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The connection between spherical harmonics and symmetric tensors is explored. For each spherical harmonic,
a corresponding traceless symmetric tensor is constructed. These tensors are then extended to include nonzero
traces, providing an orthonormal angular-momentum eigenbasis for symmetric tensors of any rank. The rela-
tionship between the spherical-harmonic tensors and spin-weighted spherical harmonics is derived. The results
facilitate the spherical-harmonic expansion of a large class of tensor-valued functions. Several simple illustrative

examples are discussed, and the formalism is used to derive the leading-order effects of violations of Lorentz

invariance in Newtonian gravity.
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I. INTRODUCTION

Spherical harmonics Y, provide an orthonormal basis
for scalar functions on the 2-sphere and have numerous
applications in physics and related fields. While they are
commonly written in terms of the spherical-coordinate polar
angle 6 and azimuthal angle ¢, spherical harmonics can be
expressed in terms of Cartesian coordinates, which is conve-
nient in certain applications. The Cartesian versions involve
rank-j symmetric trace-free tensors )}, [1-5]. These form a
basis for traceless tensors and provide a link between func-
tions on the sphere and symmetric traceless tensors in three
dimensions.

This work builds on the above understanding in several
ways. We first develop a method for calculating the scalar
spherical harmonics Y}, in terms of components of the direc-
tion unit vector

n =sinfcos¢e, +sinfsinge, + cosbe;. €Y

The result can be used to write the spherical harmonics in
terms of Cartesian coordinates, spherical-coordinate angles,
or any other coordinates. We then extract the traceless V;,
tensors and study their properties. These are extended to
rank-o tensors yj.’m with nonzero trace, which can be used
to perform both a trace and angular-momentum decomposi-
tion of an arbitrary tensor. The formalism is then generalized
to spin-weighted spherical harmonics Y, [6-8] and tensor-
valued function spaces.

Spherical harmonics are eigenfunctions of angular momen-
tum J = S + L, with eigenvalues J?> = j(j + 1) and J, = m,
where m is limited by |m| < j. Angular momentum is the
generator for rotations, so spherical harmonics provide a nat-
ural characterization of the rotational properties and direction
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dependence of a system. For a scalar function f(n), the spin S
is zero, and J is purely orbital angular momentum L, which
accounts for the functional dependence on n. The spheri-
cal decomposition f(n) =" jm Jim¥jm(n) involves quantum
numbers {j, m} associated with the compatible operators
{J2,J.} = {L?, L,}. Each term in the expansion represents just
one example of a structure with definite JZ and J..

In contrast to scalar functions, constant tensors are pure-
spin objects with zero orbital angular momentum. Consider,
for example, a constant traceless symmetric tensor 7' of rank
o. In this case, the total spin and total angular momentum
are both j = p. The symmetry of T implies a total of 2j 4 1
independent components, matching the number of m values
for fixed j. It can be expanded in spin-eigenbasis tensors Vj,
T =Y, TxYjm Each term in this expansion has the same
total angular momentum as the corresponding Y/, term in the
expansion of the scalar f(n), but in the form of spin rather
than orbital angular momentum.

It is not surprising that a connection exists between spher-
ical harmonics Y, (n) and the )}, basis tensors. In fact, the
contraction of the )}, tensor with the n vector j times yields
a scalar function proportional to Y;,,(n). This provides a link
between scalar functions and constant tensors, a relation that
can be generalized to tensor-valued functions. Contracting
Yjn with a single n vector gives a traceless symmetric rank-
(j — 1) tensor function of n. This decreases the spin by 1 and
increases the orbital angular momentum by 1, while leaving
the total angular momentum unchanged. Subsequent contrac-
tions with n continue to convert spin angular momentum to
orbital angular momentum until we arrive at the scalar spher-
ical harmonics Yj,,(n). Consequently, each );, generates a
set of j+ 1 tensor-valued eigenfunctions of J? and J, with
different ranks. For example, the tensor )3 generates four dif-
ferent angular-momentum eigenfunctions: the spin-3 constant
(V30)™*, the spin-2 (V30)™ne, the spin-1 (Vi) nyn,, and
the scalar ()s30)*nanpn,. This procedure yields a natural set
of tensor spherical harmonics of different ranks and spins. The
components of these tensors in a special helicity basis [9] are
the spin-weighted spherical harmonics up to a normalization
factor.
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This paper is organized as follows. The basic theory is
given in Sec. II. Section IT A establishes some notation and
conventions. An expression for scalar spherical harmonics Y},
in terms of the components of n is derived in Sec. II B. This
expression is used in Sec. II C to construct the traceless rank-j
spherical-harmonic tensors );,,. Section II D extends the V;,,
to rank-o tensors yfm with nonzero trace. The connection
between the yé’m and spin-weighted spherical harmonics Y,
is derived in Sec. ITE. Some simple illustrative examples are
given in Sec. III. An application involving Lorentz-invariance
violation in Newtonian gravity is discussed in Sec. IV. Spin
weight and spin-weighted spherical harmonics are reviewed in
Appendix A. Appendix B provides a brief overview of Young
symmetrizers.

II. CONSTRUCTION

A. Notation and conventions

This section establishes some basic notation used through-
out this paper. First, Latin indices a, b,c,... on tensor
components indicate spatial dimensions in one of the coor-
dinate systems described below. Greek letters «, 8, v, ... are
used in Sec. IV to indicate spacetime indices.

Several different special sets of basis vectors are useful.
In addition to the Cartesian basis {e,, e,, e;} = {e*, €’, €°}, we
define J;-basis vectors {e4, e, e;} = {et, el €%}, where

1 1
— ‘L —_— /. = T _— 1
e, =e’ = (e; +ie,), e e (e —iey). (2)
! V2 Y ! V2 '

The standard spherical-coordinate basis vectors are denoted

as {e,, eg, e5} = {e", e, e?}, where
e =n,

e, = —singe, + cosgey. 3)

ey =cosfcospe, +cosfsinpe, —sinfe,,

Finally, we define a helicity basis {e,, e, ,e_} = {e",e™,e™},
where

F 1 ;

eL—=e" = E(eg T iey). “4)
Note that raising and lowering indices in the J, basis ex-
changes “up” and “down” labels, while raising and lowering
indices in the helicity basis exchanges “plus” and “minus”
labels. All bases are defined to be orthonormal: e, - €” = 8F.
We denote the direction cosines between two vectors, not nec-
essarily from the same basis, as g, = e, - €y, &7 =e" - e?,
and g% =e, -e”. Note that these are the components of the
Euclidean metric g = g““'ea ® e, relative to row basis e, and
column basis e, . In addition to defining the inner product,
the metric components can be used to transform tensor com-
ponents between bases, including the raising and lowering of
indices.

We denote the symmetrized tensor product using ©. The
symmetrized product of two vectors v and u is defined to be
vOu= %(v ® u+ u ®v). The k-fold symmetrized product
of a vector v will be written as v®*, which in index no-
tation reads (v®¥)@ % = %v(“l coop®) = p@ ... y%  This is
the simple k-fold tensor pfoduct The product of products
is written (ka ® MGI)GI”'GHI — (k+l)' L ylar ooy oL yake)
More generally, the product of a rank-k tensor 7 and a rank-/

tensor S is (T @ ) k+ = (le)'T(”l @ §a1-air) We write

a k-fold symmetric product of a tensor 7 as 7®¥. The inner
product of two equal-rank tensors 7 and § is defined as the
invariant contraction 7 -§ = T% %S, ., . Finally, a tensor
index written with an exponent, such as a?, indicates g copies
of the index a. For example, T¥Y'2 — T2 is a Cartesian-
basis component of a rank-6 tensor 7.

B. Scalar spherical harmonics

In this section, we develop a method for calculating the
scalar spherical harmonics Y}, in terms of the components of
n. The derivation favors the J, basis, in which the components
of n are given by

1
—(n, +iny) = —sinfe™?,

ny, =
"2 V2
1 ‘
n, = E(nx —iny) = Esinee—ld’, n, =cosf. (5)

The result of the calculation that follows is

Yim(n) = (—sgnm)’"\/( J )(1:2’72 (j—m)

it

X —_— 6)
Z (=2)01 gy, g

where g|;, is the restriction to all non-negative powers
q=1{q+.,49,,q;} that sum to j and obey g4 — g, = m, and
g+, = min(g4, g, ). In practice, this can be accomplished by
summing over ¢, = j — |m|,j—|m|—2,j—|m|—4--- >
0, with the remaining powers set to g4 = %( j+m—gq;)and
q, = %(j — m — q). For illustrative purposes, Y;,, up to j =
4 are given in Table I. Combining Egs. (5) and (6), we can
write the spherical harmonics in terms of Cartesian compo-
nents of n. It also leads to

2i+ DG +mG —m)!
Y_,'m(G,d)):(—sgnm)’"\/( s )(1:2"1;)‘ G=m! g

Z (sin @) T4 (cos 9)4=
2+ (=2)i g, 1q, 1.

(N

qljm

in terms of the spherical-coordinate angles.

The derivation of Eq. (6) starts by taking s; = s, =0, j; =
1, m; = £1, and m, = £, in identity (AS5). This yields the
recursion relation

2j+1
J

—n
Yjep(n) = { niT }%—n(i_m)('l), ®)
which relates different harmonics at the upper and lower limits
of m = % j. Combining this with Yoo = 1/+/4m, we then find

2j+ DIt [(=ny)f
Y./(ij)("):\/g { (n?)j } ®

We next use ladder operators to find the harmonics for other
values of m.

The ladder operators J; =e4 -J and J, =€ -J can be
used, respectively, to raise and lower the J,-eigenvalue m.
When acting on spin-zero scalars, the ladder operators can be
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TABLE I. Spherical harmonics and the traceless spherlcal -harmonic tensors for j <
j—my = (=1)"Y},, which results in the replacement ny <> n; and multiplication by the Condon-Shortley
phase (—1)". The Y, for negative m can be found using V;—m) = (—1)my;fm,

for negative m can be found using Y,

< 4. Only the non-negative m cases are shown. The Y,

resulting in the replacement e; <> e, and multiplication by

(_])ITI'
jm Yjn(n2) Yim
1
00 - 1
10 Jan: e.
1 —y i —e;
20 1/%(}’[3-7&7@) \/g(eZOeZ—q@ei)
21 — ;7_5[1174% — 2eT®eZ
22 \/ Hn% eT @eT
30 = =3nnyn,) \/g(ez Oe,Oe,—3e,Oe, Oe,)
31 — SR @y = nn)) ~Jie 0e. 06 —e; 06 00
32 J 2nin, V3e,0e  Oe,
33 - %n; —e, Oer Oey
40 167{(2n 12n,n,n? +3nTn¢) ,/%(ZeZQeZQeZQeZ—12e¢®e¢®eZ®ez+3e¢®eT®e¢®el)
41 - = Q@und = 3ndnyn,) —\/g(ZeT Oe.0e,Oe,—3e,0e; Oe; Oe;)
42 (3n n? _”H’U \/g(—”% Oer Qe Qe —e, Oey Oep Oey)
43 —\/3nin, —2e,0e,0e; Oe,
44 2} e 0e; Oey Oey

written as the differential operators J, = %(89 +icotfdy)

and J, = %(—89 +icotfdy). Acting on the J.-basis com-
ponents of n, the ladder operators shift the components
according to Jyny = —Jyn, = 0,J4ny = —Jyny = ng, Jyn, =
—n4, and Jyn, =n;. As a result, repeatedly operating on
Eq. (9) with J| or J; introduces other components of n, leav-
ing the total number of components appearing in the product
unchanged. The Y]m harmonics are then combinations of terms
involving nf' n{' n¥, with powers g1, g, and ¢, that sum
to j. Noting that J, = e, -J = —ids, we then have J;n; =
ny, J;n, = —ny, and Jon, = 0, which gives J, n? n‘f nk =
(g1 — q,)n{ n{" n. So the powers also obey gy — g, = m.
This implies that g, is restricted to j — |m|, j — |m| — 2, j —
|m| — - 2 0, with the remaining powers given by g4 =
%(j +m—gq;)and q, = %(j — m — ¢,). The harmonics then
take the form

(+m—q:) 3(j—-m—q.) 4.
ZA,m% np g0

ij(n)

where the constant coefficients Aq are nonzero for the values
of ¢, given above.

Equation (9) implies that the nonzero coefficients for m =

+j are A%, ;) = (F1)/V/(2j + D!/4xj! . To find the other

A’ coefficients, we adopt the conventional normalization

J
{ﬁ}m /<yim+nu¢m>wﬂ> an

Ladder operations then lead to the recursion relation

1
H H 9z
\/5(] tm+ 1)(] :Fm)Aj(mil)

_:|:1 : 1 q:—1 q:+1 2
- E(]:Fm_QZ"i_ )Ajm q:(QZ+1)Ajm . (1)

By replacing m — F(|m| + 1) and taking g, = j — |m|, we
get a recursion for cases in which either g4 or g, vanishes,
which leads to

J=lml _
Al =

(—Sgnm)’"\/(Zj +1) (G +Im])! (13)

|m|! 4 2Im (G — |m|)!

We find a closed-form expression for the remaining coeffi-
cients by combining the raising and lowering relations to get
a recursion between coefficients with the same m:

0=(q; + 1(g: +2)A%"
+ (j+m_qz)(j_n;_‘h)+(‘k_l)qu?;
' — . +2)(—m— 2)
+(J+m q: + L(] m—q;+ )A?fnz- (14)
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Defining

B%, = (g + 1)(gq; +2) A%

(J+m—q)(j—m—q;)
+ > A(JZ,,,, (15)
the recursion relation can be written as B‘;;;2 = —ZB‘]I;H. This

implies that all the B?jn constants are proportional to B;r;""l,

which is zero. Therefore, all B?in constants vanish, and we
have

29: +D@:+2) g0 (16)

A% =
CGAm—g)G—m—gq) "

jm

With this we can write all of the coefficients in terms of those
given in Eq. (13). The result reduces to

g __ (—sgnm)" \/ Qj+DG+mIG—m!
M (=2)Tgy'q,lq;! 47 2l ’
Where Q7~ = %(]—}-m—qz), ql« — %(‘] —m_qz)’ and ZI\N —

min(gy, g ). We then arrive at Eq. (6).

C. Traceless spherical-harmonic tensors

Next, we extract the orthonormal rank-j symmetric trace-
less tensors ), and discuss their properties. Notice that
Eq. (6) can be written as the inner product of two rank-j

tensors,
[@j+ D .
Yim(n) = Tam gl Vim -0, (18)

where the spherical-harmonic tensors are defined as

JIG+m)l(G —m)!
2l (2 — !

Vim = (—Sgnm)m\/

O O
e qTOe (“@e@q

XZT i ZZ. (19)

o (=2)grlq,lq:!

Examples of spherical-harmonic tensors for j < 4 are in-
cluded in Table I. While these are conveniently expressed
in terms of the J,-basis vectors, they can be written in the
Cartesian basis using Eq. (2). More generally, the compo-
nents of ), in any basis e, can be written in terms of
the direction cosines between the e, vectors and the J,-basis
vectors:

Vj) 12
= Vi (€ @R @)

_ m\/(j+m)!<j—m>!
= (=sgam)" [T T

2ml 127 — DN
ag, g, 41 a a, 1 )
y Z g(/]fll e g;T ng+ e f“’ﬂ ngT+q¢+ e g?/

(=2)71q4!q,!q:!
(20)

The complex conjugate of )}, is given by

J1G A+ m)(j = m)!
2m(2j —

Vi, = (—sgnm)'"\/

eTOqT @ el«64¢ @ eZqu

X Z - . 21

~ (=2)1qr'q,'q:!
qljm

Note that the ), include the Condon-Shortley phase and
obey the relation

Viw = (=1)"Vjem. (22)

Below we show that the spherical-harmonic tensors obey the
orthonormality relation

yjm : yjm/ - amm (23)

and serve as an orthonormal basis for the (2j 4 1)-
dimensional space of rank-j symmetric traceless tensors in
three dimensions.

Using the )}, we can perform a spherical decomposition
of an arbitrary symmetric traceless rank-j tensor 7T,

T =Y Tndin (24)

The spherical-expansion coefficients are given by the inner
product with the conjugate basis tensor,
JG+m!(G —m)!

m = yjm T = (—Sgnm) \/ 2|m|(2j — 1)”

TT"T 0 7z

X Z S — (25)

o (=2)gylq,lg:!

The T tensor and the basis tensors )}, are spin-j objects.
Each component has the same j value but can have dif-
ferent m values. The T}, give the components with fixed
J.=m.

The remainder of this section is devoted to proving that
the );,, are traceless and orthonormal. To show that they are

O
q) @ eQ(/

traceless, we first note that the trace of eeqT o e is

q:(q. — 1) ®fh Oq, O(g:—2)

== oM 0"

G- @
2919, o) om H e
S e Qe O €%, (26)
jG=n1 :

So the trace of Eq. (19) is proportional to
QLN 0 eOtu o) e@(q -2)

T (—2)‘mq¢!q¢!(qz -2)!

@(th D

1
o e@(m ) o e?q

2 Z( 2)7t(qr — Di(gy — 1)!g;!

=0, (27

proving that the V;,, tensors are traceless.

To show orthonormality, we contract V;,, with :)Jj’fm,. The
orthogonality of the {e;, e, e.} basis implies that the only
nonzero terms in the resulting double sum are those with
matching g powers. This immediately implies V;,, tensors
with different m values are orthogonal. A short calculation
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then shows that the inner product of two )}, tensors reduces
to

yjm : yjm/ = Sm

Gamig—miy~ |
22— DI 4~ 4ingylg,lg,!”

(28)

qljm

It is then useful to relabel g; = gy, = min(qy,q,), g» =
max(q4, q,), and g3 = g;. The sum in the above expres-
sion can be written as y dlm m(i)ql and is restricted to
q1+q>+ g3 = j and g — q; = |m]|. It can be evaluated by
considering the multinomial expansion

: (1 + +1>j P (1)‘“ n-a
-\ Z — | 7 Z
]! 4Z ) qllqz!qg,! 4

ql;

J
Y G, (29)

m=—j

where g|; is the restriction to sets of non-negative powers
{q1, g2, g3} adding to j. The C, expansion coefficients are

J

o =\/ 0!(2j + Dt
m =\ e+ i+ Dl = !

partial sums further restricted by g, — q; = m. This implies
that the sum in Eq. (28) is equivalent to the coefficient
Cin. We can calculate the C,, coefficients using the contour
integral

1 1,1

Cm:_ —(— lj _(WH'l)d
m ety ‘

22— D!
G +miG—m

where y is any counterclockwise contour enclosing the origin
in the complex plane. Along with Eq. (28), this result implies
the V;,, tensors are orthonormal.

(30)

D. Generalized spherical-harmonic tensors

By taking symmetric products of the V;,, tensors with the
metric g, we can generalize the )}, to create a basis for sym-
metric rank-o tensors including traces. Each metric increases
the rank by 2, so the number of metric tensors in the product
is %(Q — j). We then define

yl_m o) gO%(Q—j)

€29}

( o [Ci Do+ mlG —m! 3 {1 0 el @l o gPre)
= (—Sgnm .
g Wi+ j+ Dl — N 4

(—2)71q4'q, g

These form an orthonormal basis for symmetric rank-p tensors including trace elements. The jm indices give the spin angular
momentum of the basis tensor. The components in any basis e, are given by

(2 s — (_sgnmyr |-GI+ DU MG —m): 3 gy g g g gl g
i ¢ = (= m . . -~
m 2iMele +j+ Do — Dt 4= (=2)71q4!q,'q;!
(32)
In terms of the rank-p spherical-harmonic tensors, the scalar spherical harmonics are
i+ D! — HN
ij(n) _ \/(Q +J +4 ) '(Q J) ylgm .nOQ’ (33)
' 7 o! -
providing a generalization of Eq. (18). The conjugate tensors are
. w [Q2J+ Dol +m)l(j = m)l ! ©et®h © e @ g3
Vo = (~sgnm) - : . (34)
2 (g + j + Do — H! T (=2)71q4!q,!q;!

and satisfy

Q% __ m~)Q
yjm - (_l) Jj(=m)* (35)
The yj.’m of the same rank are orthonormal,
yfm . ylg,;kn, == 8jj’8mm’v (36)

which we prove below. Note that for fixed o, the values
of j are restricted to j =90,0—2,0—4,... >0, and the
total number of yj.’m tensors is Y (2j+ 1) = %(Q + (o +
2), matching the dimension of the space of symmetric

(

rank-p tensors. We recover the traceless spherical-harmonic
tensors YV, = y}m when j = o. Foreven g, j = m = 0 corre-
sponds to the normalized total-trace element Y5, = ¢ © -+ ©

g/vo+ 1.

Any symmetric rank-o tensor T can be expanded in the
generalized spherical-harmonic tensors,

T=> Tnd5, 37)

jm
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where the spherical components are

@) + Dol +m)'(j —m)!
2|m\(Q —+ ] + 1)”(Q o J)”
TTqT Kz 2%2ay...ap—j)»

_ ai...Ae—j)/2 . (38)
(=2)71q4'q,!q;!

X
qljm

This provides both an angular-momentum decomposition and
a trace decomposition. The trace decomposition can be written

127 + D! ,
r=Y [ LEER g eten )
Ve +j+ Dlite — NN

where

Tj == Z ijyjm (40)

are rank- j, symmetric, and traceless.

Definition (31) implies that the generalized spherical-
harmonic tensors of different rank are related through the
recursion relation

ye — ele—1D
MoV e+i+Dle—0)

They are also connected by the trace identity

T e—
g'yfm=\/(9+;(z_)(f; J) o2, @2)

gO VL2 @4l

where the dot - indicates the contraction of g with any two
indices of yj.’m, yielding a tensor of rank o — 2.

We prove trace relation (42) by first considering the con-
traction of the metric g with the symmetric product g© 7T,
where T is a symmetric rank-p tensor. A calculation yields
the identity

8§ (8O0T)=D, T +E,80(g-T), (43)

where D, =2(20+3)/(e+2)e+1) and E, =0(0—
1)/(0 +2)(o + 1). For fixed j and m, we apply this to the
tensors

T,=80T, = gO%(g_'j) O Vim

_ [JMe+j+ DM =DM o
B o!(2j + D Jm

(44)

which gives

8- TQ =g-(go TQ72) = D972 T972 +E972g® (g TQ*Z)'

(45)
Iterating, we find
8- To=Do2+E;2Dg s+ Ey 2E; 4Dy 6+ -
+E, 2 Ej2Dj) T2
(e+Jj+De—)
= £ Ly, s, (46)

ele—1
which leads to Eq. (42).
Next, identities (41) and (42) can be used to show that the
yfm tensors are orthonormal. We first note that orthogonality
follows immediately from the tracelessness and orthogonality
of the YVj,. The inner product y;?m . yj?,j;, involves traces of
Yjm unless j = j' and is proportional to Y, - y}km, = Sum’
when j = j'. Then using Egs. (41) and (42), we can write the
inner product as

0 )0k __ Q(Q B 1) (0=2)\ . yex

Fim yfm_\/<g+j+1)<g—j) (80 V™) - Vi
_ ole—1) (0-2) [, o
\/(Q+j+1)(a—j) Vin " (&)

which implies all yj?m are normalized since the lowest-rank

Vi, = Vjm are normalized.

E. Spin-weighted spherical harmonics

The goal of this section is to show that each helicity-
basis component of the spherical-harmonic tensor y]‘?m is
proportional to a spin-weighted spherical harmonic ,Y;,,. See
Appendix A for a review of spin weight and spin-weighted
harmonics. The key result of the calculation that follows is

(yjé‘?m)+q+ —4— par = ngm ! (e$q+ O e9q7 © 69%) = SNjqu Sij’
(48)

where it is understood that o = ¢+ +¢_ +¢q,, s =q+ — q_,
and g+ = min(qg,, g_). In practice, the constraints can be han-
dled by taking g, =0 —|sl,o—Is|—2,0—|s| —4,... >
0, with the remaining powers set to g = %(Q +s5—q,).
The normalization constants XNf’qi are zero unless o — j =
even > 0, and the nonzero values are given by

W g 1)l
NJT = (osgne) S

X 35 <—7]\i, -

where 3F, is a generalized hypergeometric function. The
special case in Eq. (33) corresponds to ¢ = g— =0, and
Eq. (18) is further restricted to o = j. Note that some pow-

4 (j + |sD!
261(j = IsDlel(e +j + D!!(e — H!
—j i+ 1 - — sl —1
4 J’_Q+]+ 0 |S|’_Q |51 1), 49)
2 2 2 2

[
ers {g+, q—, g,} obeying the above restrictions give vanishing
XNjqu constants, implying that the corresponding components
of yj.’m are zero.
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Equation (48) provides an alternative method for calculat-
ing the spin-weighted spherical harmonics. For example, we
can relate the spin-weighted harmonics Y, to the trace-free
rank-j spherical-harmonic tensors ), by setting ¢ = j. We
can also take g+ = 0 or g_ = 0, which leads to the compara-
tively simple relation

261712 + 1)!!
JY_,-m=<—sgns>f\/ /12 + 1)

(e © £2U1D)
r b

(50)

AT G4+)G—s)! "

where the sign on the ey basis vector is the sign of s. This
generalizes Eq. (18) to nonzero spin weight.

The derivation of Eqgs. (48) and (49) starts by using spin-
weight ladder operators J» = ey - J = \/%(:I:Bg +icscH oy —
s cot 0) to raise and lower the spin weight of Eq. (33). With the
conventional normalization, the spin-weighted harmonics are
related through [9]

1
Ji Yjm = _\/E(j 5+ DG F5) x1¥jm. BD
|

Applying J4 to the right-hand side of Eq. (33), we find that J,.
converts one n = e, to e,. This raises g+ by 1 and lowers g,
by 1, incrementing the spin weight s = g, — g_ but leaving
0 = g+ + g— + g, unchanged. Repeated application of ladder
operators produces an expression of the form of Eq. (48) for
the special case in which either ¢ or ¢g_ is zero, yielding

NI = (—sgns)'(o — [s))!

y . 471(j+!s|)! .
20sl!(j = 1sDe + j + Do — H!

For cases in which ¢; and g_ are both nonzero, we use
the completeness relation g =2e, ©e_ +e, Oe, to write
Eq. (48) as

07 v __ @ Ol Oo—|s|—2q+ OF+ oy
ij sY]m—yjm'(ei ©e; ®e+ ©eZ )

1
2

[ ~ ~
= (—) V5, - [e2" @ P70 @ (g — e, 0 €,)°% ]

G ~
~(=3) Z(E)e0 o (@ oo ) (53)

1

where (i]) ) are binomial coefficients, and the index on the e basis vector matches the sign of s. The sum is limited to 0 < I <

min (%, %(Q — j)), where the limit %(Q — J) is due to the tracelessness of y}m. Using trace identity (42) and Eq. (48), we can

write

- 1\% n —2D)! i+ Do — !
SNJ_qusyjm _ (__> Z <q1i>(_1)l\/ (0 Ne+j+D!le—)) ))f,;ﬂ _ (eim © e0e =)

2 - ollo+j+1-=2D"—j—2D!
(1 @Z(@)H)’ (@ =20 +Jj+ Mo =D 2oy 54
2 —~\ 1 ollo+j+1-2D—j—2D" " e
which leads to
N9 — (Zsgns)’ 1 & 47r(j+Isl)!(a+j+1)!!(9—j)!!Z@i) (=10 = Is| = 21)! (5%)
v 2 2lsIp!(j — |s])! —\ 1) (e+j+1-2DNe~j—2D"

Manipulating the factorials, one can show that the sum in this expression is equivalent to

(@ —IsD!

e—Jj eo+j+1 o—lIsl o—lIs|—-1

Bl —q%, —
(0= +j+ D’ 2( T
which implies Eq. (49).

III. ILLUSTRATIVE EXAMPLES

The formalism developed in this work can be used
to perform a full trace and angular-momentum decom-
position of any tensor or tensor-valued function in three
dimensions. As a simple example, consider the scalar func-
tion of the position vector r = xe, + ye, + ze, = rn given

9 9 ’1 b 56
2 2 2 ) (56)

{
by
fr)=x"+2yz

= rz(%n% + %ni +nyn, —iv2n4n; + iﬁninz).
(57)
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We can write this as
f@)=r’Tnm, (58)

where the tensor T can be taken as symmetric with nonzero
Cartesian components 7 =T =T = 1. In the J, ba-
sis, the nonzero components are 71" = TV =71 = % and
TV = —T1% = j//2. The spherical-harmonic expansion f =
> jm fimYjm(n) can be found by first expanding 7' in the
basis of rank-2 spherical-harmonic tensors: T = } ;| ijy}m.
The spherical components are the projections 7j,, = :)i]z;; -T,
which can be calculated using Eq. (38). The result is

Iy = 3 =i, Ty= _«/_6’ T = ﬁ

(39)

Note that the j = 2 components give the traceless part of
T, while j =0 is the trace component. Using Eq. (33) or
Eq. (48), we can construct the spherical-harmonic expansion

of f:

foy=>"r

jm

Tind5 -1 =Y PP Tj (NP Yj(n).  (60)

So the spherical-harmonic coefficients for the function f are

8
_ 27, 20 .2 :
Tim =1 Tim o™ = \/(j+3)!!(2—j)!z Tim- (OD)

Note that these techniques allow for the algebraic construction
of the spherical-harmonic expansion, providing an alternative
to the standard method, where the coefficients are calculated
through the solid-angle integrals f,m =[Y imf sin0dode.
The scalar f and the tensor 7' in the above example both
contain components with total angular momentum j = 0 and
2. While f has orbital angular momentum and 7' has spin
angular momentum, there is a third object involving T that
incorporates both spin and orbital angular momentum. The
vector V(r) =T -r is a spin-1 function with orbital angular
momentum. Its helicity-basis components are spin-weighted
functions and can be expanded in spin-weighted spherical har-
monics. The radial component V, = e, - V can be expanded in
the usual s = O spherical harmonics, while the Vi =ey -V
components are expanded in s = 1 harmonics. The result is

Vr = VZ ijyjzm . (er ©) er) - rZ ij ONJ‘20 Oij

jm jm

Z\/ 8 e o imoYim

Vi = VZT]my]m (ex Oe) = VZsz 1N 1Y,

= ZF}"Z,/ Tgmi1Y2m (62)

m

Note that since spin weight is limited by |s| <
include j = 2 components.

While the tensor 7 is constant, its helicity-basis compo-
nents are not. They can also be expanded in spin-weighted

Jj, Vi only

spherical harmonics:

Ty =Y Tind5 (€ 0e)=> TimoN: Yim

jm jm

— 8 _—
_Zm (J+3)”(2_j)” Jjm 0L jm >

Zijyjm (eJr Oe_ ) = Zij ONJ'ZI Oij

jm

Z\/zo e

jm

—-J - jz)ij Oij»

T+ = Z ijyjm (e, 0er) = Z Tom £1N3° £1Ya,

[2m
- :FZ T2m ilYZm»

Tes =Y ijyfm ez @es) =Y Ty :aN3" 1Yy

jm m

4
= Z \/ 5 Do £2Yom. (63)

Again, only j = 2 contributes to the s = 1 and £2 compo-
nents.

Notice that any constant symmetric tensor 7' generates a
set of functions with spins ranging from zero to its rank.
The coefficients in the spherical-harmonic expansions of all
these functions are related and differ by A.Nf‘“ factors. Also
notice that we can construct the tensor 7' given the spherical-
harmonic expansions for any one of the functions in the
set. For example, suppose we were given a scalar function
fn=> m 1 fimYim(n) with known coefficients fj,,. Using
Eq. (18) or Eq. (48), we can write f in terms of the traceless
spherical-harmonics tensors:

f jm
f@) =) 2 Vi - r© (64)
jm ONJ
This function is the scalar in the set of tensor-valued functions
generated by the constant tensor 7' =}, | N’O Yim.

The tensor decomposition of a function can also be used to
quickly calculate derivatives of a function. For example, the
gradient of the scalar function f is the vector

Vf= Z]f Vim - 107D, (65)

The helicity-basis components of the gradient have the
spherical-harmonic expansions

e - Vf = er_] ]fjm ij(n)’
jm
LINY°
ey -Vf= ZVJ l]f]mWiIij(”) (66)
jm 0fYj

Vector-calculus operations like this can also be formulated in
terms of the spin-weight ladder operators J [9].
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Finally, we note that while the methods developed here
relate the spherical harmonics to symmetric tensors, they can
be applied to other tensors. Any tensor can be split into sym-
metric tensors with the aid of Young symmetrizers, which are
reviewed in Appendix B. As an example, consider an arbitrary
rank-3 tensor 7. A Young decomposition of the tensor reveals
that it can be written as

T=Ts+Ty+T + T, (67)

where T¢ = 1T is totally symmetric, and T =
Lrlabel s totally antisymmetric. There are two mixed-
symmetry ~pieces, T = L(T% 4 Tcbe — Thac — eab),
which is antisymmetric in the first two indices, and
T = %(T“b" + Thac — Teba _Tbeay which is antisym-
metric under interchange of the first index and last index.
The symmetric part 75 contains ten independent components,
the antisymmetric 74 has one independent component, and the
mixed-symmetry parts have eight independent components
each.

The formalism can be immediately applied to the symmet-
ric part 7. The antisymmetric part can be written as 7/ =
%e“b" f, where €% is the antisymmetric Levi-Civita tensor,
and f = €. (T4)* is a scalar. The mixed symmetry pieces
can be written as

(T)™ = € (1) + (v1)1g"",

abc __ _ac bd [a clb (68)
()™ = €)™ + (v12)g"",

where #; and #, are symmetric and traceless. This shows that
any rank-3 tensor 7 can be split into a rank-3 symmetric
tensor, two traceless rank-2 symmetric tensors, two vectors,
and a scalar. All of these symmetric tensors can be expanded
in spherical harmonics using the above techniques.

IV. APPLICATION

We now turn to a physics application. We use the spherical-
harmonic tensors to calculate the leading-order effects of
violations of Lorentz invariance in the gravitational potential
U, providing an alternative to the approach currently found in
the literature [10]. For experimental tests of Lorentz violation
in Newtonian gravity, see Ref. [11].

Recent decades have seen renewed interest in challenging
Lorentz invariance. These efforts are motivated, in part, by
the observation that Lorentz invariance may be broken in
theories of quantum gravity [12]. They were also spurred by
the development of the standard-model extension (SME), a
theoretical framework providing a general description of all
realistic Lorentz violation in particles and in gravity [13]. The
SME has served as the theoretical foundation for hundreds of
searches for Lorentz violation [14].

The linearized limit of the gauge-invariant gravitational
sector of the SME is given by the Lagrange density [15]

1
L= ZéﬂpaKévaﬂA nkkhuu aa 8/3 hpif

1
+ Z Zhﬂvlc(d)uvpaalu.wJ aa] - aﬂld—z hpg , (69)
d

where £, is the deviation of the spacetime metric from the
constant Minkowski metric 7,,. The first term in Eq. (69)
is the usual linearized Einstein-Hilbert Lagrangian, which
describes conventional gravity in the weak-field limit. The re-
maining parts include all possible Lorentz-violating terms that
are quadratic in h,,,, translationally invariant, and invariant
under the usual gauge transformation, h,, — hy, + 9.&.).
The Lorentz violation is controlled by the K@ spacetime-
tensor coefficients. A Young decomposition splits the tensors
into three classes of coefficients for Lorentz violation, s,
gP, and k@), with the symmetries given in Table 1 of
Ref. [15]. The s© coefficients are nonzero for even d > 4,
the q(d) are nonzero for odd d > 5, and the k> are nonzero
forevend > 6.

The modified equations of motion arising from Eq. (69)
provide a test theory for studies of Lorentz violation in gravi-
tational waves [15,16] and in Newtonian gravity. Assuming a
static mass distribution p(x), it can be shown that the Lorentz-
violating contributions to the Newtonian potential are given
by [10]

1
U = Z Z ]C(d)ll«/l«vvalaz.uad—z 8a| aag R 3ad72X’ (70)
d

where 9, = d/0x“ are spatial derivatives, and d is now re-
stricted to even values. The “superpotential” x is defined as

x(x)=—Gy f ' |x — x| p(x'), (71)

where Gy is Newton’s constant. Both the conventional
potential U = —1V?x = Gy [d*x' p(x')/|x —x| and the
Lorentz-violating potential §U can by found by taking deriva-
tives of x.

Using the above equations, one can calculate the effects
of Lorentz violation on gravity from a mass distribu-
tion p, and experimental constraints can be placed on the
JCmmvvaraz-da- coefficient combinations. This is commonly
done by searching for variations in an experimental signal
while rotating the apparatus. In an inertial frame, these ro-
tations change the mass distribution p and the superpotential
x but not the K@ coefficients. Alternatively, we can work
in a noninertial apparatus-fixed frame in which x is constant
but the K@ coefficients rotate. In either case, the potential
8U varies with these rotations. The frames commonly used in
these types of experiments and the rotations relating them are
discussed in Appendix A.

The significant role played by rotations in tests of Lorentz
invariance prompts an angular-momentum decomposition of
Eq. (70). In Ref. [10], this is done by switching to momen-
tum space, which results in the replacement 9, — ip,. The
p-space potential U (p) is then expanded in spherical har-
monics. Using a Fourier transform to switch back to position
space, one finds that the Lorentz-violating potential takes the
from

Py /
SUx) =Gy » K" / d’x %, (72)
djm
where the sum is restricted to even j and d = j + 2, j + 4.
The vector r = x — x’ is the position relative to the source, and
7 =r/|r| is the direction. The spherical Newton coefficients

043061-9



LEDESMA AND MEWES

PHYSICAL REVIEW RESEARCH 2, 043061 (2020)

N

for Lorentz violation jm  are the linear combinations of com-

ponents of K@ that affect Newtonian gravity at leading order.
The tools developed in this work provide for an alternative
derivation and can be used to find the relationship between
the spherical Newton coefficients and the coefficient tensors
that appear in the Lagrange density.

We first expand in spherical-harmonic tensors,

= 2RO

’C(d)MMVValaz'"ad 2

where
d) _ j~(dppvvaiay-—aq— (d—2)%
Iij = JCDupvvaiay---aq 2(yj )alaz---adfz' (74)
The Lorentz-violating potential can then be written
Z (d—=2)!2j+ D!
JMd+j—Dlid—j=2)!!
x ’Cﬁi’,? Q)OI 20, 30y - 80, x. (T5)

where V? = 8,0 is the Laplacian. Since V*y = —2V?U =0
outside the mass distribution, only d = j+2 and d = j +
4 contribute, giving the restriction on d described above.
Next consider spatial-derivative operators d, acting on the
|x —x'| = |r| appearing in the superpotential (71). Two
derivatives give 4,04, |F| = 8ayar/|F| — ¥a,7a,/I7)?. The term
involving the metric will not contribute since );,, is traceless.
Similar irrelevant terms result when taking higher derivatives.
After a short calculation, this results in

/ d—2)!(2j + D!

oY eros
8U_4GNZ§]'(2J H! Jjid+j—DNd—-j-—2)!

djm

x ’C.E'Lrin) (yjm)a]azma/ / d*x |al|d+j 3 Lo(x), (76)
whereéjd = 1 whend = j +2,Ejd =2—4jwhend = j+4,
and éf = 0 otherwise. Using Eq. (18), the Lorentz-violating
potential reduces to Eq. (72), where

Ny _ B 47(d — 2)! @
Kim 5 (2j =3 \/(d+j—1)!!(d—j—2)!! jm
a7

Combined with Eq. (74), this gives the relationship between
the Newton coefficients and the coefficient tensors in the
Lagrange density of the theory.

Finding §U using Eq. (72) requires calculating a differ-
ent integral for each kl\fflw coefficient. This “many-integrals”
approach may be computatlonally expensive. The spherical-

harmonic tensors lead to a “many-derivatives” alternative,

1 (d) ayax--a,
U = 2 %;’ij (y;i’nZ) ST

0ay x> (78)

which may be easier to compute. Only a single integral is re-
quired in order to calculate the superpotential, and the effects
of Lorentz violation are then found by taking its derivatives.

V. SUMMARY

In this work, we construct an orthonormal set of symmetric
spherical-harmonic tensors. The most general versions are
the rank-p tensors yfm given in Eq. (31). Their connection
to spherical harmonics Y, is given in Eq. (33) and to spin-
weighted spherical harmonics Y, in Eq. (48). In the case in
which the rank ¢ = j, the tensors V), = y]ffm are traceless and
reduce to Eq. (19). Equation (18) gives the relation between
the )j, tensors and the scalar s =0 spherical harmonics
Y. The yfm are constant tensors with spin eigenvalues J* =
j(j+1) and J; = m and form an angular-momentum basis
for symmetric rank-p tensors. Any constant rank-p tensor 7
can be expanded in yfm, providing a full angular-momentum
and trace decomposition.

Section III contains several examples illustrating how the
:))j.’m can be used to expand tensors and tensor-valued functions

in y;?m and how they are connected to spherical-harmonic ex-
pansions. An application of the formalism involving the study
of violations of Lorentz invariance is discussed in Sec. IV.
The leading-order effects of potential Lorentz violation in
Newtonian gravity are formulated in terms of derivatives of
a gravitational superpotential using the ), tensors, provid-
ing a “many-derivatives” alternative to the “many-integrals”
approach that is currently found in the literature.
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APPENDIX A: SPIN-WEIGHTED SPHERICAL
HARMONICS

Spin-weighted spherical harmonics are a form of ten-
sor spherical harmonics and provide an angular-momentum
decomposition for functions with both nonzero spin and or-
bital angular momentum. This Appendix briefly reviews spin
weight and spin-weighted spherical harmonics. A more de-
tailed discussion can be found in Refs. [6-9].

To understand spin weight, first consider the various sets of
compatible angular-momentum operators. The physics litera-
ture typically focuses on the product-space basis, comprised
of eigenfunctions of the operators {S?, L%, S., L.}, and the
total-angular-momentum basis, given by the eigenfunctions
of {S2,L2,J%,J.}. However, a third set exists, {S?, J2, J;, J,},
where the helicity J, =n - J = n - S is the component of the
total angular momentum or spin angular momentum along the
n direction. The spin-weighted spherical harmonics Y;,,(n)
are eigenfunctions of J 2 J., and J,. By convention, the spin
weight s is defined so that it is the eigenvalue of —J,, imply-
ing that spin weight is the opposite of helicity. It is limited
by —j < s < j since it is a component of the total angular
momentum. The usual harmonics correspond to the s =0
case, Yj,, = oYj,. More generally, the spin-weighted spherical
harmonics Y}, form an orthonormal basis for spin-weighted
functions and provide for the angular-momentum expansion
of higher-rank tensor functions.
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A function f(n) is said to have spin-weight s if it trans-
forms according to f — e~** f under an active rotation about
n by angle «. These rotations are generated by the helicity
operator J, = §,. This only depends on spin since orbital
angular momentum L transforms the argument of a function,
and n is invariant under these rotations. Spin S accounts for
the directionality of an object. Spin-weighted functions with
s # 0 change under rotations generated by S,, implying they
are necessarily directional or tensoral in nature. The reverse
is also true. Tensors of nonzero rank have spin weight. More
specifically, the components of a tensor in the helicity basis
{e,, e, e_} are spin-weighted functions [9].

The spin weight of a helicity-basis component of a tensor
is determined by the number of 4- or — indices. Each lowered
= index or raised F index contributes 1 to the spin weight.
For example, a rank-3 tensor has six s = 1 components—
Tirrs Trgrs Topyy Ty, Ty, and T_, ,—each of which can
be expanded in the (Y}, spherical harmonics. In total, the
helicity-basis components of T give 27 spin-weighted func-
tions: one for each of s = £3, three for each of s = £2, six
for each of s = +£1, and seven with s = 0. In general, the spin
weight of the components of a rank-p tensor is limited by
—0<s<o.

Many of the usual spherical-harmonic identities can be
extended to the spin-weighted harmonics. The harmonics of
equal spin weight are orthonormal,

/ Y, Yy sin0d0 de = 8;j8m. (AD)
and satisfy the completeness relations
« 80 =03 —¢)
D Y5(0.9) Y@ ¢) = . (A2)

- sin 6
jm

Assuming a Condon-Shortley phase, they obey the complex-
conjugation rule

Y;;n = (= ])H_m ~sYj(=m)- (A3)
They also obey the parity relation
Yjm(—n) = (=1) _Y;n(n). (A4)

The product of two harmonics is

1 Yj]"ﬂ»‘z szmz

B Z Qi+ D2p+1)
- 4 (2j3 + 1)

(J1j2(=s1)(=52)]j3(—53))

83 j3m3

X <j1j2m1m2|j3m3>S3Yj3mga (AS)

where (j; jomim;|j3ms) are Clebsch-Gordan coefficients.
The spin-weighted harmonics are eigenfunctions of the
square of the total angular momentum J2, the z-component
of the total angular momentum J,, and the helicity J,,
with eigenvalues J?> = j(j + 1), J, =m, and J, = —s. The
spin-weighted harmonics transform relatively simply under
rotations since they are generated by angular momentum J.
All three components of J commute with both J2 and g,
implying that quantum numbers j and s are invariant under
rotations, and rotations only mix harmonics with different m

values, leaving j-s subspaces invariant. The mixing is charac-
terized by the Wigner matrices, defined through

Do) = [ e e e 3, sin0 do dg.
(A6)

where «, B, and y are Euler angles. Note that Eq. (A6)
assumes |s| < j, but is otherwise independent of the the
spin weight s. The above employs a z-y-z rotation conven-
tion, which is advantageous since the spherical harmonics are
eigenfunctions for z rotations, leading to simple phases for
two of the Euler angles,

DY (a, B, y) = e @me v 4 (), (A7)

where d;fni B) = DL{; (0, B, 0) are the little Wigner matrices.

Operating on the components of a tensor, e~ "*/:¢ /8% ¢=iv/:
rotates tensor components by y about the z axis, then by S
about the y axis, and finally by « about the z axis. Interpreting
this as a passive transformation, this corresponds to rotating
the coordinate axes by —y about the z axis, then —p about
the rotated y axis, and then by —« about the new z axis. The
Cartesian components of the old frame {x, y, z} and the rotated
frame {x’, y’, 7'} are related through

x' cosae —sina O cosB 0 sinp
y | = (sina cos« 0) < 0 1 0 )
7 0 0 1/ \—sin 0 cospB

cosy —siny 0\ /x
X (sin y cos y 0) (y) (A8)
0 0 1/ \z
The basis vectors {ey, ey, e.} and the rotated-basis vectors
{e’, e 1 e } also obey this relation.

We can transform the spherical-harmonic expansion of a
function using the Wigner matrices. A spin-weighted func-
tion f(n)=>)_ m fim sYjm(n) rotates according to f'(n) =
> im Fim sYim(@m) = e~@e= B e=iv) f(), giving rotated ex-
pansion coefficients

Fim =2 Do (@ B.Y) fimr-

/

(A9)

m

Consider, for example, rotations of a laboratory due to the
daily rotation of the Earth. Standard reference frames ap-
pear in the literature to account for this rotation [9,14]. A
nonrotating Sun-centered frame is defined so that the Z axis
points along the Earth’s rotation axis, and X and ¥ lie in the
equatorial plane with right ascension 0° and 90°, respectively.
A rotating laboratory-fixed frame is defined with Z pointing
up and X and § horizontal with % at an angle ¢ measured
east of south. The coordinates in these two frames are related
through

X cosa —sina 0 cos X 0 siny
(Y) = (sina cos o O)( 0 1 0 )
VA 0 0 1/ \—siny 0 cosy

cosp —sing 0\ /x
X <sin @  CcosQ O) (y) ,
0 0 1/ \z

(A10)
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where yx is the colatitude of the laboratory, and « is the right
ascension of the laboratory zenith. The spherical-expansion
coefficients in the two frames are related through

S () lab
]nllln = ZDn{m’(a’ X’ (p)f]zyln/v

m

f}“b = ZD;{}L,(—(/J, —X, —a)fjsm”P.

7

(A11)

m

Note that « increases at Earth’s sidereal rate
~2m /23 h 56 min due to the daily rotation of the Earth.
It is common for experiments to be placed on horizontal
turntables so that the angle ¢ varies as well.

APPENDIX B: YOUNG SYMMETRIZERS

This Appendix provides a brief overview of Young sym-
metrizers and their use in the symmetry decomposition of
tensors. For an in-depth treatment, see, e.g., Refs. [17,18].

The splitting of a rank-2 tensor T% into its symmetric
part T¢% = 1T@) = 1(T* 4 Tb) and its antisymmetric part
T = T = (T’ — T?) is a simple example of Young

J

symmetrization. Each of these pieces transforms under a dif-
ferent irreducible representation of the general linear group
GL,, meaning they do not mix under linear transformations of
the underlying n-dimensional vector space. Note that a trace
decomposition provides additional reduction for orthogonal
subgroups, such as rotations or Lorentz transformations. For
example, the trace decomposition of a rank-2 tensor yields
T =T® + T + 1T, where T, = T*g,, is the trace,
and Tgb = TS“" - % g°’T,, is the traceless symmetric part.

Tensors 7% % with larger rank o > 2 contain additional
mixed-symmetry parts. These can be constructed using Young
symmetry projections, each of which can be represented
graphically as a Young tableau. The construction of a tableau
starts by selecting indices from 7°“""*% in any order. Here we
take them in the order they appear and start by drawing a
single-box tableau for the first index. We then combine
this with the next index to produce the two-box tableaus:

[le =l .

Each subsequent index creates a new row or extends an exist-
ing row. For example, the three-box tableaus are

B

a a
(Ee{]) o )= [ o o ®2)
Adding another index gives
a2|a3| a a2|a4| ap a3|a4| a a2| a a3| @ a4| ay|a ap|as
@ 2 a_2 @ Z_z ® Z—j ® Z—z ® as | dy ® alag|” (B3)

One continues in this fashion for all ¢ indices. Note that this produces a smaller number of shapes known as Young diagrams,
and that tableaus with the same diagram are related through permutations of indices.

Young symmetrizers are combinations of symmetrization operators S and antisymmetrization operators A, defined so
that S(ayazay)TH@®ads = T @aaas and A(ayazay)TH @@ = Talwdalas. for example. The Young symmetrizer P
associated with a given tableau is constructed by first symmetrizing on indices in each row and then antisymmetrizing on indices
in each column. For example, the Young symmetrizers for the o = 4 tableaus are

a|a|alal: Py =C S(aimazas), %]

=G Alaiarazas), |%2

1Py =C3 Alayag)S(a1azaz), |92

a azl

1 Ps = Co Alarazas)S(aran),

ay

ay a3|

1 Pr = Cr Alararas)S(aiaz),

ag

ap (14|

1 Py = Cs Alaranaz)S(aias),

as

a

as

: Py = Co Alara3) Alaras)S(aiar)S(azas),

ay

as

12 Pio = Cio Ala1az) A(azaq)S (a1a3)S (ara4).

ap 612|(13|
ay
ag a2|a4| a
s 1Py = C4 Ala1a3)S(arazays),
ap a3|a4| ap
o i Ps = Cs Alamar)S(arazaq), -

(B4)
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FIG. 1. Hook for row r = 2 and column ¢ = 3 with hook length
h3=6.

The C, constants are chosen so that the P, form a complete set
of orthogonal projection operators: ), P, = identity, PP, =
‘P.b,s. The projections T, = P, T give parts of a tensor T =
>, T, that transform under irreducible representations of GL,,.
For example, Py from above gives the tensor

T9a1a2a3a4 — C9(Ta|a2a3a4 + Ta2a103a4 + Ta|a2a4a3 + Ta2a1a4a3
+ Ta3a4u1u2 + Ta4a3a1a2 + Ta3a4azal + Ta4a3azu1

_ Tagaza]m _ T[lz[l}ll|[l4 _ Ta3a2a4a| _ Ta2a3a4a|

_ Ta1a4a3u2 _ Ta4a1a3a2 _ Ta1a4aza3 _ Ta4a1a2u3)

(B5)

Note 77 and 75 in our example are the fully symmetric and
antisymmetric parts. The other parts are said to have mixed
symmetry. Also note that the 7, are antisymmetric in indices
appearing in each column of the tableau. This implies that
a T, vanishes if the number of rows in the tableau exceeds
the dimension n of the space. The 7, are not symmetric in
indices appearing in the rows. However, different conventions
exist, including ones where S operations follow A operations,
leaving the 7, symmetric in row indices.

The mixed-symmetry 7; can have complicated symmetries
leading to more subtle features, which can be uncovered using
symmetrizers. For example, the antisymmetrization of any
three indices of 75> vanishes since

Alararaz)Py = Co Aaiaraz)A(aiar)S(a1azas)
= 2C9 A(a1a2a3)8(a1a3a4) =0. (B6)

The same holds for any choice of three indices.

The C, normalization constants and the number N, of in-
dependent components for a given 7, can be easily calculated
using the hook lengths %, . for the diagram [19]. A hook is a
path through a Young diagram moving up through the bottom
of the diagram to the box in row r and column ¢ and then
out of the diagram to the right. The hook length is the number
boxes the hook passes through. An example is shown in Fig. 1.
The C, normalization constant is the reciprocal of the product
of all the hook lengths for the diagram,

1
=115

rc

B7)

and the number of independent components in tensor 7, is
given by

B8
e (B8)

No= [T
rc

where again n is the dimension of the space. As an ex-
ample, the Py above has normalization constant Co = 1/12,
and the tensor Ty has Ny = (n+ 1)n*(n — 1)/12 indepen-
dent components. The independent components can be taken
as those corresponding to a semistandard tableau, i.e., ones
where the index values increase as one moves down a col-
umn, and do not decrease when moving to the right in a
row. For example, taking n = 3 and working in Cartesian
coordinates {x, y, z}, the Ny = 6 semistandard tableaus for Py
are

ay|a x| x xX|x X | x x|yl |x
as|daq yiyp|lyizpP|lz|zpPP|yl|z|’|z|z|’|z|z

(B9)

Using the symmetries of 7o, all of its components 75" “*““ can
be written as linear combinations of Ty ", T™°, Tg™%, Tg*,
7w9.xyZZ’ and Tg}yzz'
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