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a b s t r a c t 

In isotropic linear elasticity, a constitutive model calibrated using a single deformation 

mode (e.g., compression or tension or shear) is sufficient to describe a complex three- 

dimensional (3D) stress state. Such an approach, however, is likely inadequate for mod- 

eling hydrogels, which exhibit a nonlinear stress-strain response that varies significantly 

between deformation modes and is also sensitive to microstructure via gel concentration. 

In this study, a combined experimental and constitutive modeling framework is proposed 

for the development and validation of concentration-dependent 3D hyperelastic models for 

hydrogels. Agarose hydrogel in a concentration range of 0.4–4% w/v is chosen as the model 

material. Uniaxial compression, uniaxial tension, and simple shear (three primary deforma- 

tion modes) experiments are conducted. The small strain elastic modulus-gel concentra- 

tion relationships obtained from experiments are compared with those predicted by the 

molecular theory of rigid polymer networks (Jones-Marques theory) to identify the con- 

centration range in which entropic elastic (hyperelastic) response dominates. In this range 

(1.5–4% w/v), four hyperelastic constitutive models are fit to the combined compression- 

tension-shear stress-strain data: Mooney-Rivlin, three-parameter generalized Rivlin, Gent, 

and Gent-Gent models. It is demonstrated that the generalized Rivlin model offers the 

best overall accuracy, and the variation of its model parameters with gel concentration 

is consistent with the Jones-Marques theory. The resulting concentration-dependent Ex- 

tended Generalized Rivlin model is employed in finite element simulations of the non- 

homogeneous 3D stress state of wedge indentation. Simulated load versus depth and strain 

field predictions show very good agreement with experimental wedge indentation results. 

Finally, it is shown that a hyperelastic model calibrated using only a single deformation 

mode yields poor results for other primary and 3D deformations, and thus multiple pri- 

mary deformation modes (preferably all three) should be considered. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

1. Introduction 

Hydrogels are polymeric materials that swell in an aqueous medium and form stable three-dimensional networks. Ow-

ing to their characteristic hydrophilicity and porous microstructure similar to that of many biological tissues, hydrogels are
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known to possess biocompatibility and biomimetic properties. From a mechanics perspective, they are soft materials that

can undergo large nonlinear deformations without failure. Because of such unique properties, hydrogels have been success-

fully employed in a number of applications, such as soft contact lenses ( Hyon et al., 1994 ), drug-delivery systems ( Lin &

Anseth, 2009 ), tissue phantoms ( Maxwell et al., 2010 ), tissue engineering implants/scaffolds ( El-Sherbiny & Yacoub, 2013 ;

Ma, 2004 ; Peattie et al., 2004 ), and sensors and actuators ( Trinh, Sorber & Gerlach, 2009 ). A comprehensive understanding

of the mechanical behavior of hydrogels is vital for the effective design of these systems. 

Numerous small strain and large deformation studies on hydrogels exist in the literature. The former utilize shear rheom-

etry, dynamic mechanical analysis (DMA), ultrasonic measurements, etc., to obtain the elastic modulus (uniaxial, bending or

shear; storage, loss, complex, etc.) ( Clark & Ross-Murphy, 1987 ). Many large deformation studies use a traditional univer-

sal testing frame and/or a split Hopkinson pressure bar to report elastic moduli, failure stresses, and failure strains in a

variety of loading conditions and strain rate regimes ( Chen, 2016 ; Clark & Ross-Murphy, 1987 ). These traditional “linear

elastic” material properties have offered im portant power law (scaling) relationships with various microstructural and load-

ing parameters (e.g., see ( Buckley, Thorpe, O’Brien, Robinson & Kelly, 2009 ; Q. Chen, Suki & An, 2004 ; Forte, Galvan, Manieri,

Rodriguez y Baena & Dini, 2016 ; Guenet, 20 0 0 ; Hinkley, Morgret & Gehrke, 2004 ; Kim, Kim, Gunasekaran, Park & Yoon, 2013 ;

Moura, Figueiredo & Gil, 2007 ; Normand, Lootens, Amici, Plucknett & Aymard, 20 0 0 ; Rinaudo, 1993 ; Subhash, Liu, Moore,

Ifju & Haile, 2011 ; Watase & Nishinari, 1983 )). However, little insight is obtained in terms of modeling the entire stress-

strain behavior because unlike linear elastic materials, hydrogels’ stress-strain data is nonlinear and cannot be completely

characterized based on only its initial and final (yield or failure) points. 

To describe the nonlinear deformation behavior of hydrogels, hyperelasticity offers an attractive constitutive modeling

framework ( Wex, Arndt, Stoll, Bruns & Kupriyanova, 2015 ). These models assume a time-independent and fully reversible

deformation with no energy dissipation (entropic elasticity), which are reasonable assumptions especially under low load-

ing rates and in certain ranges of temperature and gel concentration ( Oyen, 2014 ; Upadhyay, Subhash & Spearot, 2020 ).

Consequently, many recent studies have used hyperelastic models to fit the stress-strain data of hydrogels under uniaxial

compression ( Castilho et al., 2018 ; Faturechi, Karimi, Hashemi, Yousefi & Navidbakhsh, 2015 ; Leclerc et al., 2012 ; Naarayan &

Subhash, 2017 ; Pavan, Madsen, Frank, Adilton O Carneiro & Hall, 2010 ; Sasson, Patchornik, Eliasy, Robinson & Haj-Ali, 2012 ),

uniaxial tension ( Agnelli, Baldi, Bignotti, Salvadori & Peroni, 2018 ; Mathews, Birney, Cahill & McGuinness, 2008 ; Trinh et al.,

2009 ), torsion ( Tang, Tung, Lelievre & Zeng, 1997 ), and indentation ( Moerman, Holt, Evans & Simms, 2009 ). A common fea-

ture in most of these studies is the consideration of a single homogeneous deformation mode (e.g., only compression, only

tension, etc.) in the determination of hyperelastic model parameters. This is likely because conducting experiments under

many different deformation modes on these soft, slippery and fragile materials is difficult and sometimes infeasible owing

to the complexities related to specimen mounting, edge effects, stress/strain-field measurement, homogeneity validation, 

etc. ( Luo et al., 2019 ; Upadhyay, Bhattacharyya, Subhash & Spearot, 2019 ). 

Consideration of a single deformation mode in calibrating hyperelastic models for hydrogels, although a common prac-

tice, can severely limit the model’s applicability in real-world mechanics problems. For example, Normand et al. ( Normand

et al., 20 0 0 ) showed that agarose hydrogels exhibit significantly different mechanical behaviors under compression and ten-

sion, with the former deformation mode resulting in higher elastic modulus, failure stress and failure strain. Additionally,

compression response showed greater nonlinearity when compared to tensile response. This type of asymmetric mechanical

behavior among different deformation modes was also noticed by Pasumarthy and Tippur ( Pasumarthy & Tippur, 2016 ) in

ballistic gelatin and by Tang et al. ( Tang et al., 1997 ) in gellan gels. These studies suggest that a hyperelastic model based on

a particular deformation mode (say compression) may not accurately capture a different deformation mode (say tension) or

a general triaxial stress state that consists of a complex combination of compression, tension and shear components. In ad-

dition to the asymmetric mechanical behavior, the nonlinearity of stress-strain data can also lead to multiple optimal model

parameters from different deformation modes, thus resulting in poor model performance in deformation modes other than

the one used for calibration ( Ogden, Saccomandi & Sgura, 2004 ). In a more recent study, Upadhyay et al. (Upadhyay et al.,

2019b) showed that the bounds of allowable hyperelastic model parameters depend on the deformation mode under con-

sideration, and experiments covering all three primary deformation modes (compression, tension and shear) should be con-

ducted to ensure thermodynamic stability of the model under a general triaxial deformation state. Clearly, the formulation

of hyperelastic models for hydrogels that consider multiple primary deformation modes and are transferrable into complex

loading conditions is much needed. This should also be accompanied with a careful consideration of the microstructural

parameters (e.g., crosslinking density and network mesh size) on which the mechanical response of hydrogels is intimately

dependent. 

With this motivation, the present study aims to develop an experimental characterization and constitutive modeling

framework for the study of the mechanical response of hydrogels under multiple deformation modes and as a function of

their molecular structure (via gel concentration). To this end, agarose gel is chosen as a model material, which is a thermo-

reversible physically cross-linked hydrogel used as a tissue culture medium (Chen et al., 2004b) and brain tissue surrogate

owing to its comparable density and mechanical properties ( Deepthi et al., 2010 ; Pervin & Chen, 2011 ; Pomfret, Miranpuri &

Sillay, 2013 ). The uniaxial compression experiment is the most commonly performed experiment on hydrogels, and in this

work is conducted on a number of different polymer concentration samples (0.4, 0.75, 1, 1.5, 2.5 and 4% w/v) to establish

the range of concentrations where an entropic (hyperelastic) elastic response dominates. Once such a concentration range is

identified, uniaxial tension and simple shear experiments are conducted in this range using custom-manufactured test fix-

tures. Digital image correlation (DIC) is used for full-field strain measurement during the experiments. The stress-strain data
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from all three primary deformation modes is used to calibrate four hyperelastic models: the polynomial Mooney-Rivlin and

three-parameter generalized Rivlin models ( Mooney, 1940 ; Rivlin, 1948 ), and the exponential/logarithmic Gent ( Gent, 1996 )

and Gent-Gent ( Pucci & Saccomandi, 2002 ) models. The various hyperelastic models are compared on the basis of their

fitting accuracy as well as the evolution of their model constants with gel concentration. A gel concentration dependent

as well as network mesh size dependent (via appropriate scaling relations) extended hyperelastic model is formulated. The

applicability of this model under complex deformations is validated via a non-homogeneous triaxial deformation state of

wedge indentation. Finite element (FE) simulation outputs are compared with experimental test results. Finally, model in-

sufficiencies arising from the consideration of fewer experimental deformation modes are investigated. 

2. Materials and experimental methods 

Four mechanical experiments: uniaxial compression, uniaxial tension, simple shear, and wedge indentation, are con-

ducted on agarose hydrogels. Uniaxial compression is conducted on samples with six different polymer concentrations: 0.4,

0.75, 1.0, 1.5, 2.5 and 4% w/v. Upon confirming entropic elasticity in high concentration gels, uniaxial tension and simple

shear experiments are conducted only on 1.5, 2.5 and 4% w/v samples. Various hyperelastic models are then fit to the com-

bined tension, compression and shear data. To validate the suitability of the chosen constitutive model, wedge indentation

experiments are conducted on a gel block of 3% w/v concentration (different from those used to calibrate the hyperelastic

models). The strain fields during the experiment are mapped using DIC and then compared to the finite element model

results. 

2.1. Agarose gel structure and sample preparation 

The agarose molecule is a linear polysaccharide consisting of β-1,3 linked d -galactose and α-1,4 linked 3,6-anhydro- αl -

galactose residues ( Normand et al., 20 0 0 ). When cooled from a homogeneous aqueous solution at 80–90 °C to a tempera-

ture below its gelation temperature (~35 °C), it forms a three-dimensional network of physically cross-linked agarose fibers.

Thermodynamically, this gelation involves transformation from a random coil configuration in sol state to a double helix

in the initial stages. Between 10 and 10 4 helices bundle to form fibrils, which aggregate to form the polymer network in

the final gel state ( Ratajska-Gadomska & Gadomski, 2004 ). Different aspects of the network structure (crosslinking density,

mesh size, etc.) are determined by the initial gelling parameters such as gel concentration, average molecular weight of

the polymer, and solvent ionic strength ( Anseth, Bowman & Brannon-Peppas, 1996 ; Oyen, 2014 ). In the present study, all

but the gel concentration parameter are kept fixed (deionized (DI) water solvent is used; expected value of weight aver-

age molecular weight based on the agarose gel concentration–molecular weight–elastic modulus measurements in Normand

et al. (20 0 0) is 162,0 0 0 g/mol). Thus, the microstructure changes only via gel concentration. 

Agarose powder ( < 0.15% sulfate) is purchased from Fisher Scientific (Pittsburgh, PA; cat. no. BP1356); DI water is pur-

chased from PTI Process Chemicals (Ringwood, IL). To start, agarose powder is mixed with DI water (solvent) at different

polymer concentrations (% w/v). The mixture is heated in a microwave oven with intermediate stirring every 30 s until a

transparent homogeneous solution is obtained. Heating time varies from 5–10 min depending on the polymer concentra-

tion and solution volume. At this point, the weight of solution is measured, and additional water is added to compensate

for any water loss due to evaporation. After further heating for 0.5–1 min, the clear solution is transferred to a pressure

cooker, where it is kept under atmospheric pressure for 5–15 min to eliminate any bubbles. The resulting bubble-free so-

lution is used to fabricate test specimens for the mechanical experiments. For cylindrical compression, dog-bone shaped

tension, and cuboidal indentation test specimens, the gelation mixture (sol) is directly poured into custom-designed rub-

ber/acrylic molds. For rectangular shear test specimens, a large sheet is first molded, from which specimens are cut using a

custom-made “cookie” cutter. Test specimens are stored in DI water until testing; all tests are conducted within 30 min of

gel formation to minimize evaporative water loss. 

2.2. Mechanical testing 

All tests (compression, tension, shear, and wedge indentation) are conducted at room temperature under displacement

control on a dual column electro-mechanical universal testing machine (Frame 311, TestResources, Inc., Shakopee, MN)

equipped with a 1.1 kN load cell ( ± 0.5% accuracy) using appropriate test fixtures. A constant strain rate of 10 −3 s −1 is

employed. Three tests are conducted for each polymer concentration. Specific details pertaining to individual experiments

are given in the following subsections. 

2.2.1. Uniaxial compression 

Fig. 1 (a) shows the uniaxial compression test setup, which consists of a fixed and a movable flat steel platen. A cylin-

drical (25.4 mm dia. x 25.4 mm length) gel sample is sandwiched between the two platens; the top platen is lowered at

1.524 mm/min to impose an engineering strain rate of 10 −3 s −1 . Load cell force and crosshead displacement outputs are

used to calculate engineering stress and strain, respectively. As the present study is focused only on the bulk deformation

response, the portion of the stress-strain plot beyond specimen failure is disregarded. 
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Fig. 1. Experimental setup for (a) uniaxial compression, (b) uniaxial tension, and (c) simple shear experiments on agarose gel. Inset in (c) shows a close-up 

monochromatic view of the lap plates and specimen (speckled using fine chalk powder). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2. Uniaxial tension 

A tensile test fixture previously developed by Subhash et al. ( Subhash et al., 2011 ) is used in this study, which is com-

posed of two poly(methyl methacrylate) (PMMA) specimen holders between which a dog-bone shaped gel specimen is

shoulder supported ( Fig. 1 (b)). The gage section dimensions are 25.4 mm x 12.7 mm x 12.7 mm. To impart a quasi-static

strain rate of 10 −3 s −1 , the top shoulder is pulled (via crosshead) at 1.524 mm/min. Similar to the compression test, the

load cell force output is used to calculate the engineering tensile stress. Strain measurement, however, requires additional

considerations, which are discussed in the following paragraph. 

Strain measurement during mechanical testing of hydrogels (barring compression testing) is non-trivial owing to their

soft, slippery and fragile nature. For example, the use of crosshead displacement to measure strain in these materials is not

suitable due to the inevitable slippage near mounting/gripping areas. In these cases, the measurement of overall elongation

or “average” strain may give erroneous results ( Kwon, Rogalsky, Kovalchick & Ravichandran, 2010 ). In addition, traditional

contact-based extensometers cannot be mounted on these materials because even a small amount of compressive mounting

force (of say, clip extensometer) tends to excessively deform the soft gel sample at that location and may even initiate a

crack ( Subhash et al., 2011 ). Other contact-based strain measuring equipment (e.g., strain gages) also cannot be used because

of the wet surfaces of these materials. To overcome these difficulties, digital image correlation (DIC) is used in the present

study for tension, shear and indentation experiments, which is a non-contact optical strain measurement technique that

maps full-field deformation by tracking movement of a randomly distributed speckle pattern on the sample gage surface. 

Particularly for the uniaxial tension experiment, 3D DIC is used, which allows for measurement of both in-plane and

out-of-plane displacements by stereo correlation of images captured from two cameras; 30 images of a standard calibration

grid are used for calibration. Since hydrogels have a wet surface, hygroscopic fine chalk powder (10 0–30 0 μm) is used to

create the speckle pattern. Chalk particles do not separate or flow, and adhere well to the sample surface even during large

deformations ( Kwon et al., 2010 ). The speckled sample gage area is imaged (1 image every 3 s) using two 5.0 MP CCD cam-

eras (GRAS-50S5M-C (Sony ICX 625 CCD), FLIR Sytems, Inc., Richmond, Canada). Both cameras are located horizontally such

that their lines of sight cross at ~45 ° angle (~22.5 ° on either side of the sample surface normal). The camera resolution is

244 8 ×204 8 pixels and the spatial resolution is ~17 pixels/mm, such that approximately 434 ×217 pixels exist in the speci-

men gage area (25.4 mm x 12.7 mm). Images are analyzed using the commercial VIC-3D 6 software (Correlated Solutions,

Inc., Irmo, SC), which provides the average axial engineering strain in the specimen gage section that is used to create the

stress-strain plots. Note, subset size is selected for individual imaging data based on the speckle density and size (subset size

> (3 x speckle size)), and also the sigma value (one standard deviation confidence interval) of the subset tracking function. 

2.2.3. Simple shear 

Single lap-shear experiments are conducted on a custom-built test fixture shown in Fig. 1 (c), which consists of two L -

shaped lap plates: a Lap-2 plate fixed to the machine base, and a Lap-1 plate that translates vertically to impart shear strain

in the gel specimen. A rectangular prism shaped agarose gel specimen is bonded between the two lap plates using a thin

layer of cyanoacrylate adhesive (Adhesive Systems Inc., Frankfort, IL; cat. no. M 60). Specimen dimensions are chosen as

25 mm x 3 mm x 10 mm, which follow the suggested inequalities for maximizing strain homogeneity and preventing shear

buckling ( (Upadhyay et al., 2019a) ). Cyanoacrylate-based adhesives polymerize rapidly in the presence of water in hydrogels,

confining the curing reaction to a thin ~100 μm layer ( Subhash, Kwon, Mei & Moore, 2012 ; Wang & Kornfield, 2012 ). The

effect of adhesive diffusion on material response is thus neglected. Lap-1 (or crosshead) is translated vertically at a constant
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Fig. 2. Experimental setup for wedge indentation test. Inset shows an inclined close-up view with marked specimen and indenter dimensions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

velocity of 0.169 mm/min to ensure a 10 −3 s −1 loading strain rate. As no out-of-plane deformation of specimen gage section

is allowed in simple shear deformation, 2D DIC is used for average shear strain measurement. A single 5.0 MP CCD camera

is used to capture the deformation event at a rate of 1 image every 3 s. The spatial resolution is ~35 pixels/mm and thus

approximately 105 pixels are along the gage section width (3 mm). Captured images are analyzed in the commercial Vic-2D

6 software (Correlated Solutions, Inc., Irmo, SC). 

2.2.4. Wedge indentation 

A custom-designed steel wedge is used to conduct indentation experiments on cuboidal agarose gel samples (76.2 mm x

38.1 mm x 25.4 mm) as shown in Fig. 2 . The crosshead velocity is set to 2.286 mm/min to ensure a nominal loading strain

rate of 10 −3 s −1 . The total indentation depth is 2 mm. The load cell force and crosshead displacement outputs are used

to create the indentation load-depth plots. 3D DIC via Vic-3D 6 software is used to measure the full-field strain across the

sample surface with a measurement setup (camera specifications and orientation, calibration, speckle pattern, etc.) identical

to the one used in tensile testing, except that the imaging frequency is increased to 1 Hz in response to the increased

crosshead velocity. The spatial resolution is ~25 pixels/mm in the area of interest close to the indenter tip. 

3. Constitutive modeling and finite element simulations 

3.1. Hyperelastic modeling and fitting procedure 

Initially developed to study the entropic elastic behavior of rubbers (refer to a detailed review by Anseth et al.

( Anseth et al., 1996 )), hyperelasticity has been successfully applied to describe the mechanical behavior of hydrogels

( Sasson et al., 2012 ; Tang et al., 1997 ), biological tissues ( Budday et al., 2017 ; Veronda & Westmann, 1970 ), additively

manufactured photopolymers ( Liljenhjerte, Upadhyaya & Kumar, 2016 ), etc. Hyperelastic constitutive models assume that

the strain energy density W of a material is a function of only the instantaneous deformation (or strain). Many empiri-

cal and semi-empirical forms of W are available in the literature. In the present study, two polynomial-based forms, the

two-parameter Mooney-Rivlin ( Mooney (1940) ; Rivlin (1948) ) and the three-parameter generalized Rivlin models, and two

exponential/logarithmic models, the Gent ( Gent, 1996 ) and the Gent-Gent ( Pucci & Saccomandi, 2002 ) models, are investi-

gated. While the former two polynomial forms are phenomenological models that accurately capture hyperelastic material

response in small to moderate ranges of strain ( Marckmann and Verron (2006) ; Tobajas, Ibartz and Gracia (2016) ), the latter

two exponential/logarithmic models are motivated by molecular theory (non-Gaussian) and capture certain phenomena not
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effectively modeled by the classical polynomial models ( Horgan & Saccomandi, 2003 ) (e.g., limiting chain extensibility). All

four of these models assume material isotropy and incompressibility, which are reasonable assumptions for these 3D net-

worked materials that are predominantly composed of water ( Baumberger, Caroli & Martina, 2006 ; Oyen, 2014 ). Specifically,

for agarose gel, incompressibility (as Poisson’s ratio of approximately 0.5) was confirmed experimentally by Normand et al.

( Normand et al., 20 0 0 ) and Subhash et al. ( Subhash et al., 2011 ). The exact forms of these models are given as 

W MR = A 10 ( I 1 − 3 ) + A 01 ( I 2 − 3 ) (1a) 

W GR = A 10 ( I 1 − 3 ) + A 01 ( I 2 − 3 ) + A 11 ( I 1 − 3 ) ( I 2 − 3 ) (1b) 

W G = −μJ m 

2 
ln 

(
1 − I 1 − 3 

J m 

)
(1c) 

W GG = −μJ m 

2 
ln 

(
1 − I 1 − 3 

J m 

)
+ 

3 C 2 
2 

ln 

(
I 2 
3 

)
(1d) 

where subscripts MR, GR, G and GG denote the Mooney-Rivlin, generalized Rivlin, Gent and Gent-Gent models, respectively;

A 10 , A 0 1 , A 1 1 , μ, J m and C 2 are model parameters. Note, J m is the limiting chain extensibility parameter, which is a constant

limiting value of I 1 − 3 , such that [ W ] ( I 1 −3 ) → J m → ∞ ( Horgan & Saccomandi, 2003 ). I 1 and I 2 are the principal invariants of

the right Cauchy-Green deformation tensor C , 

I 1 = tr ( C ) = λ2 
1 + λ2 

2 + λ2 
3 , I 2 = 

1 

2 

[
( tr C ) 

2 − tr 
(
C 2 

)]
= λ2 

1 λ
2 
2 + λ2 

2 λ
2 
3 + λ2 

3 λ
2 
1 (2) 

where λ1 , λ2 and λ3 are the principal stretches (standard basis { e 1 , e 2 , e 3 }). Imposing the incompressibility constraint,

det (F ) = λ1 λ2 λ3 = 1 , where F is the deformation gradient tensor (this condition has been experimentally validated from

axial ( λ2 = λ) and transverse ( λ1 = λ3 , assuming isotropy) DIC stretch measurements in tensile test, as shown in the

supplementary material). Regardless of the exact form of the strain energy density function, the nominal stress tensor T 0 is

given as 

T 0 
T = 2 F · ∂W 

∂C 
(3) 

Specifically, for the three primary deformation modes investigated in this study, the model stress-strain relations are 

Compression and tension : T 0 11 = 2 
∂W 

∂ I 1 

(
λ − 1 

λ2 

)
+ 2 

∂W 

∂ I 2 

(
1 − 1 

λ3 

)
(4a) 

Simple shear : T 0 21 = 2 

(
∂W 

∂ I 1 
+ 

∂W 

∂ I 2 

)
γ (4b) 

where λ is the axial principal stretch in uniaxial deformation ( λ = 1 + ε; ɛ is the axial nominal strain), and γ is the nominal

shear strain. Eqs. (4a) and ( 4b ) are used to fit the various hyperelastic models ( Eq. (1) ) to the experimentally obtained

stress-strain data using least squares optimization. A detailed description of the fitting procedure and error analysis is given

in the Appendix. 

3.2. Computational finite element analysis 

The hyperelastic constitutive modeling described in the previous subsection and the associated fitting procedure (Ap-

pendix) employ experimental data from the three primary homogeneous deformation modes of compression, tension and

shear. To study and compare with experiments the outcome of these models in a non-homogeneous deformation mode,

finite element (FE) simulation of the wedge indentation test is conducted using the commercial Abaqus/Standard 2017 soft-

ware (Dassault Systèmes, France). Fig. 3 shows the FE model of agarose gel with a typical displacement-field map of the

deformed mesh at 2 mm indentation. While the indenter is modeled as an analytical rigid surface, the gel sample is mod-

eled using 8-node linear hexahedral elements with reduced integration and hybrid formulation (C3D8RH). Double biased

seeding is implemented to ensure fine mesh near the indenter tip while optimizing computation time. A total of 20,102 el-

ements and 22,560 nodes are created. Boundary conditions are set such that the bottom face of the gel sample is grounded

( u 2 = u R 1 = u R 3 = 0), and a vertical displacement of u 2 = −2 mm is applied to the indenter (all other degrees of free-

dom are restricted). A frictionless general (standard) contact is implemented. Supplementary simulations for an FE mesh

convergence study show that refining the mesh size further causes very little impact on the results. 
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Fig. 3. FE model of the wedge indentation on a hydrogel block showing the deformed mesh and vertical displacement contours at 2 mm indentation depth 

(Units in legend: mm). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Results and discussion 

In the first subsection, the effect of agarose gel concentration on the molecular structure of the network is assessed

using the experimentally measured modulus-concentration relation. The network structure dictates the macroscopic elastic

behavior of a gel, and in turn the applicability of hyperelasticity in modeling such a response. Next, large deformation be-

havior under the three primary deformation modes is discussed, which is modeled using the hyperelastic models discussed

in Section 3 . The best model is implemented into FE simulations and is used to model the deformation state during wedge

indentation. Model response and experimental results are then compared. Finally, the importance of considering multiple

deformation modes in hyperelastic modeling is discussed. 

4.1. Small strain elasticity and the range of entropic elastic behavior 

The mechanical response of a hydrogel depends on the initial properties of the polymer-solvent mixture (average molec-

ular weight of the polymer chains, gel concentration, temperature, etc.) and the resulting structural parameters of the gel

(mesh size, stiffness and thickness of fibrils, crosslink functionality, etc.). For example, previous studies on agarose gel

( Fujii, Yano, Kumagai & Miyawaki, 20 0 0 ; Tokita & Hikichi, 1987 ) found that near the critical sol-gel transition concentration

of ~0.071 wt.%, the modulus ( G ) scales with concentration ( c ) as a power law with exponent of 2.31, i.e. G ~ c 2.31 . Normand

et al. ( Normand et al., 20 0 0 ) showed that this scaling exponent decreases with concentration consistent with the Cascade

theory ( Clark & Ross-Murphy, 1985 ), which suggests that the number of elastically active network chains (EANCs) increases

and the concentration of loose chains (dangling chains plus free chains) decreases with increasing gel concentration. Several

studies ( Ramzi, Rochas & Guenet, 1998 ; Rochas, Brûlet & Guenet, 1994 ) have suggested that as agarose gel consists of stiff

rod-like fibrils (confirmed separately by small angle X-ray scattering ( Ramzi et al., 1998 ) and electron microscopy ( Dormoy

& Candau, 1991 ) experiments), this scaling behavior can be studied using the Jones and Marques theory of rigid polymer

networks ( Jones & Marques, 1990 ). This theory suggests that the mechanical response of a rigid network of rod-like fibrils

(fractal dimension, D f ≈ 1) follows enthalpic and entropic elasticity at low and high concentration regimes, respectively,

such that the scaling laws in these two regimes are 

E ∼
{
c 2 , c ≤ c c ( enthalpic ) 
c 1 . 5 , c > c c ( entropic ) 

(5)

where E is the elastic (initial) modulus and c c is the cross-over concentration between the two elasticity mechanisms. 

Fig. 4 (a) shows the initial modulus versus concentration (log-log) obtained from uniaxial compression experiments on

agarose gels in the 0.4–4% w/v concentration range. The observed behavior agrees with existing literature in that the

modulus-concentration scaling exponent (slope of the log-log plot) decreases with concentration ( Clark, 1994 ; Normand

et al., 20 0 0 ). Furthermore, the observed behavior is also consistent with the Jones and Marques theory, suggesting different

elasticity mechanisms in the low and high gel concentration regimes. Considering only the concentration range of 1.5–4%

w/v, a scaling exponent of 1.5 is obtained, which points to an entropic elastic response according to the Jones-Marques

theory ( Eq. (5) ). Ramzi et al. ( Ramzi et al., 1998 ) also reached this conclusion via dynamic (oscillatory) compression experi-

ments. The same scaling response (exponent of 1.5) in this concentration range is also observed for the other two primary

deformation modes of tension ( Fig. 4 (b)) and shear ( Fig. 4 (c)). Microstructurally in this high concentration range, the net-

work junctions of agarose gel become flexible, and thus any external force tends to change the conformation of the network,

giving rise to entropic elasticity. 

Figures ( 4a ) and ( 4b ) also include results from a number of other studies in compression ( Normand et al., 20 0 0 ;

Subhash et al., 2011 ; Zhang & Rochas, 1990 ) and tension ( Kwon et al., 2010 ; Normand et al., 20 0 0 ; Subhash et al., 2011 ). Not
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Fig. 4. Elastic modulus versus gel concentration for agarose gel under (a) uniaxial compression, (b) uniaxial tension, and (c) simple shear. 

Fig. 5. Engineering stress versus strain plots of high concentration ( > 1.5%) agarose specimens in (a) uniaxial compression, (c) uniaxial tension, and (e) 

simple shear. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

including oscillatory shear experiments, to the author’s knowledge, the present study is the first to experimentally study

single pulse simple shear response of agarose gel (both small and large deformation). Notice that the exact values of modu-

lus from different literature sources do not match, which is not surprising owing to the possible differences in chemical (e.g.,

average molecular weight, solvent ionic strength) and physical (e.g., strain rate) conditions leading to the mechanical tests.

Of importance is the scaling exponent between the modulus and gel concentration, which is approximately 1.5 across the

included experimental data in 1.5–4% w/v concentration range, pointing to an ideal entropic hyperelastic behavior (tension

data by Kwon et al. ( Kwon et al., 2010 ) is an exception with a scaling exponent of ~2.1). Overall, as hyperelasticity (or rubber

elasticity) assumes a purely entropic deformation (zero energy dissipation), the present study considers only the latter high

concentration regime (1.5–4% w/v) for large deformation analysis. 

4.2. Large deformation behavior in primary deformation modes 

Agarose gels of concentrations 1.5, 2.5 and 4% w/v (entropic elasticity range) are tested in all three primary deformation

modes to provide data necessary for a model of their hyperelastic response. Figs. 5 (a), 5(b) and 5(c) show the stress-strain

plots for uniaxial compression, uniaxial tension and simple shear deformations, respectively. Note, compressive stress ver-

sus strain is plotted in the third quadrant, with the engineering stress and strain on the negative ordinate and abscissa,

respectively. The shaded region around individual plots represents the t -test 95% confidence interval. 

Both elastic modulus and stress to failure increase with increasing gel concentration, which is caused by the increasing

number of EANCs (and so the crosslink density) as the network mesh size decreases. Under uniaxial deformation, the average

compressive failure stress at any gel concentration is ~3–4 times the average tensile failure stress. In contrast, the average

tension modulus is greater than the corresponding average compression modulus for every gel concentration. Out of the

three deformations, compression exhibits the most nonlinear behavior. 

The shear stress-strain data shows a greater amount of variation as compared to the compression and tension test results.

This variation is possibly a result of handling difficulties with thin shear specimens (thickness ~10 times smaller than the

shortest dimension of tensile or compressive specimens), which include gluing the specimen between shear plates and

transferring this setup onto the test fixture, which may cause some surface damage in the gel specimen and/or uneven

adhesion with the shear plates. Regardless, a clear separation in the shear stress-strain plot is apparent between the three

agarose gel concentrations studied. 
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Fig. 6. Experimental and model fitted (using Mooney-Rivlin, generalized Rivlin, Gent and Gent-Gent models) engineering stress versus strain plots of high 

concentration ( > 1.5%) agarose specimens in (a) uniaxial compression, (c) uniaxial tension, and (e) simple shear. Average relative residual error (%) versus gel 

concentration (% w/v) resulting from the four hyperelastic models in (b) uniaxial compression, (d) uniaxial tension, and (f) simple shear. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Model parameters and overall average residual error of fit resulting from the application of four hyperelastic models ( Eq. (1) ) to experimental data for three 

gel concentrations. 

Gel conc. (% 

w/v) 

Mooney-Rivlin (kPa) Generalized Rivlin (kPa) Gent (kPa) Gent-Gent (kPa) 

A 10 A 01 err (%) A 10 A 01 A 11 err (%) μ J m err (%) μ J m C 2 err (%) 

1.5 30.48 −5.89 14.99 83.14 −56.43 31.39 10.68 46.79 4.76E6 16.93 164.01 1.84 −110.64 10.74 

2.5 106.26 −49.89 15.04 203.47 −145.26 71.26 13.60 94.71 4.21E7 12.69 405.34 2.09 −288.98 13.61 

4 170.83 −53.16 12.52 415.17 −293.74 175.62 9.11 215.04 9.39E6 14.01 819.67 1.60 −576.73 9.20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Hyperelastic constitutive modeling 

Figs. 6 (a), 6 (c) and 6 (e) show the numerically fitted stress-strain plots using the four hyperelastic models (Mooney-Rivlin

(MR), generalized Rivlin (GR), Gent (G), and Gent-Gent (GG)) in compression, tension and shear deformations, respectively.

Figs. 6 (b), 6 (d) and 6 (f) show the corresponding average residual errors of fit for individual deformation modes for each gel

concentration, as calculated using Eq. (14) (see Appendix). The exact values of model parameters for each gel concentration

and associated residual errors (averaged over the three deformation modes) are given in Table 1 . 

Not including the Gent model, which consistently yields poor accuracy in tension ( err > 25%), all other hyperelastic mod-

els provide a reasonable agreement with the experimental data for each gel concentration. In addition, although the Gent

model gives accurate values of T 0 
21 

in simple shear, it was shown by Puglisi and Saccomandi ( Puglisi & Saccomandi, 2016 ) that

it gives unrealistic values for the normal stresses in this deformation mode, limiting its applicability in three-dimensional

stress state modeling. In fact, dependence of the strain energy density on both principal invariants ( I 1 and I 2 ) has recently

been demonstrated to be a fundamental requirement for incompressible rubber-like materials ( Destrade, Saccomandi &

Sgura, 2017 ). Further, in the absence of a clear limiting chain extensibility response (i.e., stress tending to infinity on ap-

proaching a particular strain value ( Horgan & Saccomandi, 2003 )), the J m values obtained numerically in the Gent model

are unreasonably large and do not show any trend against gel concentration (see Table 1 ). The latter fact is also true for

the Gent-Gent model, which otherwise shows excellent agreement with the experimental data. On the other hand, the

polynomial generalized Rivlin model provides almost the same accuracy (slightly lower average residual error) as the Gent-

Gent model with equal number of model parameters, and at same time prevents possible computational problems inherent

to the calibration of logarithmic/exponential models in which model parameters occur nonlinearly in stress-deformation

equations (e.g., non-unique optimal solutions and issues related to the choice of initial guess in nonlinear curve fitting).
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Fig. 7. Evolution of the generalized Rivlin model parameters with agarose gel concentration (% w/v) in the high concentration entropic elasticity regime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, unlike the Gent-Gent model, this model (as polynomial strain energy density functions) is available in most

commercial finite element software, thus leading to its convenient implementation to study 3D loading applications. Clearly,

the Gent-Gent model, which provides superior fitting in the case of hyperelastic materials that exhibit extreme deforma-

tions ( Destrade et al., 2017 ), does not lead to any improvement in fitting accuracy in the case of agarose gels, while the

three-parameter generalized Rivlin model provides additional benefits. 

The variation of model parameters of the generalized Rivlin model with gel concentration can be described using a

positive curvature power law trend with an exponent of 1.5, 

A 10 ( c ) = −12 . 76 + 53 . 67 c 1 . 5 (6a) 

A 01 ( c ) = 10 . 75 − 38 . 27 c 1 . 5 (6b) 

A 11 ( c ) = −16 . 27 + 23 . 72 c 1 . 5 (6c) 

where the model parameters are in kPa and gel concentration is in % w/v. The power-law variation of generalized Rivlin

model parameters versus agarose gel concentration ( Eq. (6) ) is plotted in Fig. 7 . As the initial modulus of the generalized

Rivlin model is given by G 0 = 2( A 10 + A 01 ) , the scaling behavior of model elastic modulus in the small strain regime is

consistent with both the experimental findings ( Figs. 5 (b), 5(d) and 5(f)) and the Jones and Marques theory ( Eq. (5) ), 

G 0 = −4 . 02 + 30 . 8 c 1 . 5 (7) 

where G 0 is in kPa. Such a clear and consistent trend in model parameters is not present in the Mooney-Rivlin model,

where a negative curvature power law trend of model parameters versus gel concentration is obtained ( A 10 , A 01 ~ c n , n < 1).

Therefore, superior fitting accuracy and a definitive trend of model parameters versus gel concentration that is consistent

with established scaling relations makes the generalized Rivlin model best suited for modeling the mechanical response of

agarose gel in all primary deformation modes. 

Using Eq. (6) for model parameters, the generalized Rivlin strain energy density function (Eq. (1b) ) for agarose gel is

constructed. The so obtained Extended Generalized Rivlin (EGR) Model is 

W EGR = [ A 10 ( c ) ] ( I 1 − 3 ) + [ A 01 ( c ) ] ( I 2 − 3 ) + [ A 11 ( c ) ] ( I 1 − 3 ) ( I 2 − 3 ) , c ( % w / v ) ε [ 1 . 5 , 4 ] (8) 

where W EGR is the strain energy density in kPa, and A 10 ( c ), A 01 ( c ) and A 11 ( c ) are polymer concentration dependent model

parameter functions (kPa units) as given in Eq. (6). Further, as the network mesh size ( ξ ) is directly related to the gel con-
centration using scaling laws ( Stauffer, Coniglio & Adam, 1982 ), any model that relates concentration to mechanical proper-

ties also relates mesh size to the latter. For agarose gel, the following relation was obtained by Righetti et al. ( Righetti, Brost

& Snyder, 1981 ) using electrophoresis measurements on latex spheres 

ξ = 140 . 7 c −0 . 7 (9) 

where the network mesh size ξ is in nm. Using Eqs. (6) , (8) and (9) , the Extended Generalized Rivlin Model is given in terms

of the microstructural parameter of average mesh (or pore) size as 

W EGR = [ ψ 10 ( ξ ) ] ( I 1 − 3 ) + [ ψ 01 ( ξ ) ] ( I 2 − 3 ) + [ ψ 11 ( ξ ) ] ( I 1 − 3 ) ( I 2 − 3 ) , ξ ( nm ) ε [ 50 , 106 ] (10) 

where 

ψ 10 ( ξ ) = −12 . 76 + 

(
2 . 154 × 10 6 

)
ξ−2 . 15 (11a) 
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Fig. 8. Wedge indentation load versus depth plot of 3% w/v agarose gel as obtained from experiments and FE simulations using the extended generalized 

Rivlin (EGR) model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ψ 01 ( ξ ) = 10 . 75 −
(
1 . 536 × 10 6 

)
ξ−2 . 15 (11b)

ψ 11 ( ξ ) = −16 . 27 + 

(
9 . 519 × 10 5 

)
ξ−2 . 15 (11c)

The concentration dependent extended generalized Rivlin model ( Eq. (8) ) will now be implemented in finite element (FE)

analysis to predict the mechanical response of 3% w/v agarose hydrogel under wedge indentation, which is a complex three-

dimensional strain state with non-zero normal and shear components. This will help evaluate not only the veracity of this

model for concentrations other than those initially used for its calibration (1.5, 2.5 and 4% w/v), but also its transferability

to model a non-homogeneous and triaxial stress state. 

4.4. Application of the “Extended” generalized rivlin model to wedge indentation response 

From Eq. (6) , the extended generalized Rivlin model parameters for 3% w/v agarose gel are obtained as A 10 = 266.12 kPa,

A 01 = −188.11 kPa and A 11 = 106.98 kPa. These parameters are used to define the hyperelastic agarose gel material

in FE simulation of wedge indentation ( Section 3.2 ) via the built-in “polynomial” strain energy potential of order 2 in

Abaqus/Standard ( Abaqus v6.12 Analysis User’s Manual, 2012 ). Fig. 8 shows the load-depth response obtained from experi-

ments and FE simulation. The shaded area in the experimental response represents the t -test 95% confidence interval. 

The extended generalized Rivlin model shows an excellent agreement with the experimental response throughout the

investigated range of depth. The average relative error with respect to the mean experimental values is 5.32% (max. relative

error ~11%). 

Next, the surface strain distributions obtained from experiments (via DIC) and FE simulations in a rectangular area of in-

terest (40 mm x 23.5 mm) for a fixed load value are compared. This load value is taken as 8.62 N, which is the average load

corresponding to the maximum indenter depth of 2 mm in experiments. Fig. 9 compares the various full-field engineering

strain maps of 3% w/v agarose gel: (a) ε11 (xx component), (b) ε22 (yy component), (c) ε12 (in-plane shear component),

and (d) ε33 (out-of-plane zz component). Identical color map ranges are used for both DIC and FE strain fields of individual

strain components. The black and gray regions in the FE contour maps correspond to fast-varying strains concentrated near

the indenter tip. As DIC measurements report averaged strain values over a certain area dependent on subset and step sizes

(further smoothed using a strain filter), these extreme strains lie outside the range of DIC color maps. 

A very good agreement is observed between DIC and FE strain components both in terms of the qualitative shape of

the field and the actual quantitative values. This exercise shows that the extended generalized Rivlin model is applicable not

only to simple primary homogeneous deformation modes, but also to more complex triaxial deformations in the investigated

range of gel concentrations. 

4.5. Importance of multi-deformation mode consideration in hyperelastic constitutive modeling 

Empirical recommendations and recent thermodynamic stability analyses have suggested consideration of multiple de-

formation modes for calibrating hyperelastic models (Ogden, Saccomandi, & Sgura, 2004; Upadhyay, Subhash, & Spearot,

2019b) ; . Nonetheless, numerous mechanical characterization studies consider only a single deformation mode for modeling

purposes, which limits their predictive capability to only that particular deformation mode. In this section, the consequence
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Fig. 9. Comparison of strain-fields as obtained from experiments (via DIC) and FE simulations in the area of interest (40 mm x 23.5 mm): (a) ε11 (xx), 

(b) ε22 (yy), (c) ε12 (xy), and (d) ε33 (zz) engineering strain components. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of considering fewer deformation modes in hyperelastic modeling on the overall fitting accuracy under various deformations

is studied. Four cases are considered: only compression data, only tension data, combined compression and tension data,

and data from all primary deformation modes (compression, tension and shear). Note that the shear only case results in an

indeterminate solution for model constants A 10 and A 01 (see Eq. 4(b) ) and thus cannot be used alone in the calibration of the

Mooney-Rivlin and the generalized Rivlin models. The generalized Rivlin model parameters obtained in the four cases and

the resulting average residual errors over the three gel concentrations in different primary deformation modes (compression

(C), tension (T), and shear (S)) are given in Table 2 . 

From Table 2 , when only the compression data is used to calibrate the generalized Rivlin model, the resulting model

yields a very low average residual error ( err (%) = 1.56%) in compression. However, large errors are obtained for the other

two homogeneous deformations of tension (53.65%) and shear (30.28%). Similarly, the generalized Rivlin model calibrated

using only tension data results in a very good accuracy in tension ( err (%) = 1.02%), but a poor accuracy in other two defor-

mations. On the other hand, when multiple deformation modes are simultaneously considered, the overall fitting accuracy

is considerably improved. Interestingly, modeling using the combined compression-tension data results in a good accuracy

for shear deformation as well (deformation mode not considered in the initial calibration). 

The superior fitting accuracy of hyperelastic models calibrated using multiple deformation modes is also observed for

the three-dimensional stress state of wedge indentation. For example, Fig. 10 shows the experimentally obtained load ver-

sus depth response of 2.5% w/v agarose gel samples along with finite element predictions from generalized Rivlin models

corresponding to the four cases of deformation mode consideration. Both combined compression-tension and combined

compression-tension-shear cases result in load-depth predictions that agree very well with the experimental data. On the

other hand, the compression only and tension only cases result in under- and over-predicted responses, with average resid-

ual errors of approximately 15% and 73%, respectively. Out of the two single deformation mode cases, the compression

only case yields a relatively reasonable indentation load-depth response. This is likely due to the dominance of compressive

strains/stresses in the region near the indenter tip (see Fig. 9 ). 
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Table 2 

Model parameters and overall average residual error of fit resulting from the generalized Rivlin hyperelastic model ( Eq. (1b) ) when different set of primary 

deformation modes are considered in the fitting procedure. 

Deformation mode(s) 

considered Gel conc. (% w/v) 

Generalized Rivlin parameter (kPa) err (%) over all concentrations 

A 10 A 01 A 11 C T S 

Compression only 1.5 −67.67 81.81 −32.44 1.56 53.65 30.28 

2.5 21.01 23.69 −15.15 

4 −252.72 320.94 −120.03 

Tension only 1.5 17.17 15.28 343.74 232.94 1.02 49.82 

2.5 −51.52 122.86 609.71 

4 −176.02 327.73 744.29 

Compression + Tension 1.5 93.88 −66.26 35.89 10.11 8.10 16.27 

2.5 246.90 −184.83 89.22 

4 430.61 −307.44 180.44 

Compression + Ten- 

sion + Shear 

1.5 83.14 −56.43 31.39 9.07 12.09 12.23 

2.5 203.47 −145.26 71.26 

4 415.17 −293.74 175.62 

Fig. 10. Load versus depth plot for 2.5% w/v agarose gel as obtained from experiments and FE simulations. Four different cases of deformation mode 

considerations in calibrating generalized Rivlin model for FE simulations are evaluated. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further, unlike the model parameters obtained in single deformation mode cases, the three generalized Rivlin model

parameters for different gel concentrations in the multiple deformation mode cases show consistency both in terms of their

sign and monotonicity (with respect to gel concentration), as shown in Fig. 11 . Comparing the two multi-deformation mode

cases ( Figs. 11 (c) and 11(d)), the combined compression-tension-shear case provides lower average relative errors and scaling

behavior among individual model parameters ( A 10 , A 01 , A 11 ~ c 1.5 ) that is consistent with small-strain elastic behavior and

the Jones-Marques theory ( Eq. (5) ; Section 3.1 ). 

5. Summary and conclusion 

Uniaxial compression, uniaxial tension, simple shear and wedge indentation experiments are conducted to study, model

and validate the three-dimensional constitutive behavior of agarose hydrogels across a range of gel concentrations. Both

small strain and large nonlinear deformation regimes are investigated. 

Compression experiments are conducted on six different gel concentration samples (0.4, 0.75, 1, 1.5, 2.5 and 4% w/v).

The variation of elastic modulus with gel concentration shows a power law exponent of ~1.5 in the high concentration (1.5,

2.5, 4% w/v) range. This observation confirms the existence of entropic elasticity (as per the Jones and Marques theory) in

high concentration agarose gel, which was also identified by previous studies ( Guenet & Rochas, 2006 ; Ramzi et al., 1998 ).

The power law exponent of ~1.5 in this concentration range is also found in data from the other two primary deformation

experiments of uniaxial tension and simple shear. As entropic elasticity is a fundamental assumption in hyperelasticity, only

the 1.5–4% w/v range is considered for constitutive modeling. 

Large deformation stress-strain data from the three primary deformation modes is modeled using four hyperelastic mod-

els, two of which are polynomial based (Mooney-Rivlin and three-parameter generalized Rivlin) and the other two are ex-

ponential/logarithmic (Gent and Gent-Gent). The Gent model results in a poor accuracy (high residual error) when fitting
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Fig. 11. Evolution of the three-parameter generalized Rivlin model parameters with agarose gel concentration ( c ε [1.5, 4]) when different sets of defor- 

mation modes are considered in model calibration: (a) Only compression test data, (b) Only tension test data, (c) Combined compression-tension data, and 

(d) Combined compression-tension-shear data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to tension data; all other models show reasonable agreement in all deformation modes and in every gel concentration. The

J 2 parameter of the Gent and Gent-Gent models shows no correlation with gel concentration, which is attributed to the

absence of a clear limiting chain extensibility behavior in the stress-strain data of agarose gel. It is concluded that as the

agarose gel does not exhibit extreme stretches/strains, the polynomial-based models offer simple mathematical forms that

prevent curve fitting optimization issues, are available in commercial FE software, and can capture the response with good

accuracy. It is expected that other hydrogels that deform only in the small-moderate strain regime will also be satisfactorily

modeled using the polynomial-based models. Among the Mooney-Rivlin (this is in fact equivalent to a first-order Taylor

expansion of the Gent-Gent model) and the generalized Rivlin models, the latter leads to a superior fitting accuracy because

of the added flexibility allowed by an additional model constant via dependence on higher order terms (as ( I 1 − 3 )( I 2 − 3 ) ),

and shows a remarkable trend in its model parameters versus gel concentration (or network mesh size) that is consis-

tent with the scaling relations obtained in the small-strain regime. The so obtained extended generalized Rivlin model is a

three-dimensional constitutive relation valid across a range of gel concentrations. 

To validate the applicability of the extended generalized Rivlin model to an arbitrary concentration within the entropic

regime and under a complex deformation, the model is employed in FE simulations of the non-homogeneous triaxial wedge

indentation deformation of 3% w/v agarose hydrogel. The model prediction of load-depth response shows excellent agree-

ment with experimental wedge indentation data. Furthermore, the strain-fields near the indenter tip for a particular load

are also compared between model and experiments. A good agreement is observed for all the non-zero strain fields, i.e., the

normal ε11 , ε22 , ε33 as well as in plane-shear ε12 components. 

Finally, the consequence of using fewer deformation modes in the calibration of the three-parameter generalized Rivlin

model is highlighted. Specifically, consideration of a single deformation mode (compression or tension) leads to poor fitting
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accuracy in other primary deformation modes. However, when both compression and tension are combined, a reasonable

prediction of both shear and triaxial indentation data is obtained. The overall residual errors are further reduced when the

shear stress-strain data is added; this improvement is not as significant as when the second uniaxial deformation mode is

added for model calibration. From a practical standpoint, this result is encouraging because stress-strain data under shear

is often unavailable due to complexities in performing the experiment. Interestingly, the importance of considering both

compression and tension deformations was also elucidated mathematically by Upadhyay et al. (Upadhyay et al., 2019b) , who

showed that these two deformations pose opposing restrictions on the bounds of the model constants of the Mooney-Rivlin

and the generalized Rivlin models. 

The experimental procedures outlined in this study can be used for most soft polymeric gels and biological tissues.

However, the analytical procedure should be used with caution keeping in mind the underlying assumptions of hyperelas-

ticity, which require the material to show a fully-reversible and entropic deformation. This may not be true at very low or

high temperatures ( Anseth et al., 1996 ), under variable loading rates ( Upadhyay et al., 2020 ), etc. These situations promote

dissipative or viscoelastic effects, which will be considered in future work to expand the applicability of the extended gener-

alized Rivlin model. Finally, it is worth noting that hyperelastic models (where stress is a function of deformation gradient)

are a subclass of a more general class of implicit constitutive models ( Rajagopal, 20 03 , 20 07 ) that consider a locus for the

stress and kinematic variables, rather than explicitly defining one in terms of the other. A special type of such models are

explicit formulations in which the deformation gradient is expressed as a function of stress. This new approach presents

several advantages over traditional hyperelastic models and its recent application on modeling tensile response (both uni-

axial and biaxial) of rubber has shown promising results (see ( Muliana, Rajagopal, Tscharnuter, Schrittesser & Saccomandi,

2018 )). Application of this approach to modeling 3D response of hydrogels presents another avenue for future research. 

Acknowledgements 

This work was supported by the National Science Foundation under grant nos. CMMI–1634188 and CMMI–1762791 to the

University of Florida, Gainesville, USA. 

Appendix. Model calibration using least squares optimization 

The following least squares minimization problem is considered to fit Eqs. (4a) and ( 4b ) to the test data 

min 
p 

N exp ∑ 

j=1 

m ∑ 

i =1 

[ 
f j 
i 

(
� j 

i 
, p 

)
− τ j 0 ,exp 

i 

] 2 
(12)

where p = [ p 1 , p 2 , . . . , p n ] 
T is the vector containing model parameters ( n total); � j 

i 
and τ j 0 ,exp 

i 
are the i th experimental strain

and stress values, respectively, in j th deformation mode (compression, tension and shear), m is the total number of data

points ( �i , τ
0 ,exp 
i 

) per deformation mode, N exp is the number of deformation modes tested (three in the present study),

and f 
j 
i 
( � j 

i 
, p ) is the symbolic nominal stress expression formulated using some hyperelastic model (e.g., Eqs. (4a) and ( 4b )).

Note, � is a generic strain measure that represents stretch ( λ) in a uniaxial compression/tension experiment and shear

strain ( γ ) in a simple shear experiment. 

For polynomial-based models ( Eqs. (1a) and (1b) ), the function f ( �, p ) is linear in p and the coefficient matrix A

( f ( �, p ) = A (�) · p) is full rank; thus, Eq. (12) results in a unique set of model parameters using the linear least squares

technique ( Ogden et al., 2004 ). Logarithmic Gent and Gent-Gent models, however, result in a function f ( �, p ) that is nonlin-

ear with respect to p ; thus, a nonlinear least squares solution is required. In these cases, the Lsqcurvefit function of MATLAB

is used with the trust-region-reflective (TR) method ( Coleman & Li, 1996 ). The necessary conditions for thermodynamic sta-

bility of individual models (Upadhyay et al., 2019b) are used to provide bounds for the solution search. The convergence

criterion is set such that the algorithm stops when either the Newton step becomes smaller than 10 −8 , the supremum norm

of the objective function gradient becomes less than 10 −12 , or the number of iterations surpasses 30 0 0. Finally, the relative

errors are calculated for each hyperelastic model as 

err j 
i 
= 

∣∣∣ f j i (� j 
i 
, p ∗

)
−τ j 0 ,exp 

i 

∣∣∣
max 

{ 
0 . 1 max 

(
τ j 0 ,exp 

)
,τ j 0 ,exp 

i 

} , i = 1 , 2 , . . . , m ; j = 1 , 2 , . . . , N exp (13)

where p ∗ represents the vector containing optimal model parameters. Note that the term (0.1max ( τ0, exp )) is added in the

denominator to avoid division by very small stresses in the small strain regime, which otherwise would result in falla-
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ciously large error values. Average percentage relative errors ( err (% ) are reported as the measure of the goodness of fit. For

a particular deformation mode (fixed j ), 

err 
j 
( % ) = 

100 

m 

×
m ∑ 

i =1 

err j 
i 

(14) 
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