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The connection between spherical harmonics and symmetric tensors is explored. For each spherical harmonic,

a corresponding traceless symmetric tensor is constructed. These tensors are then extended to include nonzero

traces, providing an orthonormal angular-momentum eigenbasis for symmetric tensors of any rank. The rela-

tionship between the spherical-harmonic tensors and spin-weighted spherical harmonics is derived. The results

facilitate the spherical-harmonic expansion of a large class of tensor-valued functions. Several simple illustrative

examples are discussed, and the formalism is used to derive the leading-order effects of violations of Lorentz

invariance in Newtonian gravity.
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I. INTRODUCTION

Spherical harmonics Yjm provide an orthonormal basis

for scalar functions on the 2-sphere and have numerous

applications in physics and related fields. While they are

commonly written in terms of the spherical-coordinate polar

angle θ and azimuthal angle φ, spherical harmonics can be

expressed in terms of Cartesian coordinates, which is conve-

nient in certain applications. The Cartesian versions involve

rank- j symmetric trace-free tensors Y jm [1–5]. These form a

basis for traceless tensors and provide a link between func-

tions on the sphere and symmetric traceless tensors in three

dimensions.

This work builds on the above understanding in several

ways. We first develop a method for calculating the scalar

spherical harmonics Yjm in terms of components of the direc-

tion unit vector

n = sin θ cos φ ex + sin θ sin φ ey + cos θ ez. (1)

The result can be used to write the spherical harmonics in

terms of Cartesian coordinates, spherical-coordinate angles,

or any other coordinates. We then extract the traceless Y jm

tensors and study their properties. These are extended to

rank-� tensors Y
�

jm with nonzero trace, which can be used

to perform both a trace and angular-momentum decomposi-

tion of an arbitrary tensor. The formalism is then generalized

to spin-weighted spherical harmonics sYjm [6–8] and tensor-

valued function spaces.

Spherical harmonics are eigenfunctions of angular momen-

tum J = S + L, with eigenvalues J2 = j( j + 1) and Jz = m,

where m is limited by |m| � j. Angular momentum is the

generator for rotations, so spherical harmonics provide a nat-

ural characterization of the rotational properties and direction
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dependence of a system. For a scalar function f (n), the spin S

is zero, and J is purely orbital angular momentum L, which

accounts for the functional dependence on n. The spheri-

cal decomposition f (n) = ∑
jm f jmYjm(n) involves quantum

numbers { j, m} associated with the compatible operators

{J2, Jz} = {L2, Lz}. Each term in the expansion represents just

one example of a structure with definite J2 and Jz.

In contrast to scalar functions, constant tensors are pure-

spin objects with zero orbital angular momentum. Consider,

for example, a constant traceless symmetric tensor T of rank

�. In this case, the total spin and total angular momentum

are both j = �. The symmetry of T implies a total of 2 j + 1

independent components, matching the number of m values

for fixed j. It can be expanded in spin-eigenbasis tensors Y jm,

T = ∑
m TmY jm. Each term in this expansion has the same

total angular momentum as the corresponding Yjm term in the

expansion of the scalar f (n), but in the form of spin rather

than orbital angular momentum.

It is not surprising that a connection exists between spher-

ical harmonics Yjm(n) and the Y jm basis tensors. In fact, the

contraction of the Y jm tensor with the n vector j times yields

a scalar function proportional to Yjm(n). This provides a link

between scalar functions and constant tensors, a relation that

can be generalized to tensor-valued functions. Contracting

Y jm with a single n vector gives a traceless symmetric rank-

( j − 1) tensor function of n. This decreases the spin by 1 and

increases the orbital angular momentum by 1, while leaving

the total angular momentum unchanged. Subsequent contrac-

tions with n continue to convert spin angular momentum to

orbital angular momentum until we arrive at the scalar spher-

ical harmonics Yjm(n). Consequently, each Y jm generates a

set of j + 1 tensor-valued eigenfunctions of J2 and Jz with

different ranks. For example, the tensor Y30 generates four dif-

ferent angular-momentum eigenfunctions: the spin-3 constant

(Y30)abc, the spin-2 (Y30)abcnc, the spin-1 (Y30)abcnbnc, and

the scalar (Y30)abcnanbnc. This procedure yields a natural set

of tensor spherical harmonics of different ranks and spins. The

components of these tensors in a special helicity basis [9] are

the spin-weighted spherical harmonics up to a normalization

factor.
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This paper is organized as follows. The basic theory is

given in Sec. II. Section II A establishes some notation and

conventions. An expression for scalar spherical harmonics Yjm

in terms of the components of n is derived in Sec. II B. This

expression is used in Sec. II C to construct the traceless rank- j

spherical-harmonic tensors Y jm. Section II D extends the Y jm

to rank-� tensors Y
�

jm with nonzero trace. The connection

between the Y
�

jm and spin-weighted spherical harmonics sYjm

is derived in Sec. II E. Some simple illustrative examples are

given in Sec. III. An application involving Lorentz-invariance

violation in Newtonian gravity is discussed in Sec. IV. Spin

weight and spin-weighted spherical harmonics are reviewed in

Appendix A. Appendix B provides a brief overview of Young

symmetrizers.

II. CONSTRUCTION

A. Notation and conventions

This section establishes some basic notation used through-

out this paper. First, Latin indices a, b, c, . . . on tensor

components indicate spatial dimensions in one of the coor-

dinate systems described below. Greek letters α, β, γ , . . . are

used in Sec. IV to indicate spacetime indices.

Several different special sets of basis vectors are useful.

In addition to the Cartesian basis {ex, ey, ez} = {ex, ey, ez}, we

define Jz-basis vectors {e↑, e↓, ez} = {e↓, e↑, ez}, where

e↑ = e↓ = 1√
2

(ex + iey), e↓ = e↑ = 1√
2

(ex − iey). (2)

The standard spherical-coordinate basis vectors are denoted

as {er, eθ , eφ} = {er, eθ , eφ}, where

er = n, eθ = cos θ cos φ ex + cos θ sin φ ey − sin θ ez,

eφ = − sin φ ex + cos φ ey. (3)

Finally, we define a helicity basis {er, e+, e−} = {er, e−, e+},
where

e± = e∓ = 1√
2

(eθ ± ieφ ). (4)

Note that raising and lowering indices in the Jz basis ex-

changes “up” and “down” labels, while raising and lowering

indices in the helicity basis exchanges “plus” and “minus”

labels. All bases are defined to be orthonormal: ea · eb = δb
a.

We denote the direction cosines between two vectors, not nec-

essarily from the same basis, as gaa′ = ea · ea′ , gaa′ = ea · ea′
,

and ga′
a = ea · ea′

. Note that these are the components of the

Euclidean metric g = gaa′
ea ⊗ ea′ relative to row basis ea and

column basis ea′ . In addition to defining the inner product,

the metric components can be used to transform tensor com-

ponents between bases, including the raising and lowering of

indices.

We denote the symmetrized tensor product using �. The

symmetrized product of two vectors v and u is defined to be

v � u = 1
2
(v ⊗ u + u ⊗ v). The k-fold symmetrized product

of a vector v will be written as v
�k , which in index no-

tation reads (v�k )a1···ak = 1
k!

v
(a1 · · · vak ) = v

a1 · · · vak . This is

the simple k-fold tensor product. The product of products

is written (v�k � u�l )a1···ak+l = 1
(k+l )!

v
(a1 · · · vak uak+1 · · · uak+l ).

More generally, the product of a rank-k tensor T and a rank-l

tensor S is (T � S)a1···ak+l = 1
(k+l )!

T (a1···ak Sak+1···ak+l ). We write

a k-fold symmetric product of a tensor T as T �k . The inner

product of two equal-rank tensors T and S is defined as the

invariant contraction T · S = T a1···ak Sa1···ak
. Finally, a tensor

index written with an exponent, such as aq, indicates q copies

of the index a. For example, T x2y3z = T xxyyyz is a Cartesian-

basis component of a rank-6 tensor T .

B. Scalar spherical harmonics

In this section, we develop a method for calculating the

scalar spherical harmonics Yjm in terms of the components of

n. The derivation favors the Jz basis, in which the components

of n are given by

n↑ = 1√
2

(nx + iny) = 1√
2

sin θe+iφ,

n↓ = 1√
2

(nx − iny) = 1√
2

sin θe−iφ, nz = cos θ. (5)

The result of the calculation that follows is

Yjm(n) = (−sgnm)m

√
(2 j + 1)( j + m)!( j − m)!

4π 2|m|

×
∑

q| jm

n
q↑
↑ n

q↓
↓ n

qz
z

(−2)q̂↑↓q↑!q↓!qz!
, (6)

where q| jm is the restriction to all non-negative powers

q = {q↑, q↓, qz} that sum to j and obey q↑ − q↓ = m, and

q̂↑↓ = min(q↑, q↓). In practice, this can be accomplished by

summing over qz = j − |m|, j − |m| − 2, j − |m| − 4 · · · �
0, with the remaining powers set to q↑ = 1

2
( j + m − qz ) and

q↓ = 1
2
( j − m − qz ). For illustrative purposes, Yjm up to j =

4 are given in Table I. Combining Eqs. (5) and (6), we can

write the spherical harmonics in terms of Cartesian compo-

nents of n. It also leads to

Yjm(θ, φ) = (−sgnm)m

√
(2 j + 1)( j + m)!( j − m)!

4π 2|m| eimφ

×
∑

q| jm

(sin θ )q↑+q↓ (cos θ )qz

2(q↑+q↓ )/2(−2)q̂↑↓q↑!q↓!qz!
, (7)

in terms of the spherical-coordinate angles.

The derivation of Eq. (6) starts by taking s1 = s2 = 0, j1 =
1, m1 = ±1, and m2 = ± j2 in identity (A5). This yields the

recursion relation

Yj(± j)(n) =
√

2 j + 1

j

{−n↑
n↓

}
Y( j−1)(± j∓1)(n), (8)

which relates different harmonics at the upper and lower limits

of m = ± j. Combining this with Y00 = 1/
√

4π , we then find

Yj(± j)(n) =
√

(2 j + 1)!!

4π j!

{
(−n↑) j

(n↓) j

}
. (9)

We next use ladder operators to find the harmonics for other

values of m.

The ladder operators J↑ = e↑ · J and J↓ = e↓ · J can be

used, respectively, to raise and lower the Jz-eigenvalue m.

When acting on spin-zero scalars, the ladder operators can be
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TABLE I. Spherical harmonics and the traceless spherical-harmonic tensors for j � 4. Only the non-negative m cases are shown. The Yjm

for negative m can be found using Yj(−m) = (−1)mY ∗
jm, which results in the replacement n↑ ↔ n↓ and multiplication by the Condon-Shortley

phase (−1)m. The Y jm for negative m can be found using Y j(−m) = (−1)mY∗
jm, resulting in the replacement e↑ ↔ e↓ and multiplication by

(−1)m.

jm Yjm(n2) Y jm

00

√
1

4π
1

10

√
3

4π
nz ez

11 −
√

3

4π
n↑ −e↑

20

√
5

4π
(n2

z − n↑n↓)

√
2

3
(ez � ez − e↑ � e↓)

21 −
√

15

4π
n↑nz −

√
2 e↑ � ez

22

√
15

8π
n2

↑ e↑ � e↑

30

√
7

4π
(n3

z − 3n↑n↓nz )

√
2

5
(ez � ez � ez − 3e↑ � e↓ � ez )

31 −
√

21

8π
(2n↑n2

z − n2
↑n↓) −

√
3

5
(2e↑ � ez � ez − e↑ � e↑ � e↓)

32

√
105

8π
n2

↑nz

√
3 e↑ � e↑ � ez

33 −
√

35

8π
n3

↑ −e↑ � e↑ � e↑

40

√
9

16π
(2n4

z − 12n↑n↓n2
z + 3n2

↑n2
↓)

√
2

35
(2ez � ez � ez � ez − 12e↑ � e↓ � ez � ez + 3e↑ � e↑ � e↓ � e↓)

41 −
√

45

8π
(2n↑n3

z − 3n2
↑n↓nz ) −

√
4

7
(2e↑ � ez � ez � ez − 3e↑ � e↑ � e↓ � ez )

42

√
45

8π
(3n2

↑n2
z − n3

↑n↓)

√
4

7
(3e↑ � e↑ � ez � ez − e↑ � e↑ � e↑ � e↓)

43 −
√

315

8π
n3

↑nz −2e↑ � e↑ � e↑ � ez

44

√
315

32π
n4

↑ e↑ � e↑ � e↑ � e↑

written as the differential operators J↑ = eiφ√
2
(∂θ + i cot θ∂φ )

and J↓ = e−iφ√
2

(−∂θ + i cot θ∂φ ). Acting on the Jz-basis com-

ponents of n, the ladder operators shift the components

according to J↑n↑ = −J↓n↓ = 0, J↑n↓ = −J↓n↑ = nz, J↑nz =
−n↑, and J↓nz = n↓. As a result, repeatedly operating on

Eq. (9) with J↓ or J↑ introduces other components of n, leav-

ing the total number of components appearing in the product

unchanged. The Yjm harmonics are then combinations of terms

involving n
q↑
↑ n

q↓
↓ n

qz
z , with powers q↑, q↓, and qz that sum

to j. Noting that Jz = ez · J = −i∂φ , we then have Jzn↑ =
n↑, Jzn↓ = −n↓, and Jznz = 0, which gives Jz n

q↑
↑ n

q↓
↓ n

qz
z =

(q↑ − q↓) n
q↑
↑ n

q↓
↓ n

qz
z . So the powers also obey q↑ − q↓ = m.

This implies that qz is restricted to j − |m|, j − |m| − 2, j −
|m| − 4 · · · � 0, with the remaining powers given by q↑ =
1
2
( j + m − qz ) and q↓ = 1

2
( j − m − qz ). The harmonics then

take the form

Yjm(n) =
∑

qz

A
qz

jm n
1
2

( j+m−qz )

↑ n
1
2

( j−m−qz )

↓ nqz

z , (10)

where the constant coefficients A
qz

jm are nonzero for the values

of qz given above.

Equation (9) implies that the nonzero coefficients for m =
± j are A0

j(± j) = (∓1) j
√

(2 j + 1)!!/4π j! . To find the other

A
qz

jm coefficients, we adopt the conventional normalization

{
J↑
J↓

}
Yjm =

√
1

2
( j ± m + 1)( j ∓ m)Yj(m±1). (11)

Ladder operations then lead to the recursion relation
√

1

2
( j ± m + 1)( j ∓ m) A

qz

j(m±1)

= ±1

2
( j ∓ m − qz + 1)A

qz−1
jm ∓ (qz + 1)A

qz+1
jm . (12)

By replacing m → ∓(|m| + 1) and taking qz = j − |m|, we

get a recursion for cases in which either q↑ or q↓ vanishes,

which leads to

A
j−|m|
jm = (−sgnm)m

|m|!

√
(2 j + 1)

4π 2|m|
( j + |m|)!
( j − |m|)! . (13)

We find a closed-form expression for the remaining coeffi-

cients by combining the raising and lowering relations to get

a recursion between coefficients with the same m:

0 = (qz + 1)(qz + 2) A
qz+2
jm

+ ( j + m − qz )( j − m − qz ) + (qz − 1)qz

2
A

qz

jm

+ ( j + m − qz + 2)( j − m − qz + 2)

4
A

qz−2
jm . (14)
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Defining

B
qz

jm = (qz + 1)(qz + 2) A
qz+2
jm

+ ( j + m − qz )( j − m − qz )

2
A

qz

jm, (15)

the recursion relation can be written as B
qz−2
jm = −2B

qz

jm. This

implies that all the B
qz

jm constants are proportional to B
j−|m|
jm ,

which is zero. Therefore, all B
qz

jm constants vanish, and we

have

A
qz

jm = − 2(qz + 1)(qz + 2)

( j + m − qz )( j − m − qz )
A

qz+2
jm . (16)

With this we can write all of the coefficients in terms of those

given in Eq. (13). The result reduces to

A
qz

jm = (−sgnm)m

(−2)q̂↑↓q↑!q↓!qz!

√
(2 j +1)( j + m)!( j − m)!

4π 2|m| , (17)

where q↑ = 1
2
( j + m − qz ), q↓ = 1

2
( j − m − qz ), and q̂↑↓ =

min(q↑, q↓). We then arrive at Eq. (6).

C. Traceless spherical-harmonic tensors

Next, we extract the orthonormal rank- j symmetric trace-

less tensors Y jm and discuss their properties. Notice that

Eq. (6) can be written as the inner product of two rank- j

tensors,

Yjm(n) =
√

(2 j + 1)!!

4π j!
Y jm · n� j, (18)

where the spherical-harmonic tensors are defined as

Y jm = (−sgnm)m

√
j!( j + m)!( j − m)!

2|m|(2 j − 1)!!

×
∑

q| jm

e
�q↑
↑ � e

�q↓
↓ � e

�qz
z

(−2)q̂↑↓q↑!q↓!qz!
. (19)

Examples of spherical-harmonic tensors for j � 4 are in-

cluded in Table I. While these are conveniently expressed

in terms of the Jz-basis vectors, they can be written in the

Cartesian basis using Eq. (2). More generally, the compo-

nents of Y jm in any basis ea can be written in terms of

the direction cosines between the ea vectors and the Jz-basis

vectors:

(Y jm)a1a2···a j

= Y jm · (ea1 ⊗ ea2 ⊗ · · · ⊗ ea j )

= (−sgnm)m

√
( j + m)!( j − m)!

2|m| j!(2 j − 1)!!

×
∑

q| jm

g
(a1

↑ · · · g
aq↑
↑ g

aq↑+1

↓ · · · g
aq↑+q↓
↓ g

aq↑+q↓+1

z · · · g
a j )
z

(−2)q̂↑↓q↑!q↓!qz!
.

(20)

The complex conjugate of Y jm is given by

Y∗
jm = (−sgnm)m

√
j!( j + m)!( j − m)!

2|m|(2 j − 1)!!

×
∑

q| jm

e↑�q↑ � e↓�q↓ � ez�qz

(−2)q̂↑↓q↑!q↓!qz!
. (21)

Note that the Y jm include the Condon-Shortley phase and

obey the relation

Y∗
jm = (−1)mY j(−m). (22)

Below we show that the spherical-harmonic tensors obey the

orthonormality relation

Y jm · Y∗
jm′ = δmm′ (23)

and serve as an orthonormal basis for the (2 j + 1)-

dimensional space of rank- j symmetric traceless tensors in

three dimensions.

Using the Y jm, we can perform a spherical decomposition

of an arbitrary symmetric traceless rank- j tensor T ,

T =
∑

m

TjmY jm. (24)

The spherical-expansion coefficients are given by the inner

product with the conjugate basis tensor,

Tjm = Y∗
jm · T = (−sgnm)m

√
j!( j + m)!( j − m)!

2|m|(2 j − 1)!!

×
∑

q| jm

T ↑q↑ ↓q↓ zqz

(−2)q̂↑↓q↑!q↓!qz!
. (25)

The T tensor and the basis tensors Y jm are spin- j objects.

Each component has the same j value but can have dif-

ferent m values. The Tjm give the components with fixed

Jz = m.

The remainder of this section is devoted to proving that

the Y jm are traceless and orthonormal. To show that they are

traceless, we first note that the trace of e
�q↑
↑ � e

�q↓
↓ � e

�qz
z is

qz(qz − 1)

j( j − 1)
e
�q↑
↑ � e

�q↓
↓ � e�(qz−2)

z

+ 2q↑q↓
j( j − 1)

e
�(q↑−1)

↑ � e
�(q↓−1)

↓ � e�qz

z . (26)

So the trace of Eq. (19) is proportional to

∑

q| jm

e
�q↑
↑ � e

�q↓
↓ � e

�(qz−2)
z

(−2)q̂↑↓q↑!q↓!(qz − 2)!

+ 2
∑

q| jm

e
�(q↑−1)

↑ � e
�(q↓−1)

↓ � e
�qz
z

(−2)q̂↑↓ (q↑ − 1)!(q↓ − 1)!qz!
= 0, (27)

proving that the Y jm tensors are traceless.

To show orthonormality, we contract Y jm with Y∗
jm′ . The

orthogonality of the {e↑, e↓, ez} basis implies that the only

nonzero terms in the resulting double sum are those with

matching q powers. This immediately implies Y jm tensors

with different m values are orthogonal. A short calculation
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then shows that the inner product of two Y jm tensors reduces

to

Y jm · Y∗
jm′ = δmm′

( j + m)!( j − m)!

2|m|(2 j − 1)!!

∑

q| jm

1

4q̂↑↓q↑!q↓!qz!
.

(28)

It is then useful to relabel q1 = q̂↑↓ = min(q↑, q↓), q2 =
max(q↑, q↓), and q3 = qz. The sum in the above expres-

sion can be written as
∑

q| jm

1
q1!q2!q3!

( 1
4

)
q1

and is restricted to

q1 + q2 + q3 = j and q2 − q1 = |m|. It can be evaluated by

considering the multinomial expansion

1

j!

(
1

4z
+ z + 1

) j

=
∑

q| j

1

q1!q2!q3!

(
1

4

)q1

zq2−q1

=
j∑

m=− j

Cmzm, (29)

where q| j is the restriction to sets of non-negative powers

{q1, q2, q3} adding to j. The Cm expansion coefficients are

partial sums further restricted by q2 − q1 = m. This implies

that the sum in Eq. (28) is equivalent to the coefficient

C|m|. We can calculate the Cm coefficients using the contour

integral

Cm = 1

2π i

∮

γ

1

j!

( 1

4z
+ z + 1

) j
z−(m+1) dz

= 2m(2 j − 1)!!

( j + m)!( j − m)!
, (30)

where γ is any counterclockwise contour enclosing the origin

in the complex plane. Along with Eq. (28), this result implies

the Y jm tensors are orthonormal.

D. Generalized spherical-harmonic tensors

By taking symmetric products of the Y jm tensors with the

metric g, we can generalize the Y jm to create a basis for sym-

metric rank-� tensors including traces. Each metric increases

the rank by 2, so the number of metric tensors in the product

is 1
2
(� − j). We then define

Y
�

jm =
√

�!(2 j + 1)!!

j!(� + j + 1)!!(� − j)!!
Y jm � g� 1

2
(�− j)

= (−sgnm)m

√
(2 j + 1)�!( j + m)!( j − m)!

2|m|(� + j + 1)!!(� − j)!!

∑

q| jm

e
�q↑
↑ � e

�q↓
↓ � e

�qz
z � g� 1

2
(�− j)

(−2)q̂↑↓q↑!q↓!qz!
. (31)

These form an orthonormal basis for symmetric rank-� tensors including trace elements. The jm indices give the spin angular

momentum of the basis tensor. The components in any basis ea are given by

(Y
�

jm)a1a2···a� = (−sgnm)m

√
(2 j + 1)( j + m)!( j − m)!

2|m|�!(� + j + 1)!!(� − j)!!

∑

q| jm

g
(a1

↑ · · · g
aq↑
↑ g

aq↑+1

↓ · · · g
aq↑+q↓
↓ g

aq↑+q↓+1

z · · · g
a j

z g
a j+1a j+2 · · · g

a�−1a� )

(−2)q̂↑↓q↑!q↓!qz!
.

(32)

In terms of the rank-� spherical-harmonic tensors, the scalar spherical harmonics are

Yjm(n) =
√

(� + j + 1)!!(� − j)!!

4π �!
Y

�

jm · n��, (33)

providing a generalization of Eq. (18). The conjugate tensors are

Y
�∗
jm = (−sgnm)m

√
(2 j + 1)�!( j + m)!( j − m)!

2|m|(� + j + 1)!!(� − j)!!

∑

q| jm

e↑�q↑ � e↓�q↓ � ez�qz � g� 1
2

(�− j)

(−2)q̂↑↓q↑!q↓!qz!
(34)

and satisfy

Y
�∗
jm = (−1)mY

�

j(−m). (35)

The Y
�

jm of the same rank are orthonormal,

Y
�

jm · Y�∗
j′m′ = δ j j′δmm′ , (36)

which we prove below. Note that for fixed �, the values

of j are restricted to j = �, � − 2, � − 4, . . . � 0, and the

total number of Y
�

jm tensors is
∑

(2 j + 1) = 1
2
(� + 1)(� +

2), matching the dimension of the space of symmetric

rank-� tensors. We recover the traceless spherical-harmonic

tensors Y jm = Y
j

jm when j = �. For even �, j = m = 0 corre-

sponds to the normalized total-trace element Y
�

00 = g � · · · �
g/

√
� + 1.

Any symmetric rank-� tensor T can be expanded in the

generalized spherical-harmonic tensors,

T =
∑

jm

TjmY
�

jm, (37)
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where the spherical components are

Tjm = Y
�∗
jm · T = (−sgnm)m

√
(2 j + 1)�!( j + m)!( j − m)!

2|m|(� + j + 1)!!(� − j)!!

×
∑

q| jm

T ↑q↑ ↓q↓ zqz a1...a(�− j)/2
a1...a(�− j)/2

(−2)q̂↑↓q↑!q↓!qz!
. (38)

This provides both an angular-momentum decomposition and

a trace decomposition. The trace decomposition can be written

T =
∑

j

√
�!(2 j + 1)!!

j!(� + j + 1)!!(� − j)!!
Tj � g� 1

2
(�− j), (39)

where

Tj =
∑

m

TjmY jm (40)

are rank- j, symmetric, and traceless.

Definition (31) implies that the generalized spherical-

harmonic tensors of different rank are related through the

recursion relation

Y
�

jm =
√

�(� − 1)

(� + j + 1)(� − j)
g � Y

�−2
jm . (41)

They are also connected by the trace identity

g · Y�

jm =
√

(� + j + 1)(� − j)

�(� − 1)
Y

�−2
jm , (42)

where the dot · indicates the contraction of g with any two

indices of Y
�

jm, yielding a tensor of rank � − 2.

We prove trace relation (42) by first considering the con-

traction of the metric g with the symmetric product g � T ,

where T is a symmetric rank-� tensor. A calculation yields

the identity

g · (g � T ) = D� T + E� g � (g · T ), (43)

where D� = 2(2� + 3)/(� + 2)(� + 1) and E� = �(� −
1)/(� + 2)(� + 1). For fixed j and m, we apply this to the

tensors

T� = g � T�−2 = g� 1
2

(�− j) � Y jm

=
√

j!(� + j + 1)!!(� − j)!!

�!(2 j + 1)!!
Y

�

jm, (44)

which gives

g · T� = g · (g � T�−2) = D�−2 T�−2 + E�−2 g � (g · T�−2).

(45)

Iterating, we find

g · T� = (D�−2 + E�−2D�−4 + E�−2E�−4D�−6 + · · ·
+ E�−2 · · · E j+2D j ) T�−2

= (� + j + 1)(� − j)

�(� − 1)
T�−2, (46)

which leads to Eq. (42).

Next, identities (41) and (42) can be used to show that the

Y
�

jm tensors are orthonormal. We first note that orthogonality

follows immediately from the tracelessness and orthogonality

of the Y jm. The inner product Y
�

jm · Y�∗
j′m′ involves traces of

Y jm unless j = j′ and is proportional to Y jm · Y∗
jm′ = δmm′

when j = j′. Then using Eqs. (41) and (42), we can write the

inner product as

Y
�

jm · Y�∗
jm =

√
�(� − 1)

(� + j + 1)(� − j)

(
g � Y

(�−2)
jm

)
· Y�∗

jm

=
√

�(� − 1)

(� + j + 1)(� − j)
Y

(�−2)
jm ·

(
g · Y�∗

jm

)

= Y
(�−2)
jm · Y�−2∗

jm , (47)

which implies all Y
�

jm are normalized since the lowest-rank

Y
j

jm = Y jm are normalized.

E. Spin-weighted spherical harmonics

The goal of this section is to show that each helicity-

basis component of the spherical-harmonic tensor Y
�

jm is

proportional to a spin-weighted spherical harmonic sYjm. See

Appendix A for a review of spin weight and spin-weighted

harmonics. The key result of the calculation that follows is
(
Y

�

jm

)
+q+ −q− rqr

= Y
�

jm · (e
�q+
+ � e

�q−
− � e�qr

r ) = sN
�q̂±
j sYjm,

(48)

where it is understood that � = q+ + q− + qr , s = q+ − q−,

and q̂± = min(q+, q−). In practice, the constraints can be han-

dled by taking qr = � − |s|, � − |s| − 2, � − |s| − 4, . . . �

0, with the remaining powers set to q± = 1
2
(� ± s − qr ).

The normalization constants sN
�q̂±
j are zero unless � − j =

even � 0, and the nonzero values are given by

sN
�q̂±
j = (−sgns)s (� − |s|)!

(−2)q̂±

√
4π ( j + |s|)!

2|s|( j − |s|)!�!(� + j + 1)!!(� − j)!!

× 3F2

(
−q̂±,−� − j

2
,−� + j + 1

2
; −� − |s|

2
,−� − |s| − 1

2
; 1

)
, (49)

where 3F2 is a generalized hypergeometric function. The

special case in Eq. (33) corresponds to q+ = q− = 0, and

Eq. (18) is further restricted to � = j. Note that some pow-

ers {q+, q−, qr} obeying the above restrictions give vanishing

sN
�q̂±
j constants, implying that the corresponding components

of Y
�

jm are zero.
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Equation (48) provides an alternative method for calculat-

ing the spin-weighted spherical harmonics. For example, we

can relate the spin-weighted harmonics sYjm to the trace-free

rank- j spherical-harmonic tensors Y jm by setting � = j. We

can also take q+ = 0 or q− = 0, which leads to the compara-

tively simple relation

sYjm = (−sgns)s

√
2|s| j!(2 j + 1)!!

4π ( j + s)!( j − s)!
Y jm ·

(
e
�|s|
± � e�( j−|s|)

r

)
,

(50)

where the sign on the e± basis vector is the sign of s. This

generalizes Eq. (18) to nonzero spin weight.

The derivation of Eqs. (48) and (49) starts by using spin-

weight ladder operators J± = e± · J = 1√
2
(±∂θ + i csc θ ∂φ −

s cot θ ) to raise and lower the spin weight of Eq. (33). With the

conventional normalization, the spin-weighted harmonics are

related through [9]

J± sYjm = −
√

1

2
( j ± s + 1)( j ∓ s) s±1Yjm. (51)

Applying J± to the right-hand side of Eq. (33), we find that J±
converts one n = er to e±. This raises q± by 1 and lowers qr

by 1, incrementing the spin weight s = q+ − q− but leaving

� = q+ + q− + qr unchanged. Repeated application of ladder

operators produces an expression of the form of Eq. (48) for

the special case in which either q+ or q− is zero, yielding

sN
�0
j = (−sgns)s(� − |s|)!

×
√

4π ( j + |s|)!
2|s|�!( j − |s|)!(� + j + 1)!!(� − j)!!

. (52)

For cases in which q+ and q− are both nonzero, we use

the completeness relation g = 2e+ � e− + er � er to write

Eq. (48) as

sN
�q̂±
j sYjm = Y

�

jm ·
(
e
�|s|
± � e��−|s|−2q̂±

r � e
�q̂±
+ � e

�q̂±
−

)

=
(

1

2

)q̂±

Y
�

jm ·
[
e
�|s|
± � e��−|s|−2q̂±

r � (g − er � er )�q̂±
]

=
(

−1

2

)q̂± ∑

l

(
q̂±
l

)
(−1)l Y

�

jm ·
(
e
�|s|
± � e��−|s|−2l

r � g�l
)
, (53)

where (
p

q
) are binomial coefficients, and the index on the e± basis vector matches the sign of s. The sum is limited to 0 � l �

min (q̂±, 1
2
(� − j)), where the limit 1

2
(� − j) is due to the tracelessness of Y

j

jm. Using trace identity (42) and Eq. (48), we can

write

sN
�q̂±
j sYjm =

(
−1

2

)q̂± ∑

l

(
q̂±
l

)
(−1)l

√
(� − 2l )!(� + j + 1)!!(� − j)!!

�!(� + j + 1 − 2l )!!(� − j − 2l )!!
Y

�−2l

jm ·
(
e
�|s|
± � e��−|s|−2l

r

)

=
(

−1

2

)q̂± ∑

l

(
q̂±
l

)
(−1)l

√
(� − 2l )!(� + j + 1)!!(� − j)!!

�!(� + j + 1 − 2l )!!(� − j − 2l )!!
sN

(�−2l )0
j sYjm, (54)

which leads to

sN
�q̂±
j = (−sgns)s

(
− 1

2

)q̂±
√

4π ( j + |s|)!(� + j + 1)!!(� − j)!!

2|s|�!( j − |s|)!
∑

l

(
q̂±
l

) (−1)l (� − |s| − 2l )!

(� + j + 1 − 2l )!!(� − j − 2l )!!
. (55)

Manipulating the factorials, one can show that the sum in this expression is equivalent to

(� − |s|)!
(� − j)!!(� + j + 1)!!

3F2

(
−q̂±,−� − j

2
,−� + j + 1

2
; −� − |s|

2
,−� − |s| − 1

2
; 1

)
, (56)

which implies Eq. (49).

III. ILLUSTRATIVE EXAMPLES

The formalism developed in this work can be used

to perform a full trace and angular-momentum decom-

position of any tensor or tensor-valued function in three

dimensions. As a simple example, consider the scalar func-

tion of the position vector r = xex + yey + zez = rn given

by

f (r) = x2 + 2yz

= r2
(

1
2
n2

↑ + 1
2
n2

↓ + n↑n↓ − i
√

2 n↑nz + i
√

2 n↓nz

)
.

(57)
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We can write this as

f (r) = r2T abnanb, (58)

where the tensor T can be taken as symmetric with nonzero

Cartesian components T xx = T yz = T zy = 1. In the Jz ba-

sis, the nonzero components are T ↑↑ = T ↓↓ = T ↑↓ = 1
2

and

T ↓z = −T ↑z = i/
√

2. The spherical-harmonic expansion f =∑
jm f jmYjm(n) can be found by first expanding T in the

basis of rank-2 spherical-harmonic tensors: T = ∑
jm TjmY

2
jm.

The spherical components are the projections Tjm = Y2∗
jm · T ,

which can be calculated using Eq. (38). The result is

T2(±2) = 1

2
, T2(±1) = i, T20 = − 1√

6
, T00 = 1√

3
.

(59)

Note that the j = 2 components give the traceless part of

T , while j = 0 is the trace component. Using Eq. (33) or

Eq. (48), we can construct the spherical-harmonic expansion

of f :

f (r) =
∑

jm

r2TjmY
2
jm · n�2 =

∑

jm

r2Tjm 0N20
j Yjm(n). (60)

So the spherical-harmonic coefficients for the function f are

f jm = r2Tjm 0N20
j = r2

√
8π

( j + 3)!!(2 − j)!!
Tjm. (61)

Note that these techniques allow for the algebraic construction

of the spherical-harmonic expansion, providing an alternative

to the standard method, where the coefficients are calculated

through the solid-angle integrals f jm =
∫

Y ∗
jm f sin θ dθ dφ.

The scalar f and the tensor T in the above example both

contain components with total angular momentum j = 0 and

2. While f has orbital angular momentum and T has spin

angular momentum, there is a third object involving T that

incorporates both spin and orbital angular momentum. The

vector V (r) = T · r is a spin-1 function with orbital angular

momentum. Its helicity-basis components are spin-weighted

functions and can be expanded in spin-weighted spherical har-

monics. The radial component Vr = er · V can be expanded in

the usual s = 0 spherical harmonics, while the V± = e± · V

components are expanded in s = ±1 harmonics. The result is

Vr = r
∑

jm

TjmY
2
jm · (er � er ) = r

∑

jm

Tjm 0N20
j 0Yjm

= r
∑

jm

√
8π

( j + 3)!!(2 − j)!!
Tjm 0Yjm,

V± = r
∑

jm

TjmY
2
jm · (e± � er ) = r

∑

m

T2m ±1N20
2 ±1Y2m

= ∓r
∑

m

√
2π

5
T2m ±1Y2m. (62)

Note that since spin weight is limited by |s| � j, V± only

include j = 2 components.

While the tensor T is constant, its helicity-basis compo-

nents are not. They can also be expanded in spin-weighted

spherical harmonics:

Trr =
∑

jm

TjmY
2
jm · (er � er ) =

∑

jm

Tjm 0N20
j 0Yjm

=
∑

jm

√
8π

( j + 3)!!(2 − j)!!
Tjm 0Yjm,

T+− =
∑

jm

TjmY
2
jm · (e+ � e−) =

∑

jm

Tjm 0N21
j 0Yjm

=
∑

jm

√
π

2( j + 3)!!(2 − j)!!
(4 − j − j2) Tjm 0Yjm,

Tr± =
∑

jm

TjmY
2
jm · (er � e±) =

∑

m

T2m ±1N20
2 ±1Y2m

= ∓
∑

m

√
2π

5
T2m ±1Y2m,

T±± =
∑

jm

TjmY
2
jm · (e± � e±) =

∑

m

Tm ±2N20
2 ±2Y2m

=
∑

m

√
4π

5
T2m ±2Y2m. (63)

Again, only j = 2 contributes to the s = ±1 and ±2 compo-

nents.

Notice that any constant symmetric tensor T generates a

set of functions with spins ranging from zero to its rank.

The coefficients in the spherical-harmonic expansions of all

these functions are related and differ by sN
�q̂±
j factors. Also

notice that we can construct the tensor T given the spherical-

harmonic expansions for any one of the functions in the

set. For example, suppose we were given a scalar function

f (r) = ∑
jm r j f jmYjm(n) with known coefficients f jm. Using

Eq. (18) or Eq. (48), we can write f in terms of the traceless

spherical-harmonics tensors:

f (r) =
∑

jm

f jm

0N
j0
j

Y jm · r� j . (64)

This function is the scalar in the set of tensor-valued functions

generated by the constant tensor T = ∑
jm

f jm

0N
j0
j

Y jm.

The tensor decomposition of a function can also be used to

quickly calculate derivatives of a function. For example, the

gradient of the scalar function f is the vector

∇ f =
∑

jm

j f jm

0N
j0
j

Y jm · r�( j−1). (65)

The helicity-basis components of the gradient have the

spherical-harmonic expansions

er · ∇ f =
∑

jm

r j−1 j f jm Yjm(n),

e± · ∇ f =
∑

jm

r j−1 j f jm

±1N
j0
j

0N
j0
j

±1Yjm(n). (66)

Vector-calculus operations like this can also be formulated in

terms of the spin-weight ladder operators J± [9].
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Finally, we note that while the methods developed here

relate the spherical harmonics to symmetric tensors, they can

be applied to other tensors. Any tensor can be split into sym-

metric tensors with the aid of Young symmetrizers, which are

reviewed in Appendix B. As an example, consider an arbitrary

rank-3 tensor T . A Young decomposition of the tensor reveals

that it can be written as

T = TS + TA + T1 + T2, (67)

where T abc
S = 1

6
T (abc) is totally symmetric, and T abc

A =
1
6
T [abc] is totally antisymmetric. There are two mixed-

symmetry pieces, T abc
1 = 1

3
(T abc + T cba − T bac − T cab),

which is antisymmetric in the first two indices, and

T abc
2 = 1

3
(T abc + T bac − T cba − T bca), which is antisym-

metric under interchange of the first index and last index.

The symmetric part TS contains ten independent components,

the antisymmetric TA has one independent component, and the

mixed-symmetry parts have eight independent components

each.

The formalism can be immediately applied to the symmet-

ric part TS . The antisymmetric part can be written as T abc
A =

1
3!

εabc f , where εabc is the antisymmetric Levi-Civita tensor,

and f = εabc(TA)abc is a scalar. The mixed symmetry pieces

can be written as

(T1)abc = εab
d (t1)cd + (v1)[agb]c,

(68)
(T2)abc = εac

d (t2)bd + (v2)[agc]b,

where t1 and t2 are symmetric and traceless. This shows that

any rank-3 tensor T can be split into a rank-3 symmetric

tensor, two traceless rank-2 symmetric tensors, two vectors,

and a scalar. All of these symmetric tensors can be expanded

in spherical harmonics using the above techniques.

IV. APPLICATION

We now turn to a physics application. We use the spherical-

harmonic tensors to calculate the leading-order effects of

violations of Lorentz invariance in the gravitational potential

U , providing an alternative to the approach currently found in

the literature [10]. For experimental tests of Lorentz violation

in Newtonian gravity, see Ref. [11].

Recent decades have seen renewed interest in challenging

Lorentz invariance. These efforts are motivated, in part, by

the observation that Lorentz invariance may be broken in

theories of quantum gravity [12]. They were also spurred by

the development of the standard-model extension (SME), a

theoretical framework providing a general description of all

realistic Lorentz violation in particles and in gravity [13]. The

SME has served as the theoretical foundation for hundreds of

searches for Lorentz violation [14].

The linearized limit of the gauge-invariant gravitational

sector of the SME is given by the Lagrange density [15]

L = 1

4
εμρακενσβληκλhμν∂α∂βhρσ

+
∑

d

1

4
hμνK

(d )μνρσα1···αd−2∂α1
· · · ∂αd−2

hρσ , (69)

where hμν is the deviation of the spacetime metric from the

constant Minkowski metric ημν . The first term in Eq. (69)

is the usual linearized Einstein-Hilbert Lagrangian, which

describes conventional gravity in the weak-field limit. The re-

maining parts include all possible Lorentz-violating terms that

are quadratic in hμν , translationally invariant, and invariant

under the usual gauge transformation, hμν → hμν + ∂(μξν).

The Lorentz violation is controlled by the K(d ) spacetime-

tensor coefficients. A Young decomposition splits the tensors

into three classes of coefficients for Lorentz violation, s(d ),

q(d ), and k(d ), with the symmetries given in Table 1 of

Ref. [15]. The s(d ) coefficients are nonzero for even d � 4,

the q(d ) are nonzero for odd d � 5, and the k(d ) are nonzero

for even d � 6.

The modified equations of motion arising from Eq. (69)

provide a test theory for studies of Lorentz violation in gravi-

tational waves [15,16] and in Newtonian gravity. Assuming a

static mass distribution ρ(x), it can be shown that the Lorentz-

violating contributions to the Newtonian potential are given

by [10]

δU = 1

4

∑

d

K(d )μμννa1a2···ad−2∂a1
∂a2

· · · ∂ad−2
χ, (70)

where ∂a = ∂/∂xa are spatial derivatives, and d is now re-

stricted to even values. The “superpotential” χ is defined as

χ (x) = −GN

∫
d3x′ |x − x′| ρ(x′), (71)

where GN is Newton’s constant. Both the conventional

potential U = − 1
2
∇2χ = GN

∫
d3x′ ρ(x′)/|x − x′| and the

Lorentz-violating potential δU can by found by taking deriva-

tives of χ .

Using the above equations, one can calculate the effects

of Lorentz violation on gravity from a mass distribu-

tion ρ, and experimental constraints can be placed on the

K(d )μμννa1a2···ad−2 coefficient combinations. This is commonly

done by searching for variations in an experimental signal

while rotating the apparatus. In an inertial frame, these ro-

tations change the mass distribution ρ and the superpotential

χ but not the K(d ) coefficients. Alternatively, we can work

in a noninertial apparatus-fixed frame in which χ is constant

but the K(d ) coefficients rotate. In either case, the potential

δU varies with these rotations. The frames commonly used in

these types of experiments and the rotations relating them are

discussed in Appendix A.

The significant role played by rotations in tests of Lorentz

invariance prompts an angular-momentum decomposition of

Eq. (70). In Ref. [10], this is done by switching to momen-

tum space, which results in the replacement ∂a → ipa. The

p-space potential δU (p) is then expanded in spherical har-

monics. Using a Fourier transform to switch back to position

space, one finds that the Lorentz-violating potential takes the

from

δU (x) = GN

∑

d jm

k
N(d )
jm

∫
d3x′ Yjm(r̂) ρ(x′)

|r|d−3
, (72)

where the sum is restricted to even j and d = j + 2, j + 4.

The vector r = x − x′ is the position relative to the source, and

r̂ = r/|r| is the direction. The spherical Newton coefficients
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for Lorentz violation k
N(d )
jm are the linear combinations of com-

ponents of K(d ) that affect Newtonian gravity at leading order.

The tools developed in this work provide for an alternative

derivation and can be used to find the relationship between

the spherical Newton coefficients and the coefficient tensors

that appear in the Lagrange density.

We first expand in spherical-harmonic tensors,

K(d )μμννa1a2···ad−2 =
∑

jm

K
(d )
jm

(
Yd−2

jm

)a1a2···ad−2
, (73)

where

K
(d )
jm = K(d )μμννa1a2···ad−2

(
Y

(d−2)∗
jm

)
a1a2···ad−2

. (74)

The Lorentz-violating potential can then be written

δU = 1

4

∑

d jm

√
(d − 2)!(2 j + 1)!!

j!(d + j − 1)!!(d − j − 2)!!

× K
(d )
jm (Y jm)a1a2···a j ∇d− j−2∂a1

∂a2
· · · ∂a j

χ, (75)

where ∇2 = ∂a∂
a is the Laplacian. Since ∇4χ = −2∇2U = 0

outside the mass distribution, only d = j + 2 and d = j +
4 contribute, giving the restriction on d described above.

Next consider spatial-derivative operators ∂a acting on the

|x − x′| = |r| appearing in the superpotential (71). Two

derivatives give ∂a1
∂a2

|r| = ga1a2
/|r| − ra1

ra2
/|r|3. The term

involving the metric will not contribute since Y jm is traceless.

Similar irrelevant terms result when taking higher derivatives.

After a short calculation, this results in

δU = 1

4
GN

∑

d jm

ξ d
j (2 j − 3)!!

√
(d − 2)!(2 j + 1)!!

j!(d + j − 1)!!(d − j − 2)!!

× K
(d )
jm (Y jm)a1a2···a j

∫
d3x′ ra1

· · · ra j

|r|d+ j−3
ρ(x′), (76)

where ξ d
j = 1 when d = j + 2, ξ d

j = 2 − 4 j when d = j + 4,

and ξ d
j = 0 otherwise. Using Eq. (18), the Lorentz-violating

potential reduces to Eq. (72), where

k
N(d )
jm = 1

4
ξ d

j (2 j − 3)!!

√
4π (d − 2)!

(d + j − 1)!!(d − j − 2)!!
K

(d )
jm .

(77)

Combined with Eq. (74), this gives the relationship between

the Newton coefficients and the coefficient tensors in the

Lagrange density of the theory.

Finding δU using Eq. (72) requires calculating a differ-

ent integral for each k
N(d )
jm coefficient. This “many-integrals”

approach may be computationally expensive. The spherical-

harmonic tensors lead to a “many-derivatives” alternative,

δU = 1

4

∑

d jm

K
(d )
jm

(
Yd−2

jm

)a1a2···ad−2
∂a1

∂a2
· · · ∂ad−2

χ, (78)

which may be easier to compute. Only a single integral is re-

quired in order to calculate the superpotential, and the effects

of Lorentz violation are then found by taking its derivatives.

V. SUMMARY

In this work, we construct an orthonormal set of symmetric

spherical-harmonic tensors. The most general versions are

the rank-� tensors Y
�

jm given in Eq. (31). Their connection

to spherical harmonics Yjm is given in Eq. (33) and to spin-

weighted spherical harmonics sYjm in Eq. (48). In the case in

which the rank � = j, the tensors Y jm = Y
j

jm are traceless and

reduce to Eq. (19). Equation (18) gives the relation between

the Y jm tensors and the scalar s = 0 spherical harmonics

Yjm. The Y
�

jm are constant tensors with spin eigenvalues J2 =
j( j + 1) and Jz = m and form an angular-momentum basis

for symmetric rank-� tensors. Any constant rank-� tensor T

can be expanded in Y
�

jm, providing a full angular-momentum

and trace decomposition.

Section III contains several examples illustrating how the

Y
�

jm can be used to expand tensors and tensor-valued functions

in Y
�

jm and how they are connected to spherical-harmonic ex-

pansions. An application of the formalism involving the study

of violations of Lorentz invariance is discussed in Sec. IV.

The leading-order effects of potential Lorentz violation in

Newtonian gravity are formulated in terms of derivatives of

a gravitational superpotential using the Y jm tensors, provid-

ing a “many-derivatives” alternative to the “many-integrals”

approach that is currently found in the literature.
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APPENDIX A: SPIN-WEIGHTED SPHERICAL

HARMONICS

Spin-weighted spherical harmonics are a form of ten-

sor spherical harmonics and provide an angular-momentum

decomposition for functions with both nonzero spin and or-

bital angular momentum. This Appendix briefly reviews spin

weight and spin-weighted spherical harmonics. A more de-

tailed discussion can be found in Refs. [6–9].

To understand spin weight, first consider the various sets of

compatible angular-momentum operators. The physics litera-

ture typically focuses on the product-space basis, comprised

of eigenfunctions of the operators {S2, L2, Sz, Lz}, and the

total-angular-momentum basis, given by the eigenfunctions

of {S2, L2, J2, Jz}. However, a third set exists, {S2, J2, Jz, Jr},
where the helicity Jr = n · J = n · S is the component of the

total angular momentum or spin angular momentum along the

n direction. The spin-weighted spherical harmonics sYjm(n)

are eigenfunctions of J2, Jz, and Jr . By convention, the spin

weight s is defined so that it is the eigenvalue of −Jr , imply-

ing that spin weight is the opposite of helicity. It is limited

by − j � s � j since it is a component of the total angular

momentum. The usual harmonics correspond to the s = 0

case, Yjm = 0Yjm. More generally, the spin-weighted spherical

harmonics sYjm form an orthonormal basis for spin-weighted

functions and provide for the angular-momentum expansion

of higher-rank tensor functions.
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A function f (n) is said to have spin-weight s if it trans-

forms according to f → e−isα f under an active rotation about

n by angle α. These rotations are generated by the helicity

operator Jr = Sr . This only depends on spin since orbital

angular momentum L transforms the argument of a function,

and n is invariant under these rotations. Spin S accounts for

the directionality of an object. Spin-weighted functions with

s 
= 0 change under rotations generated by Sr , implying they

are necessarily directional or tensoral in nature. The reverse

is also true. Tensors of nonzero rank have spin weight. More

specifically, the components of a tensor in the helicity basis

{er, e+, e−} are spin-weighted functions [9].

The spin weight of a helicity-basis component of a tensor

is determined by the number of + or − indices. Each lowered

± index or raised ∓ index contributes ±1 to the spin weight.

For example, a rank-3 tensor has six s = 1 components—

T+rr , Tr+r , Trr+, T++−, T+−+, and T−++—each of which can

be expanded in the 1Yjm spherical harmonics. In total, the

helicity-basis components of T give 27 spin-weighted func-

tions: one for each of s = ±3, three for each of s = ±2, six

for each of s = ±1, and seven with s = 0. In general, the spin

weight of the components of a rank-� tensor is limited by

−� � s � �.

Many of the usual spherical-harmonic identities can be

extended to the spin-weighted harmonics. The harmonics of

equal spin weight are orthonormal,
∫

sY
∗
jm sYj′m′ sin θ dθ dφ = δ j j′δmm′ , (A1)

and satisfy the completeness relations

∑

jm

sY
∗
jm(θ, φ) sYjm(θ ′, φ′) = δ(θ − θ ′)δ(φ − φ′)

sin θ
. (A2)

Assuming a Condon-Shortley phase, they obey the complex-

conjugation rule

sY
∗
jm = (−1)s+m

−sYj(−m). (A3)

They also obey the parity relation

sYjm(−n) = (−1) j
−sYjm(n). (A4)

The product of two harmonics is

s1
Yj1m1 s2

Yj2m2

=
∑

s3 j3m3

√
(2 j1 + 1)(2 j2 + 1)

4π (2 j3 + 1)
〈 j1 j2(−s1)(−s2)| j3(−s3)〉

× 〈 j1 j2m1m2| j3m3〉 s3
Yj3m3

, (A5)

where 〈 j1 j2m1m2| j3m3〉 are Clebsch-Gordan coefficients.

The spin-weighted harmonics are eigenfunctions of the

square of the total angular momentum J2, the z-component

of the total angular momentum Jz, and the helicity Jr ,

with eigenvalues J2 = j( j + 1), Jz = m, and Jr = −s. The

spin-weighted harmonics transform relatively simply under

rotations since they are generated by angular momentum �J .

All three components of �J commute with both J2 and Jr ,

implying that quantum numbers j and s are invariant under

rotations, and rotations only mix harmonics with different m

values, leaving j-s subspaces invariant. The mixing is charac-

terized by the Wigner matrices, defined through

D
( j)

mm′ (α, β, γ ) =
∫

sY
∗
jme−iαJz e−iβJy e−iγ Jz

sYjm′ sin θ dθ dφ,

(A6)

where α, β, and γ are Euler angles. Note that Eq. (A6)

assumes |s| � j, but is otherwise independent of the the

spin weight s. The above employs a z-y-z rotation conven-

tion, which is advantageous since the spherical harmonics are

eigenfunctions for z rotations, leading to simple phases for

two of the Euler angles,

D
( j)

mm′ (α, β, γ ) = e−iαme−iγ m′
d

( j)

mm′ (β ), (A7)

where d
( j)

mm′ (β ) = D
( j)

mm′ (0, β, 0) are the little Wigner matrices.

Operating on the components of a tensor, e−iαJz e−iβJy e−iγ Jz

rotates tensor components by γ about the z axis, then by β

about the y axis, and finally by α about the z axis. Interpreting

this as a passive transformation, this corresponds to rotating

the coordinate axes by −γ about the z axis, then −β about

the rotated y axis, and then by −α about the new z axis. The

Cartesian components of the old frame {x, y, z} and the rotated

frame {x′, y′, z′} are related through

⎛
⎝

x′

y′

z′

⎞
⎠ =

(
cos α − sin α 0

sin α cos α 0

0 0 1

)(
cos β 0 sin β

0 1 0

− sin β 0 cos β

)

×
(

cos γ − sin γ 0

sin γ cos γ 0

0 0 1

)(
x

y

z

)
. (A8)

The basis vectors {ex, ey, ez} and the rotated-basis vectors

{e′
x, e′

y, e′
z} also obey this relation.

We can transform the spherical-harmonic expansion of a

function using the Wigner matrices. A spin-weighted func-

tion f (n) = ∑
jm f jm sYjm(n) rotates according to f ′(n) =∑

jm f ′
jm sYjm(n) = e−iαJz e−iβJy e−iγ Jz f (n), giving rotated ex-

pansion coefficients

f ′
jm =

∑

m′
D

( j)

mm′ (α, β, γ ) f jm′ . (A9)

Consider, for example, rotations of a laboratory due to the

daily rotation of the Earth. Standard reference frames ap-

pear in the literature to account for this rotation [9,14]. A

nonrotating Sun-centered frame is defined so that the Ẑ axis

points along the Earth’s rotation axis, and X̂ and Ŷ lie in the

equatorial plane with right ascension 0◦ and 90◦, respectively.

A rotating laboratory-fixed frame is defined with ẑ pointing

up and x̂ and ŷ horizontal with x̂ at an angle ϕ measured

east of south. The coordinates in these two frames are related

through

(
X

Y

Z

)
=

(
cos α − sin α 0

sin α cos α 0

0 0 1

)(
cos χ 0 sin χ

0 1 0

− sin χ 0 cos χ

)

×
(

cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0

0 0 1

)(
x

y

z

)
, (A10)
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where χ is the colatitude of the laboratory, and α is the right

ascension of the laboratory zenith. The spherical-expansion

coefficients in the two frames are related through

f Sun
jm =

∑

m′
D

( j)

mm′ (α, χ, ϕ) f lab
jm′ ,

f lab
jm =

∑

m′

D
( j)

mm′ (−ϕ,−χ,−α) f Sun
jm′ . (A11)

Note that α increases at Earth’s sidereal rate

≈2π/23 h 56 min due to the daily rotation of the Earth.

It is common for experiments to be placed on horizontal

turntables so that the angle ϕ varies as well.

APPENDIX B: YOUNG SYMMETRIZERS

This Appendix provides a brief overview of Young sym-

metrizers and their use in the symmetry decomposition of

tensors. For an in-depth treatment, see, e.g., Refs. [17,18].

The splitting of a rank-2 tensor T ab into its symmetric

part T ab
S = 1

2
T (ab) = 1

2
(T ab + T ba) and its antisymmetric part

T ab
A = 1

2
T [ab] = 1

2
(T ab − T ba) is a simple example of Young

symmetrization. Each of these pieces transforms under a dif-

ferent irreducible representation of the general linear group

GLn, meaning they do not mix under linear transformations of

the underlying n-dimensional vector space. Note that a trace

decomposition provides additional reduction for orthogonal

subgroups, such as rotations or Lorentz transformations. For

example, the trace decomposition of a rank-2 tensor yields

T ab = T ab
S + T ab

A + 1
n
gabTtr, where Ttr = T abgab is the trace,

and T ab
S = T ab

S − 1
n
gabTtr is the traceless symmetric part.

Tensors T a1···a� with larger rank � > 2 contain additional

mixed-symmetry parts. These can be constructed using Young

symmetry projections, each of which can be represented

graphically as a Young tableau. The construction of a tableau

starts by selecting indices from T a1···a� in any order. Here we

take them in the order they appear and start by drawing a

single-box tableau a1 for the first index. We then combine

this with the next index to produce the two-box tableaus:

a1 ⊗ a2 = a1 a2 ⊕
a1

a2
. (B1)

Each subsequent index creates a new row or extends an exist-

ing row. For example, the three-box tableaus are

(
a1 a2 ⊕

a1

a2

)
⊗ a3 = a1 a2 a3 ⊕

a1 a2

a3
⊕

a1 a3

a2
⊕

a1

a2

a3

. (B2)

Adding another index gives

a1 a2 a3 a4 ⊕

a1

a2

a3

a4

⊕
a1 a2 a3

a4
⊕

a1 a2 a4

a3
⊕

a1 a3 a4

a2
⊕

a1 a2

a3

a4

⊕
a1 a3

a2

a4

⊕
a1 a4

a2

a3

⊕
a1 a2

a3 a4
⊕

a1 a3

a2 a4
. (B3)

One continues in this fashion for all � indices. Note that this produces a smaller number of shapes known as Young diagrams,

and that tableaus with the same diagram are related through permutations of indices.

Young symmetrizers are combinations of symmetrization operators S and antisymmetrization operators A, defined so

that S (a2a3a4)T a1a2a3a4a5... = T a1(a2a3a4 )a5... and A(a2a3a4)T a1a2a3a4a5... = T a1[a2a3a4]a5..., for example. The Young symmetrizer P

associated with a given tableau is constructed by first symmetrizing on indices in each row and then antisymmetrizing on indices

in each column. For example, the Young symmetrizers for the � = 4 tableaus are

a1 a2 a3 a4 : P1 = C1 S (a1a2a3a4),

a1 a2

a3

a4

: P6 = C6 A(a1a3a4)S (a1a2),

a1

a2

a3

a4

: P2 = C2 A(a1a2a3a4),

a1 a3

a2

a4

: P7 = C7 A(a1a2a4)S (a1a3),

a1 a2 a3

a4
: P3 = C3 A(a1a4)S (a1a2a3),

a1 a4

a2

a3

: P8 = C8 A(a1a2a3)S (a1a4),

a1 a2 a4

a3
: P4 = C4 A(a1a3)S (a1a2a4),

a1 a2

a3 a4
: P9 = C9 A(a1a3)A(a2a4)S (a1a2)S (a3a4),

a1 a3 a4

a2
: P5 = C5 A(a1a2)S (a1a3a4),

a1 a3

a2 a4
: P10 = C10 A(a1a2)A(a3a4)S (a1a3)S (a2a4). (B4)
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FIG. 1. Hook for row r = 2 and column c = 3 with hook length

h2,3 = 6.

The Cι constants are chosen so that the Pι form a complete set

of orthogonal projection operators:
∑

ι Pι = identity, PιPι′ =
Pιδιι′ . The projections Tι = PιT give parts of a tensor T =∑

ι Tι that transform under irreducible representations of GLn.

For example, P9 from above gives the tensor

T
a1a2a3a4

9 = C9(T a1a2a3a4 + T a2a1a3a4 + T a1a2a4a3 + T a2a1a4a3

+ T a3a4a1a2 + T a4a3a1a2 + T a3a4a2a1 + T a4a3a2a1

− T a3a2a1a4 − T a2a3a1a4 − T a3a2a4a1 − T a2a3a4a1

− T a1a4a3a2 − T a4a1a3a2 − T a1a4a2a3 − T a4a1a2a3 ).

(B5)

Note T1 and T2 in our example are the fully symmetric and

antisymmetric parts. The other parts are said to have mixed

symmetry. Also note that the Tι are antisymmetric in indices

appearing in each column of the tableau. This implies that

a Tι vanishes if the number of rows in the tableau exceeds

the dimension n of the space. The Tι are not symmetric in

indices appearing in the rows. However, different conventions

exist, including ones where S operations follow A operations,

leaving the Tι symmetric in row indices.

The mixed-symmetry Tι can have complicated symmetries

leading to more subtle features, which can be uncovered using

symmetrizers. For example, the antisymmetrization of any

three indices of T
a1a2a3a4

9 vanishes since

A(a1a2a3)P9 = C9 A(a1a2a3)A(a1a2)S (a1a3a4)

= 2C9 A(a1a2a3)S (a1a3a4) = 0. (B6)

The same holds for any choice of three indices.

The Cι normalization constants and the number Nι of in-

dependent components for a given Tι can be easily calculated

using the hook lengths hr,c for the diagram [19]. A hook is a

path through a Young diagram moving up through the bottom

of the diagram to the box in row r and column c and then

out of the diagram to the right. The hook length is the number

boxes the hook passes through. An example is shown in Fig. 1.

The Cι normalization constant is the reciprocal of the product

of all the hook lengths for the diagram,

Cι =
∏

r,c

1

hr,c

, (B7)

and the number of independent components in tensor Tι is

given by

Nι =
∏

r,c

n + c − r

hr,c

, (B8)

where again n is the dimension of the space. As an ex-

ample, the P9 above has normalization constant C9 = 1/12,

and the tensor T9 has N9 = (n + 1)n2(n − 1)/12 indepen-

dent components. The independent components can be taken

as those corresponding to a semistandard tableau, i.e., ones

where the index values increase as one moves down a col-

umn, and do not decrease when moving to the right in a

row. For example, taking n = 3 and working in Cartesian

coordinates {x, y, z}, the N9 = 6 semistandard tableaus for P9

are

a1 a2

a3 a4
= x x

y y ,
x x

y z ,
x x

z z ,
x y

y z ,
x y

z z ,
y y

z z .

(B9)

Using the symmetries of T9, all of its components T
a1a2a3a4

9 can

be written as linear combinations of T
xxyy

9 , T
xxyz

9 , T xxzz
9 , T

xyyz

9 ,

T
xyzz

9 , and T
yyzz

9 .
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