

Low-oxygen hormetic conditioning improves field performance of sterile insects by inducing beneficial plasticity.

López-Martínez, G., Carpenter, J.L., Hight, S.P., and Hahn, D.A.

2020.

Evolutionary Applications

DOI: 10.1111/eva.13141

7

8

9

10

11

12

13

14

15

16

17

18

19

Abstract

20 As part of Sterile Insect Technique (SIT) programs, irradiation can effectively induce sterility in
21 insects by damaging germline genomic DNA. However, irradiation also induces other off-target
22 side effects that reduce the quality and performance of sterilized males, including the formation
23 of damaging free radicals that can reduce sterile male performance. Thus, treatments that reduce
24 off-target effects of irradiation on male performance while maintaining sterility can improve the
25 feasibility and economy of SIT programs. We previously found that inducing a form of rapid,
26 beneficial plasticity with a one-hour anoxic conditioning period (physiological conditioning
27 hormesis) prior to and during irradiation improves male flight performance in the laboratory
28 while maintaining sterility in males of the cactus moth, *Cactoblastis cactorum*. Here we extend
29 this work by testing the extent to which this beneficial plasticity may improve male flight
30 performance and longevity in the field. Based on capture rates after a series of mark release-
31 recapture experiments, we found that anoxia-conditioned irradiated moths were active in the
32 field longer than their irradiated counterparts. In addition, anoxia-conditioned moths were
33 captured in traps that were farther away from the release site than unconditioned moths,
34 suggesting greater dispersal. These data confirmed that beneficial plasticity induced by anoxia
35 hormesis prior to irradiation led to lower post-irradiation damage and increased flight
36 performance and recapture duration under field conditions. We recommend greater consideration
37 of beneficial plasticity responses in biological control programs, and specifically the
38 implementation of anoxia-conditioning treatments applied prior to irradiation in area-wide
39 integrated pest management programs that use SIT.

40

41 **Keywords:** hormesis, sterile insect technique, modified atmospheres, anoxia

42 **Introduction**

43 The sterile insect technique (SIT) is an ecologically friendly tool that can be successfully
44 used in area-wide integrative pest management programs. SIT uses ionizing radiation, such as
45 gamma, X-rays, and e-beam radiation, to induce double-stranded DNA breaks that cause
46 dominant-lethal mutations leading to sterility in insects. Sterile insects, usually males, are then
47 released into a target area where these sterile males mate with wild females, thereby suppressing
48 pest reproduction. SIT is used in several contexts from suppressing established pest populations
49 to preventing the establishment of pests in areas of frequent introduction (Klassen and Curtis
50 2005). Over the last 60 years, SIT has been successfully used to control invasions and outbreaks
51 of multiple fly species (screwworms; *Cochliomyia hominivorax*, Mediterranean fruit flies;
52 *Ceratitis capitata* and other tephritid flies) and moth species (pink bollworms; *Pectinophora*
53 *gossypiella*, codling moths; *Cydia pomonella*) including the cactus moth; *Cactoblastis cactorum*)
54 as part of area-wide integrated pest management programs (AW-IPM; Klassen and Curtis 2005,
55 Hight et al. 2005).

56 An important factor in successful SIT programs is choosing the right dose at which to
57 irradiate the insects and doing so at the appropriate stage of development (age). Selecting a
58 radiation dose is a fragile balance wherein one must expose insects to enough radiation to
59 generate sufficient double-stranded DNA breaks to cause the desired sterility, while avoiding
60 undesirable negative side effects (Rull et al. 2012). Off-target effects to irradiated insects can be
61 caused by several types of damage; from direct ionization of critical cellular proteins, lipids, or
62 other macromolecules, to secondary downstream damage to macromolecules caused by the

63 actions of free radicals that are produced as ionizing radiation splits gaseous oxygen and cellular
64 water (Harman 1956, von Sonntang 1987, Hulbert et al. 2007).

65 The dose of radiation needed to ensure complete sterility may be considered too high if it
66 leads to decreases in organismal performance: including reduced flight ability, mating, and
67 longevity (Calkins and Parker 2005, Parker and Mehta 2007, López-Martínez and Hahn 2012,
68 López-Martínez et al. 2014). One solution is to use a radiation dose that causes the largest
69 increase in male sterility, while promoting sexual competitiveness (Bloem et al. 1999, Bloem et
70 al. 2005). Most SIT programs tend to use the lowest possible dose that induces adequate sterility.
71 However, when full sterility is too costly (i.e., insect competitiveness suffers and so does
72 program efficacy), SIT programs can even use partial sterility with the goal of releasing better
73 performing insects (reviewed by Carpenter et al. 2005).

74 SIT programs designed for lepidopterans (i.e., moths) use radiation doses that lead to
75 partial parental sterility, a concept called inherited sterility (a.k.a., F₁ sterility; North 1975,
76 Carpenter et al. 2001). This approach is used because lepidopterans are among the most
77 radiation-tolerant insects. Their high radiation tolerance is in part due to their holocentric
78 chromosomal structures, which require very high ionizing radiation doses to cause enough
79 double-stranded DNA breaks to induce complete sterility (Bauer 1967, Carpenter et al. 2005).
80 However, the high doses needed to induce direct sterility affect moth performance negatively
81 with side effects ranging from the inability to walk or fly well, to morphological deformations.
82 Thus, to our knowledge, all active moth SIT programs use partial-sterility approaches (Carpenter
83 et al. 2001, Bloem et al. 2003, López-Martínez et al. 2016a). Using an inherited sterility
84 approach to SIT requires an important balance between target dose and organismal performance.
85 Integrating beneficial plasticity responses to increase irradiated male performance without

86 decreasing male infertility would be particularly useful for implementation in lepidopteran SIT
87 programs.

88 The use of low-oxygen during irradiation was first studied in lepidopterans more than 40
89 years ago, where it was noticed that nitrogen atmospheres had protective effects on moth
90 performance (Robinson 1975). Since then, irradiation in modified (low-oxygen) atmospheres has
91 been actively used in fruit fly SIT programs, but this approach has not been applied to moth SIT
92 programs despite the evidence of its effectiveness (FAO/IAEA/USDA 2003, Bakri et al. 2005).

93 More recently, work from our group has shown that anoxia-conditioning prior and during
94 irradiation improves multiple metrics of organismal performance (treatment survival, flight
95 ability, mating, and longevity) in laboratory assays in flies (López-Martínez and Hahn 2012,
96 López-Martínez and Hahn 2014, Teets et al. 2019) and moths (López-Martínez et al 2014,
97 2016b). It has been suggested that this type of beneficial plasticity application in insect systems
98 might be the kind of powerful tool needed for improving quality in SIT (Sørensen et al. 2012). It
99 is well recognized that environmental temperature can affect the success of sterile male releases
100 (Bloem et al. 2005, Sorensen et al 2012, Boersma et al. 2019). Beneficial acclimation to low
101 temperatures has already been shown to improve flight performance and recapture rates of male
102 coddling moths on cool spring days (Chidawanyika and Terblanche 2011), and such promising
103 results of beneficial acclimation regimes should be investigated for other stresses that may affect
104 sterile male performance.

105 Here we extend our previous lab-based work on anoxia-conditioning treatments by
106 applying this technique to a series of field mark release-recapture experiments. Male moths
107 treated to one-hour of anoxia conditioning prior to and during irradiation were found to be more
108 active in the field than unconditioned moths irradiated in normoxia by all three of our measures

109 of performance: day of capture after release, distance traveled, and direction of capture. Anoxia-
110 conditioned irradiated males were trapped in the field longer than non-conditioned irradiated
111 males. Additionally, anoxia-conditioned males were captured farther away from the release point
112 and over a wider range of our trapping array. Our data indicates that induced beneficial plasticity
113 by anoxia-conditioning males prior to irradiation, a treatment that was previously shown to
114 reduce post-irradiation oxidative damage and increase performance in the lab (López-Martínez et
115 al 2014, 2016a), also increases performance and longevity in the field.

116

117 **Materials and methods**

118 **Animal preparation**

119 All cactus moths, *Cactoblastis cactorum* (Berg) (Lepidoptera: Pyralidae), used in these
120 experiments were reared at the USDA-ARS Crop Protection and Management Research Unit in
121 Tifton, GA. This is the same colony that was used for cactus moth SIT releases as part of a bi-
122 national cactus moth eradication program between the US and Mexico (Hight et al. 2005). Newly
123 emerged adult cactus moths were sorted every morning in a 4°C room into 100 x 15 mm petri
124 dishes, kept immobilized at 4°C to prevent wing damage due to movement inside the petri
125 dishes, and transported from USDA-Tifton to the University of Florida in Gainesville, FL (250
126 km away). At the University of Florida, they were once again sexed and sorted into groups for
127 treatments. Moths were kept at a relatively low density in the petri dishes (100-150 moths < 1.5
128 cm in length) for each treatment and release.

129 **Radiation treatments**

130 Male adult moths were irradiated within 24 hrs. of adult emergence at 200 Gy using a
131 Varian L-1000A electron-beam irradiator (5.2MeV, 1.5 kW, CGR MeV, France) with a copper
132 plate to convert electron beam radiation into X-rays at the Florida Accelerator Services and
133 Technology facility within the Division of Plant Industry of the Florida Department of
134 Agriculture and Consumer Services, Gainesville, Florida.

135 Moths were exposed to one of two treatments: normoxia (normal air) and irradiation at
136 200Gy (Nx200), the current SIT dose treatment for cactus moth inherited sterility, or one hour of
137 exposure to anoxia (<0.1% oxygen) followed immediately by irradiation at 200Gy while still in
138 anoxia (Ax200). Moths were held in 100 x 15mm petri dishes during irradiation and kept at 3.5
139 to 4.5°C using 30 x 30 cm cold blocks. All petri dishes were bagged and sealed in custom-sized
140 4 mil thick polypropylene bags. Normoxia moths were sealed in bags that had been heavily
141 perforated with a 20-gauge syringe to allow the flow of air into the dishes containing moths,
142 while anoxia-conditioned moths were sealed in intact bags flushed with nitrogen as previously
143 described to induce a hormetic antioxidant response for this species (López-Martínez et al.
144 2014). Gafchromic HD-810 film (International Specialty Products, Wayne, NJ, USA) was used
145 to verify the dose and uniformity of radiation received by the moths by placing film strips inside
146 of paper envelopes at the top and bottom of the petri dishes prior to irradiation. Our dose
147 uniformity rate (DUR) for our release experiments was 1.01.

148 After irradiation but prior to field release, moths were marked with fluorescent powder
149 (Dayglo Color Corp, Cleveland, OH, USA). An array of different colors was used to differentiate
150 moths between treatments (normoxia-treated vs. anoxia-conditioned) and between subsequent
151 releases (orange, green, red, blue, or yellow). These powders have been found not to be
152 detrimental to moth performance (Hagler and Jackson 2001). The colors used were alternated

153 weekly between the treatments to prevent color bias in our handling (or predation). Marked
154 moths were identifiable under an UV light source for their full lifespan in the laboratory (3
155 weeks) and field (~1 week). We also noted that even after dead and stored at room temperature
156 (~25°C), the color was still present at one month.

157 **Laboratory flight assays**

158 Throughout the field mark-release-recapture experiments across different seasons, male
159 moths were randomly chosen after irradiation and subjected to our lab-based flight ability assay
160 as a metric of quality consistency in moth performance. Briefly, three to five groups of 10 moths
161 each were chosen from the treated individuals, prior to marking, and tested. For each test, a
162 single moth was gently flung from a petri dish (100 x 15 mm) in a darkened 3 x 6 meter room
163 with a red light on to observe moths. Moths were scored as either flying or dropping to the
164 ground. This flight propensity assay was taken directly from our previous work on anoxic-
165 conditioning and performance in the laboratory (López-Martínez et al. 2014). In our previous
166 study, propensity to fly within a treatment was also strongly positively associated with greater
167 flight durations and flight distances among moths in that treatment. At least one flight ability test
168 was carried out during each field release trial; haphazardly either early, mid, or late in the trial to
169 act as a quality control check.

170 **Field mark-release-recapture experiments**

171 Irradiated moths were transported at 4°C to the University of Florida's Plant Science
172 Research and Education Unit (PSREU) facility in Citra, Florida (38 km south of the University
173 of Florida) to carry out the release-capture experiments. PSREU has a large section of the facility
174 dedicated to organic farm research, including pesticide free zones. Within one of these areas the

175 Florida Department of Agriculture and Consumer Services (FDACS) maintains a prickly pear
176 cactus (*Opuntia* sp.) plot measuring roughly 50 by 25 meters specifically for cactus moth
177 research (Hight and Carpenter 2016). Field releases were carried out in the afternoons between
178 3:30 pm and 5 pm, a time coinciding with the peak of male cactus moth flight activity (Sarvary
179 et al. 2008).

180 Our first field-release study was performed in mid-summer from July 31, 2012
181 (7/31/2012) to August 9, 2012 (8/9/2012). The average temperature at the time of the first release
182 (~3:30 to 4:30 pm) was 30.4 °C with an average daily high of 32.1 °C and an average nightly
183 low of 22.5 °C. We also include additional information on wind speed, precipitation, and cloud
184 cover during all three releases in a supplementary table (S1). The cactus patch, measuring ~1,250
185 m² in area, was crossed with seven transects running east to west. Each transect contained nine
186 heavy-duty steel posts that were equally spaced along each transect. A Pherocon 1C wing trap
187 (Trécé Incorporated, Adair, OK, USA) sat at a height of 152.4 cm on top of each steel post (total
188 of 63 traps). Pherocon traps have a flexible plastic top and a plastic bottom which is coated with
189 a sticky material on the inside that traps the moths that enter the trap. Synthetic female sex
190 pheromone baits (Scentry Biologicals, Billings, MT, USA) pinned to the top inside lid of the trap
191 attracted males into the trap. The pheromone bait contained cactus moth pheromone compounds
192 previously isolated by Heath et al. (2006). Steel wire was used to secure the pheromone traps to
193 the post.

194 In the first week of the trial, an average of 150 male moths per treatment were released
195 from the center of the trapping area every day for four days (7/31-8/3/2012). The following week
196 (8/6-8/9/2012), an average of 340 male moths were released per treatment on each of four days.
197 Pherocon traps were checked every morning (9am) during releases and for one-week after

198 releases ended. Traps were checked in the morning to distinguish moths from a previous release
199 from those being released on that day. Traps that contained cactus moths or other insects were
200 removed and replaced daily, and then taken back to the laboratory for treatment verification and
201 counting.

202 Our original trap capture area was designed based on previous studies that showed such
203 an area was adequate to capture a large proportion of irradiated cactus moths that were released
204 (Hight and Carpenter 2016). However, we noticed that we captured very few anoxia-conditioned
205 moths and that they were mostly captured in the outermost traps in the grid; our first evidence
206 that anoxia-conditioning affected moth field performance. Based on this observation, we
207 redesigned the trapping area and increased it to ~28,350 m² (~23 times larger) for subsequent
208 studies. The traps were set in outward concentric circles from the center point of release at 15,
209 55, and 95 meters. The traps were placed using cardinal coordinate orientation. There were four
210 traps at 15 m from the release point (N, S, E, W), eight traps at 55 m (N, NE, E, SE, S, SW, W,
211 NW), and 16 traps at 95 m (N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W,
212 WNW, NW, NNW) (Fig. 1) for a total of 28 traps. One aspect we did not quantify in our first
213 trial was how many days after release were the moths being captured. To this end, in subsequent
214 trials we switched from daily releases to releases every two to four days; alternating marking
215 colors to assess possible field performance-related longevity.

216 Our second field trial ran in the fall from 10/15/2012 to 11/6/2012. Male moths were
217 released twice a week for three weeks. The first week (10/15/2012 and 10/18/2012), 198 moths
218 were released per treatment. The second week (10/22/2012 and 10/25/2012), ~ 189 moths were
219 released per treatment, and in the third week (11/1/2012 and 11/5/2012) ~ 312 moths were
220 released per treatment. As in our first trial, traps were checked every day in the morning during

221 the experimental period (10/15/2012 to 11/6/2012), continuing daily throughout the week that
222 followed the last release date. The average temperature at the time of the second release (~3:30
223 to 4:30 pm) was 26.8 °C with an average daily high of 27.3 °C and an average nightly low of
224 14.7 °C (additional weather information is available in supplementary table S1).

225 We ran a third mark-release-recapture trial in the spring of 2013. This third field
226 experiment used the same field plot/trap design as the second field trial. The third trial ran for a
227 month in the late spring (5/7/2013 to 6/4/2013). The first week (5/7/2013 and 5/9/2013) 634 and
228 735 moths were released per treatment. The second week (5/14/2013 and 5/16/2013) 782 and
229 768 moths were released. The third week (5/21/2013 and 5/23/2013) 721 and 823 moths were
230 released, and in the final week (5/29/2013 and 5/31/2013) 591 and 625 moths were released. As
231 in previous trials, traps were checked daily and replaced (when necessary) including during the
232 week after the last release. The average temperature at the time of the third release (~3:30 to 4:30
233 pm) was 27.6 °C with an average daily high of 29.1 °C and an average nightly low of 15.5 °C
234 (additional weather information is available in supplementary table S1).

235

236 **Statistical Analyses**

237 Because laboratory flight assays data met the assumptions of normality and
238 homoscedasticity of variances, they were analyzed using two-way ANOVA with treatment
239 (normoxia-treated or anoxia-conditioned), field trial (first, second, or third), and their interaction
240 (treatment*trial) as factors. Our first field trial consisted of four replicate releases of 150 moths
241 per treatment and a replicated experiment consisting of four replicate releases of 340 moths. Our
242 second field trial consisted of six sequential releases spread out over three weeks and ranging

243 from 189 to 312 moths per release per treatment. Our third and final trial consisted of eight
244 sequential releases over the course of a month, ranging from 591 to 823 moths per treatment.
245 Overall recapture rate within each field trial was analyzed using a general linear model with
246 gamma (1st trial), Poisson (2nd trial), log normal distributions and treatment (normoxia-treated or
247 anoxia-conditioned) as a factor. To test the extent to which anoxia-conditioned moths might be
248 captured more than normoxia-treated moths as time since release increased, we used a general
249 linear model with gamma Poisson distributions and treatment (normoxia-treated or anoxia-
250 conditioned) as well as day since release, and their interaction (treatment*day) as factors. To see
251 whether local weather conditions differed among the trials, we downloaded the following from
252 the Weather.com archive for the nearest reporting station with available data for our field site
253 (32113): temperature in the afternoon at 4:00 pm, maximum daily temperature, minimum daily
254 temperature, wind speed at 4:00 pm in the afternoon, maximum daily wind speed, and percent
255 day time cloud cover. One-way ANOVAs were used to test for differences in afternoon
256 temperature, maximum daily temperature, afternoon wind speed, maximum daily wind speed,
257 and cloud cover with separation of means done by Tukey's post-hoc correction for multiple
258 comparisons. Minimum daily temperature data did not meet the assumption of heterogeneity of
259 variances. Trials 2 and 3 which were held in fall and spring respectively had much more nightly
260 temperature variation than the trial 1 that was held in late summer, so differences among 3 trials
261 in minimum nightly temperatures were assessed with a non-parametric, rank-sum test (Kruskal-
262 Wallis). GLMs, ANOVAs, and the Kruskal-Wallis test were performed in JMP 15 (SAS
263 software, Raleigh NC). Directional recapture data were analyzed using Oriana 4 circular
264 statistics analysis software (Kovach Computing Services, Isle of Anglesey, UK). Rayleigh tests

265 were carried out in this software package to test if the distribution of the recaptures was random
266 or directional.

267

268

269 **Results**

270 **Laboratory flight assays**

271 Overall, anoxia-irradiated moths were more likely to fly than those irradiated in normoxia
272 without conditioning across all three trials (Fig. 2; ANOVA, $F_{5,12} = 3.213$, $p_{\text{full model}} = 0.0453$;
273 $F_{1,1} = 11.456$, $p_{\text{treatment}} = 0.005$; $F_{2,2} = 1.83$, $p_{\text{trial}} = 0.202$; $F_{2,2} = 0.475$, $p_{\text{treatment * trial}} = 0.633$).
274 This served as a confirmation of previous work where multiple metrics of lab flight performance
275 (flight propensity, duration, and distance) were improved by anoxia hormesis (López-Martínez et
276 al. 2014). Additionally, lab flight tests served to verify that moth quality after treatment was
277 consistently high among our three release trials with >80% of moths flying in all treatments.

278 **Field mark-release-recapture**

279 Our first field trial with the 1,250 m² plot had an overall average capture rate of $3.82 \pm$
280 1.04 %. The average capture rate for the male moths irradiated in normoxia (Nx200, 5.21 ± 1.04
281 %) was 115% higher than the average for the anoxia-irradiated males (2.42 ± 0.34 %, Fig. 3A,
282 GLM, $X^2 = 4.314$, $df = 1$, $p = 0.0378$). The anoxia-irradiated moths that we captured were
283 predominantly recorded in the outermost eastern traps in our plot. We used this observation in
284 the decision to expand plot size for subsequent field releases.

285 Our second field trial with a trap area of 28,350 m² had a lower capture rate than the pilot
286 study at $0.94 \pm 0.21\%$. With our new, larger trapping area overall we captured approximately
287 42% more anoxia-conditioned moths ($1.11 \pm 0.36\%$ capture) than normoxia-treated moths (0.78
288 $\pm 0.2\%$ capture), but this higher capture rate was not significantly different (Fig. 3B, GLM, $X^2 =$
289 1.594 , $df = 1$, $p = 0.2067$). When breaking down our results by daily captures, more anoxia-
290 conditioned moths than normoxia-treated moths were trapped on days 4 and 5 after their initial
291 release (Fig. 4A, GLM, $X^2_{\text{full model}} = 55.746$, $df_{\text{full model}} = 9$, $p_{\text{full model}} < 0.0001$, $X^2_{\text{treatment}} = 1.594$,
292 $df_{\text{treatment}} = 1$, $p_{\text{treatment}} = 0.207$, $X^2_{\text{day}} = 38.595$, $df_{\text{day}} = 4$, $p_{\text{day}} < 0.0001$, $X^2_{\text{treatment*day}} = 13.726$,
293 $df_{\text{treatment*day}} = 4$, $p_{\text{treatment*day}} = 0.0082$). These data indicated that anoxia-conditioned moths were
294 living longer, being more active through time, or a combination of both, after being released into
295 the field. The sample size of captures in this second trial was too small to allow for an adequate
296 comparison of the grid captures over distances.

297 The third and last field trial performed in spring 2013 had a capture rate of $2.56 \pm 0.4\%$.
298 In this trial, we captured more normoxia-treated moths than anoxia-conditioned moths, but this
299 difference was not significant (Fig. 3C, GLM, $X^2 = 3.396$, $df = 1$, $p = 0.0653$). Specifically, we
300 captured approximately 72% more normoxia-treated moths ($3.24 \pm 0.69\%$ capture) than anoxia-
301 conditioned moths ($0.78 \pm 0.2\%$ capture). When breaking down our results by daily captures, as
302 in the second field trial, anoxia-conditioned moths were captured more frequently in days 4 and 5
303 (Fig. 4B, GLM, $X^2_{\text{full model}} = 330.381$, $df_{\text{full model}} = 9$, $p_{\text{full model}} < 0.0001$, $X^2_{\text{treatment}} = 38.904$,
304 $df_{\text{treatment}} < 0.0001$, $X^2_{\text{day}} = 229.987$, $df_{\text{day}} = 4$, $p_{\text{day}} < 0.0001$, $X^2_{\text{treatment*day}} = 25.676$,
305 $df_{\text{treatment*day}} = 4$, $p_{\text{treatment*day}} < 0.0001$). The normoxia-treated group shows a circular-linear
306 correlation ($r = 0.251$, $p < 0.0001$) meaning that the distance traveled by the moths is related to
307 the direction of that travel. The normoxia-treated moths that traveled $\geq 15\text{m}$ did so in a

308 southeasterly direction. The anoxia-conditioned moths in contrast showed no circular-linear
309 correlation ($r = 0.141$, $p = 0.129$), indicating that these moths travelled distances uniformly
310 distributed in all directions. Normoxia-treated moths did not have a uniform distribution
311 (Rayleigh test $Z = 4.188$, $p = 0.015$) with a south-southeast vector mean ($\mu = 165.08^\circ$) and $r =$
312 0.149 (mean vector length). Anoxia-conditioned moths had a uniform distribution ($Z = 0.891$, p
313 = 0.41) with an east-southeasterly vector mean ($\mu = 108.94^\circ$) and $r = 0.092$ (mean vector length).
314 These results showed that normoxia-treated moths flew in a directed pattern along 165° , while
315 anoxia-conditioned moths flew more uniformly across the capture area. The mean vector length
316 (r) revealed that a higher concentration of the normoxia-treated moths were captured around the
317 south-southeastern vector versus a lower concentration of the anoxia-conditioned moths were
318 captured along their east-southeasterly vector. An overall comparison of the grid captures over
319 distances indicated that there was a difference in the number of captures between treatments (X^2
320 = 124.34, $p < 0.0001$). Normoxia-treated moths were captured more often in the 15 and 55 m
321 traps while anoxia-conditioned moths were captured more often in the 55 and 95 m traps.
322 Normoxia-treated moths (Fig. 5A) were mostly captured in a smaller fraction of the trap grid that
323 faced the south-eastern region of the trap zone closer to the release point while anoxia-
324 conditioned moths were captured across most of the eastern portion of the trapping range and
325 farther from the release point (Fig. 5B). Additionally, more than half (~60%) of the normoxia-
326 treated moths were captured the day after the initial release while it took two days to capture that
327 many anoxia-conditioned moths (Fig. 5; $X^2_{\text{day}} = 229.987$, $df_{\text{day}} = 4$, $p_{\text{day}} < 0.0001$).

328 **Weather across trials**

329 Recapture rates were substantially lower during our second trial, which was held in late
330 fall, than our first and third trials that were held in late summer and late spring respectively.

331 Thus, we tested whether the second trial had lower temperatures or clear differences in other
332 weather factors that might have affected recapture rates. With respect to temperature there were
333 no differences in afternoon temperatures among the three trials (Fig. S1A, ANOVA, $F_{2,21}=2.74$,
334 $p=0.09$), but both daily maximum temperatures and daily low temperatures were significantly
335 higher in the first trial held in late summer than in either the second or third trial, which did not
336 differ from each other (Fig. S1B, ANOVA, $F_{2,21}=8.15$, $p=0.003$, and Fig S1C, Kruskal-Wallis,
337 $X^2=14.9$, $df = 2$, $p<0.001$ respectively). There were no differences among the three trials in
338 afternoon wind speeds (Fig. S1D, ANOVA, $F_{2,21}=1.49$, $p=0.25$), maximum daily windspeed
339 (Fig. S1E, ANOVA, $F_{2,21}=0.48$, $p=0.63$), or cloud cover (Fig. S1F, ANOVA, $F_{2,21}=0.13$,
340 $p=0.87$). No rainfall was recorded during any of the trials.

341

342

Discussion

343 In our second and third field trials, with the larger trapping area, we showed that inducing
344 a beneficial plastic response with anoxia conditioning improved both the dispersal distance and
345 capture duration of irradiated sterile males in the field. Anoxia-conditioned moths dispersed
346 farther than normoxia-treated moths in our trap array with most anoxia-conditioned moths
347 captured in the outermost two concentric trap circles (55 and 95m), whereas normoxia-treated
348 moths were mostly captured in the closest two trap circles (15 and 55m). Anoxia-conditioned
349 male moths were also captured over a larger area ($\sim 14,000$ m 2 ; Fig. 5B), while unconditioned,
350 irradiated male moths were captured in an area roughly half the size ($\sim 7,000$ m 2 ; Fig. 5A).
351 Capturing more anoxia-conditioned males over an area this large supports our assertion from the
352 first field trial that our poor capture of anoxia-conditioned moths was likely due to them flying

353 beyond the original, smaller 1,250 m² grid whereas many unconditioned sterile male moths were
354 captured in this smaller area.

355 In addition to dispersing farther, anoxia-conditioned moths were also captured over a
356 wider area of our sampling grid. Most of the unconditioned moths dispersed into an area to the
357 south-southeast of the release area (Fig. 5A), whereas anoxia-conditioned moths were captured
358 over a broader area encompassing the south to east (Fig. 5B). Wind patterns at our field site blow
359 largely to the south and southeast and are strongest in the late afternoon (2-4pm, Florida
360 Automated Weather Network, University of Florida), potentially driving dispersal in this
361 direction in both normoxia-treated and anoxia-conditioned moths. However, anoxia-conditioned
362 moths also dispersed more frequently to the east into an area that includes an organic orange
363 grove and a windbreak of trees that we think may provide better shelter than the open mowed
364 fields to the south. We believe that there is a strong need for released moths to find shelter both
365 from warm, desiccating conditions in full sunlight and from predators, including birds and
366 dragonflies that occur in our release site. We observed birds swooping down to take moths just
367 after release, and predation is a major factor affecting field-released sterile moths and flies
368 (Schroeder et al. 1973, Iwahashi 1976, Hendrichs and Hendrichs 1998). These field data showing
369 differences in dispersal distance reinforce a previous laboratory study that showed higher levels
370 of flight performance in anoxia-conditioned males than normoxia-treated sterile male cactus
371 moths; specifically, anoxia-conditioned male moths had a highest propensity of flight and flew
372 further over a longer period of time than normoxia-treated male moths (López-Martínez et al.
373 2014).

374 Beyond improving dispersal, anoxia-conditioned sterile male moths were also captured
375 for a longer period of time in the field in our last two field experiments where we collected daily

376 recapture data (Fig. 4). While the daily capture rate decreased over time for both groups, more
377 anoxia-conditioned sterile males were captured on days four and five than unconditioned
378 irradiated males, and no males were captured more than five days after release. This observation
379 of longer duration of capture in the field suggests that anoxia conditioning extends the effective
380 period for sterile males in the field. These data are also consistent with previous laboratory
381 experiments showing that anoxia conditioning increases longevity in the lab, reinforcing the idea
382 that testing performance-enhancing treatments in lab-based assays can predict field performance.
383 Survival in the field dictates how often sterile male releases must occur, therefore influencing
384 cost (Lance and McInnis 2005, Hendrichs et al. 2005), and because mass-rearing selects for
385 short-lived individuals (Cayol 2000), improving longevity can have wide implications for
386 control. Additionally, mating competitiveness is normally reduced as a consequence of mass-
387 rearing, and any improvements to sterile males must take into account the duration of
388 effectiveness in the field, in addition to improving mating (Meats 1998). The same beneficial
389 plasticity anoxia treatment that increases duration of recapture in the field also increases mating
390 competitiveness compared to normoxia-treated males in a previous laboratory study (López-
391 Martínez et al. 2014). Thus, the effects of anoxia conditioning have potential for improving two
392 shortcomings of SIT applications (Meats 1998). This improved performance data aligns with
393 predictive models aimed at optimization of sterility while preserving performance (Meats 1998,
394 Parker and Mehta 2007), and without the need to lower the irradiation dose any further, anoxia
395 conditioning can improve sterile male moth performance.

396 An important observation is that recapture rates varied dramatically among our three field
397 trials ($3.82 \pm 1.04\%$, $0.94 \pm 0.21\%$, and $2.56 \pm 0.4\%$ overall respectively). Why the recapture
398 rate was so much lower in our second trial compared to our first and third trials is unclear

399 because the laboratory flight assays suggested no major deficit in the overall quality of insects
400 used in the second release (>80% fliers, Fig. 2). Environmental factors including temperature,
401 winds, and precipitation can affect sterile moth releases (Bloem et al. 2005, Chidawanyika and
402 Terblanche 2011, Sørensen et al 2012, Boersma et al. 2019). Our second field trial was done in
403 the late fall (October 15-November 6, 2012) whereas our first release was done in late summer
404 (July 31-August 9, 2012) and our third release was done in late spring (May 7-June 4, 2013).
405 However, our analyses of weather data showed no clear pattern for why we captured fewer
406 moths in the second trial because while daily high and daily low temperatures were higher in the
407 first release than in the second release, there were no significant differences in weather
408 parameters between the second and third release, and recapture rates were relatively high in the
409 third release. We could speculate about factors that may have affected the second release more
410 than the first and third releases leading to lower recaptures, from greater predation in the fall to
411 pesticide drift from agriculture fields outside of our field site, but we have no clear evidence for
412 why recapture rates were lower in the second release and must ascribe this to unexplained field
413 variation.

414 Even though the benefits of anoxia (Ashraf et al. 1975, Robinson 1975, Fisher 1997) and
415 other low-oxygen treatments (Hooper 1971, Ohinata et al. 1977, Nestel et al. 2007) on irradiation
416 and performance in an SIT context have been known since the 1970s, it was just in the last ten
417 years that some of the mechanisms behind this type of beneficial plasticity have been elucidated.
418 This protective response to anoxia conditioning is partially rooted in a conserved mechanism
419 described by the preparation for oxidative stress hypothesis (Hermes-Lima et al. 1998, Giraud-
420 Billoud et al. 2019), where mitochondria that experience low oxygen prepare for reperfusion by
421 elevating antioxidant defenses. In a previous laboratory study, we found that anoxia conditioning

422 triggered increases in total antioxidant capacity just after treatment in male cactus moths, and
423 decreased oxidative damage to both proteins and lipids was still decreased 5 days after
424 irradiation in anoxia-conditioned male cactus moths compared to normoxia-treated males
425 (López-Martínez et al. 2014). Similarly, in a tephritid fruit fly system we previously found that
426 the activity of multiple antioxidant enzymes were increased for at least 24hrs after anoxia
427 conditioning, which was associated with a decrease in post-irradiation oxidative damage as long
428 as 10 days after irradiation (López-Martínez and Hahn 2012). Together these studies demonstrate
429 that enhancing antioxidant capacity even transiently at the time of irradiation can have long-
430 lasting positive effects on both oxidative damage and sterile male performance. The mechanisms
431 behind anoxia hormesis are likely multifarious and involve other biochemical and cellular
432 responses in addition to antioxidants (Harrison et al. 2018, Berry and López-Martínez 2020,
433 Berry and López-Martínez unpublished data). However, the importance of antioxidant capacity
434 in preserving sterile male performance after irradiation was recently reinforced by a study that
435 specifically overexpressed the primary mitochondrial antioxidant enzyme, superoxide dismutase
436 (SOD), and showed increased mating and a reduction in accumulated damage after irradiation of
437 sterile males in a tephritid fruit fly pest that was not anoxia conditioned (Teets et al. 2019).

438 The early work showing hypoxia improved sterile male performance in tephritid fruit
439 flies was compelling enough for many fruit fly SIT facilities worldwide to implement the use of
440 hypoxia in their protocols (Bakri et al. 2005, Calkins and Parker 2005, Nestel et al. 2007). The
441 ample work showing that hypoxia improves mating competitiveness in fruit flies (Hooper 1971,
442 Ashraf et al. 1975, Ohinata et al. 1977) has translated into the widespread use of oxygen
443 manipulation in fruit fly programs, but the implementation of anoxia has been lagging in moth
444 SIT programs. The fact that our anoxia-conditioned moths were recaptured for longer after a

445 field release shows the potential of this type of beneficial plasticity application to the economy of
446 pest control. The Canadian Okanagan-Kootenay Sterile Insect Release (OK SIR) program is the
447 longest running sterile insect release program for the codling moth, *Cydia pomonella* L.
448 (Lepidoptera: Tortricidae), at a current annual cost of C\$3.7 million (Thistlewood and Judd
449 2019). The use of anoxia-conditioning in this program (i.e. having moths effective longer in the
450 field), could lead to a reduction in the numbers of moths being released and/or a reduction in the
451 total number of releases required for pest suppression annually. Other lepidopteran SIT programs
452 include the false codling moth *Thaumatotibia leucotreta* (Meyrick) (Lepidoptera: Tortricidae) in
453 South Africa, pink bollworm *Pectinophora gossypiella* (Saunders) (Lepidoptera: Gelechiidae) in
454 the USA and Mexico, and cactus moth in the USA and Mexico (Marec and Vreysen 2019).
455 Economic losses and the cost of treatment is in the millions of dollars across each program and
456 the potential of anoxia conditioning to lower economic losses while reducing the cost of
457 treatment is the very reason this type of beneficial plasticity should be widely considered for
458 implementation.

459 The benefits of anoxia conditioning extend beyond improving the performance of
460 animals in the field and into the potential for lowering the cost to control lepidopteran pests
461 globally. The application of low-oxygen pretreatments is straightforward and frequently yields
462 similar protective results across different systems (Berry and López-Martínez 2020). Beyond the
463 manipulation of oxygen, other types of beneficial plastic responses have been tested; such as
464 temperature conditioning. Temperature conditioning improves flight performance in the false
465 codling moth (Boersma et al. 2019). Given our connection between improved flight performance
466 and duration of capture in the field (López-Martínez et al. 2014), it is likely that temperature
467 conditioning has potential synergy with anoxia conditioning. We can envision SIT workflows

468 where multiple hormetic treatments could be applied concurrently to have even greater positive
469 effects on the performance of sterile males and even greater cost savings in SIT programs. In
470 addition to SIT, anoxia conditioning may improve mating competitiveness and extend effective
471 duration in the field for biological control agents, a big component of integrated pest
472 management (Sørensen et al. 2012). In summary, we believe that the implementation of anoxia-
473 conditioning in active moth SIT programs would have positive effects on male field performance
474 potentially including higher efficacy at suppressing pest populations and potential cost savings.

475

476 **Data archiving statement**

477 Data for this study are available: to be completed after manuscript is accepted for
478 publication.

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497 **Literature cited**

498

499 Ashraf, M., N. Chatha, K. Ohinata, Harris. E.J. (1975). Melon flies: Diptera-Tephritidae-dosage-
500 response and sexual competitiveness after treatment with gamma-irradiation in a nitrogen
501 atmosphere. *Journal of Economic Entomology* 68, 838-840.

502

503 Bauer, H. (1967). Die kinetische organization der Lepidopteren chromosome. *Chromosoma* 22,
504 101-125.

505

506 Bakri, A., Mehta, K., Lance, D.R. (2005). Sterilizing insects with ionizing radiation. In: V.A.
507 Dyck, J. Hendrichs, & A.S. Robinson (Eds.), *Sterile Insect Technique. Principles and Practice in*
508 *Area-Wide Integrated Pest Management* (pp. 233-268). Dordrecht: Springer.

509

510 Berry III, R., López-Martínez, G. (2020). A dose of experimental hormesis: when mild stress
511 protects and improves animal performance. *Comparative Biochemistry and Physiology Part A*
512 242, 110658.

513

514 Bloem, K.A., Bloem, S., Carpenter, J E., Calkins, C.O. (1999). Inherited sterility in codling moth
515 (Lepidoptera: Tortricidae): Effect of substerilizing doses of radiation on field competitiveness.
516 *Environmental Entomology* 28, 669-674.

517

518 Bloem, S., Carpenter, J.E., Hendrik Hofmeyr, J. (2003). Radiation biology and inherited sterility
519 in false codling moth (Lepidoptera: Tortricidae). *Florida Entomologist* 96, 1724-1731.

520

521 Bloem, K.A., Bloem, S., Carpenter, J.E. (2005). Impact of moth suppression/eradication
522 programmes using the sterile insect technique or inherited sterility. In: V.A. Dyck, J. Hendrichs,
523 & A.S. Robinson (Eds.), *Sterile Insect Technique. Principles and Practice in Area-Wide*
524 *Integrated Pest Management* (pp. 677-700). Dordrecht: Springer.

525

526 Boersma, N., Boardman, L., Gilbert, M., Terblanche, J.S. (2019). Cold treatment enhances low-
527 temperature flight performance in false codling moth, *Thaumatotibia leucotreta* (Lepidoptera:
528 Tortricidae). *Agricultural and Forest Entomology* 21, 243-251.

529

530 Calabrese , E. J., Bachmann, K.A., Bailer, A.J., Bolger, P.M., Borak, J., Cai, L., Cedergreen, N.,
531 Cherian, M.G., Chiueh, C.C., Clarkson, T.W., Cook, R.R., Diamond, D.M., Doolittle, D.J.,
532 Dorato, M.A., Duke, S.O., Feinendegen, L., Gardner, D.E., Hart, R.W., Hastings, K.L., Hayes,
533 A.W., Hoffmann, G.R., Ives, J.A., Jaworowski, Z., Johnson, T.E., Jonas, W.B., Kaminski, N.E.,
534 Keller, J.G., Klaunig, J.E., Knudsen, T.B., Kozumbo, W.J., Lettieri, T., Liu, S.Z., Maisseu, A.,
535 Maynard, K.I., Masoro, E.J., McClellan, R.O., Mehendale, H.M., Mothersill, C., Newlin, D.B.,
536 Nigg, H.N., Oehme, F.W., Phalen, R.F., Philbert, M.A., Rattan, S.I.S., Riviere, J.E., J. Rodricks,
537 J., R. M. Sapsolsky, R.M., Scott, B.R., Seymour, C., Sinclair, D.A., Smith-Sonneborn, J., Snow,
538 E.T., Spear, L., Stevenson, D.E., Thomas, Y., Tubiana, M., Williams, G.M., Mattson, M.P.
539 (2007). Biologica stress response terminology: integrating the concepts of adaptive response and

540 preconditioning stress within a hormetic dose-response framework. *Toxicology and Applied
541 Pharmacology* 222, 122-128.

542

543 Calkins, C.O., Parker, A.G. (2005). Sterile insect quality. In: V.A. Dyck, J. Hendrichs, & A.S.
544 Robinson (Eds.), *Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest
545 Management* (pp. 269-296). Dordrecht: Springer.

546

547 Carpenter, J.E., Bloem, K.A., Bloem, S. (2001). Applications of F₁ sterility for research and
548 management of *Cactoblastis cactorum* (Lepidoptera: Pyralidae). *Florida Entomologist* 84, 531-
549 536.

550

551 Carpenter, J.E., Bloem, S., Marec, F. (2005). Inherited sterility in insects. In: V.A. Dyck, J.
552 Hendrichs, & A.S. Robinson (Eds.), *Sterile Insect Technique. Principles and Practice in Area-
553 Wide Integrated Pest Management* (pp. 115-146). Dordrecht: Springer.

554

555 Cayol, J.P. (2000). Changes in sexual behavior and life history traits of tephritid species caused
556 by mass-rearing processes. In: M. Aluja, & A.L. Norrbom (Eds.), *Fruit Flies (Tephritidae):
557 Phylogeny and Evolution of Behavior* (pp. 843-860). Boca Raton: CRC Press.

558

559 Chidawanyika, F., Terblanche, J.S. (2011). Costs and benefits of thermal acclimation for codling
560 moth, *Cydia pomonella* (Lepidoptera: Tortricidae): implications for pest control and the sterile
561 insect release programme. *Evolutionary Applications* 4, 534-44.

562

563 FAO/IAEA/USDA. 2003. Manual for Product Quality Control and Shipping Procedures for
564 Sterile Mass-Reared Tephritid Fruit Flies. IAEA, Austria.

565

566 Fisher, K. (1997). Irradiation effects in air and nitrogen on Mediterranean fruit fly (Diptera:
567 Tephritidae) pupae in Western Australia. *Journal of Economic Entomology* 90, 1609-1614.

568

569 Giraud-Billoud, M., Rivera-Ingraham, G.A., Moreira, D.C., Burmester, T., Castro-Vazquez, A.,
570 Carvajalino-Fernández, J.M., Dafre, A., Niu, C., Tremblay, N., Paital, B., Rosa, R., Storey, J.M.,
571 Vega, I.A., Zhang, W., Yepiz-Plascencia, G., Zenteno-Savin, T., Storey, K.B., Hermes-Lima, M.
572 (2019). Twenty years of the 'Preparation for Oxidative Stress' (POS) theory: Ecophysiological
573 advantages and molecular strategies. *Comparative Biochemistry and Physiology A* 234, 36–49.

574

575 Hagler, J.R., Jackson, C.G. (2001). Methods for marking insects: current techniques and future
576 prospects. *Annual Review of Entomology* 46, 511-543.

577

578 Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. *Journal of
579 Gerontology* 11, 298-300.

580

581 Harrison, J.F., Greenlee, K.J., Verberk, W.C.E.P. (2018). Functional hypoxia in insects:
582 definition, assessment, and consequences for physiology, ecology, and evolution. *Annual Review
583 of Entomology* 63, 303-325.

584

585 Heath, R.R., Teal, P.E.A., Epsky, N.D., Dueben, B.D., Hight, S.D., Bloem, S., Carpenter, J.E.,
586 Weissling, T.J., Kendra, P.E., Cibrian-Tovar, J., Bloem, K.A. (2006). Pheromone-based
587 attractant for males of *Cactoblastis cactorum* (Lepidoptera: Pyralidae). *Environmental*
588 *Entomology* 35, 1469-1476.

589
590 Hendrichs, M.A., Hendrichs, J. (1998). Perfumed to be killed: interception of Mediterranean fruit
591 fly *Ceratitis capitata* Weid (Diptera: Tephritidae) sexual signaling by foraging wasp predators.
592 *Annals of the Entomological Society of America* 91, 228-234.

593
594 Hendrichs, J., Vreysen, M.J.B., Enkerlin, W.R., Cayol, J.P. (2005). Strategic options using sterile
595 insects for area-wide integrated pest management. In: V.A. Dyck, J. Hendrichs, & A.S. Robinson
596 (Eds.), *Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest*
597 *Management* (pp. 563-600). Dordrecht: Springer.

598
599 Hermes-Lima, M., Storey, J.M., Storey, K.B. (1998). Antioxidant defenses and metabolic
600 depression. The hypothesis of preparation for oxidative stress in land snails. *Comparative*
601 *Biochemistry and Physiology Part B: Biochemistry and Molecular Biology* 120, 437-448.

602
603 Hight, S.J., Carpenter, J.E., Bloem, S., Bloem, K.A. (2005). Developing a sterile insect release
604 program for *Cactoblastis cactorum* (Berg) (Lepidoptera: Pyralidae): effective overflooding ratios
605 and release-recapture field studies. *Environmental Entomology* 34, 850-856.

606

607 Hight, S.J., Carpenter, J.E. (2016). Performance improvement through quality evaluations of
608 sterile cactus moths, *Cactoblastis cactorum* (Lepidoptera: Pyralidae), mass-reared at two
609 insectaries. *Florida Entomologist* 99, 206-214.

610

611 Hooper, G.H.S. (1971). Competitiveness of gamma-sterilized males of the Mediterranean fruit
612 fly: effect of irradiating pupal or adult stage and or irradiating pupae in nitrogen. *Journal of*
613 *Economic Entomology* 64, 1364-1368.

614

615 Hulbert, A.J., Pamplona, R., Buffenstein, R., Buttemer, W.A. (2007). Life and death: metabolic
616 rate, membrane composition, and life span of animals. *Physiological Reviews* 87, 1175-1213.

617

618 Iwahashi, O. (1976). Suppression of the melon fly, *Dacus cucurbitae* Coquillett (Diptera:
619 Tephritidae), on Kudaja Is. with sterile insect releases. *Applied Entomology and Zoology* 11,
620 100-110.

621

622 Klassen, W., Curtis, C.F. (2005). History of the sterile insect technique. In: V.A. Dyck, J.
623 Hendrichs, & A.S. Robinson (Eds.), *Sterile Insect Technique. Principles and Practice in Area-*
624 *Wide Integrated Pest Management* (pp. 3-38). Dordrecht: Springer.

625

626 Lance, D.R., McInnis, D.O. (2005). Biological basis of the sterile insect technique. In: V.A.
627 Dyck, J. Hendrichs, & A.S. Robinson (Eds.), *Sterile Insect Technique. Principles and Practice in*
628 *Area-Wide Integrated Pest Management* (pp. 69-94). Dordrecht: Springer.

629

630 López-Martínez, G., Hahn, D.A. (2012). Short-term anoxic conditioning hormesis boosts
631 antioxidant defenses, lowers oxidative damage following irradiation and enhances male sexual
632 performance in the Caribbean fruit fly, *Anastrepha suspensa*. *Journal of Experimental Biology*
633 215, 2150-2161.

634

635 López-Martínez, G., Hahn, D.A. (2014). Early life hormetic treatments decrease irradiation-
636 induced oxidative damage, increase longevity, and enhance sexual performance during old age in
637 the Caribbean fruit fly. *PLOS One* 9, e88128.

638

639 López-Martínez, G., Carpenter, J.E., Hight, S.D., Hahn, D.A. (2014). Low-oxygen atmospheric
640 treatment improves the performance of irradiation-sterilized male cactus moths used in SIT.
641 *Journal of Economic Entomology* 107, 185-197.

642

643 López-Martínez, G., Carpenter, J.E., Hight, S.D., Hahn, D.A. (2016a). Anoxia-conditioning
644 hormesis alters the relationship between irradiation doses for survival and sterility in the cactus
645 moth, *Cactoblastis cactorum* (Lepidoptera: Pyralidae). *Florida Entomologist* 99, 95-104.

646

647 López-Martínez, G., Meagher, R.L., Jeffers, L.A., Bailey, W.D., Hahn, D.A. (2016b). Low
648 oxygen atmosphere enhances post-irradiation survival in *Trichoplusia ni* (Lepidoptera:
649 Noctuidae). *Florida Entomologist* 99, 24-33.

650

651 Marec, F., Vreysen, M.J.B. (2019). Advances and challenges of using the sterile insect technique
652 for the management of pest lepidoptera. *Insects* 10, 371.

653

654 Meats, A. (1998). A quality assurance measure for field survival rates of released sterile flies
655 based on recapture rates. *The Journal of the Entomological Society of New South Wales* 28, 39-
656 46.

657

658 Nestel, D., Nemny-Lavy, E., Islam, S.M., Wornoayporn, V., Cáceres, C. (2007). Effects of pre-
659 irradiation conditioning of medfly pupae (Diptera: Tephritidae): hypoxia and quality of sterile
660 males. *Florida Entomologist* 90, 80-87.

661

662 North, D.T. (1975). Inherited sterility in Lepidoptera. *Annual Review of Entomology* 20, 167-
663 182.

664

665 Ohinata, K., Ashraf, M., Harris, E.J. (1977). Mediterranean fruit flies: sterility and sexual
666 competitiveness in the laboratory after treatment with gamma irradiation in air, carbon dioxide,
667 helium, nitrogen or partial vacuum. *Journal of Economic Entomology* 70, 165-168.

668

669 Parker, A., Mehta, K. (2007). Sterile insect technique: a model for dose optimization for
670 improved sterile insect quality. *Florida Entomologist* 90, 88-95.

671

672 Robinson, A.S. (1975). Influence of anoxia during gamma irradiation on the fertility and
673 competitiveness of the adult math codling moth, *Laspeyresia pomonella* (L.). *Radiation*
674 *Research* 61, 526-534.

675

676 Rull, J., Birke, A., Ortega, R., Montoya, P., López, L. (2012). Quantity and safety vs. quality and
677 performance: conflicting interests during mass rearing and transport affect the efficiency of
678 sterile insect technique programs. *Entomologia Experimentalis et Applicata* 142, 78-86.

679

680 Sarvary, M.A., Bloem, K.A., Bloem, S., Carpenter, J.E., Hight, S.D., Dorn, S. (2008). Diel flight
681 pattern and flight performance of *Cactoblastis cactorum* (Lepidoptera: Pyralidae) measured on a
682 flight mill: influence of age, gender, mating status, and body size. *Journal of Economic
683 Entomology* 101, 314-324.

684

685 Schroeder, W.J., Chambers, D.L., Miyabara, R.Y. (1973). Mediterranean fruit fly: propensity to
686 flight of sterilized flies. *Journal of Economic Entomology* 66, 1261-1262.

687

688 Sørensen, J.G., Addison, M.F., Terblanche, J.S. (2012). Mass-rearing of insects for pest
689 management: Challenges, synergies and advances from evolutionary physiology. *Crop
690 Protection* 38, 87-94.

691

692 Teets, N.M., Dias, V.S., Pierce, B.K., Schetelig, M.F., Handler, A.M., Hahn, D.A. (2019).
693 Overexpression of an antioxidant enzyme improves male mating performance after stress in a
694 lek-mating fruit fly. *Proceedings of the Royal Society B: Biological Sciences* 286, 20190531.

695

696 Thistlewood, H.M.A., Judd, G.J.R. (2019). Twenty-five years of research experience with the
697 sterile insect technique and area-wide management of codling moth, *Cydia pomonella* (L), in
698 Canada. *Insects* 10, 1-30.

699

700 von Sonntag, C. (1987). The Chemical Basis of Radiation Biology. Philadelphia: Taylor and
701 Francis Press.

702

703 **Figure captions:**

704

705 **Figure 1.** The mark release-recapture site at the University of Florida's Plant Science Research
706 and Education Unit (PSREU) facility in Citra, Florida identifying field experiment trapping
707 areas. The black rectangle marks the trapping area for experiment 1 consisting of 1,250 m² with
708 seven transects containing nine traps each. The 28 traps in the larger 28,350 m² area was the
709 design for experiments 2 and 3. The release point for all trials is marked with an asterisk in the
710 center. Photo credit: Google Earth.

711

712 **Figure 2.** Proportion of moths that flew in bioassays after being irradiated at 200Gy and treated
713 with one of two modified atmospheres, normoxia (Nx200) or anoxia (Ax200), in each of three
714 performance trials. Although anoxia-hormesis moths had greater flight ability in laboratory
715 assays, flight ability was high (>85%) across both treatments in all three release trials. Periodic
716 flight ability trials were carried out on haphazardly selected groups of moths as a quality control
717 measure throughout the field releases for trials 1, 2, and 3. Means and standard errors are shown
718 but note that the standard error is so small for the hormetic-treated group in the first and third
719 trail that it does not show in the figure.

720

721 **Figure 3.** The overall number of captured male moths released after being irradiated at 200Gy
722 and treated with one of two modified atmospheres, normoxia (Nx200) or anoxia (Ax200), in
723 each of three performance trials; the number of captured males was variable among trials 1 (A),
724 2 (B), and 3 (C). Means and standard errors are shown on graph.

725

726 **Figure 4.** A higher number of anoxia-irradiated (Ax200) male moths were captured four and five
727 days after the original release than normoxia-irradiated (Nx200) male moths in both trial 2 (A, p
728 = 0.025) and in trial 3 (B, p < 0.001). For trial 3, the proportion of male moths captured for five
729 days after release was different between treatments. More than half Nx200 moths were captured
730 on day 1 while Ax200 moth captures were spread out and these moths were still captured on day
731 5 in both trials. Means and standard errors are shown on graph. Asterisks indicate a significant
732 difference in trap captures between Ax200 and Nx200 moths on that particular day.

733

734 **Figure 5.** The mark release-recapture site at the University of Florida's Plant Science Research
735 and Education Unit (PSREU) facility in Citra, Florida identifying the area were most normoxia-
736 irradiated moths (Nx200) were captured (A) and most anoxia-irradiated moths (Ax200) were
737 captured (B). Normoxia-irradiated moths were captured in greater proportion in a smaller section
738 of the overall trap grid (A), while anoxia-irradiated moths were captured over a much larger area
739 (B). Photo credit: Google Earth.

740

741 **Figure S1. A)** The average temperature at the time that sterile male moths were released in the
742 field was 28.4 °C and was not significantly different across all three field experiments. The daily
743 maximum (**B**) and minimum (**C**) temperatures were higher in the first field trial than the other

744 two trials. No effect of wind speed at time of release, maximum wind speed, and percent day
745 time cloud cover was found across all three trials.

746

747

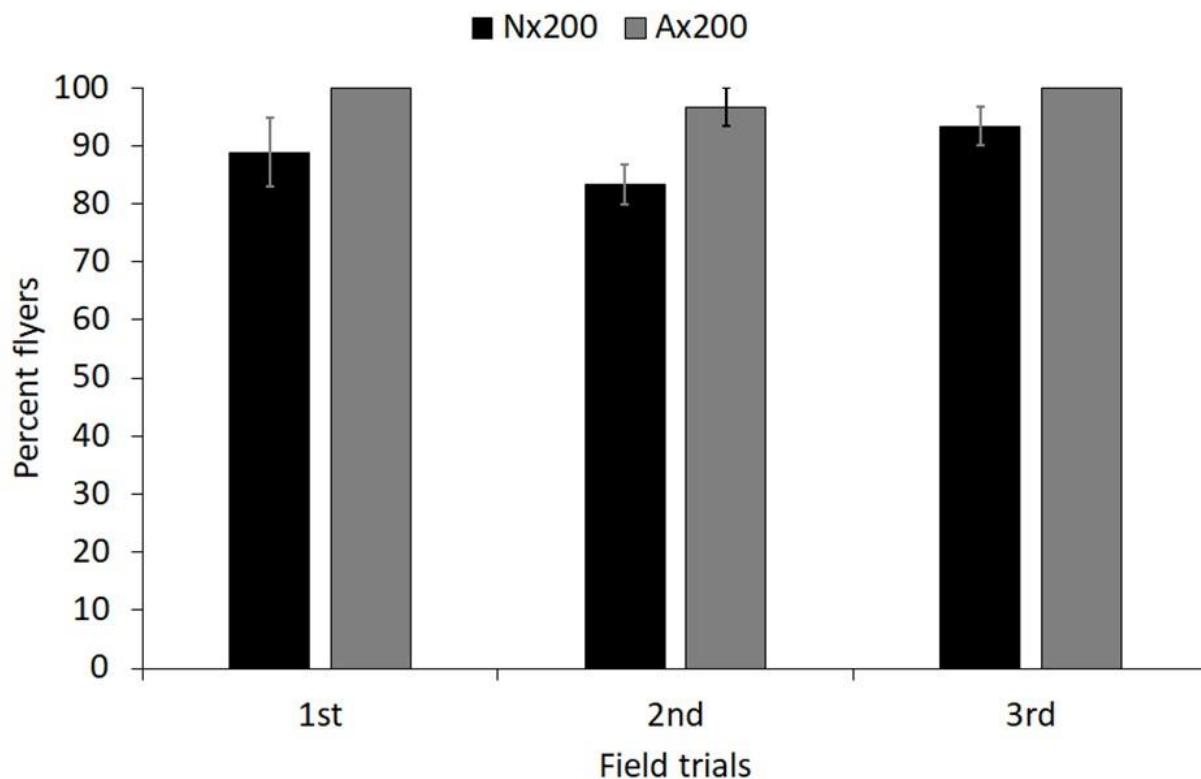
748

749 Fig. 1

750

751

752


753

754

755

756
757
758
759
760
761
762 **Fig. 2**
763

Flight ability performance in the lab

764
765
766
767
768
769
770

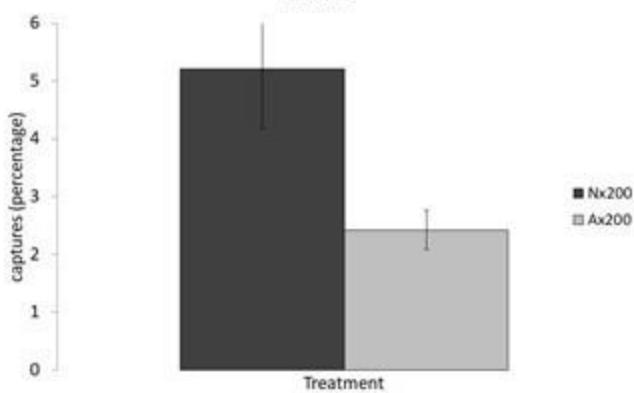
771

772

773

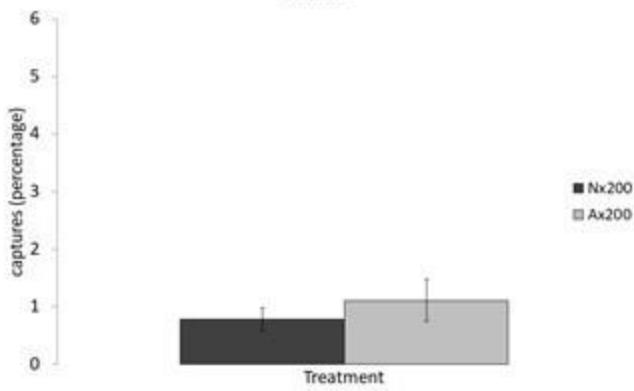
774

775

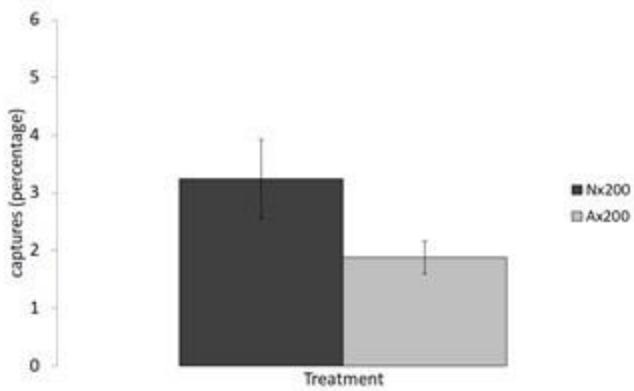

776

777 **Fig. 3**

778


A) More irradiated moths were captured

Trial 1


B) There was no treatment effect on captures

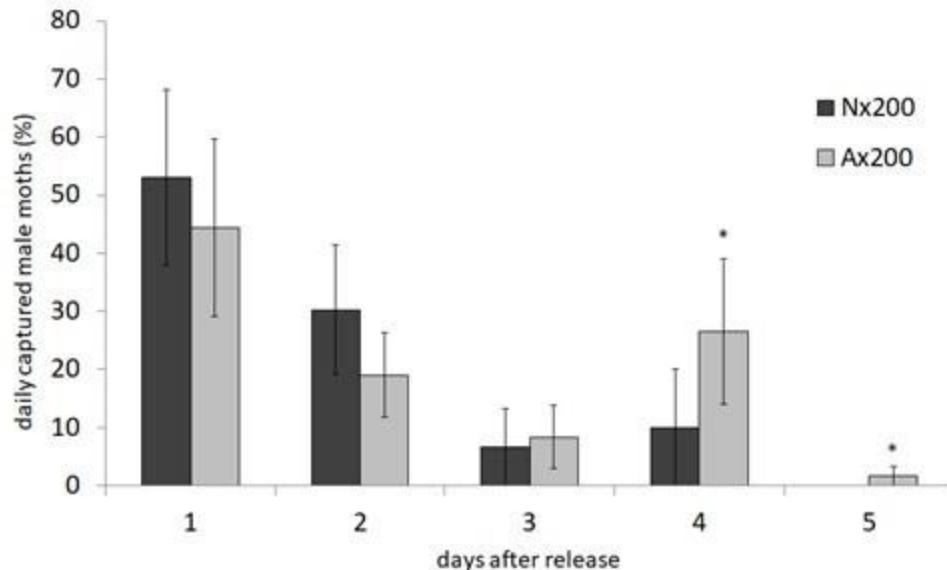
Trial 2

C) There was no treatment effect on captures

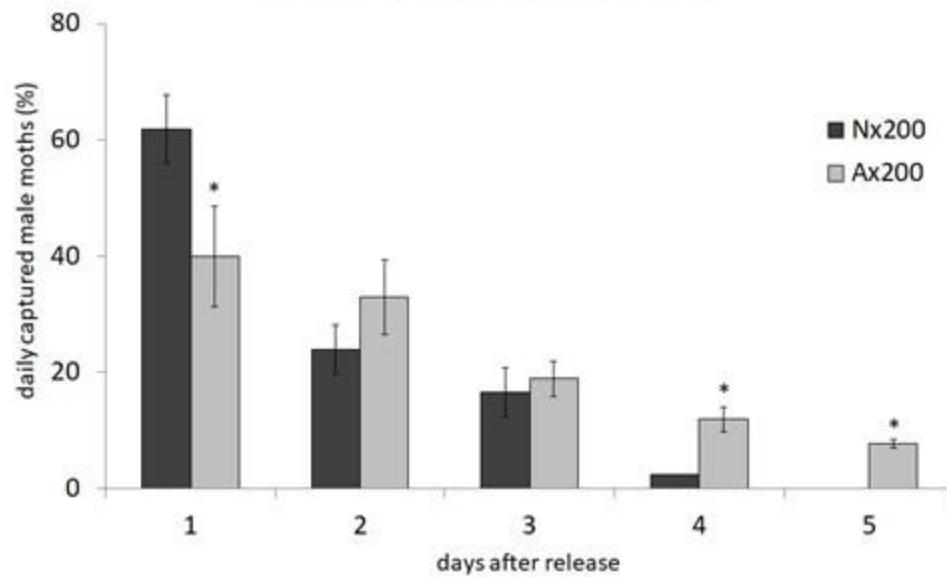
Trial 3

779

780


781

782

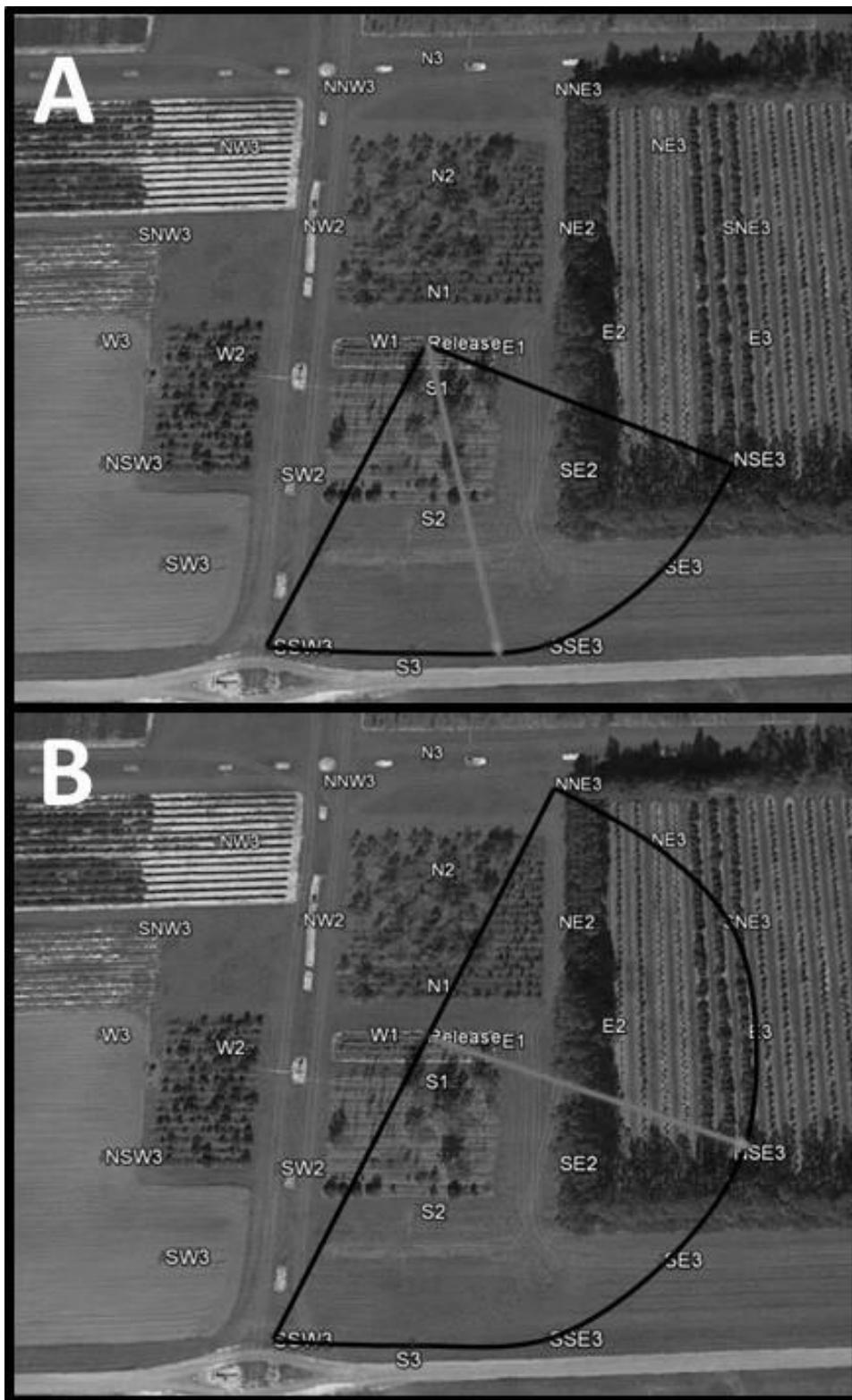

783 Fig. 4

784

A) Trial 2: Anoxia-irradiated moths were captured longer in the field

B) Trial 3: Anoxia-irradiated moths were also captured longer in the field

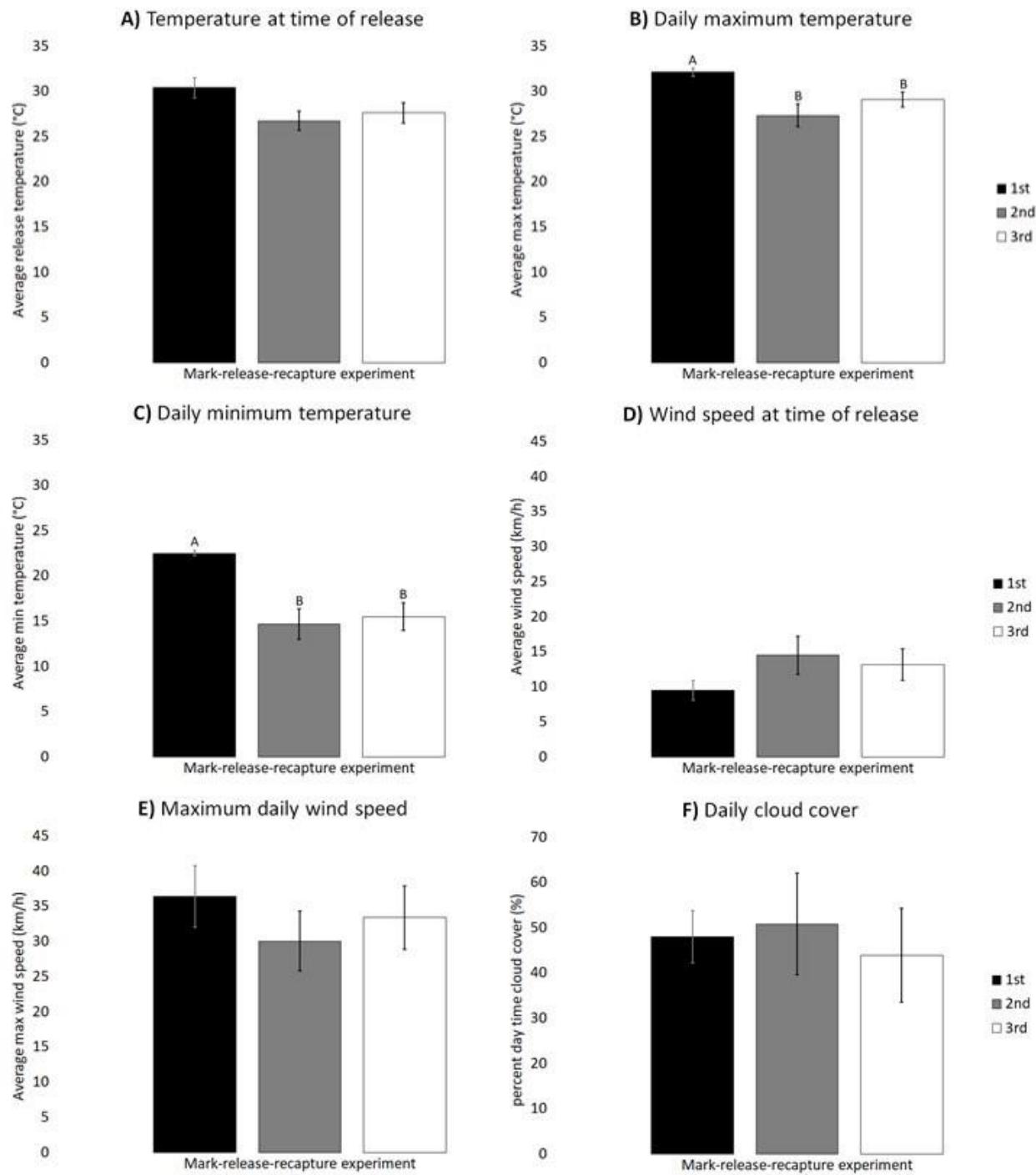
785


786

787

788

789 **Fig. 5**


790

791

792 **Fig. S1**

793

