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Abstract—Ensuring an effective coexistence of conventional
broadband cellular users with machine type communications
(MTCs) is challenging due to the interference from MTCs to
cellular users. This interference challenge stems from the fact that
the acquisition of channel state information (CSI) from machine
type devices (MTD) to cellular base stations (BS) is infeasible
due to the small packet nature of MTC traffic. In this paper,
a novel approach based on the concept of opportunistic spatial
orthogonalization (OSO) is proposed for interference manage-
ment between MTC and conventional cellular communications.
In particular, a cellular system is considered with a multi-antenna
BS in which a receive beamformer is designed to maximize the
rate of a cellular user, and, a machine type aggregator (MTA) that
receives data from a large set of MTDs. The BS and MTA share
the same uplink resources, and, therefore, MTD transmissions
create interference on the BS. However, if there is a large number
of MTDs to chose from for transmission at each given time for
each beamformer, one MTD can be selected such that it causes
almost no interference on the BS. A comprehensive analytical
study of the characteristics of such an interference from several
MTDs on the same beamformer is carried out. It is proven that,
for each beamformer, an MTD exists such that the interference on
the BS is negligible. To further investigate such interference, the
distribution of the signal-to-interference-plus-noise ratio (SINR)
of the cellular user is derived, and, subsequently, the distribution
of the outage probability is presented. However, the optimal
implementation of OSO requires the CSI of all the links in the BS,
which is not practical for MTC. To solve this problem, an online
learning method based on the concept of contextual multi-armed
bandits (MAB) learning is proposed. The receive beamformer
is used as the context of the contextual MAB setting and
Thompson sampling: a well-known method of solving contextual
MAB problems is proposed. Since the number of contexts
in this setting can be unlimited, approximating the posterior
distributions of Thompson sampling is required. Two function
approximation methods, a) linear full posterior sampling, and,
b) neural networks are proposed for optimal selection of MTD for
transmission for the given beamformer. Simulation results show
that is possible to implement OSO with no CSI from MTDs to
the BS. Linear full posterior sampling achieves almost 90% of
the optimal allocation when the CSI from all the MTDs to the
BS is known.

Index Terms—Machine type communications, scheduling, fast
uplink grant, multi-armed bandits, internet of things, multi-
antenna communications, deep contextual bandits, Thompson
sampling.
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I. INTRODUCTION

Conventional wireless communications systems are de-
signed with the goal of providing high data rates for human
type users. With the introduction of the Internet-of-Things
(IoT) [2]–[4], wireless networks should provide a new type of
connectivity, known as machine-type-communications (MTC).
In human type communications, applications require large data
exchanges such as multimedia services or web browsing. In
contrast, MTC applications that rely on uplink transmission of
short packets, such as smart meters, environment monitoring,
and factory automation, should be supported [5]. MTC is an
essential part of the development of the next generation of
cellular networks [6], [7]. However, there are fundamental
differences between human type communications and MTC,
which create wireless challenges that primarily arise from
the short packet nature of MTC traffic, uplink centric data
transmission, and heterogeneous quality-of-service (QoS) re-
quirements of IoT applications such as latency and security [8].
Meanwhile, there is a need to design systems that can provide
connectivity for a massive number of machine-type-devices
(MTD) [9], which is known as massive MTC. A major MTC
challenge is that the data packets are small, and, therefore,
the signaling overhead associated with sending scheduling
requests and channel state information (CSI) acquisition is not
negligible compared to the packet size. As a result, the optimal
utilization of resources, especially for uplink scheduling of
MTDs and the use of multi-antenna systems becomes very
challenging.

A. State-of-the-art

There has been a surge of interest in the literature [10]–
[20] that has recently sought to address the MTC challenge
that originate from the short packet nature of IoT traffic. One
of the approaches is optimizing the random access process to
reduce the signaling overhead (e.g., see [10], [11], and ref-
erences therein). For instance, in [12], the authors propose to
exploit the correlations between the traffic patterns of different
MTDs to optimize the random access process for MTC. Non-
orthogonal random access is proposed in [13] to increase the
efficiency of scheduling request transmissions from MTDs.
The works in [14] and [15] discuss notion of a fast uplink
grant in which the MTDs do not send scheduling requests
and the base station (BS) allocates resources to MTDs. The
fast uplink grant requires source traffic prediction [16] which
is the prediction of the set of active MTDs at any given
time. The work in [2] studies the use of learning to improve
MTD scheduling in presence of urgent messages. Moreover, to
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design MTD-specific technologies, solutions such as narrow-
band IoT (NB-IoT) [18] and LTE-M [17] allocate a part of
wireless spectrum only for MTC. Another major method for
increasing efficiency of wireless networks for MTC is by
capillary networks [20], [19]. In capillary networks, MTC
nodes transmit data to a machine-type-aggregator (MTA) and
then MTA forwards collected data to the cellular network.
Capillary networks help in better utilization of resources
and use smaller distances between MTDs and MTA to save
energy. Capillary networks can also be used in combination
with multiple-input multiple-output (MIMO) systems where
multiple antennas increase the capacity of wireless networks
by providing spatial diversity and degrees-of-freedom (DoF)
gain [21].

The use of a MIMO system for MTC faces serious chal-
lenges since MIMO systems require CSI to be known at
transmitter and/or receiver. To investigate MIMO for MTC,
the authors in [22] study grant-free MTC in massive MIMO
and propose methods for user activity detection and channel
estimation. Moreover, in [23], the authors analyze achievable
rates under maximal ratio combing (MRC) and minimum
mean squared error (MMSE) receivers using random matrix
theory. The work in [24] studies the performance of random
beamforming for MTC by considering that pilot signals are
transmitted in the downlink and uplink while the downlink
channel reciprocity is used for MTDs to decide on whether
to transmit or not. In [25], the authors study the impact of
beamforming in massive MTC by investigating the outage
probability for various number of antennas at the BS. Clearly,
the use of multiple antennas at the BS is beneficial for MTC,
however, incorporating capillary networks in MIMO systems
face a challenging problem of interference from MTDs to
the cellular network. There has been little work on the study
of interference management between MTC and human type
communications in capillary networks.

One interesting approach to manage interference in MTC
is the idea of opportunistic spatial orthogonalization (OSO).
The concept of OSO takes advantage of the spatial diversity of
received interference in the network. This scheme was initially
introduced in [26]–[28] for cognitive radio networks, where
there are a large number of secondary user transmit candidates.
In each time slot, one of the secondary users is selected
for transmission, such that interference from the selected
secondary transmitter is minimum after being multiplied by
receive beamformer of the primary link. The ideal scenario
in OSO is that interference falls into the null space of the
primary receiver’s beamformer, so as to eliminate interference
on the primary link. The main requirements for this technique
are knowledge of CSI and the existence of a large number of
secondary transmit candidates. This method is further devel-
oped in other works related to MIMO interference channels in
[29], [30], [31]. An idea similar to OSO is proposed in [32] for
solving random access issues in massive MTC networks where
the BS sends virtual carriers for MTDs to send RA requests
in the null-space of the main user. However, the concept of
OSO in conventional systems has two key drawbacks:
• Considering a very large number of secondary users is

not realistic in normal human type communications.

• The receive beamformer of the primary link changes at
each time step. This means that the secondary user’s
opportunity to transmit can be lost in the next time step
and it might not be able to transmit its data.

B. Contributions

Due to these limitations, it is not practical to implement
OSO in conventional human type communications. However,
this approach can be very suitable for MTC in capillary
networks in which there are thousands of MTDs that want to
transmit their data to an MTA. In MTC, the above-mentioned
drawbacks do not exist due to the following reasons. First,
the assumption of a very large number of users is realistic
and natural for MTC. Second, MTDs transmit small packets
and even a small transmit opportunity is enough for the MTD
to transmit its data. We consider OSO for MTC where radio
resources are shared MTC and human type cellular users in
capillary networks. OSO is used for interference management
where for each beamformer at the BS, one MTD is selected
such that it causes no interference on BS. However, finding
such an MTD is a challenging task since it requires CSI
knowledge of all of the links to the BS, and the acquisition of
such CSI is impractical. Therefore, we present a novel method
to implement OSO for MTC without CSI knowledge. Our
solution exploits the channel characteristics of stationary MTD
links using the well-known one-ring model [21] and an online
learning method based on the multi-armed bandit (MAB)
theory [33] to select the best MTD for resource sharing. In
particular, we use contextual bandits [34] which is a form of
MAB learning where at each time a context is revealed to the
learning agent, and, for each context, the best MTD is selected.

The main contribution of this paper is therefore to develop a
novel framework, based contextual bandit learning for effec-
tively leveraging OSO to enable coexistence between MTC
and conventional cellular communications. Summary of the
contributions of this paper are:
• We present the idea of OSO for MTC and provide

theoretical analysis to prove that, in MTC, it is possible
to find an MTD that causes no interference to the BS.

• We study the effect of OSO on the performance of the
human-type device by deriving the probability distribu-
tion function (PDF) of the signal-to-interference-plus-
noise ratio (SINR) of the human type device. Moreover,
we derive a closed-form expression for the outage prob-
ability of the human-type device as a function of on the
number of MTDs in the system.

• Since it is impossible to have CSI from all the MTDs at
the BS, we propose a novel learning approach based on
contextual multi-armed bandits to find the best MTD for
transmission. We first provide the channel characteristics
based on the well-known one ring model for the human-
type device and MTDs. Then, by using the generated
channels, in our online learning approach, at each time
step, we use the given receive beamformer in the BS as
the context in our contextual bandit algorithm.

• We propose a contextual bandit solution that is based on
the well-known Thompson sampling method for MTD
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selection. We design the feature vector for the learning
models by separating the real and imaginary parts of
the receive beamformer. This feature vector is given the
learning agent as the context in order to make the MTD
selection process. Therefore, the learning agent acts as
a function that maps every context to an MTD. Since
the number of combinations of the feature vectors is
unlimited, function approximation is proposed to model
the mapping function. In the proposed framework, these
function approximators are used to approximate the pos-
terior distributions of Thompson sampling. First, we use a
linear model which is based on linear regression learning.
Second, we use neural networks with various sampling
methods. We compare the performance of the proposed
solutions to a baseline uniform sampling policy. Our
proposed solution is then shown to enable the BS to
select an MTD for resource sharing with the cellular user
without any knowledge on the CSI of the MTD links.

• Extensive simulations are carried out to evaluate the
effectiveness of the proposed solutions in enabling OSO
as a practical method for enabling coexistence of human-
type and MTC communications.

The rest of the paper is organized as follows. Section II
presents the system model and problem formulation. In Section
III, we introduce the idea of OSO for MTC, provide theoretical
proof that, in MTC, it is possible to find an MTD for OSO,
and study the performance of human type communications
under interference from MTC. The contextual bandit learning
framework is presented in Section IV. Simulation results are
presented in Section V and conclusions are drawn in Section
VI.

II. SYSTEM MODEL

Consider the uplink of a wireless cellular network having a
single BS, a single human-type device, a set K of K machine-
type-device (MTDs), and, a machine-type-aggregator (MTA).
The BS has M antennas and the human-type device and
MTDs are single antenna devices. The human-type device
transmits data in the uplink to the BS and MTDs transmit data
to the MTA. We consider an orthogonal frequency division
multiple access (OFDMA) system where radio resources are
divided into orthogonal resource blocks (RBs) in the time and
frequency domains. These RBs are shared between MTDs and
the human-type device which leads to an interference network
where MTD and the human-type device transmissions cause
interference at the BS and MTA, respectively. We assume that
MTDs transmit in orthogonal RBs and only one MTD shares
the RB with the human-type device. An illustrative system
model is shown in Fig 1.

At the BS, the received signal yBS from the human-type
device is given by:

ybs = hcxc + hk,Bxk + nBS , (1)

where xc and xk are the transmit symbols of the human-
type device and MTD respectively. hc ∈ CM is human-type
device to BS channel. MTD is selected from K devices with
channels hk,B ∈ {h1,B , ...,hK,B}. nBS represents the white

BS

Interference Wireless link MTD

MTA
MTA

MTA
MTA

Human-type device

Fig. 1: System model

Gaussian noise. After applying the receive beamformer at the
BS, receiver has the following signal:

ŷbs = wchcxc + wchk,Bxk + wcN0. (2)

where N0 is noise power spectral density. From (1) we can
now write the SINR of the human-type device at the BS:

γc =
Pc|wchc|2

Pk|wchk,B |2 + |wc|2N0
. (3)

In a similar manner the received signal at the MTA can be
written as follows:

ym = hkxk + hc,Mxc + ns, (4)

where hk is the channel between the MTD and MTA, Pc and
Pk are the transmit powers of human-type device and the MTD
k respectively, and hc,M is the channel between the human-
type device and the MTA. The Gaussian noise in MTA is ns.
The received SINR at MTA can be given by:

γk =
Pk|hk|2

Pc|hc,M |2 +N0
, (5)

where Pk and Pc are, respectively, the MTD transmit power
and the human-type device transmit power. Here, we ignore
the interference term in the denominator of γk since our focus
is on the interference management from MTDs to the BS.
However, we must note that after we design our learning
algorithm to null out the interference from MTDs to the
BS, the signal of the human-type device can be decoded
without presence of interference from the MTDs. Therefore,
signal of MTD can be decoded using successive interference
cancellation since there is a backhual connection between the
BS and the MTA. Clearly, if the receive beamformer wc is
designed without taking the channel from MTDs into account,
the interference on the BS can be severe. Taking the MTD
transmission into account will require sending pilots to the BS
to estimate the channel hk,B which is an inefficient approach
since the amount of resources required for CSI estimation is
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Interference

Fig. 2: An example of a receive beamformer in polar coordinates
that shows the direction for receiving the signal of interest and some
example direction of interference that will not have a negative effect
on the received SINR.

large with respect to the data packets size of MTC applications.
This inefficiency is highlighted even more in OSO since it
is not possible to estimate channels of all MTDs to allocate
resources to only one of them. Most importantly, even if the
CSI is calculated perfectly at the BS, the BS must still use
degrees of freedom to null out the interference from the MTD.
This will lead to a decrease in the achievable rate for the
human-type device at the BS. Another major issue is that the
receive beamformer for the human-type device can be calcu-
lated once for each coherence period if the MTD is not taken
into account. However, when considering the MTD, for each
new MTD with a different channel, the receive beamformer
for the human-type device must be calculated again to mitigate
the interference from the new MTD. Therefore, designing a
beamformer for a human-type device while considering the
MTDs becomes very inefficient and suboptimal, and degrades
the performance of the HTD transmissions.

III. OPPORTUNISTIC SPATIAL ORTHOGONALIZATION FOR
MTC

We assume that the BS is responsible of the beamformer
design for the human-type device and also for the scheduling
of MTDs to transmit their data to the MTA. In the BS, for
each coherence interval, a receive beamformer wc ∈ CM is
designed without considering the interference from the MTD
transmissions. The optimal beamformer for a single user SIMO
system is maximal ratio combining (MRC) in which the beam-
former is a normalized conjugate of the channel hc ∈ CM
from the human-type device to the BS. For each beamformer
wc, the BS can also select one MTD, k ∈ K, such that received
SINR of the uplink user is maximized. Furthermore, if the
number of MTDs is very large, then the selected MTD might
cause almost no interference to the BS at all since it can be

selected such the interference originating from the selected
MTD is in the null space of the receive beamformer at the
BS. Next, we prove that, in wireless systems with a large
number of MTDs that are interference candidates, the MTD
with minimum interference causes almost no interference to
the BS.

For our system model, when the MTD with minimum
interference is scheduled to transmit using the same RBs
that are allocated to the human-type device, the SINR of the
human-type device will be:

γc =
Pc|wchc|2

mini=1,...K Pi|wchi,B |2 + |wc|2N0
. (6)

As mentioned earlier, when there is one user and a BS with
multiple antennas, the optimal receive method is MRC [21]
give by wc = hc

H . Assume MTD k as the one with minimum
interference, the the SINR simplifies to:

γc =
Pc‖hc‖2

Pk|hHc hk,B |2
‖hc‖2 +N0

. (7)

To further evaluate the performance of this scenario, we can
write the probability of outage for the cellular user:

Pout = Pr

 Pc‖hc‖2
Pk|hc

Hhk,B |2
‖hc‖2 +N0

≤ δth

 (8)

where δth is the maximum allowed outage probability. To
avoid an outage, the interference term should be smaller than
a threshold, show by δint:

Pk|hHc hk,B |2

‖hc‖2
< δint (9)

If (9) is satisfied, then, the selected MTD k can transmit data
to its MTA without harmful interference on the human-type
device. In the following, we provide a theoretical analysis of
the interference term in (9) and show that, if the MTD is
selected from a large set of candidates, (9) is satisfied. In
our analysis, the first step is to calculate the distribution of
the interference term in the left-hand side of (9). To do that,
we first prove that the interference from all possible MTD is
independent of each other after going through the same receive
beamformer.

A. Independence of Interference Candidates

When one cellular user is transmitting to the BS and we
want to select one out of K MTDs for resource sharing, the
interference term after being multiplied with receive beam-
former appears in the denominator of (3). We use random
variables Xk =

hHc hk,B
|hc| , k ∈ K to capture the interference

term. The following lemma holds:

Lemma 1. Random variables Xk, k ∈ K are independent.

Proof. Proof is given in Appendix A �

Lemma 1 is used in the following theorem to prove that
the probability of finding an MTD that will cause almost no
interference on the BS becomes one as the number of MTDs
increase.
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Theorem 1. The probability to find an MTD that will satisfy
the criteria in (9) becomes one when K →∞.

Proof. The proof is given in Appendix B. �

From Theorem 1, we can see that whenever the network
has a large number of MTDs that can be selected for resource
sharing with an human-type device, if the MTD with minimum
interference power on the BS is selected, the human-type
device and MTD can transmit at the same time and on the
same frequency band, such that the interference on the HTD
is negligible. We should note that, for large K, Theorem 1
also holds for K − 1, K − 2, and K − l MTDs, where l is a
small number. This means that l resource blocks allocated for
the human-type device can be shared with MTDs, while the
interference on the human-type device is negligible.

B. Distribution of SINR and Outage Probability

To study the performance of the proposed OSO for MTC,
we derive the closed form expressions for the distribution of
the SINR and the outage probability of the HTD while the
MTD with minimum interference on HTD is transmitting on
the same RB.

Proposition 1. The distribution of the SINR in (6) is:

fy(y) =
λeλσ

2

PMΓ(M)

y(M−1)

(λ+ y/p)M+1
Γ(M + 1, (λ+ y/p)σ2),

(10)
where Γ(x, y) is upper incomplete gamma function.

Proof. Proof is given in Appendix C �

The SINR distribution can be used to derive the outage prob-
ability of the proposed method. The derived outage probability
distribution can be used to provide an analytical evaluation
of the performance of the proposed OSO method. Such an
analytical result can provide us with the number of MTDs
that are needed in the MTC system so that we can select
the best MTD for transmission. In the following theorem, the
derivation of the outage probability is presented.

Theorem 2. For any give SINR threshold β, the outage
probability is given by:

P (Py(y) ≤ β) = Fy(β) =

1−
M−1∑
k=0

1

PKk!
λeλσ

2 βk

(λ+ β
P )k+1

Γ(k + 1, (λ+
β

P
)σ2)

(11)

Proof. Proof is given in Appendix D �

We have presented the idea that an MTD can transmit in the
null-space of HTD transmissions without causing interference.
However, to design an optimal system that can exploit this
characteristic of the system, the CSI from all the MTDs to
the BS must be known. Indeed, as outlined earlier since the
signaling overhead makes CSI acquisition inefficient for short
data packet MTC traffic and estimating channels from many
MTDs to allocate resources to one of them is highly inefficient.
Therefore, in the next section, we present a contextual MAB

learning framework to implement OSO for MTC. We exploit
the characteristics of the channel between MTDs and the BS.
Then, this characterization is used for generating channels that
we use in our learning algorithm for finding the best possible
MTD for any given beamformer in the BS.

IV. EXPLOITING INTERFERENCE DIVERSITY

In this section, we provide a practical method to find the
set of MTDs that fall into the null spaces of each receive
beamformer at the BS. Our method uses two concepts. First,
since most of the BSs are located at high altitude, there are
mostly not many scatterers around the BS. This means that
a signal coming from a specific angle will have an angle of
arrival that is limited to a short range of angles in that specific
direction. If the scatterers were around the BS, the angle of
arrival would be distributed uniformly in [0, 2π]. Second, we
use deep learning for finding the set of best possible MTDs
for each designed beamformer.

A. Channel characteristic and the angle of arrival of the
interference

In wireless systems, several different copies of the signal
that is transmitted reach the receiver from different angles.
The angle of arrival of the signal to the receiver depends on
the reflectors around the receive antenna and also the transmit
antenna. When the scatterers are around the BS, then the
angle of arrival of the received signal is distributed uniformly
in [0, 2π]. However, if the scatterers are located in a ring
around the transmitter, then the angle of arrival of the signal
to the receiver is within a small interval. This is presented
in Fig. 3 and is known as the small ring model. In cellular
systems, since most of the MTDs are located in buildings and
locations with many scatterers around them, then the signal is
mostly reflected as shown in Fig. 3. However, since the BS
in most cases is located at a high altitude (e.g., on top of a
building), there are fewer reflectors, and therefore, the received
signal’s angle of arrival is in a small interval. Similar channel
characteristics exist for the human-type device. Next, we first
present how the channel is calculated from the propagation
environment characteristics. Then, we propose our learning
based approach for scheduling the MTDs.

1) Channel Modeling: Consider a cellular device that is
located in distance d from the BS with an angle θ as shown
in Fig. 3. The angular spread of the signal ∆ is calculated from
∆ ' arctan(r/s) where r is the radius of the ring around the
cellular device that scatterers are located. We assume that there
is no line of sight and therefore, the channel h ∼ CN (0,Rk)
is calculated as follows:

h = UΛ
1
2w (12)

where U is the tall unitary matrix of the non-zero eigenvalues
of Rk, Λ is the r× r diagonal matrix of whose diagonal ele-
ments are the non-zero eigenvalues of Rk and w ∼ CN (0, I).
Each element (m, p) of the the covariance matrix for the
channel is calculated from:

[R]m,p =
ai
2∆

∫ ∆

−∆

e−jk
T (α+θ)(um−up)dα (13)
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where k(α) = − 2π
λ (cos(α), sin(α))T is the wave vector for a

planar wave impinging AoA α, the carrier wavelength is λ and
um and up are the positions of the antennas of the BS in the
two dimensional coordinate systems. Path loss and shadowing
are included in ai = 10

ai,dB
10 where ai,dB = PLdB + Xσ

with PLdB and Xσ denoting the path loss and log-normal
shadowing with variance σ. We use the 3GPP path loss model
from the BS to MTDs [35] which is given by PLdB = 128.1+
37.6 log(d). By using (12) and (13), we can derive the channel
for each link the system. For uniform linear array (ULA) which
is a widely used model, (13) simplifies to:

[R]m,p =
ai
2∆

∫ ∆

−∆

e−j2π(m−p) sin(α)dα. (14)

For MTDs and the human-type device, since the scatterers
are located around the transmitter as shown in Fig. 3, we
consider a random angle of arrival for each MTD and the
HTD. We assume that each MTD has angle of arrival of θi
and angular spread [θ − ζ, θ + ζ]. We assume that this interval
fo AoA does not change for each MTD since the MTDs are
either fixed or low mobility. However, during each coherence
period, the AoA for the human-type device changes and at the
beginning of the coherence period, it is estimated by using
pilot signals. Therefore, this channel h in (12) can be exactly
calculated for human-type device at the beginning of each
coherence period. This signaling for channel estimation is not
performed for MTDs since they have small data packets and
signaling is not efficient. Therefore, MTD channel knowledge
can only be statistical, and, due to the existence of the noise
term w in (12), the exact knowledge of the channel cannot be
known for the MTDs. Therefore, we need to find a solution for
selecting the best MTD for each given beamformer at the BS
for human-type device without precise knowledge of MTD
channels. In the following, we present a method based on
contextual bandit theory to find the best MTD for transmission
for each beamformer that is designed using the estimated
channel of human-type device.

B. Contextual Bandits

In this section, we propose a learning method for selecting
the best MTD for each receive beamformer by using methods

from machine learning. Known as contextual bandits, our
proposed solution is an special case of MABs when the
learning agent receives a context at each time, and, based
on that context, selects an action. In the following, we first
present MAB theory and the concept of contextual MABs.
Then, we present two function approximations for contextual
MAB problem of selecting best MTDs for resource sharing
with human-type devices.

1) Multi-armed bandits: Reinforcement learning (RL)
problems with a single state are called MABs. In an MAB
problem, a decision maker (player) selects (plays) an arm from
a set of available arms and receives a numeric reward for the
selected arm. Rewards of each arm are drawn from a random
variable with an underlying distribution that is not known to
the decision maker. At each play, only the reward of the select
arm is revealed to the player. The goal of the player is the
minimize the cumulative regret over a long period of time.
Regret is defined as the difference between the arm that is
selected and the best possible arm could have been played.
Total regret for the duration of T of the learning period is
given as:

R(T ) = E
[ T∑
t=1

θ∗(t)−
T∑
t=1

θk(t)

]
, (15)

where the expectation is taken over the randomness in the
algorithm and the revealed rewards. Naturally, the player will
find the arm with the highest expected value and keep playing
that arm. In a MAB problem, the main issue to resolve is
the dilemma between exploration and exploitation. That is,
to select the best arm that is known so far (exploitation) or
play other suboptimal arms (explore) to have a better estimate
of their reward distribution. There are many effective methods
that can be used to solve exploration and exploitation dilemma
such as ε−greedy or upper confidence bound (UCB) methods
[33]. In our problem, each arm is an MTD that will be selected
to be scheduled and the reward is the rate of the cellular user
since each MTD transmission will cause a different amount
of interference on the BS, and, therefore, affect the rate of
the cellular user. Our problem has a major difference with
the classical MAB problem described above. In the classical
MAB, rewards of each arm are drawn from a fixed distribution,
and, the best arm doesn’t change over time. However, in our
problem formulation, depending on the beamformer that is
designed for the cellular user, the best arm will be different.
Therefore, there is a context that affects the best MTD (the
context is the receive beamformer in the BS). This kind of
problems is known as contextual MABs [36]. In contextual
MABs, there is a need for a function f(x) that gets the
context as input and produces the best arm for that given
input. Therefore, the aim of the learning is the find such a
function that minimizes the regret over the learning period.
We must state that the logarithmic regret is desirable in MAB
as it means that at each new time step, the learning agent is
making a smaller mistake.

One of the well-known methods for solving contextual
MAB problem is the so-called Thompson sampling method
[37]. In this method, for each action a ∈ A, a distribution
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Algorithm 1 Contextual Bandits

Receive prior distribution over models, πo : θ → [0, 1]
Select each action a once regardless of the context qc(t)
for t = 1 to T do

Observe qc(t), D = (qc(t); r; a)
Sample the model θt ∈ Rd
Find at = argmax P (θt|D)
Update the posterior distributions πt+1 with the obser-

vation (qc(t); r; a)

with parameters θ ∈ Θ is considered that generates the reward
(r|a; θ;x) where x ∈ X is the context from the set X of
contexts, and Θ is the set of parameters for the distributions
of the rewards. There is also a tuple of previous actions and
rewards D = (x; r; a) that is available for the learning agent.
The posterior distribution is P (θ|D) ' P (D|θ)p(θ) and the
aim of the Thompson sampling method is to to maximize the
expected rewards∫

I
[
E(r|a∗, x, θ) = max

a′
E(r|a′, x, θ)

]
P (θ|D)dθ (16)

where I is the indicator function. By using P (θ|D) at each
time, parameters θ∗ are sampled and then the action a∗ that
maximizes [E(r|θ∗, a∗, x)] is selected. In other words, the
algorithm first considers a distribution for each arm and draws
a sample from these distributions. Then, the agent acts greedily
and selects the arm with the highest sample value and observes
the reward. Based on the observed reward, parameters of
these distributions are then updated and in the next round, the
samples are drawn from the updated distributions. For each
given context, this process is done separately, and, the aim is
to solve estimate the parameters of these posterior distributions
for new contexts. For solving a contextual MAB problem
with a small number of contexts, we can run one learning
algorithm for each context and store the learning information
in tables. However, when the number of possible contexts is
large (especially when it can have continuous values), then the
problem becomes much more complicated, and, therefore, the
function f(x) must be approximated. This means that once
the algorithm is trained on some contexts and actions, for any
new context, it must be able to select the optimal action. In the
next section, we present learning based function approximators
for solving the contextual MAB problem based on Thompson
sampling.

C. Learning Models

As explained earlier, we need to design function approx-
imators to sample the posterior distributions of Thompson
sampling. Clearly, the aim is to minimize the regret over the
learning period. The performance of learning based function
approximators heavily depend on the choice of features that
are fed into the learning algorithm and the type of the
function approximator. In our problem formulation, we use
a linear regression model and neural networks as the function
approximator of the contextual MAB problem. To select the
features that are fed into the function approximator we use the
normalized receive beamformer. Since learning algorithms are

mostly designed to work with real numbers, we separate the
real and imaginary parts of the beamformer vector to design
our features. Considering M antennas in the BS, we build the
feature vector qc(t) ∈ R2M at time t as follows:

qc(t) =

[
<(wc(t))
=(wc(t))

]
/|wc(t)|2, (17)

where <(wc(t)) and =(wc(t)) are the real and imaginary
parts of the receive beamformer wc vector at time t. The
contextual MAB algorithm A receives the context qc(t) at
time t, and, based on the internal model of the function
approximator, selects an MTD for resource sharing. The BS
calculates the rate of the cellular user at the BS, and, produces
the normalized reward r(t). The algorithm then updates the
internal model of the function approximator based on the
new data. In the framework of Thompson sampling for MAB
problems, there are several several approaches that can be
used for approximating the posterior distributions that are
used for sampling and generating the possible reward for
each MTD [34]. Moreover, these methods perform differently
depending on the task at hand and analytical evaluation of the
performance of these approaches is almost impossible and out
of the scope of this work. We have used the implementation
of all the approaches presented in [34] and selected several
policies for sampling the data in our contextual MAB setting
and a baseline uniform sampling policy. These methods are
chosen due to their performance in our initial simulations both
in terms of regret and computational time. The details of these
methods are outlined as follows:

1) Linear Function Approximation: Consider the linear
regression where the rewards for each arm is generated based
on the following equation:

r = qc(t)Tβ + ε, (18)

where r the reward that is generated, ε ∼ N (0, σ2) and β
show parameters of the model that generate the reward for
given context qc(t). The joint distribution of β and σ2 are
modeled which leads to sequentially estimating the noise level
σ2 for each action. This leads to adaptive improvement of the
parameters of the posterior distributions.

The joint distribution of the posteriors is given by
πt(β, σ

2) = πt(β|σ2)πt(σ
2). For the noise we consider the

inverse Gamma distribution σ2 ∼ IG(at, bt) and Gamma
distribution for β|σ2 ∼ N (µt, σ

2Σt). Parameters of these
distributions are given as follows:

Σt = (XTX + Λ0)−1

µt = Σt(Λ0µ0 +XTY )

at = a0 + t/2

bt = b0 +
1

2
(Y TY µT0 Σ0µ0 − µTt Σ−1

t µt)

(19)

The hyper parameters are initialized as µ0 = 0, Λ0 = λIM
and a0 = b0 = η > 1. After initialization, the parameters of
the posteriors are updated after selecting each MTD by using
linear regression model.
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1 – Get CSI from the human-
type device (hc)

2 – Design beamformer (wc)
wc

1 – Use the receive 
beamformer (wc) as context
2 – Use the context to design 

feature vector using (16)
3 – Map the context to action

1 – Send a scheduling grant to 
the selected MTD

2 – Observe the SINR of the 
human-type device as reward

Initial step at the BS Decision making at the agent

Selected MTD

Update the agent with the 
context, action, and the reward 

using learning algorithm
Update the agent

Applying the action at the BS

Updating the model

Fig. 4: Diagram showing the different steps of the proposed framework

2) Deep Neural Networks: The above presented method
of approximating the contextual MAB function with a linear
model has limitation as it cannot model non-linearity is the
mapping function from contexts to actions. To deal with non-
linear mappings, neural networks can be used as function
approximators. Recently, several neural network models are
explored in [34] for solving the contextual bandit problems
by approximating the posterior distributions of Thompson
sampling. We experiment with the methods proposed in [34]
and present the results in Section V. Here, in neural linear
model, a Bayesian linear regression is applied after the last
layer of the neural network. This can help in capturing the
benefits of the both of linear and neural network models.
Moreover, another method which is known as dropout is also
considered, in which the outputs of the neural networks are
randomly set to zero with some probability during the learning
period [38]. This method is shown to improve the performance
of neural networks is various tasks. We use neural networks
similar to [34] as a function approximator for modeling the
posterior distributions of Thompson sampling that are used
in contextual MAB. At each time step, the neural network
generates the values for samples of the reward distribution
of each MTD. Then, the best MTD is selected for resource
sharing. After sharing resources and observing the SINR, the
reward is then used to update the neural network. After the
learning period, the neural network will be able to give a good
estimate of the posterior distributions of Thompson sampling.

In summary, since there is an unlimited number of beam-
formers that the BS can have, we need a mapping from each
beamformer to the best possible MTD. This mapping requires
the use of function approximators for unseen beamformers.
We have used deep learning models combined with linear
regression as function approximators. The proposed learning
methods, get the beamformer as input, and, give the best MTD
in the output. For implementation of the learning methods,
first, a dataset is generated that includes beamformers that are
generated by using MRC of the human-type device channel to
the BS. Second, by using (3), the SINR for the human-type
use considering the interference from all the possible MTDs is
calculated. The dataset includes the feature vector of (17) and

Table I: Simulation parameters.

Parameter Value
Number of antennas in BS (M ) 4

Cell radius 500 m
MTA radius 250 m
Bandwidth 360 kHz

Noise figure at BS and MTA 2 dB
CU to BS path loss model 128.1 + 36.7log(d[km])

CU target SINR 10 dB
MTD target SNR 10 dB

Noise spectral density -174 dBm/Hz
Angular spread ∆ 10◦

Log-normal shadow fading 10 dB
Location of antennas (y-axis) [−0.02,−0.01, 0.01, 0.02]

all the SINRs. Then, for training the learning models, samples
are randomly selected and used for training and updating the
inner models of the model. Once model is trained, it learns to
select the best MTD for each given beamformer. A summary
of different steps of the learning framework is presented in
Fig. 4.

V. SIMULATION RESULTS

For our simulations, we consider LTE parameters and we
assume at each time step, the resources of the cellular user are
shared with one MTD. Resources are primarily allocated to the
cellular user and we assume that the CSI is acquired at the
BS to design the uplink receive beamformer. Next, we first
present the results to show that if there are a large number
of MTDs to select from, the best MTD will cause a small
amount of interference on the BS. Then, we present the plots
for the distribution of the SINR and the outage probability.
Finally, the results of deep contextual bandits are presented.
Simulation parameters are given in Table I.

A. Existence of the null-space

First, we study the possible effect of the number of MTDs
on the SINR of the cellular user. Two transmit power control
mechanisms for MTDs are considered. First, fixed transmit
power from MTDs, and, second, a transmit power control to
satisfy the SNR requirements at the MTA. In our simulations
the MTA is equipped with a single antenna, and, MTDs use



9

20 40 60 80 100 120 140 160 180 200
Number of MTDs

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

SI
N

R
 o

f h
um

an
-ty

pe
 d

ev
ic

e 
(d

B)
Fixed MTD transmit power

MTD transmit power 0 dBm
MTD transmit power 5 dBm
MTD transmit power 10 dBm

Fig. 5: SINR of the cellular user with fixed MTD transmit power.

a basic distance based power control mechanism. The target
SINR for the human-type user is set to 10 dB and sharing
the radio resource between MTDs and the human-type user,
the degradation of the SINR of the cellular user due to MTD
interference, is presented in Fig. 5 for the case with fixed
transmit power for MTDs, and in Fig. 6 for the scenario with
power control for the MTDs.

Fig. 5 shows the effect of interference from MTDs on the
SINR of the human-type device for a different number of
MTDs. This figure gives a clear example of how a large
number of MTDs provides the diversity to select one MTD
with very small interference on BS. In these results, we assume
that the MTDs do not perform power control and transmit with
a fixed power all the time. We observe that even for a large
transmit power of 10 dBm, if there are 200 MTDs to select
from, the interference at the BS can be kept at a minimal
level. However, for small transmit powers such as 0 dBm, less
than 100 MTDs are enough to have a good performance for
the human-type device while an MTD is sharing the same
resources.

In Fig. 6, a similar plot to Fig. 5 is given for the scenario of
having power control for MTDs. Since the distance between
each MTD and the MTA is typically small, MTDs transmit
with low powers which leads to less interference. Clearly,
higher SINR target values lead to higher transmit power, and,
therefore, for larger values of SINR, a larger number of MTDs
is required as selection candidates. Fig 6 shows that for short
distances between MTDs and the MTA, small transmit powers
are needed, and, therefore, a smaller number of transmission
candidates are needed in the system to find an MTD that causes
no interference on the BS. Figs. 5 and 6 show that a large
number of MTDs in MTC will make it possible to exploit
the availability of null-space in the multi-antenna system for
opportunistic interference management.

B. Outage of human-type device

Next, we present the simulation results for the outage
probability of the cellular user in Fig. 7. The outage probability
is very small for a large number of MTDs and it is a decreasing
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Fig. 6: SINR of the cellular user with MTD transmit power control.
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Fig. 7: PDF of the outage probability for different number of
MTDs as transmission candidates.

function of number of MTDs. This validates the analytical
results of Theorem 1 in Section III. Moreover, Fig. 7 shows
that the idea of utilizing OSO for interference management
in MTC can be realized by having around 100 MTDs in the
system. We also observe that with approximately 100 MTDs
in the system as possible interference candidates, the BS will
most likely not be in the outage if the best MTD is selected.
Moreover, this result helps us in selecting the number of
required MTDs in the numerical analysis of the contextual
bandits since we need to have a fixed number of MTDs for
training the learning models.

C. Contextual bandits

Here, we present the results of the proposed contextual
bandits for selecting the MTD with no CSI at the BS. The
neural network that is used for approximating the function
f(x) two hidden layers. The input layer as 8 neurons for
a system with 4 antennas. Each hidden layer is composed
of 120 neurons and the output layer has 80 neurons where
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Table II: Contextual bandit rewards

Algorithm Cumulative reward
Optimal policy (full CSI) 19996.04

Linear full posterior 18043.06
Neural linear 12639.06

Dropout 8658.19
Uniform sampling 7601.28

each neuron corresponds to one MTD. We run the learning
algorithm for 20000 iterations.

In Table II, we present the total reward received by our
proposed methods compared to the optimal policy. The optimal
policy is the one where the full CSI of all link was known
at the BS. We can see that the linear full posterior is able
to achieve to 90% of the optimal policy. Clearly, this is a
very good performance for a beamforming system with no
CSI known at the BS. We can see that uniform sampling has
very poor performance compared to linear full posterior. The
uniform sampling is when the MTDs are selected uniformly
at random. The results in Table II show that the contextual
bandits with linear function approximation is capable of
learning the various aspects of the wireless channel statistics
between the MTDs and the BS. In other word, the contextual
bandit is able to learn the angle of arrival of the interference
from the MTDs and their signal strength, and, for any given
beamformer, select the MTD with minimum interference on
the BS.

In Fig. 8, we present the regret of the proposed policies.
From Fig. 8 we can clearly see that uniform sampling leads to
linear regret. In MAB problems, sub-linear regret is desirable
as it means that the number of times that the MAB algorithm
selects a sub-optimal MTD becomes smaller at each new time
step. Dropout has poor performance as seen from the results
in Table II, however, it starts to have a logarithmic regret
after 14, 000 iterations. Logarithmic regret in MAB settings
is considered as the optimal result [33]. Neural linear also
achieves logarithmic regret, however, the total achieved reward
is not close to optimal policy. This shows that for the function
approximation in our contextual MAB setting, neural networks
do not perform well. Clearly, as seen from Table II and Fig.
8, linear full posterior sampling achieves very low regret and
near-optimal results.

To further evaluate the learning process, in Figs. 9 and 10,
we show a the scatter plot of the reward that is received at
each time steps for linear full posterior and uniform sampling
respectively. We can observe from Fig. 9 that the density of
the scatter plot is more or less uniform at the beginning of
the learning period. However, as iteration numbers increase,
the contextual MAB is able to select the MTD which lead to
higher rewards. We also observe that the linear full posterior
is selecting suboptimal MTDs even after it has learned the
optimal MTDs. This is due to the noise that is introduced to
the sampled posterior distributions and how these algorithm is
addressing the exploration vs exploitation dilemma. Therefore,
linear full posterior selects the suboptimal MTDs to have a
better estimate of their reward distribution. Fig. 10 shows that
uniform sampling is simply making random selections and
then the density of the scatter period during the entire learning
period is unchanged. These two scatter plots present how the
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Fig. 8: Regret of deep contextual bandits compared to uniform
sampling linear full posterior sampling.
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Fig. 9: Scatter plot of the normalized rate of the cellular user at each
time step of the learning period.

learning process is able to learn the optimal MTD for the given
beamformer without any knowledge on the instantaneous CSI
of the links between MTDs and the BS.

VI. CONCLUSION

In this paper, we have introduced the idea of OSO for
MTCs in capillary networks and presented a contextual bandit
learning framework for implementing it with no CSI at the
BS for MTDs. First, we have introduced OSO as a method
to exploit the natural available null-spaces of the receive
beamformers in cellular systems. Second, we have provided
a thorough analysis of the properties of the interference from
various MTDs on the same beamformer. Moreover, we have
given the theoretical analysis of the distributions of the SINR
of the cellular user under interference from MTDs and also
the distribution of the outage probability. Since implementing
OSO requires CSI from all the MTDs at the BS, and, making
such an assumption is impractical, we have provided a novel
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Fig. 10: Scatter plot of the normalized rate of the cellular user at
each time step of the learning period for uniform sampling.

learning method using contextual MABs. Function approxi-
mations based on linear regression and neural networks are
then used to sample posterior distributions of the well-known
Thompson sampling for MABs. Simulation results have shown
that, in the regime of massive IoT, it is possible to find an
MTD that causes no harmful interference on the BS. Moreover,
linear full posterior sampling has shown the best performance
which has achieved logarithmic regret and only 10% less total
reward compared to the optimal MTD selection policy that
requires full CSI of the MTDs. To the best of our knowledge,
this is the first paper that introduces a machine learning based
approach to implement OSO for interference management of
MTC without CSI knowledge.Our future work in this topic
includes allocating several MTDs for resource sharing with
human-type device as the number of RBs allocated to the
human UE will, in general, be larger the amount one MTD
needs.

APPENDIX A
PROOF OF LEMMA 1

Proof. By considering Rayleigh fading for channels between
the MTDs and the BS, the elements of hk,B will follow i.i.d,
zero-mean, complex Gaussian distributions. The distribution
of Xk conditioned on hc will also be complex Gaussian [39].
The mean of the random variable Xk conditioned on hc will
be:

E[Xk|hc] =
hHc
|hc|

E[hk,B ] = 0, (20)

subsequently, the variance is derived as follows:

E[|Xk|2|hc] =
hHc E[hk,Bh

H
k,B ]hc

|hc|2
(21)

=
hHc INhc
|hc|2

(22)

= 1. (23)

A complex Guassian distribution with mean µ = 0 and
variance σ2 = 1 is standard complex normal distribution.

Therefore, the distribution of Xk conditioned on hc has a PDF
fXk(Xk|hc) = 1

π e
−|Xk|2 which is independent of hc. Given

this independence, random variables Xk are independent, and,
hence, the interference which is X2

k term in (3) will be
composed of independent random variables.

This completes the proof. �

APPENDIX B
PROOF OF THEOREM 1

Proof. We start the proof by finding the distribution of the
interference term. Since the distribution of hc is fxi(xi) =
π−1e−|xi|

2

, then the interference power |xi|2 follows a central
chi-square distribution with two degrees of freedom (which is
an exponential distribution). Let us define the distribution of
zi = |xi|2 so that the distribution of interference term will be:

fzi(zi) =
1

pi
e
− zipi . (24)

We now use order statistics [40] to find the distribution
of the minimum term of the interference. Consider random
variable Y = min{z1, z2, ..., zK}. It is easy to show that the
cumulative distribution function (CDF) of the minimum of a
group of i.i.d exponential random variables is given by:

FY (y) = 1− [e−λKy], (25)

PDF of Y follows as:

fY (y) = λKe−λKy. (26)

From this distribution, it is clear that as K → ∞, the
probability, P (Y < δmin) = 1.

This completes the proof. �

APPENDIX C
PROOF OF PROPOSITION 1

Proof. The SINR is the ratio of two terms. The nominator of
the SINR equation is Gamma distributed with PDF:

fx(x) =
1

PMΓ(M)
xM−1e−(x/P ), (27)

and the nominator of the SINR has an exponential distribution
with PDF:

fw(w) =
K

Pm
e−(K/Pm)(w−σ2) = λe−λ(w−σ2). (28)

Let y be a random variable that represents the SINR. Since we
have y = x/w, from the ratio of two random variables [40],
we can write the PDF of y as:

fy(y) =

∫ ∞
σ2

wfx,w(yw,w)dw. (29)

Since the terms in the nominator fx(x) and the denominator
fw(w) of the SINR are independent, we have:

fx,w(x,w) = fx(x)fw(w), (30)

therefore, the PDF of the SINR is derived from:

fy(y) =

∫ ∞
σ2

w

PMΓ(M)
(yw)M−1e−(yw/P )λe−λ(w−σ2)dw,

(31)



12

which can be computed as follows:

fy(y) =
λeλσ

2

PMΓ(M)
y(M−1)

∫ ∞
σ2

wMe−(yw/P )e−λwdw

=
λeλσ

2

PMΓ(M)
y(M−1)

∫ ∞
σ2

wMe−(λ+y/p)wdw

=
λeλσ

2

PMΓ(M)

y(M−1)

(λ+ y/p)M+1
Γ(M + 1, (λ+ y/p)σ2).

(32)

where Γ(x, y) is the incomplete Gamma function.
This completes the proof. �

APPENDIX D
PROOF OF THEOREM 2

Proof. Outage happens when a received SINR is below a
defined threshold. The probability of the outage for the SINR
term in (10) is then calculated as follows:

P (y ≤ β) =

∫ β

0

fy(y)dy. (33)

by plugging fy(y) from (10) we have:

Fy(β)=

∫ β

0

1

PMΓ(M)
λeλσ

2

y(M−1)

∫ ∞
σ2

wMe−λwe−( yp )wdwdy

=
1

PMΓ(M)
λeλσ

2

∫ ∞
σ2

wMe−λw
∫ β

0

y(M−1)e−(wP )ydydw

(34)

By using the integration rules from [41, page 340] we can
derive the integral as follows:

Fy(β) =
1

PMΓ(M)
λeλσ

2

∫ ∞
σ2

wMe−λw
∫ β

0

y(M−1)e−(wP )ydydw

=
1

PMΓ(M)
λeλσ

2

∫ ∞
σ2

wMe−λw

(
(M − 1)!PM

wm
−

e−( βP )w
M−1∑
k=0

(M − 1)!PM

k!

βk

P kwM−k

)
dw

= λeλσ
2

∫ ∞
σ2

wMe−λw

(
1

wM
−e−( βP )w

M−1∑
k=0

βk

k!P kwM−k

)
dw

= λeλσ
2

(∫ ∞
σ2

e−λwdw −
∫ ∞
σ2

wme−λwe−( βP )w

M−1∑
k=0

βk

k!P kwM−k
dw

)

= 1− λeλσ
2

∫ ∞
σ2

e−(λ+ β
P )w

M−1∑
k=0

1

k!

βkwk

P k
dw

= 1− λeλσ
2
M−1∑
k=0

1

k!
(
β

P
)k
∫ ∞
σ2

e−(λ+ β
P )wwkdw

= 1− λeλσ
2
M−1∑
k=0

1

k!
(
β

P
)k(λ+

β

P
)−k−1 (35)

Γ(k + 1, (λ+
β

P
)σ2)

therefore, the probability of outage is given by:

P (y ≤ β) = Fy(β) =

1−
M−1∑
k=0

1

PKk!
λeλσ

2 βk

(λ+ β
P )k+1

Γ(k + 1, (λ+
β

P
)σ2)

(36)

This completes the proof. �
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