MTDs are either stationary or have low mobility. Most of the
MTDs have sparse packet arrivals at their local buffer and
we can consider that the service time is considerably shorter
than the packet inter-arrival times. Therefore, the queuing time
resulting from other packets in the buffer of each MTD is
considered to be negligible.Moreover, each IoT device might
be transmitting data from various applications. For example,
there are IoT sensors that transmit five different data such as
temperature, humidity, light, movement and CO2 levels. Each
of these applications can have different delay requirements.
Once all the delay components are modeled, we can calculate
the maximum tolerable access delay as follows:

Ta:T‘lotaJ_Tt_Tp- (1)

Due to the fact that the values of Tigw, Tr, T3, and T},
are constant and that each application that is transmitting
through the MTD might have different QoS requirements,
the maximum tolerable access delay for each MTD will be
different at any given time. Moreover, once a packet is in the
MTD queue and waits for to access the channel, after each
time step of waiting, its tolerable access delay will be shorter.
Therefore, the packets of each MTD might have different
tolerable access requirements at different times.

3) Throughput: Once each signal is received at the BS, the
signal-to-noise ratio (SNR) is:

a:() i ()2
WNo

where h;(t) represent the channel between MTD node ¢ and
the BS. Ny is the power spectral density of the noise, W is
the bandwidth of the transmission channel, and g;(#) is the
transmit power of MTD . The channel is modeled as h;(t) =
a;i(t).g:(t) where g;(t) ~ CN(0,1) represents the small-scale
Rayleigh fading, assumed to be independent at different times.

7i(t) = (2)



g (t)
Large scale fading is included in a;(¢) = 10 T — where

a; aB(t) = PLap+ X, with PLsp and X, denoting the path
loss and log-normal shadowing with variance o. We use the
3GPP path loss model from the BS to MTDs [34] which is
given by PLgg = 128.1 + 37.6log(d). Subsequently, the rate
is given by:

. ) 2
Ci(t) = Wlog (1 + W) 3)

B. Problem Formulation

We first normalize C;(t) as well as the maximum tolerable
access delay to a value within the range [0,1]. We define the
normalized rate using the following order-preserving mapping
function from [0, o0] to [0, 1]:

Ci(t)
¢+ Ci(?))’

where ¢ can be any positive number. We use ¢ = C,, where
Cyy is the approximate the average rate of the system that
is calculated by averaging the approximate minimum and
maximum possible rate from MTDs to the BS. We use the
closest MTD to the BS with a line-of-sight fading model for
the maximum rate. For the minimum rate, we use the path loss
model with maximum shadow fading for the farthest MTD.
Note that one could use any positive number for ¢ in this
normalization equation, however, since smaller values would
push the normalized throughput towards one, we chose Cy
which leads to a better spreading of values in [0, 1].

To normalize the maximum tolerable access delay, we
use a mapping from maximum tolerable access delay to a
number in [0, 1] using a function g(d;(t)). To do this, we use
Gompertz function [35] with slight modifications, which is an
asymmetric sigmoid function that is widely used in growth
modeling. The rationale behind using this function is that it
is possible to control the point at which the value of the
function starts to decrease as well as the steepness of the curve.
Gompertz function [35] is given by w(t) = ae~% ", where
parameter a defines the asymptote of the function, b sets the
displacement along the time axis, and ¢ determines the growth
rate or the steepness of the function. The Gompertz function is
an increasing function in time. Moreover, since smaller values
of the maximum tolerable access delay mean that the MTD
has delay-sensitive data to transmit, and hence, it should have
a higher value in the utility function, we modify the Gompertz
function to create a new function that is decreasing with time,
as follows:

Cn(t) = @)

9(di(t)) = a — ae " )
Fig. 2 shows the plot of the modified Gompertz function
for some different values of the control parameters. Any
scheduling algorithm performs better in terms of delay if it
selects MTDs with smaller maximum tolerable access delay,
which is the one that maximizes function g(d;(¢)). For each
MTD ¢ € M, we can now define a utility function that
combines all of the QoS metrics:

Ui(t) = awi(t) + BT (t) + vg(di(t)). (6)
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Fig. 2: Modified Gompertz function for modeling latency for
different values of the control parameters.

In (6), a, B, and ~ are weight parameters used to modify the
importance of each metric with a4 3+~ = 1. This combined
QoS metric is used to handle multiple objectives and tradeoffs
between them [36]. Values of «, 3, and - can be derived by
using pairwise comparison of different QoS metrics and using
Analytic Hierarchy Process [37]. The best performance at time
t is achieved if an MTD k € KL C M is selected such that:

k =argmax U,(¢),
ick
s.t. Ci(t) > p, )
di 2 t— tS:

where K is the set of active MTDs and p is rate threshold
required for data transmission. If v;(¢), hi(t), di(¢), and the
set of active MTDs are available to the BS, solving (7) is
straightforward. However, in real-world networks, having such
information at the BS is impractical due to the following
reasons. First, MTDs should send a scheduling request to the
BS using periodically available random access slots. Sending
scheduling requests in MTC is not optimal since it: a) will
most likely fail in massive access scenario, b) requires large
signaling overhead compared to the small data packet size, and
c¢) increases the latency. This motivates the development of a
predictive resource allocation scheme, where the set of active
MTDs is predicted at the BS. Second, for optimal performance
in the system, the BS must know the channel state information
(CSI) of the MTDs, their data values, and their exact latency
requirements. Clearly, in practical MTD networks, the BS
does not have full knowledge on the parameters of the metric
defined in (6). For example, since the data packets are small,
having instantanecous CSI at the BS requires signaling over-
head that is almost equal to the data size, which is naturally
inefficient. Moreover, as discussed earlier, the tolerable access
delay and value of the data packets can be different each time.
Therefore, it is appropriate to solve problem (7) using online
learning methods with limited or no information [28] at the
BS. In this case the learning algorithm can learn the statistical
properties of the CSI, the tolerable access delay, and the value



of the data packets over time. Next, we propose a novel online
algorithm based on MAB theory [28] to solve (7).

ITI. PROPOSED MULTI-ARMED BANDIT FRAMEW ORK AND
ALGORITHM

A. MAB theory and MAB problem formulation

In a multi-armed bandit problem, a player (decision maker),
pulls an arm from a set of available arms (selects an action
from a set of available actions). Each arm generates a reward
after being played, based on a distribution that is not known to
the decision maker — the decision maker only observes the re-
ward of the selected arm. The aim of the player is to maximize
a cumulative reward or minimize a cumulative regret. Regret
is defined as the difference between the reward of the best
possible arm at each game instant, and the generated reward
of the arm that is played.

Let 6(t) be the reward of playing an arm from the set of
arms KC at time ¢, and let 6*(¢) = I:leagﬂi(t) be the highest

possible reward that could be achieved at time ¢ from the set
of all arms ¢ € K. The regret up to time T is defined as [28]:

T T
R =E[ 307~ 3000, ®)
t=1 t=1

where ¢ is the discrete time index and the expectation is
taken over the random choices of the algorithm as well as
the randomness in reward allocation. In our problem, each
MTD is seen as an arm in the MAB settings and the BS is the
player that selects the best arm at each time and after playing
that arm, receives a reward that is generated by the metric
defined in (6). Hence, the reward that is generated by each
MTD i € M is:

0:(t) = 1[d; > t — t]1[Ci(t) > p|Ui(2), ©9)

where 1(.) is an indicator function that is equal to 1 when
the argument of the function holds and 0 otherwise. Indicator
functions are used to show that the reward of the algorithm
at time step ¢ for selecting MTD ¢ is O under the following
conditions:

« Ci(t) < p, i.e, the achieved throughput falls below the
defined threshold and the packet cannot be transmitted
successfully. This often happens when the channel quality
between MTD i and the BS is below a certain level.

o d;(t) <t—ts. Here, t; is the time that MTD ¢ is selected
for transmission and ¢, is the time when MTD 7 had a
packet ready for transmission. Hence, t—t; is the number
of time steps that MTD ¢ has waited to receive the uplink
grant. Naturally, if d;(t) < t —ts, then the MTD packets
will be dropped and the reward at the BS for selecting
MTD ¢z will be 0.

The goal of the BS is to maximize its cumulative reward
over time. To solve such a problem, the natural solution is
to find the best possible arm and play it all the time. This
requires playing all of the available arms for many times to
find their expected value. However, randomly selecting arms in
the process of learning is highly suboptimal. Hence, an MAB
algorithm finds the arms with higher rewards and chooses

them more often, which is known as exploitation of those
arms. At the same time, an MAB algorithm should explore
all the other arms enough times to find their expected value
more precisely. This is known as the exploration versus ex-
ploitation tradeoff. Several methods exist to solve the problem
of exploration/exploitation. One of the most popular solution
approaches for the MAB problem is based on the concept
of upper-confidence bound (UCB). In this method, the MAB
algorithm at each time ¢ plays an arm x(¢) such that:

Zi (t)
z(t) = argmax 7

bint
Rg‘(t)

where ¢ is the time step, n;(¢) is the number of the times that
arm 7 was played in the previous time steps up to £t —1, z;(¢) is
the sum of the rewards of playing arm ¢ up to time ¢, and 9 is
a parameter that provides a tradeoff between exploration and
exploitation. Larger values of 1) lead to a higher amount of
exploration. We will next use the UCB concept in our proposed
probabilistic sleeping MAB algorithm to provide a tradeoff
between exploration and exploitation. In the UCB method, an
interval is defined around the average of the received rewards

from each arm. This confidence interval \;‘fi:(—n; depends on
the number of the times that an arm was played and the total
number of the times that algorithm is running. The more one
arm is played, the UCB value becomes smaller. This means
that the empirical mean is closer to the real expected value of

the arm.

(10)

B. Sleeping Bandits and Proposed Algorithm

In classical MAB problems, it is assumed that all of the arms
are available to be played at all time instants. However, for the
MTC fast uplink grant scheduling problem, this assumption is
not valid since MTDs will have a small number of packets
and usually, after each transmission, they become idle for
some time. Hence, we consider a scenario in which, the set
of available arms varies over time. This type of problems
are called sleeping MAB problems [38]. In our problem,
since the availability of the MTDs follows the distribution
of their traffic, and the reward can be described by (9), we
have sleeping bandits with stochastic action availability and
stochastic rewards. The authors in [38] provide an algorithm
named AUER that addresses such problems and achieves
optimal regret. However, AUER is only applicable to sleeping
MAB problems in which the set of available arms is perfectly
known to the decision maker in advance. In our problem
formulation, such an assumption will not hold. Therefore, we
propose a novel solution, summarized in Algorithm 1. Here,
we consider that the BS has a prediction algorithm (e.g., such
as those proposed in [39], [26], and [40]) to determine the set
of active MTDs at each given time. This algorithm provides
the set of active MTDs with a certain probability. That is, each
MTD : has a probability A;(¢) of being active at time ¢. In this
problem, since the availability of the MTDs is probabilistic,
the selected MTD might not be active, which will lead to
0 reward and a waste of resources. Therefore, to solve the
optimization problem in (7) we propose an MAB algorithm
that takes such a probability of being active into account. Any



Algorithm 1 The probabilistic sleeping MAB algorithm.

Initialize z;, n; for all ¢ € [n], initialize t
fort=1toT do
if 35 € K¢ s.t. nj = 0 then
Play arm z(t) = j

else
Calculate the posterior probability A;(¢) for all MTDs
Play arm z(t) =
argmaxiex, (Ai(®) | 23 + /%78

n(t) n(t)
end
if z(t) is an available arm (z(¢) # 0) then
observe payoff 6
Za(t) < Za(t) T O2()(2)
() € M) T 1
t —t+1
else
Zz(t) € Zz(1)
a(e) € Mae)
t <t
end

error in the source traffic prediction algorithm that provides
the set of active MTDs will affect the performance of the
proposed sleeping MAB algorithm. We first define two types
of prediction errors that will later be used in the proposed
algorithm and the regret analysis in Section III-C:

1) For any MTD that is active at time ¢ with probability
of being available A;(¢), the prediction error will be 1 —
Ai(t). If an optimal MTD is active and has high prediction
error, that MTD might not be scheduled and some sub-
optimal MTD j will be scheduled instead, which will
lead to regret p;(t) — pj(t). pa(t) and p;(t) represent the
rewards of arm ¢ and arm j respectively. We use e; to
capture this event.

2) For any non-active MTD j that is in the set K;, the
prediction error is A;(t). If any non-active MTD j is
improperly selected due to high prediction error instead
of an optimal MTD ¢, then the returned reward is zero,
and, the hence, regret is p;(¢). This is the highest amount
of regret that can happen at any given time. We denote
this event by es.

For any MTD that is selected for transmission, ez will be
immediately observed. This means that if the non-active arm is
played due to a high probability of error, it will be seen by the
BS. Moreover, e3 in previous time steps can also be observed
by the BS by simply observing the time step when the received
packet was generated. For example, if a packet was received
at time step ¢ and was generated k time steps earlier, then,
the BS can observe this and infer that, in the k& previous time
steps, the prediction algorithm has made a mistake in providing
the probability of activity for MTD ¢ in all cases for which
Ai(t) # 1. Moreover, whenever the MAB algorithm selects an
MTD with prediction probability A;(¢) and receives a reward,

it can observe that the prediction algorithm had an error 1 —
Ai(t). Here, we consider the probability of being active as
side information to help in selecting the best possible MTD
for transmission. To thwart the prediction errors e; and ez
and achieve higher accuracy, we propose to use a Bayesian
approach to infer the activity status of each MTD at any given
time. For this, let for each MTD ¢, we define the following
posterior probability of being active as:
P(A;(t)|active) P(active)
P((t ’
(Ai(®)) an
where the posterior probability P; 4(i is active|A;(t)) repre-
sents the probability that the arm 7 is active at time ¢ given
that the probability of being active that is provided by the
prediction algorithm is A;(¢), the likelihood P(A;(t)|active)
represents the probability that the prediction algorithm will
provide A;(¢) for MTD i while the MTD is active, the prior
probability P(active) is the probability that MTD 1 is active,
and the marginal likelihood P(\;(t)) is the probability of
providing A;(¢) for MTD ¢ by the source traffic prediction
algorithm. Since A;(¢) can be a continuous variable, we use
binning to convert it to a discrete value which is then used
in calculating the posterior probabilities. In our proposed
algorithm, the BS at each time selects an MTD z(¢) such

that:
zi(t) Ylogt’
@\ ) @

where z;(t) is the sum of rewards of MTD i, n,(t) is the
number of the times that MTD : was selected and was active,
and ¢ is the total number of the times that the selected MTD
was active. K; is defined as the set of active MTDs at time
t. In contrast to the original UCB method, we only count
the number of times that the selected MTD was active. This
ensures that the statistical average and the UCB values are
calculated correctly. Since the availability of the MTDs in set
K: have associated probabilities, the error of the prediction
at the BS will propagate to the MAB. This means that the
performance of the sleeping MAB will suffer since some
selected MTDs for the fast uplink grant might not be active.
Less error in the prediction algorithm will lead to a better
performance of the probabilistic sleeping MAB. However,
since the error in the prediction algorithm can lead to selecting
the sub-optimal arm, and if the prediction algorithm makes the
same error on the optimal arm many times in a row, the sub-
optimal arm will be played which can lead to a linear increase
in regret. Term A;(¢) ensures that the previous mistakes of the
source traffic prediction are taken into account while using
the current probability of being active that is provided by
the source traffic prediction algorithm. This will alleviate the
performance degradation due to possible consecutive mistakes
by the source traffic prediction algorithm. For example, if an
optimal arm ¢ has a small A;(¢) for many time steps, once it
is played due to higher UCB value, (recall that the UCB value
increases by time), the proposed Bayesian approach will infer
that the MTD i might be active and therefore it will have
higher A;(#). In a similar manner, if the prediction algorithm

Ai(t) :== P 4(i is active|A;(t)) =

z(t) = arg max (Ai(t)) (



assigns a high probability of being active many times to a
non-active MTD, value of A;(¢) for that MTD will be low,
and therefore, it will have a lower z(¢) and will be selected
less often. Note that since the Bayesian approach minimizes
the error [41], then, for any given prediction algorithm, our
proposed approach will achieve the best possible performance.
This algorithm will eventually select MTDs with higher values
of the utility function and a higher chance of being active while
balancing the tradeoff between exploration and exploitation.

C. Regret Analysis of the Proposed Algorithm

Next, we provide the analytical regret analysis of the pro-
posed probabilistic sleeping MAB. We derive the upper bound
of the regret and derive the relation between the accuracy
of the source traffic prediction method and the regret of
our proposed algorithm. Throughout this section, we use the
following setup. Consider a MAB scenario with n arms, where
p1 > po > ... > pg, with p; being the expected value of the
rewards of arm i. We define the random variable INV; ; as the
number of times arm j was played while some arm in set
T ={1,...,i},(z < j) could have been played. We define
A; j = pi — pj, which is always positive. The expected value
of the regret can be expressed as:

n j—1
R(T)=E [} ) (Nij=Ni_1;) Aij| +E 1 (2)] f(e2)T
j=2i=1
n j—1
ZZE [Nijl (Bij—Diga5) + Elpi(8)] f(e2)T.

j=2i=

(13)
Noj =0and A;; = 0 for all j [38]. In the following, n;(t) is
the number of times that arm ¢ is played until time ¢ and T is
the total time that the algorithm has been running. Moreover,
in the following, fix(¢) shows the average received reward of
arm k up to time ¢. Next, we derive the number of times
that prediction error event ez happens with function f(ez).
First, we present the concentration bounds that are used in the
regret analysis. These bounds show that the probability that
the estimated value of the reward of an arm will be within the
confidence bounds used by the sleeping MAB algorithm.

Lemma 1. Given the definitions of p, [ix(t), and ng(t), the

following holds:
z,b]nt . YInt
lauk(t) \ oy nk(t < fue(t) + 4 [ 0 \

lﬁk_wfizt < f(t) < ﬁk+1,¢il(ltt \

Proof. We start from Chernoff-Hoeffding inequality where

tir(t) are strictly bounded by the intervals [0, 1] and consider-
ing the confidence bound , HHLIE‘) the inequality can be given
k

{14)

by
X Ylnt , Ylnt |2
P || (8) —pe]> || S | <2exp [ —np() (1] :
l A0) * (1)
(15)
After simplifications, we prove the lemma. u

This lemma is used in Theorem 1 where we analyze the
regret bounds of the proposed probabilistic sleeping MAB
solution presented in Algorithm 1. In our proposed MAB
algorithm, a suboptimal arm is selected instead of the optimal
arm in the following cases: a) The MAB algorithm does
not have an accurate estimate of the rewards of each arm.
This mostly happens during the initial learning phase, b) A
suboptimal arm is selected because of prediction error e;, or
¢) Zero reward is returned due to prediction error ez. Clearly,
cases a) and b) for the regret are a function of the accuracy
of the prediction algorithm. We decouple the effect of the
prediction errors of the source prediction algorithm from the
uncertainty of the MAB algorithm about the expected values of
the rewards of each MTD. We show that prediction errors can
lead to linear regret with respect to the total running time of the
algorithm with a coefficient that is a function of the prediction
error. However, such a coefficient becomes very small for a
source traffic prediction algorithm with high accuracy, and
therefore, make the linear term very small.

Theorem 1. The regret of the probabilistic sleeping MAB
algorithm is at most:

R(T) < (4¢ InTAg+O(1)+ f(el)T)

n j—1 2
X P EE— Aim—ﬁc-i-mﬂl)
ZZ ((Arﬁ% Jﬁ‘j)z) (

j=2i=1

+E[u(®)] fle2)T

<\ 8¢ ]IlTAav""O(l)"'f(el)T)

—

2) + E [u1(2)] f(e2)T.

(16)
where f(ez) and f(e2) become very small as a result of
Bayesian inference, Ag, is the average value of the posterior
probability given by the Bayesian inference method for all
MTDs and A; is the average value of the posterior probability
for arm j.

n—1 1
x
; ((Aj+1ﬁj+1 )

Proof. The proof is given in Appendix A. u

This theorem shows that the performance of the proposed
sleeping MAB algorithm is a function of the accuracy of the
predictions that are done in the previous step. This theorem
shows that, for a source traffic prediction algorithm with good
accuracy, after the learning period, the sleeping MAB will be
able to select the most important MTD and it can achieve
logarithmic regret. In MAB problems, logarithmic regret, as
compared to linear regret shows that the algorithms has been
able to learn the arms with higher reward and the gap between
the selected arm and the best arm has become smaller [28].



In our MTC setting, this means that, our of the set of active
MTDs, the one with best combination of latency requirements,
wireless channel quality, and high value will be selected.
Clearly, we can change the coefficients of the reward that
we have defined in (6) to give higher priority to the QoS of
interest.

D. Multiple MTD selection

In the previous sections, we have studied the sleeping MAB
algorithm for the fast uplink grant allocation problem. Most
MAB algorithms are developed for selecting one arm at a
time. However, in practical wireless systems, at any given
time, there are multiple radio resources block that could be
allocated to the MTDs, and hence, the network may need
to select more than one MTD for resource allocation. Here,
we extend the proposed sleeping MAB algorithm for multiple
arms. We assume that there are ! radio resource blocks in
the frequency domain that can be allocated for [ MTDs. In
order to do this, since the criteria in selecting the best MTD
in the probabilistic sleeping MAB algorithm was the MTD
with highest UCB value, we extend our methods by selecting
[ highest UCB values at each time step. This method follows
the concept of best ordering of arms in MAB theory, in which,
the arms are ordered based on their importance to be selected
[28]. If we assume that the arms are selected one by one, after
selecting the best MTD, for the next selection, we must choose
the next arm with highest UCB value. Hence, the ordering of
the UCB values and selecting the best I MTDs is a very natural
extension to the proposed probabilistic sleeping MAB. We
should mention that at each time step, all of the MTDs that are
active for the first time are selected first, and then other MTDs
are sorted based on their UCB value. This proposed method
of multiple MTD selection is summarized in Algorithm 2.

IV. SIMULATION RESULTS

In this section, we present simulation results to show the
ability of the proposed methods to learn the QoS requirements
of the MTDs with no prior knowledge about them.

A. Single MTD selection

We consider a single circular cell system where the simu-
lation parameters are given in Table 1. All statistical results
are averaged over a large number of independent runs. Each
MTD has a reward distribution with expected value U; € (0, 1)
that should be estimated at the BS. The value of the reward
function changes due to the following reasons. First, the
achieved rate at each time changes due to changes in the
channel quality. Second, the maximum tolerable access delay
might change at different times since the packet in the MTD
might face various delays. Moreover, each MTD can send
packets from various applications with different data values.
In the utility function, values & = 0.2 3 = 0.3, and v = 0.5
are initially used. As needed, we change the parameters of
the modified Gompertz function from Fig. 2 based on the
maximum access delay required in the system to have an
accurate modeling of the latency.

Algorithm 2 Multiple MTD selection

Initialize z;, n;, n, for all i € [n], initialize ¢
fort=1to T do
if 3 € A; 5.t n; =0 and n;- = 0 then
Play all arms with z(¢) = 7 or set b = number of arms
with n; = 0 and n, = 0

else
Calculate the posterior probability A;(¢) for all MTDs
Order the arms in descending oder by

Ai(t) (;L + ﬁ%gt—) and select the (I — b) first
arms '

end

if z(¢) is an available arm (z(¢) # 0) then

For all available arms, observe payoff 6, (;)

Za(t) € Za(t) + Ua(t)

M) ¢ M) T1

t «—t +1

else

for all non-available arms do

Zz(t) € Zx(1)
To(r) € Ma(s)

t <t
end
Table I: Simulation parameters.
Parameter Value
Cell radius 500 m
Bandwidth 360 kHz
Total number of MTDs 500
Number of active MTDs 50
Noise figure at BS and MTA 2 dB
CU to BS path loss model 128.1 + 36.71og(d[km])
Noise spectral density -174 dBm/Hz
Log-normal shadow fading 10 dB

In Fig. 3, we set a = 1, b= 8, and ¢ = 0.0.3, and we show
the regret resulting from the proposed Bayesian sleeping MAB
algorithm. Our results are compared to: a) A highest proba-
bility scheduling policy, b) The case when the availability of
the MTDs is not taken into account in the selection process of
(12) and only UCB values are used, c) A scenario in which the
prediction is error free, and d) when the value A;(¢) is directly
multiplied to the UCB value, and e) a case where a higher
prediction error is considered for the source traffic prediction.
Fig. 3 clearly shows that the maximum probability allocation
of radio resources has linear regret which is much worse
compared to the logarithmic regret achieved by the proposed
solution. Fig. 3 also shows that the proposed enhancement of
our algorithm done by using the Bayesian method provides
up to three-fold improvement in the performance compared to
using the sleeping MAB without modification. Moreover, Fig.
3 shows that the Bayesian approach can find the mistake of
the source traffic prediction algorithm as it has much better
performance compared to the case when we only multiply the
side information to the UCB values. The baseline maximum
probability policy performs very poorly in terms of regret as
seen from Fig. 3 since its regret increases linearly with time.

In Fig. 4, we consider « = 8 = 0 and v = 1 to study
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Fig. 3: Regret resulting from the proposed Bayesian sleeping
MAB compared to the case in which source traffic prediction
is multiplied with the UCB value, Bayesian sleeping MAB
with higher prediction errror, classic sleeping MAB with no
probability taken into account, sleeping MAB with perfect
prediction, and maximum probability allocation. (@ = 1,
b=28, and ¢ = 0.0.3)

the performance in terms of latency. The maximum tolerable
access delay is considered to be a value in [1,300] ms and
we set the parameters of the modified Gompertz function to
a=1,b=13, and ¢ = 0.025 with the time horizon T" = 108,
For every value of the maximum tolerable access delay in
the system, the average tolerable access delay that is achieved
by a maximum probability allocation policy is compared to
the Bayesian sleeping MAB algorithm. From Fig. 4, we can
see that the maximum probability allocation of the fast uplink
grant achieves a delay that is equal to the average delay of
the network. This is due to the law of large numbers when
the average value of the random selections approaches the
expected value of the sampled experiment. In contrast, the
proposed algorithm is able to select MTDs with stricter latency
requirements. The maximum tolerable access delay of the
MTD selected by the proposed algorithm is almost two times
smaller than that of the randomly selected MTD. Note that
this scheduling policy not only decreases the average latency
of the system but is also able to satisfy the individual latency
requirements of each MTD by prioritizing the scheduling of
MTDs with strict requirements.

The scatter plot of the latency of the selected MTD at each
time is presented in Fig. 5(a) for the proposed sleeping MAB,
and in Fig. 5(b) for the maximum probability allocation case.
We set the maximum tolerable access delay to 100 ms and the
parameters of the modified Gompertz functiontoa = 1,b =7,
and ¢ = 0.07. Each dot in these figures corresponds to the
maximum tolerable access delay of the selected MTD. For
any time step during which the selected MTD was not active,
the maximum latency of 100 ms is plotted. Fig. 5(a) shows
the effectiveness of the sleeping MAB algorithm in optimizing
latency while providing fairness in the system. From Fig. 5(a),
we can see that, initially, the dots are uniformly distributed
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Fig. 4: Average maximum tolerable access delay of the se-
lected MTD in fast uplink grant allocation using sleeping
MABs compared to random allocation of uplink grant.

which means that the MTDs are randomly selected. However,
after learning, the intensity of the dots for MTDs with stricter
latency requirements is much higher than that of the MTDs
with larger delay requirement. Clearly delay sensitive MTDs
are scheduled more often. However, after the learning period,
the algorithm will keep scheduling MTDs with larger latency
requirements. This increases the accuracy of the information
at the BS about the latency requirements of all MTDs and also
provides fairness. Moreover, if the latency requirements of an
MTD has changed over time, the algorithm can discover that
and start scheduling that MTD accordingly. From Fig. 5(b),
we can see that a maximum probability scheduling algorithm
selects the latency completely randomly at all times and the
performance of the system is much worse than the proposed
sleeping MAB.

In Fig. 6, we present the scatter plot of the achieved
throughput of the system at each time step for the proposed
sleeping MAB and the maximum probability allocation policy.
Here, we have set « = v = 0 and 8 = 1. The bandwidth
is considered to be 360 kHz and the transmit power of all
the MTDs is set to 10 dBm. It is clear from Fig. 6 that the
maximum prediction probability allocation policy, on average,
achieves a lower rate and the proposed method yields much
better average performance.

B. Multiple Resource Blocks

In this section, we provide the results for selecting multiple
MTDs by using Algorithm 2. Here, we consider that all the
devices require the same amount of resources and one resource
block is enough for transmitting the packet of each MTD. For
each failed transmission, we consider the device to be available
in the next time step.

First, we provide the regret of the algorithm to study its
performance. We set e = 1,b = 8, and ¢ = 0.03, and the utility
function values & = 0.2 8 = 0.3, and -y = 0.5. We assume that
there are 500 MTDs in the system and, at each time, 50 MTDs
are active and 20 MTDs can be scheduled at each time. The
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Fig. 6: Scatter plot of the achieved throughput of the system at each time step for the proposed sleeping MAB compared to

maximum probability allocation policy.

regret of the proposed probabilistic sleeping MAB is compared
to the maximum probability baseline scenario, the scenario
when the probability of being active is directly multiplied to
the UCB value, sleeping MAB with only using UCB values,
and perfect prediction. Fig. 7 shows that the proposed method
achieves logarithmic regret. We observe that compared to the
maximum probability allocation policy, the regret achieved by
our proposed probabilistic sleeping MAB is nearly three and
four times lower for the two different probability intervals that
we considered. Fig. 7 naturally confirms that the perfect pre-
diction scheme achieves the best performance. We can clearly
see from this figure that the proposed Bayesian approach can
minimize the errors of the source traffic prediction algorithm
and therefore, achieve near optimal performance.

In Fig. 8, we present the average delay of the selected
MTDs with @« = 8 = 0 and v = 1. The maximum tolerable

access delay is considered to be a value in [1,300] ms and
we set the parameters of the modified Gompertz function to
a=1,b=13, and ¢ = 0.025 with the time horizon T" = 108.
It is clear that the proposed probabilistic sleeping MAB algo-
rithm is able to provide much better average achieved access
delay in the system. One must note that the achieved average
access delay is almost constant for any value of the maximum
tolerable delay, since the select MTDs are averaged. This
shows that, in real-time systems, by increasing the number
of MTDs, our proposed solution achieves almost a two-fold
improved performance compared to baseline methods. This is
an interesting result since it shows that, for a massive access
scenario, our proposed method is able to achieve very low
access delay. In contrast, conventional random access based
systems experience excessive delays due to collisions.

In Fig. 9, a scatter plot of the average access delay of
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the selected MTDs is presented for our proposed solution
compared to a maximum prediction probability allocation
policy. We set the maximum tolerable access delay to 100
ms, and the parameters of the modified Gompertz function to
a=1,b=7, and ¢ = 0.07. Each dot in Fig. 9 captures the
average of the maximum tolerable access delay of the selected
MTDs. From 9, we can clearly observe that the proposed
sleeping MAB achieves a better performance and can improve
the average latency in the system. Moreover, there is a balance
between selecting the MTDs with the most strict access delay
requirements and exploring other MTDs to provide fairness,
which can be done by changing .

V. CONCLUSIONS

In this paper, we have introduced a novel sleeping MAB
framework for optimal scheduling of MTDs using the fast

uplink grant. First, we have devised a mixed QoS metric based
on a combination of the value of the data, rate of the link,
and maximum tolerable access delay of each MTD. Second,
we have used that metric as a reward function in a MAB
framework whose goal is to find the best MTD at each time
for scheduling. Moreover, we have considered an imperfect
source traffic prediction where each MTD in the set of active
MTDs has a probability of being active. Then, we have
proposed a probabilistic sleeping MAB framework to solve the
problem of fast uplink grant allocation. We have analytically
studied the regret of the proposed probabilistic sleeping MAB
and we have shown how the errors in the source traffic
prediction algorithm impact the performance of the proposed
sleeping MAB compared to the case of perfect source traffic
prediction. Moreover, we have extended the sleeping MAB
algorithm for selecting multiple arms at each time to use
it in scenarios where more than one MTD is scheduled at
each time. Simulation results have shown that the proposed
algorithm performs much better than the maximum prediction
probability allocation policy, and can achieve almost three-fold
performance gain in terms of latency and throughput. To the
best of our knowledge, this is the first paper that addresses the
optimal allocation of the fast uplink grant for MTC.

APPENDIX A
PROOF OF THEOREM 1

Proof. To derive the regret for our algorithm, we need to
bound the regret arm by arm. We need to find the expected
value of the number of the times that each arm was played,
when that arm was suboptimal. That is, what is the expected
number of times N; ; that arm j was played while some other
arm ¢ € Z, 7 # j could have been played. Assume that arm
j was already played @; ; times while some other arm i € T
was available. The total number of times that arm j was played
after it has already been played Q); ; is given by L; ; and can
be written as:

T ¢
Lij= Z Z P[(z; = 7) A (j is played s times)A(Z # 0)]

t=Q; i+18=Q; j+1

T t
<Y X Pla-iamn-2

t=Q; ;+18=Q; j+1

A (v;;:] (Ak(tmk(m\/%) < (Af(t)ﬁf(‘”\/@))]

T t .

< > P[ =1 (ﬁk(t) (aﬁk(t)Jr g

t=Qi j+18=Q; 41 (1)
A,) (ﬁj(t) iy ) |

(17)

To analyze this, we define two events Fy and E; as follows:

).
" (18)

dInt’ ]
W0 )]

B, :=[v§;:1 (Ak(t) (ﬂk(t) +

A;(2) (ﬁj(t) +

)<
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Fig. 9: Scatter plot of the average access delay of the system. (e = 1,b=7, and ¢ = 0.07)

and, for all k € {} UZT:

By == fx(t) € {’uk - \/%, e \/%] "

E5 means that average received reward for each arm is not
further away than the real value of expected value of the
reward of each arm, within a margin of the UCB value.
We have defined E3 since it will help us in evaluating the
accuracy of our estimation of the reward for each arm. After
conditioning E'1 on E2, we have:

P[E:]| =P|E1|Es] P[E2H-P[E1 |E5|P[E3] < PE1|E2+P[E3).
(20

From Lemma 1, the probability of occurrence of E5 for each
arm is 1 — 1/t2¥, and, thus, for all k € {j} UZ we have:

C2(i41)
=S

P[E3] (21)
Now we can evaluate F; after conditioning on E5. Event E
will happen if at least one of the following conditions hold
[42]:

I) We are grossly overestimating the value of arm j:

Int'
A =N (t) > py + —ip, i .
nj(t)

By carefully evaluating events F; and E3, we can observe
that P[A;|E3] = 0. Note that this overestimation is evaluated
considering the worst case scenario with A;(z) = 1.

IT) We are grossly underestimating the values of all of the
arms in Z, which can be captured by the following event:

Ag,l = Vi:l (Ak(t)ﬁ,k(t) < pg — M) (23)
V ni(t)

(22)

For P, (t) ~ 1, this term never holds when conditioned on FE,
ie, P[A21|E2, P(t) ~ 1] = 0. However, for P < 1, arm k
will be grossly underestimated under the following condition:

_ Ylin t
o o (¢) )
fir(t) '

This means that, for all arms in Z, the probability of being
active (while the arm is actually active) so low that the
probabilistic UCB value is lower than the real expected value
of the arm. However, A, 5 is not sufficient for incurring regret
and another condition must hold for arm j: the probability of
being active must be high enough such that its probabilistic
UCB value is within the confidence interval around the real
expected value, i.e., we must have:

Ag?z = Vi‘:l (Ak (t) < (24)

P ln t
n(t)

(e
Since for selecting the suboptimal arm j both A3 5 and As 3
must hold, we define the event:

i —

A2?3 = Aj(t) > (25)

Az g = Ao N Ass, (26)

and, thus, if A4 occurs, a suboptimal arm j might be played
which lead to increase in the accumulated regret. We should
state that Ag 4 is independent of Es.

IT) The expected value of the arms j and k are nearly equal.
When the expected values of two arms are close to each other,
following two conditions will lead to choosing a suboptimal
arm: a) whenever the confidence interval of the suboptimal arm
is large and, hence, the suboptimal arm has higher UCB value
compared to the optimal arm, or b) When the UCB value of
the optimal arm is larger than the suboptimal, but the optimal
arm has lower probability, and, therefore the suboptimal arm
is selected. These two conditions can be expressed by:

SInt
Az =MNp; +2, | T > Appiz. 27
3,1 kit 7, (0) > Ngpg (27)



After rearranging (27), to choose the optimal arm, the follow-
ing condition is needed for the confidence interval:

YInt’  Appr — Ajp;

n;(t) 2 28)

Now, in order for the condition in (28) to hold, we must play
arm j enough times to have an exact estimate of its value:

4pInT
1'{}—2—| . (29)
(Appe — Ajps)

This means that, conditioned on FEs, after playing arm j for
Q; ; times, A3 1 will never happen since the confidence inter-
vals are small enough. Therefore we have P[As1|E3] = 0.

Now, we can write (17) as:

T ¢
Li;< Y >
t=Qi,;+1 8=Q; ;+1
PlAs|Fa + PlAg,lFl + PlAa, o) + PLES]|
(30)
We have already seen that P[A;|E;] =0, P[Ay1|E2] =0,
and P[As1|E3] = 0. Moreover, P[Ag 4|E3] = P[A3 4] since
the probability of an MTD being active is independent of the

event E. As observed from Lemma 1, we have P[ES] =
2(i + 1)/t2¥, and since E3 has occurred, (30) simplifies to:

T t
Lij< Y, >

t=Q; ;11 8=0Q; ;+1

Q;,j > {

[P[Al |Ea]+

T i

[Plazale 3> 3 2D

t=Q; ;+18=0Q; ;+1

31)
T t
= > > [P[Az,4]]+0(nT“") (32)
t=Q; ;+18=Q; ;+1
T t
=om+ Y. > [P[A2,4]]- (33)

t=Q;,;+18=0Q: ;+1

It is impossible to derive a closed-form expression for the
number of times that event A, 4 happens since the confidence
interval and accuracy of the estimated average for each arm
changes at each time. However, we can conclude that the
number of times that As 4 happens is a linear function of
time 7" multiplied by a coefficient that is the function of
the prediction error f(eq). This coefficient, will be a very
small value since Bayesian inference minimizes the error, and
the posterior probabilities will be as accurate as possible and
events in Ay 5 and Ay 5 will have small probabilities. There-
fore, the probability of event A, 4, which is a multiplication of
probabilities of As 2 and Aj 3 will be very small. Clearly, as
time increases, the Bayesian method will be able to make very
small mistakes in inferring the values of A;(t), and therefore,
f(e2) will eventually be very small. Therefore, we have:

4pInT
(Aspss — Agpaz)?

We can now exactly calculate Q;‘j. To this end, we need to
count the total number of times that a given arm was selected

Hmﬂs[ ]+mn+ﬂqﬁ (34)

that this arm was available, which is equal to the total number
of times that we have selected an arm multiplied by probability
of the availability of that arm, i.e.,

n, :
n_-"'- = ]E[Aj(t)] = Aj = n; = njﬁj VJ € A:
J

'

(35)
t

7 =EAjl=An= t = tAg.
Therefore, we can upper bound N; ; as:
44 In(TPay)
By plugging this in (13), we can conclude:

mMﬂs{ ]+Wn+ﬂqﬁ-(%)

R(T) < (4@,’; h1TAav+(9(1)—|—f(el)T)

n j—1 2
: )(
X % Aif-"'i_Ai+1."-"'i+l)
ZZ ((Aiﬁg—i\ ;Uaj)z

j=2i=1 j

J
+E[p1(t)] f(e2)T
< (8"'}9 thAav"'o(l)"'f(el)T)

—) +Elm@l /T
T

(37)
Since the Bayesian inference will eventually optimize the
accuracy of the source traffic prediction algorithm, and, there-
fore, the error of the posterior probabilities will be minimized.
As a results, the probability of selecting an MTD that is not
available will become very small, and term to f(ez) will be a
very small number. This concludes the proof. u

(o
0 \Njpi—A
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