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Abstract

Predators can induce extreme stress and profound physiological responses in prey. Insects
are the most dominant animal group on Earth and serve as prey for many different predators.
Although insects have an extraordinary diversity of anti-predator behavioral and physiological
responses, predator-induced stress has not been studied extensively in insects, especially at the
molecular level. Here, we review the existing literature on physiological predator-induced stress
responses in insects and compare what is known about insect stress to vertebrate stress systems.
We conclude that many unrelated insects share a baseline pathway of predator-induced stress
responses that we refer to as the octopamine-adipokinetic hormone (OAH) axis. We also present
best practices for studying predator-induced stress responses in prey insects. We encourage
investigators to compare neurophysiological responses to predator-related stress at the organismal,
neurohormonal, tissue, and cellular levels within and across taxonomic groups. Studying stress-
response variation between ecological contexts and across taxonomic levels will enable the field
to build a holistic understanding of, and distinction between, taxon- and stimulus-specific

responses relative to universal stress responses.

Keywords: adipokinetic hormone; predator-prey; neurohormone; octopamine; cellular effector
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Introduction

Over the last century, major advances in animal behavior and physiology have been made
through research on predator-prey interactions. In particular, predator-prey research has
contributed significantly to behavioral and landscape ecology, leading to the recognition that
nonlethal, indirect interactions between predators and prey can influence prey demography and
community interactions as much as direct mortality (Laundré et al., 2014). Specifically, predators
are capable of influencing prey optimal foraging patterns, behavioral tactics within game theory
strategies (Gross, 1996), and habitat use, among many other phenomena (Brown et al., 1999;
Laundre et al., 2010). Studies on predator and prey physiology have made it possible to quantify
the state of at-risk animal populations or species using molecular evidence, and the field of
conservation resource management has recently incorporated approaches to measuring the strength
of apex predation in a given habitat using parameters of prey physiology alone (Ferrer and Zimmer,
2013; Leroux et al., 2012; Sheriff and Thaler, 2014). Laboratory studies, primarily involving
vertebrates, have teased apart physiological mechanisms and downstream responses of predator-
related auditory, olfactory, visual, and tactile cues (Clinchy et al., 2013; Sabet et al., 2015; Adamo
etal., 2013; Miller et al., 2014). When prey encounter a hunting predator, a stress response initiates
many downstream changes. Key molecular pathways that regulate cellular stress responses to
predator stimuli initiate typical organismal stress responses, such as increased respiration and
modified behavior. Due to their well-studied nature, vertebrate predator-prey systems provide a
template for understanding the neurohormonal signaling, physiology, life history, and behavior of
insect prey (Stenzel-Poore et al. 1992).

Insects dominate Earth with more than 5 million species (Stork et al., 2015), and they serve

as primary prey for many predators. However, molecular mechanisms of predation-related stress
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in insects are poorly studied (Adamo, 2017; Farooqui, 2012; Huising and Flik, 2005). It is now
thought that an ancestral stress-response system shared among animals predates the
protostome/deuterostome divergence (Huising and Flik, 2005; Misof et al., 2014; Roeder, 2005),
which suggests that there may be similarities in the insect and vertebrate systems found today.
Despite this shared inheritance, insects exhibit an extraordinary diversity of life histories, niches,
and morphologies that have resulted in the evolution of distinct, sensory-specific molecular signal
transduction mechanisms tied to particular sensory structures (Benton et al., 2009; Rimal and Lee,
2018). Due to this profound diversity among insects, recent advances in molecular sequencing and
knockdown applications have demonstrated the need to account for taxon-, sensory-, and tissue-
specific divergences in molecular physiology when analyzing predator-induced insect stress
responses, even within a single insect family (Lam et al., 2013).

A first step toward understanding insect stress responses is to contrast them with the well-
studied vertebrate stress response model. Although substantial advances have been made (Adamo
and Baker, 2011; Kodrik et al., 2015) in comparison to vertebrates, the molecular pathways and
downstream effectors that play a role in predator-induced stress responses of insects are under-
studied or unknown. This review synthesizes the literature on physiological predator-induced
stress responses in insects from sensory perception and neurohormonal signaling through
organismal responses. We highlight some of the model insect species that have been studied, note
the challenges of conducting integrative studies of stress responses given the great diversity of
insects and their stress responses, and recommend future directions that may help disentangle these

complicated predator-induced responses of insect prey.

A comparison of invertebrate and vertebrate stress physiology
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Comparative studies in stress biology can reveal striking homologies, instances of
convergent evolution, and stark differences in the way animal species cope with biotic and abiotic
disturbances. The vertebrate hypothalamo-pituitary-adrenal (HPA) axis is one of the most well-
studied, stress-induced physiological frameworks in biology (Harris and Carr, 2016). Study of the
HPA axis has broadened our understanding of diverse physiological responses and
neurobehavioral disorders, including post-traumatic stress disorder in humans (Clinchy et al.,
2013; Roszkowski et al., 2016; Zanette and Clinchy, 2017) and stimulus habituation in laboratory
rats and mice (Takahashi et al., 2005). The HPA axis is comprised of a series of neurohormonal
cascades that cause neurosecretory and endocrine cells to release chemicals, including
neurotransmitters, neuropeptides, and protein hormones, into the bloodstream during times of
stress and bodily exertion (e.g. during predator-prey interactions; Fleshner et al., 2004; Fig. 1).

Stress-related hormones induce a variety of often species-specific physiological responses
throughout the body, such as the transport of energy-rich molecules to target tissues (Harris and
Carr, 2016), increases in heart rate and respiration (Zollinger et al., 2011), and behavioral
modifications (Breviglieri et al., 2013), all of which can impact fitness (Bonier et al., 2009).
Although the HPA axis and its effects on vertebrate cellular- and organ-level physiology in the
context of predation risk are well-studied, a similarly well-defined model describing the stress-
induced regulation of cellular responses in insects and other arthropods remains nascent.

Over the past several decades, organismal (Hack, 1997; Keiser and Mondor, 2013),
transcriptional (Aruda et al., 2011; Cinel and Taylor, 2019), and cellular effector (Even et al., 2012;
Slos and Stoks, 2008; Van Dievel et al., 2016) responses have been reported in insects both during
and after exposure to predators. However, the specific molecules, cell types, and tissues involved

in predator-induced stress responses in insect prey, as well as similarities among insect systems
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have not been extensively reported. In particular, taxonomic and experimental biases associated
with the entomological literature may contribute to our limited knowledge in this field.
Octopamine (OCT) and adipokinetic hormones (AKH) represent some of the best-studied
neurohormones in insects, and several lines of evidence indicate parallels between the OCT-AKH
axis and the vertebrate HPA axis. We discuss the functions and diversity of OCT- and AKH-

induced responses and compare them to the vertebrate HPA axis in detail in the following sections.

Neuroendocrine pathways and molecular messengers in stressed insects

To contend with diverse and dynamic conditions, insects possess a suite of neurohormonal
cascades that adjust organismal physiology during times of exertion. Most research on insect
stress-responsive neurohormonal signaling has focused on the biogenic monoamines OCT and
tyramine (Davenport and Evans, 1984; Farooqui, 2012; Jones et al., 2011; Roeder, 2005), as well
as a family of small neuropeptides known as AKHs (Adamo, 2017a; Even et al., 2012; Gade, 2009;
Kodrik et al., 2015; Orchard et al., 1993). OCT, a neurogenic relative of the vertebrate
neurotransmitter norepinephrine (Verlinden et al., 2010), is thought to be the “first responder”
during acute stress reactions in insects and acts as a neurohormone, neuromodulator, and
neurotransmitter (Farooqui, 2007; Orchard, 1981). Notably, OCT and AKH are also intimately
involved in the insect immune response. OCT and AKH are often measured at high hemolymph
concentrations following a lesion, bacterial infection, and even parasitism (Adamo, 2017, 2012).
Some researchers hypothesize that an ancestral molecular component of the stress and immune
responses predating the vertebrate/invertebrate divergence has since been modified into
octopamine in invertebrates and norepinephrine in vertebrates (Adamo, 2014; Farooqui, 2012;

Ottaviani and Franceschi, 1996; Roeder, 2005). Although not predating the protostome-
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deuterostome split, Li et al. (2016) also provide evidence that AKH and its associated G-protein
coupled receptors emerged in ancestral Lophotrochozoans around 550 Mya and show that AKH is
an ancient, well-conserved component of invertebrate neurophysiology.

Recent work has focused on explaining how seemingly maladaptive physiological
responses, particularly to prolonged stressors, in vertebrates and invertebrates could have evolved
under natural selection. Adamo (2017) proposes a context-dependent tradeoff between the
metabolically costly insect stress and immune responses, both of which are at least partially
activated by OCT and AKH signaling. Both OCT and AKH trigger the fat body to release lipids
into the hemolymph, where they are then loaded onto lipoproteins, molecules that also can play a
functional role during immune surveillance (Adamo, 2017). Adamo (2017) also notes the sharing,
reconfiguration, and borrowing of several other molecular resources among the extra- and intra-
cellular signaling cascades and cellular effectors induced by both the immune and stress systems.
Finally, Adamo (2017) argues that this shared function of one molecular resource, specifically
Apolipophorin III (ApoLplll), between two physiological contexts explains why reduced
antioxidant activity, cell-specific metabolic exhaustion, and immune inhibition commonly co-
occur during periods of chronic stress.

OCT acts as a neurohormone, neuromodulator, and neurotransmitter in both vertebrates
and invertebrates (Farooqui, 2007; Orchard, 1981). OCT’s range of roles portends the breadth of
physiological responses it modifies, and its effects often vary spatially and temporally throughout
the nervous system and responsive tissues. Peripherally, OCT acts as a neuromodulator, often
increasing the excitability of neurons innervating the flight muscles and most sensory structures.
Notably, OCT also acts within the central nervous system (CNS) and affects arousal, motivation,

learning, sensory habituation, thermoregulation, social behaviors, and hygienic behaviors
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(Armstrong and Robertson, 2006; Farooqui, 2012; Roeder, 2005). For instance, OCT modulates
the response of two locust species (Locusta migratoria [Orthoptera: Acrididae] and Schistocerca
gregaria [Orthoptera: Acrididae]) experiencing intraspecific crowding and induces a shift from
developing into a solitary morph into a gregarious morph (Morton and Evans, 1983; Verlinden et
al., 2010). OCT concentrations spike in the hemolymph of crickets (Gryllus texensis [Orthoptera:
Gryllidae]) following discrete exposure to mock predators and associated fleeing behavior (Adamo
et al., 2013; Adamo and Baker, 2011). Frequent exposure to a brief blow of air directed at a
cricket’s cerci also leads to increased OCT concentrations in its hemolymph, although direct
exposure to a mantid predator does not induce an OCT increase (Adamo and McKee, 2017). Non-
stressed crickets injected with OCT exhibit increased cover-searching and evasive behaviors
compared to those experiencing sham injections without OCT (Adamo and McKee, 2017).
Overall, OCT is involved in myriad responses to environmental cues, and stressors represent a
category of cues that often illicit a strong release of OCT.

Following the release of OCT from octopaminergic dorsal and ventral unpaired median
neurons situated near the subesophageal, thoracic, and abdominal ganglia of the CNS, OCT
binding to receptors on the neurosecretory corpus cardiacum causes stored AKH to be released
into the hemolymph (Kodrik et al., 2015). The release of AKH is conceptually analogous to the
release of cortisol from the adrenal gland in the vertebrate HPA axis (Adamo, 2017). AKH has
long been known to mobilize lipid reserves from the insect fat body to provide energy to flight
muscles during periods of prolonged flight (David et al., 1985; Luo et al., 2014; Ziegler et al.,
2011). AKH is also known to act as a potent antioxidant when circulating in the insect's
hemolymph (Bednétova et al., 2013; Kodrik and Socha, 2005). Bednafova et al. (2013) find that

circulating AKH and protein carbonyl levels (i.e. an indicator of damage from oxidative stress)
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increase in the firebug Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae) when injected with
hydrogen peroxide. Co-injecting AKH and hydrogen peroxide reduced protein carbonyl levels and
increased survivorship to control levels, possibly indicating AKHs function as an antioxidant or
its role in stimulating the function of other antioxidants (Bednarova et al., 2013). AKH also appears
to interact with OCT because octopaminergic neurons throughout the central and peripheral
nervous systems are equipped with membrane-bound AKH receptors that allow a neuromodulatory
response to hemolymph concentrations of AKH (Adamo, 2017; Farooqui, 2012; Wicher, 2005).
To identify where and when OCT and AKH receptors are acting during a stress response,
one must first understand how each receptor functions. Membrane-bound OCT receptors are
classified into two main types based on sequence similarity to vertebrate adrenergic receptors: 1)
alpha-adrenergic-like receptors (OCTa-R), and 2) beta-adrenergic-like receptors (OCTB-R; Evans
and Magqueira, 2005; Farooqui, 2012). OCT-Rs are further divided into three sub-types (Evans
and Magqueira, 2005; Farooqui, 2012; Roeder, 2005). Both OCTa-Rs and OCT-Rs are activated
upon binding with OCT and initiate two non-mutually exclusive, tissue-specific intracellular
secondary signaling pathways: 1) cyclic adenosine mono-phosphate (cAMP)/protein kinase A
(PKA), and 2) intracellular calcium (Ca®")/inositol-1,4,5-triphosphate (IP3)/diacylglycerol/PKC
(Farooqui, 2007; Roeder, 2005). For instance, upon binding with OCT, OCTa-Rs stimulate the
concentration-dependent activity of both the intracellular Ca** and cAMP signaling cascades
(Huang et al., 2012; Roeder, 2005). In the Ca*" signaling cascade, for instance, G-protein signaling
first activates the phospholipase C-enabled hydrolysis of phosphatidylinositol 4,5-biphosphate into
IP; and diacylglycerol. IP3 then acts on the endoplasmic reticulum to open Ca?" ion channels and
causes an influx of Ca®"into the cytoplasm. In the final step of the pathway, diacylglycerol and

Ca?" activate protein kinase C (PKC), a family of intracellular signaling proteins common to all
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eukaryotic cells that functions in phosphorylating numerous proteins, including transcription
factors, ultimately leading to transcriptional regulation of stress-associated genes (Altman and
Kong, 2016). On the other hand, OCT[3-R activation induces adenylyl cyclase and the production
of intracellular cAMP and PKA (Balfanz et al., 2005; Bischof and Enan, 2004; Grohmann et al.,
2003; Han et al., 1998). These OCT-induced secondary messenger systems are known to act in a
variety of contexts including learning (Schwaerzel et al. 2003), hyperglycaemia (Fields and
Woodring, 1991), and phagocytosis (Baines and Downer, 1994; Table 2).

Although numerous insect-specific PKC isoforms exist and their expression is often cell-
type- and function-specific (Shieh et al., 2002), recent studies have begun to describe which PKCs
function in specific organs within insects. For instance, PKCa is known to specifically act in a
Ca’*-dependent manner to phosphorylate histones and other transcription regulators, such as
methyl DNA-binding proteins, in the Bombyx mori brain (Uno et al., 2006). Another PKC subtype
known as atypical PKC is necessary for long-term memory maintenance in mouse hippocampal
neurons (Jalil et al.,, 2015) and its activity can rescue rudish-mutant Drosophila (Diptera:
Drosophilidae) from associated memory defects (Shieh et al., 2002), suggesting that PKC-
signaling may be important for learning in predator-induced responses. When trying to understand
specific cascades of the insect predator-stress response, it is useful to be able to predict which
specific PKC isoform is expected to be activated in the tissue and experimental context under study
because PKCs are primary post-transcriptional modifiers with specific isoforms tied to discrete
roles in transcriptional modification that are restricted to specific tissues.

Although some of the core cellular stress-induced secondary messengers that exist in
insects are well-known, no clear pattern is discernible regarding the identification of tissues and/or

taxa that may utilize the cAMP or Ca®>' pathway preferentially over the other (Table 2). To
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efficiently target these pathways for study or manipulation, for instance via gene editing or targeted
pharmacology, and to validate that such manipulations have an influence on whole-organism
performance, it is key to identify which secondary messaging pathway(s) is acting in the context
under study. With few prior sub-organismal studies of insect secondary messenger signaling
systems in the context of predator stress, there is a critical knowledge gap likely due to the cost-
prohibitive molecular assays and expertise required. To overcome these limitations, we
recommend that future attempts to discern which insect tissues respond to stressful conditions,
particularly in the context of predation risk, should simultaneously monitor cAMP and Ca?" ion
levels in discrete tissues sampled at multiple time intervals before, during, and following stressor
exposure to disentangle these cell-signaling responses so their respective roles may be
characterized. Furthermore, we suggest that researchers assess the gene expression, protein
localization, and activity of the two octopamine receptor sub-types and PKC isoforms within the
context of predator-induced stress to elucidate the responsible molecular mechanisms. The highly
conserved nature of the cAMP and Ca?" signaling pathways in stress responses suggests that the
biochemical and cellular mechanisms induced by insect predator stress mirror those more
commonly studied in vertebrates and may comprise an evolutionarily conserved, ‘generalized’
component of the stress response (Fig. 1). Nevertheless, it is critical to know where, when, and
how both hormonal and cell-signaling pathways are tied to specific stress-induced responses

throughout the insect body, and this knowledge is currently sorely lacking.

An overview of stress-responsive insect neurohormones

Although the OCT and AKH-signaling systems are traditionally considered simple relative

to vertebrate stress-response pathways, the diversity of other hormones, neuromodulators, and
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downstream physiological effectors induced by the insect stress response implies a high degree of
complexity. OCT and AKH exhibit a variety of functions, including the immediate release of
neurotransmitters, the induction of extra- and intra-cellular signaling, and the prolonged, often
neurally-modulated production and release of other hormones from the paired neurosecretory
glands (corpora cardiaca and corpora allata). Even et al. (2012) review the diverse molecular,
physiological, and behavioral stress-induced responses that have been reported in honey bees.
Honey bee brains exhibit changes in OCT, dopamine, and serotonin concentrations that are
correlated with physical stress, age, diel period, seasonality, and can vary among source colonies
(Harris and Woodring, 1992). In fruit flies and honey bees, AKH modulates the physiological
stress responses to temperature and oxidative damage by initiating intracellular signaling cascades
affecting the transcription of antioxidants (Bednafova et al., 2015) and protein chaperones,
including heat shock proteins (Elekonich, 2009; Hranitz et al., 2010; Voth and Jakob, 2017). Other
signaling hormones that pleiotropically induce physiological responses to stress in insects include
juvenile hormone (Chang and Hsu, 2004), a putative cortico-releasing hormone-binding protein
(Liu et al. 2011), diuretic hormone-I (Coast, 2006), corazonin (Boerjan et al., 2010; Veenstra,
2009), allatostatin-A (Veenstra, 2009), glucagon-like peptides (Kodrik et al., 2015), and insulin-
like peptides (Corona et al., 2007). Glucagon-like peptides and corazonin are both implicated in
the activation of antioxidant defenses during periods of oxidative stress in insects, though each is
also implicated in broad physiological processes including metabolism and ecdysis, respectively
(Kodrik et al., 2015). The potential role of ecdysteroids in the adult stress response is especially of
note. In the past 20 years, ecdysteroids, mainly 20-hydroxyecdysone, have been observed to be a
primary molecular response to changes in the environment, including nutrient shortage (Terashima

et al., 2005), aggressive social interaction (Ishimoto and Kitamoto, 2011), and thermal stress
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(Hirashima et al., 2000) in Drosophila. Indeed, ecdysteroids and the majority of hormones
discussed here act pleiotropically, stimulating many different physiological responses. Notably,
the peptide corazonin was originally implicated in mediating cardiac rhythms in cockroaches
(Veenstra, 1989), but researchers have since reported its function in locust gregarization,
melanization, diel rhythms, and lipid metabolism following nutrient and thermal stress (Boerjan et
al., 2010). In fact, the amino acid sequence of the corazonin family of peptides is remarkably
similar to that of the AKH family, a pattern that suggests a possible ancestral function of corazonin
in priming diel and seasonal stress-responsive physiological systems (Boerjan et al., 2010).
Adamo (2017) proposed a model to explain how a subset of stress-related signaling
molecules and gene products could be co-opted from other physiological systems to promote
homeostasis during periods of stressor exposure. Adamo (2017) provides evidence that there is
substantial overlap in the molecular components induced by predator stress and the molecular
components induced by immune challenge. She particularly points out that both predator-stress
and immune challenge use biogenic amines (e.g. OCT) and small neuropeptides (e.g. AKH)
released from neurosecretory glands into the hemolymph to enhance organismal performance
while promoting overall physiological homeostasis. The overlap in components likely accounts
for the well-documented trade-off between stress and immune functions through the sharing of
scarce molecular resources vital to both responses. One particularly well-studied molecule
hypothesized to drive this stress/immune trade-off in insects is apolipophorin III (ApoLplll), a
lipoprotein monomer that is well-known for its role in pathogen recognition pathways (Niere et
al., 2001). Following stressor-activated secondary signaling cascades, ApoLplII in the hemolymph
undergoes a conformational change and binds with the apolipophorin I and II complex (Adamo et

al., 2008; Adamo, 2017). This conformational change allows diacylglycerol to bind to the
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complex, forming low density lipophorin, which then transports diacylglycerol from fat body lipid
stores through the hemolymph to targeted organs to provide metabolic fuel (Weers and Ryan,
2006; Fig. 2). Illustrating the importance of ApoLplll, Adamo et al. (2008) find that injecting
flight-stressed crickets with AKH reduces free ApoLplIl hemolymph concentrations as it becomes
bound with ApoLpl, II, and diacylglycerol, leading to immunosuppression. A similar drop in
ApoLpllI concentration might be expected during anti-predator stress responses due to co-option
away from its constitutive role in pathogen recognition towards its role in transporting lipids
(Adamo, 2017b; Adamo et al., 2008; Noh et al., 2014). To our knowledge, ApoLpl, II, III and
diacylglycerol hemolymph concentrations have not been directly measured in insects under
predation risk, but this is certainly a rich avenue of future research. The molecules comprising this
stress/immune system trade-off in insects are known to act during physiological stress responses
related to nutrition (Adamo et al., 2017; Davenport and Evans, 1984; Siegert, 1988), temperature
(Taszlow and Wojda, 2015), pathogen infection (Adamo, 2017), and predator exposure (Boonstra,
2013; Hawlena et al., 2011; McPeek et al., 2001; Van Dievel et al., 2016). In fact, the appearance
of OCT and AKH receptors on the extracellular membranes of both efferent sensory neurons (Lam
et al., 2013; MacDermid and Fullard, 1998) and immune-induced hemocytes further suggest an
ancestral signaling relationship between these two systems (Adamo, 2017).

Indeed, animals across phyla can modulate immune function during interactions with
predators (Adamo, 2012), implying that the ability to optimize stress and immune responses
according to transient needs has been conserved for over 400 million years (Adamo, 2017). The
deep evolutionary history of animal stress responses must be acknowledged and integrated into
future studies of comparative evolutionary physiology. Such an approach will pave the way for an

integrative understanding of how nonlethal, predator-induced stress can scale to affect population
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demography and fitness in natural and anthropogenic systems. Demonstrating the influence of
predators not only on direct mortality, but also the stress physiology and organismal performance
of pest insects, could also aid in the development of predator-based approaches to sustainable
agriculture. For instance, fifth instar Manduca sexta (Lepidoptera: Sphingidae) larvae that were
pinched with forceps 8 times over the course of 30 sec repeatedly for three hours exhibited reduced
mass gain, delayed development, increased hemolymph octopamine levels, reduced hemolymph
glutathione (an antioxidant discussed below) levels, and increased antimicrobial peptide attacin-1
expression (Adamo et al., 2017). Clearly, frequent exposure to a mock predator can have marked
indirect effects on both the physiology of exposed adults and even offspring performance, with
promising results for biological control strategies based on the ecology of fear, because Manduca
sexta is commonly used to model processes in agricultural pest moths, such as Helicoverpa or
Spodoptera. A thorough understanding of predator-induced stress physiology in insects could also
help avoid extinctions. Endangered insect species, particularly those displaced by an invasive
predator, may experience population declines in excess of what direct mortality predicts. Similarly,
greater understanding of the underlying physiology of the ecology of fear may provide insights
into the performance of beneficial insects, from pollinators to biological control agents. Studies of
insect sensory processing and downstream neurophysiological stress can further be applied to more
immediately practical pursuits, including the production of targeted insecticides and developing
translational models of human sensory diseases (Albert and Gopfert, 2015; Senthilan et al., 2012;

Song et al., 2001) and other neural disorders (Clinchy et al., 2011; Pandey and Nichols, 2011).

An integrated metabolic-, immune-, and predator-induced stress response in insects
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Both acute and chronic predator-induced stressors are prevalent in nature (Boonstra, 2013;
Clinchy et al., 2013) and both broadly impact the behavior, physiology, life history, and fitness of
many insects (Adamo, 2017; Hawlena et al., 2011; Rodriguez and Greenfield, 2004; Zha et al.,
2013). To date, most studies of insect physiology under predation risk have focused on energetics
and whole-organism responses, as opposed to studying signaling pathways and their
accompanying cellular and biochemical responses. For example, in two damselfly species,
Enallagma aspersum (Odonata: Coenagrionidae) and Ischnura verticalis (Odonata:
Coenagrionidae), circulating hemolymph concentrations of glucose and glycogen were unchanged
in the presence of predators, though triglycerides were decreased in Enallagma but not Ischnura,
while total protein levels decreased in Ischnura but not Enallagma (McPeek et al., 2001; Stoks et
al., 2005). However, in a study that did investigate sub-organismal molecular responses to
predation stress, Slos and Stoks (2008) found that the abundance and activities of cellular effectors,
including heat shock protein, Hsp70, and the antioxidant enzyme, catalase, were enhanced under
predation risk in Enallagma cyathigerum, another damselfly species. These same cellular effectors
have previously been found to be involved in many stress responses, from heat to desiccation
among others, nominating them to be part of a generalized stress response system in insects
(Hermes-Lima and Zenteno-Savin, 2002).

With the knowledge that molecular resources are shared between the generalized stress and
immune responses in insects, one might hypothesize that the same molecules observed in
nutritionally, oxidatively, or immunologically stressed insects would also play a role in predator-
stressed insects. One such molecular response involves glutathione, a major antioxidant found in
insects (Clark et al., 2010) that acts through its capacity for neutralizing free radicals and reactive

oxygen species. However, high hemolymph concentrations of glutathione also prevent the reactive
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products of phenoloxidase, a key line of immune defense, from acting as a pathogen suppressor
(Gonzalez-Santoyo and Cordoba-Aguilar, 2012). For example, Stahlschmidt et al. (2015) find that
female crickets (G. texensis) experimentally infected with a bacterium display a positive
correlation in hemolymph glutathione concentration and fecundity. Further, the ratio of glutathione
to prophenoloxidase circulating in the hemolymph is unaffected by food or immune challenge,
indicating a tight balance between the free radical-producing effect of prophenoloxidase activity
and its mitigation by glutathione (Stahlschmidt et al., 2015). By explicitly correlating fast-acting
stress signaling cascades, such as octopamine and AKH signaling, with downstream cellular-level
effector activity, one can build mechanistic hypotheses regarding specific signaling systems and
the discrete sets of responsive effector molecules activated as part of a specialized stress response
vs. general stress responses. Kodrik et al. (2015) and Farooqui (2012) review the functions of AKH
and OCT signaling in insect stress responses, respectively, and show that both affect tissue-specific
enzyme activity and transcriptional regulation by acting through distinct secondary messengers
(Table 2). Although great strides have been made in model organisms like Drosophila with
projects like FlyAtlas (Chintapalli et al., 2007) and ModEncode (Celniker et al., 2009), research is
now needed that can discern the specific tissues and cell types expressing one or more of the OCT
and/or AKH receptor subtypes and their discrete impacts on tissue and organismal physiology in
non-model organisms across different ecological contexts (i.e. acute vs. chronic stressors) to
advance a mechanistic understanding of cellular-, transcriptional-, effector-, and organismal-level
responses to predation risk, as well as ultimately population- and community-level responses due
to the ecology of fear. As one of the few experimental examples spanning these scales from sub-
organismal to whole-organism responses while also comparing acute and chronic stressors,

crickets (G. fexensis) experiencing chronic immune challenge every 3 days shift molecular
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resources towards oxidative stress tolerance relative to immune resistance, whereas immune
resistance is highly activated during acute immune challenges (Stahlschmidt et al., 2015).
Exposure to acute and chronic predation risk often induces complementary, yet distinct,
physiological responses, and pinpointing where, when, and what molecular interactions are

involved in each remains a key area of study in the field of insect stress.

Sensory and taxonomic biases of studies on predator-induced stress across insects

Insects are well-known for their array of sensory mechanisms, including several forms of
lineage-specific sensory receptors. For instance, female Ormia ochracea [Diptera: Tachinidae]
flies use specialized, paired tympanal organs to localize singing Gryllus crickets, which they then
parasitize (Robert et al., 1992). Each receptor type is correlated with a spectrum of behavioral
responses that is induced upon the perception of environmental cues, although multi-modal
sensory integration can lead to diverse, non-normative reactions. Notably, Drosophila respond
with two distinct behavioral repertoires depending on the speed and size of a visual stimulus (Wu
et al., 2016). Each behavioral response is represented neurophysiologically by activity in distinct
neurons within the same stimulus-encoding layers of the optic lobe (Klapoetke et al., 2017). For
example, a looming object, one that is moving towards the subject, activates a distinct lobula
columnar and neuron sub-type in the Drosophila eye that innervate the giant fiber escape circuit
and leads explicitly to a prescribed turning and escape behavior (von Reyn et al., 2017; Wu et al.,
2016). These prescribed behavioral regimes and specific underlying neural responses have allowed
neuroscientists to map the discrete activation of sensory-processing neuron sub-types sensitive to
specific cues, including looming-sensitive neurons, that encode similar behavioral escape

responses in all animals studied thus far (Peek and Card, 2016). This field of research reveals the
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deep homology or convergence of these neural responses to a predator-related visual cue and
emphasizes the need for more detailed comparisons between the sensory systems studied, the
methods used to activate specific neural sub-types, and the distinct parts of the brain where higher-
order processing of these stimuli occurs among diverse evolutionary lineages.

Despite significant technological advancements to describe neural responses to stressors,
the methodology employed in studies of molecular stress responses remains somewhat limited.
Current molecular assessments of stress in insects, which primarily use Drosophila melanogaster
as a model, employ whole-body or whole-tissue sample extractions that can bias the resulting
observations and their interpretation. Compared to vertebrates, the relatively simple insect nervous
system provides an opportunity to compare stress responses in fine-scale studies of predation-
related neurophysiology through the use of microdissections, single-cell analytic technologies,
optogenetic labeling, and elegant histological techniques. Along with technological advancements
in measuring biochemical stress responses, a foundational knowledge of predator and prey
contexts is required to understand how nonlethal effects of predation risk influence an organism’s
physiology. Among these considerations are predator and prey life histories, the sensory modalities
involved in predator-prey interactions, and both the acute and chronic neurophysiological
responses that are expected to occur. Due to body size constraints on microdissection and the
prohibitive amount of tissue required for effective molecular sequencing studies, deconstructing a
physiological stress response into sensory perception, lower- and higher-order processing, and
local compared to systemic responses is currently limited in non-model insects. Yet, it is only a
matter of time before such approaches are translated to novel, non-model species by building on
the genetic tools developed for studying neurophysiological stress in Drosophila. Many insect

predator-prey interactions are studied at the behavioral and organismal levels, yet the stimuli used
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among different studies are often not directly comparable. For example, mechanically shaking an
insect is often assumed to be a proxy for a predation-related cue, though little empirical evidence
supports this assumption (Evans et al., 2012). Other studies have relied on more ecologically
relevant and quantifiable stimuli, including predator kairomones (Van Dievel et al., 2016; Heads,
1985), auditory exposure to predator sounds (Huang et al., 2003; Minoli et al., 2012; Zha et al.,
2013), visual cues (Combes et al., 2012; De La Flor et al., 2017; Kacsoh et al., 2015), or allowing
direct interaction between predator and prey by rendering predators harmless (Persons et al., 2001;
Schmidt-Entling and Siegenthaler, 2009; Snyder and Wise, 2000). The variety and context-
dependence of cues used throughout the literature makes comparisons between studies
challenging. Additionally, outcomes of many predator-prey interactions are often context-
dependent, with strong influences of resource availability (both for predator and prey), conspecific
cues, and transient organismal physiology impacting anti-predator behavior in both vertebrates
(Clinchy et al., 2004; Drakeley et al., 2015; Figueira and Lyman, 2007; Katwaroo-Andersen et al.,
2016; Oliveira et al., 2017; Pike et al., 2010) and invertebrates (Charalabidis et al., 2017; Dittmann
and Schausberger, 2017; Elliott et al., 2017; Jones and Dornhaus, 2011; Laws and Joern, 2015;
Stahlschmidt et al., 2014; Stahlschmidt and Adamo, 2015).

Another roadblock to synthetic understanding is that the literature on predator-induced
stress in insects is scattered across highly divergent orders (i.e. Orthoptera [ Goosey, 1982; Morton
and Evans, 1983; Verlinden et al., 2010)], Diptera [ Kaufmann et al., 2009; Rahman et al., 2013],
Lepidoptera [MacDermid and Fullard, 1998; Pfuhl et al., 2015], and Odonata [McPeek et al., 2001;
Slos and Stoks, 2008; Van Dievel et al., 2016]). Over hundreds of millions of years, these taxa
have diverged to produce the myriad sensory receptor organs and associated behavioral responses

to environmental stimuli for which each clade is now well-known (Lozano-Fernandez et al., 2016;
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Misof et al., 2014; Table 1, Fig. 3). In one example, Crespo (2011) reviews the chemosensory
structures, relevant neural circuitry, and associated olfaction-induced behavioral responses among
a majority of aquatic insect orders and emphasizes the extreme diversity seen in neural structure
and organization, even within the life cycle of a single holometabolous species. Crespo (2011)
cites the common misassumption that Odonata are solely visual navigators. Although odonates
were originally thought to have little, if any, olfactory sense due to their lack of glomerular
antennal lobes like those found in Neoptera, odonate nymphs are now recognized to use olfactory
kairomones for predator avoidance (Crespo 2011). As a result, Crespo (2011) recommends
studying both organismal life history and the functional arrangement of sensory neuron
connections among specific neuropils to accurately assess neurophysiological responses from the
moment of cue perception to the activity of downstream physiological effectors.

In the context of predation risk, the modalities of insect visual and olfactory
neurophysiology have been relatively well-studied (Borst, 2009; Crespo, 2011; Gabbiani et al.,
1999; Hatsopoulos et al., 1995). Other sensory modalities in insects, such as hearing, are only now
becoming recognized for their influence on prey physiological responses to predation, despite a
rich neuroethological history (Hoy et al., 1989; Hoy and Robert, 1996; Ratcliffe et al., 2011). These
advances in insect sensory ecology represent exciting opportunities to compare neural structure,
organization, complexity, and function when individuals are exposed to stimuli with different
sensory modalities (e.g. auditory vs. visual), both within a single species and across diverse
evolutionary lineages. Ancestral proprioceptors and chordotonal receptors have been co-opted as
tympanal organs in many insect orders, and have independently evolved in at least 20 locations
throughout the basic insect body plan (Gopfert and Hennig, 2016). Though neurophysiological

data on auditory neurons and processing in insects is limited, a few studies have described the
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neural architecture of auditory perception in noctuid moths (Lepidoptera: Noctuidae; MacDermid
and Fullard, 1998; Pfuhl et al., 2015; Roeder, 1966a; ter Hofstede et al., 2011). The afferent
auditory neurons of the noctuid tympanal organ extend into the fused meso- and metathoracic
(pterothoracic) ganglia before a single ascending interneuron transmits a signal to the ventrolateral
protocerebrum (Pfuhl et al., 2015; ter Hofstede et al., 2011). Another notable auditory receptor is
the near-field responsive Johnston’s organ that is situated on the insect antenna and is innervated
by afferent neurons extending first to the antennal lobes before reaching higher-level processing
centers (Caldwell and Eberl, 2002). Although its function in predator detection is debated, the
Johnston organ is intimately involved in mating and social interaction in many insects and thus
may also provide sensory information pertaining to potentially stressful conditions, such as
antagonistic social interactions. To parse the intermediary processes that may modulate responses
by particular auditory neural pathways, recent work has established that long-term exposure to bat
calls over the course of 8 hours induces several transcripts encoding components of G-protein-
coupled receptor activation, Ca®" ion release, a heat shock protein, and mitochondrial metabolism
that are differentially regulated in the whole brain tissues of male Spodoptera frugiperda
(Lepidoptera: Noctuidae; Cinel and Taylor, 2019). Continued advances in molecular sequencing
and the characterization of non-model insects will likely bring many understudied insect predator-
prey interactions to the forefront of sensory and stress physiology research.

Although some types of stress responses in insects have been well-investigated (e.g.,
thermal stress as reviewed by King and MacRae, 2015; Overgaard and MacMillan, 2017), in most
cases, the discrete sensory processing, signaling, and regulatory events associated with
transcriptional responses to predator-induced stress are not yet known, making it difficult to

accurately compare stress responses without bias. Variation in physiological stress responses

24



524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

between divergent arthropod classes is perhaps unsurprising, yet even closely related insects
appear to utilize functionally distinct physiological pathways to promote homeostasis in the face
of stressors (Bednafova et al., 2013; Géde et al., 2008; Gog et al., 2014; Kaufmann et al., 2009;
Salim et al., 2017; Zhang et al., 2008). For example, predator cues have been shown to induce
oxidative stress in damselflies, but the antioxidant effectors associated with these responses in
stressed insects can be distinct across sensory contexts. Specifically, Janssens and Stoks (2013)
found that concentrations of the antioxidant enzyme superoxide dismutase, but not the antioxidant
enzyme catalase, decreased in the damselfly Enallagma cyathigerum (Odonata: Coenagrionidae)
larvae following exposure to just a larger damselfly predator. In contrast, Slos and Stoks (2008)
reported in E. cyathigerum a decrease in catalase concentrations, but not superoxide dismutase,
following simultaneous visual and chemosensory exposure to cannibalistic conspecifics,
conspecific alarm pheromones, and a fish predator simultaneously. This example of a single
species altering the concentration of complementary antioxidant effectors in opposite ways under
different predator stress contexts drives home the point that responses to ostensibly similar
stressors may have distinct perceptual and molecular bases.

Like many other animals, insects likely display context-dependent physiological responses
that might be driven, for instance, through genetic heritable variation, epigenetic inheritance, or
early life exposure (Adamo et al., 2013; Bell and Sih, 2007; Kain and McCoy, 2016; Mcghee et
al., 2012; Watts et al., 2014). The freshwater snail Physa acuta (Heterobranchia: Physidae)
increases anti-predator hiding behavior and decreases fecundity in response to predation risk
imposed by Procambarus crayfish (Decapoda: Cambaridae). Yet, these responses occur in some
individuals and not others, particularly under intermediate and stochastic levels of predator cue

exposure (Kain and McCoy, 2016). These interactions exhibit personality-driven behavioral and

25



547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

physiological differences observed during similar predator-prey and antagonistic social
interactions in animals from carpenter ants (d’Ettorre et al., 2017; Hawlena et al., 2011; Rose et
al., 2017) to stickleback fish (Blake and Gabor, 2014; Fiirtbauer et al., 2015; Mcghee et al., 2012).
However, there is still a lack of rigorous experimental evidence that demonstrates inter-individual
variation in response to predation while accounting for sensory and environmental context in

insects.

A standardized approach to studying predator-induced stress in insects

An integrative approach that incorporates context- and taxon-dependent differences in
stress responses is needed to properly characterize spatiotemporal, sub-organismal molecular
responses to predation-related stressors in insects. A framework describing the sequence of events
induced by predator cue perception is helpful for conceptualizing the molecular mechanisms
associated with predator-induced stress and to inform proper timing of sampling for making
inferences about particular components of predator exposure responses. The sequence of events
that occur upon exposure to a predator-cue includes cue detection, signal transduction, systemic
biogenic amine and neuropeptide release, transcriptional regulation, post-transcriptional
modifications, and effector activity, though the order of these processes is not necessarily linear
(Fig. 4).

Stemming from systems biology, a physiological regulatory network perspective examines
the interrelatedness of individual physiological components and the numerous molecular pathways
that include each component as part of a larger organismal homeostatic system (Adamo, 2017;
Cohen et al.,, 2012). A physiological regulatory network approach involves studying how

physiological components interact at one level of a network and how those interactions influence
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physiological components at lower and higher levels of organization. For instance, a physiological
regulatory network approach might include the simultaneous measurement of stress and immune
responses as part of a larger homeostatic defense system (Adamo, 2017; Cohen et al., 2012).
Utilizing this physiological regulatory network perspective can help demystify seemingly
incongruent patterns in a given system’s response to a stressor by looking for possible interactions
with other integrated physiological systems. In the context of this review, a physiological
regulatory network perspective could represent a mechanistic understanding of how the stress,
immunity, and metabolic systems, for instance, influence each other in response to predation stress.
This shift towards a physiological regulatory network perspective has contributed to several
discoveries of tightly integrated biochemical resource allocation pathways, including the
aforementioned immune/predator-induced stress trade-off (Adamo, 2017a; Adamo et al., 2017)
and immune resistance/oxidative damage trade-off (Stahlschmidt et al., 2015). Specifically,
Adamo (2017) uses a physiological regulatory network perspective to frame trade-offs between
the allocation of ApoLplll to stress and immune functions and explain how these integrated
systems work in concert to prime immune function in an animal’s current ecological context by
sharing and borrowing molecular effectors between their respective response pathways. Adamo
(2017) cites the increase in antimicrobial protein expression many insects display following
mechanical stress, but not infection, as a possible reconfiguration of the immune system to
compensate for changes elsewhere in the network, such as the co-option of ApoLplllI from its role
in immunity towards lipid transport. Additionally, studies of prey physiology should confirm that
a whole-organismal response, i.e. a change in fitness or fitness-related performance parameters,

tied to the sub-organismal physiological parameters under study indeed occurs. Too often, sub-
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organismal molecular and cellular studies are separated from important organismal performance
parameters.

Despite recent advances in understanding how the stress and immune systems integrate
within the context of a generalized stress response, a broad, network-level approach to measuring
OCT, AKH, and associated transcriptional and regulatory activities following exposure to predator
stimuli is still lacking (see Adamo, 2017). In insects, sensory modalities are thought to be
integrated through the transmission of peripheral stimuli to processing centers of the proto-, deuto-
, and trito-cerebral segments of the brain (Farris, 2005). However, the segmented, distributed
ganglia comprising the insect CNS apart from the brain likely contain many other non-cerebral,
multi-modal processing centers. Determining the discrete location of sensory modality processing
in the CNS of specific insect clades would provide additional evidence for pinpointing
neurosecretory tissues to which molecular and neural manipulation experiments can be effectively
applied. The discrete localization of nervous transmission within the insect CNS also helps ensure
that the genes and proteins identified as functionally relevant are indeed related to the stressor
under investigation (Evans, 2015).

Once a researcher has identified a tractable predator-prey system, we recommend the use
of a general 5-step protocol to holistically assess the effects of predation-related stress on insect
prey (Fig. 5). First, one must establish the ecological relevance of the predator/cue exposure
used and explicitly calibrate exposure to detect effects of stimulus over- and under-exposure
relative to the natural stimulus frequency. One should consider the distinction between acute and
chronic exposure to a particular predator cue and attempt to emulate one or the other based on the
question of interest. For instance, seemingly small differences in a cue can have dramatic

influences on prey physiology and behavior. Studies of eared moths and their responses to
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ultrasound provide a valuable example of how the use of a proxy cue, one similar yet usually of
questionable ecological relevance, can have a strong influence on experimental outcome.
Specifically, many studies have used synthetic ultrasonic signals to recreate a bat call-like stimulus
(Svensson et al., 2003; Zha et al., 2013), but these stimuli often lack various qualities of the real
stimuli they are mimicking and can produce quite different neural responses in the receiving
individual. Until a comparative study of the influence of both bat-like ultrasound and recorded bat
calls on moth behavior and physiology is conducted, the ecological relevance of these studies
remain in question. Next, one should establish the effect size of predator/cue exposure on
organismal behavior, life history, physiology, and ultimately fitness. For instance, by
simultaneously measuring a prey species’ baseline or control response, the response to predator
exposure, and the response to a benign cue, one can then parse the effect of predator exposure per
se from any effect that may simply be due to sensory stimulation alone. Once the effect size has
been established, and is hopefully substantial, the next step is to identify complementary
functional hypotheses based on the neurophysiology of cue and/or risk perception (i.e. sensory
modality, transient versus persistent cues, length and frequency of exposure), make an assessment
of biochemical and cellular signaling molecules expected to be involved in the neurophysiology
of cue perception (i.e. OCT/AKH hemolymph titers, ligand receptors, cAMP, Ca?*, PKA, PKB,
PKC, IP3, FoxO), and make an assessment of stress-activated physiological effector molecules
known to act in the same or closely related taxa (i.e. neuromodulators, diacylglycerol, HSPs,
antioxidants, ApoLpl, II, III). Previous studies and published hypothesized molecular pathways
provide a rich source of information from which specific predictions of the molecules involved
during a given prey insect’s response to a predator can be constructed. Building on the knowledge

accrued during steps 1 — 3 (above), one can leverage informational and resource needs with
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available technologies, resources, and expertise. Specifically, we recommend considering data
interpretability, with an emphasis on the need for RNA versus protein-level evidence, sample
preparation and analysis costs, and instrumental access. Specialized kits, instrumentation, and
expertise are often required to conduct molecular assays, with standardized RNA and DNA
extraction and sample preparation kits readily available compared to the highly customized nature
of mass spectrometry and high-performance liquid chromatography. Finally, access to specialized
analytical tools should also be considered, such as utilizing high-performance computing
resources, scripting languages, and RNA-Seq or proteomic databases and software. Finally, one
should plan for further validation of mechanisms nominated with genetic loss-of-function/gain-
of-function, field-based, behavioral, neurophysiological, and other experimental approaches. Once
a well-defined correlation between biochemical, transcriptional, or physiological responses and
predation risk has been established, further experimental validation must be used to demonstrate
the influence of predation risk on the organismal phenotype, or even population and community
demographics, within an ecologically relevant framework. Studies demonstrating the heritability
of predator-induced stress responses, loss-of-function studies using nerve cell ablation, or genetic
knock-out techniques that show a clear lack of response, and comparative studies of predator
stress-induced life history changes operating in natural conditions are among the most promising

avenues for future research.

Conclusions
Many molecular and physiological responses to stressors have been documented from
insects during and after predator interactions. A few molecules, namely AKH, OCT, and several

antioxidants, are shared between metabolic-, immune-, and predator-induced stress responses. We
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suggest that the octopamine-adipokinetic hormone (OAH) stress response in insects is analogous
to the well-described vertebrate HPA axis. We emphasize the need to account for taxon- and
sensory-specific differences among study organisms and the methodologies used when comparing
results. Additional research is needed to effectively characterize neurohormonal, secondary
messenger, transcriptional, and effector molecule pathways, to describe how these pathways
influence stress physiology over the short and long terms, and to explore the use of functional
genomic methods for pinpointing the role of specific genes and their products within a given
species’ physiological and behavioral stress response. We suggest that some particularly fruitful
research may be to: (1) parse the roles of specific OCT receptor sub-types in context-specific stress
responses, (2) determine the specific transcriptional modifications made and effector molecules
produced across an insect’s tissues during and after interactions with predators, with special care
spent to select time points appropriate to the processes involved, and (3) establish hypothesized
physiological regulatory networks for predator-induced stress responses in insects specifically.
Extensions of knowing which OCT-receptor sub-type, if any, is responsible for eliciting predator-
induced stress responses in insects may allow the targeted knockdown of predator-responsive
physiological pathways for use in future pest management applications. Next, knowing where and
when stress-induced transcriptional modifications are being made and effector molecules are
active during an exposure to a predator can help build a mechanistic understanding of how tissues
and molecules interact throughout the entire organism. Finally, establishing a hypothesized
physiological regulatory network for predator-induced stress in insects would provide many
benefits, including guidance for understanding stress physiological data from wild insect
populations of conservation concern or beneficial insects, from pollinators to biological-control

agents, that may be targeted by native or non-native predators.
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Advances in transcriptome sequencing of non-model insects has made it feasible to attain
tissue-, or even single-cell-, specific descriptions of gene expression before, during, and after an
interaction with a predator. By correlating anti-predator behavioral regimes with stress-induced
neurohormonal signaling, tissue-specific gene expression, and downstream effector activity, one
may be able to assess the diversity of physiological responses observed in stressed insects. We
suggest that the evasive flight maneuvers and production of jamming ultrasound in response to bat
calls reported in several ultrasound-sensitive lepidopteran clades are examples of easily inducible
behavioral regimes that can be paired with tissue-specific and time-series molecular techniques
within different stress contexts (Barber and Kawahara, 2013; Corcoran et al., 2009; Kawahara and
Barber, 2015; Roeder, 1966; Werner, 1981; Yack and Fullard, 2000). These suggested
investigations and others will allow the field to build a holistic understanding of how individual
components of physiological regulatory networks interact to enable appropriate physiological
changes to stressors that can affect prey species from the sub-cellular to the organismal scales and
beyond, with repercussions for population and even community-level processes (Fig. 6).

A replicable and reliable approach to measuring stress-induced molecular responses is
needed to better understand the physiology of prey insects. First, studies of predator-induced stress
should incorporate a wide range of molecular responses when describing or hypothesizing about
physiological and biochemical pathways to allow us to uncover lineage- and sensory-specific
responses. For example, by explicitly measuring neurohormone levels, receptor protein activity,
secondary messenger activity, transcriptional regulation, and effector protein/molecule activity
within the context of predator exposure, one can build a well-defined network of interacting
molecular components. Future investigations describing the interactions of metabolic-, immune-,

and predator-related stressors on the molecular pathways we review here will eventually yield an
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intricate description of how these integrated systems function across ecological contexts, ranging
from starvation to predator pressure. Second, it is crucial that comparative investigations of
neurophysiological stress responses examine similarities not only between phyla (Adamo, 2017;
Bednatova et al., 2013) but also between closely related species (Gade et al., 2008; Lam et al.,
2013; Papaefthimiou and Theophilidis, 2011). Such an approach will enable a holistic
understanding of the similarities and differences between taxon-specific, sensory-specific, and
universal stress responses. Novel technologies, such as transcriptome sequencing from the level of
single cells to organs, proteome-wide mass spectrometry, and gene editing tools provide the means
necessary to measure and perturb entire physiological regulatory networks simultaneously. Yet
these approaches also have limitations. For instance, the indirect relationship between mRNA
expression, alternative splicing, posttranslational protein modifications, and protein activity
(Evans, 2015) continues to limit the interpretation of transcriptomic measurements. Technical
limitations will surely diminish as robust genomic, transcriptomic, and proteomic resources
continue to develop that allow for the inexpensive, practical identification and quantitative
measurement of active proteins, peptides, and their up- and down-stream derivatives from diverse
insect taxa, tissues, developmental stages, and predation contexts.

The best-practice guidelines provided here can help nominate molecular constituents of
predator-induced stress in insects to explore how these molecules and pathways are evolutionarily
related. Specifically, we emphasize the importance of ecological context in designing stress-
response assays as well as identification of lineage-specific and shared molecular pathways
involved in physiological acclimation to predator presence and the application of these findings
towards the understanding of human disease, ecophysiological research, conservation, and

sustainable pest management.
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Tables and Figures

Table 1. List of studies investigating the behavioral, physiological, and molecular responses of insects to predation-related stress, with
emphasis on the type of predator-prey interaction tested, sensory modalities involved, responses measured, and reported molecular
pathways and genes involved.

Summary of Molecular, Physiological, and Behavioral Responses of Insects to Predator-Induced Stress

Hypothesized or
Order Species studied Predator or cue used S ense(s) Physiological or other known Reference(s)
involved response(s) pathway(s) and
gene(s) involved
Leptinotarsa Podisus olfactory, . Hermann and
Coleoptera decemlineata maculiventris tactile, visual reduced feeding ) Thaler (2014)
- simulated bat . behawqral chang§ and Yager and
Coleoptera Cicindela marutha auditory induction of auditory -
ultrasound defenses Spangler (1997)
Chironomus . .
Diptera, Trichoptera riparius, Salmo trutta olfactory impaired growth and - Pes(tzzlggge)t al.

Diptera

Hemiptera

Hymenoptera

Sericostoma vittatum

Drosophila
melanogaster

Acyrthosiphon pisum

Apis mellifera

Leptopilina
heterotoma,
Plexippus paykulli,
Phyllovates
chlorophaea, mock
predator

(E)-B-farnesene
(alarm pheromone)

shaking, alarm
pheromone exposure,
pinching leg, electric
shock

tactile, visual

olfactory

tactile,
olfactory,
visual

delayed adult emergence

reduced oviposition,
increased exploratory
behavior, transmission of
responses to naive flies

altered feeding locations

increased aggression,
elevated levels of biogenic
amines and antioxidants

drice, Dcp-1,
Orb2, Adf1, dnc,
rut, FMRI, amn,
wg, EWG

OCT- and AKH-
induced
regulation of
downstream
gene expression

Kacsoh et al.
(2015); de la Flor
etal. (2017)

Keiser and
Mondor (2013)

Evans et al.
(2012)
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Lepidoptera

Lepidoptera

Lepidoptera

Lepidoptera

Lepidoptera

Lepidoptera

Lepidoptera

Mantodea

Amphipyra
pyramidoides,
Caenurgina
erechtea, Feltia
Jaculifera,
Phlogophora
periculosa,
Lymantria dispar,
Ennomos magnaria

Pygarctia
roseicapitis,
Cisthene martini

Ostrinia nubilalis,
Pseudaletia
unipuncta

Helicoverpa
armigera, Plodia
interpunctella

Bertholdia trigona,
Cycnia tenera

several sphingid spp.

Galleria mellonella

several hymenopid,
mantid and empusid

Spp.

simulated bat
ultrasound

direct exposure to
bats

simulated bat
ultrasound

simulated bat
ultrasound

simulated bat
ultrasound and direct
exposure to bats

simulated bat
ultrasound and direct
exposure to bats

direct exposure to
bats

auditory

auditory,
tactile, visual

auditory

auditory

auditory,
tactile, visual

auditory,
tactile, visual

tactile;
shaken in
hands

auditory,
tactile, visual

reduced flight activity

behavioral change,
induction of auditory
defenses, increase in
survival

reduced and interrupted

mating behaviors

increase and decrease in

fecundity, respectively

behavioral change and
induction of auditory
defenses

behavioral change and
induction of auditory
defenses

increased hemocyte density,
elevated galiomicin and
inducible metalloproteinase

inhibitor transcription,

elevated apolipophorin,

arylphorin, and
prophenoloxidase
expression
behavioral change and
induction of auditory
defenses

immune priming

Fullard et al.
(2003)

Dowdy and
Conner (2016)

Acharya and
McNeil (1998)

Zha et al. (2013);
Huang and
Subramanyam
(2004)

Corcoran et al.
(2013); Ratcliffe
etal. (2011)

Kawahara and
Barber (2015)

Brown et al.
(2014); Mowlds
et al. (2008)

Triblehorn and
Yager (2001)
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Odonata

Odonata

Odonata

Odonata

Orthoptera

Orthoptera

Orthoptera

Enallagma
cyathigerum, E.
aspersum, Ischnura
verticalis

Coenagrion puella,
Ischnura elegans

Enallagma ebrium,
Ischnura verticalis

Leucorrhinia intacta

Gryllus texensis

Melanoplus
femurrubrum

Locusta migratoria,
Schistocerca
gregaria

Anax imperator,
Gasterosteus
aculeatus

Gasterosteus
aculeatus, Pungitius
pungitius

Lepomis gibbosus

Anax junius, Lepomis
macrochirus

perception of
predation risk,
exposure to mock
predator

Hogna rabida,
Pisaurina brevipes,
P. mira, Phidippus

rimator, Tibellus
maritimus, T.
oblongus

induction of flight
activity, handling

olfactory,
tactile, visual,
other*

olfactory,
tactile, visual,
other*
olfactory,
tactile, visual,
other*

olfactory,
tactile, visual,
other*

auditory,
olfactory,
tactile, visual,
other*

auditory,
olfactory,
tactile, visual,
other*

tactile, visual

reduced growth rate,
reduced feeding, increase
metabolism, reduced
nitrogen-rich protein
content, reduced carbon-rich
fat and sugar content (whole
body), increased antioxidant
and reactive oxygen species
activity

reduced activity

reduced feeding

increase in immune
encapsulation, induction of
abdominal spines

altered oviposition site
selection, increased OCT
hemolymph levels,
decreased feeding and
metabolism

feeding, activity, and habitat
use

lipid mobilization

glyconeogenesis,

reduction in
catalase levels

immune priming

OCT-mediated
metabolic
responses

AKH-mediated
signaling and
induction of
glycogen and

DAG transport
in hemolymph

Janssens and
Stoks (2013);
McPeek et al.
(2001); Slos and
Stoks (2008);
Stoks et al.
(2005); Van
Dievel et al.
(2016)

Convey (1988)

Baker and Dixon
(1986)

Duong and
McCauley
(2016);
McCauley et al.
(2011)

Adamo and
Baker (2011);
Stahlschmidt and
Adamo (2013)

Miller et al.
(2014); Hawlena
etal. (2011)

Orchard et al.
(1981); Van der
Horst and
Rodenburg
(2010)
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Abbreviations: Adhl (Adh transcription factor 1); AKH (adipokinetic hormones); amn (amnion associated
transmembrane protein),; DAG (diacylglycerol); Dcp-1 (death caspase-1); drice (death related ICE-like caspase); dnc

(dunce); EWG (erect wing); FMRI (fragile X mental retardation 1); OCT (octopamine); Orb2 (translational regulator
Orb2); rut (rutabaga); wg (wingless)

Note: Studies in which prey were exposed directly to predators are marked with a “*’.
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Table 2. List of studies assessing intracellular secondary messenger activity following octopamine exposure/binding in
insects and other invertebrates, including details on the species studied, the tissue or approach utilized, any
physiological response observed, and whether the cAMP/PKA or Ca?"/PKC signaling pathways were induced (X), not

affected (-), or not assessed.

Induced secondary messenger

Physiological and/or

pathway Species Order Tissue and/ or approach behavioral response(s) Reference(s)
cAMP/PKA calcium/PKC
. ) . Bischof and Enan
X X Perzplqneta Blattodea hemolymph; cloned in COS- ) (2004): Gole et al.
americana 7 and HEK-293 cells
(1987)
activity of calcium-signaling
Periplaneta inferred by proxy through . . Baines and Downer
not assessed X americana Blattodea IP; activity in cultured P. increased phagocytois (1994)
americana cells
X not assessed Perzpl.aneta Blattodea thoraf:lc ganglia, in vivo and ) Nathanson and
americana intact preparations Greengard (1973)
Drosonhila Drosophila melanogaster-
X X / P ) Diptera cloned receptors expressed - Balfanz et al. (2005)
metanogaster in cultured HEK-293 cells
Drosophila melanogaster-
X X Drosophila Ditera cloned receptors expressed ) Han et al. (1998);
melanogaster p in cultured Drosophila S2, Robb et al. (1994)
CHO, and HEK-293 cells
Drosophila melanogaster-
X i Drosophila Diptera cloned receptors from ‘head _ Magqueira et al. (2005)
melanogaster or body expressed in
cultured CHO-K1 cells
Drosophila . brain (mushroom body .\ . Schwaerzel et al.
X not assessed melanogaster Diptera Kenyon cells) appetitive learning (2003)
expression of AmOA1 Grohmann et al.
X X Apis mellifera Hymenoptera receptor in cultured HEK- - (2003); Farooqui 2007,
293 cells (2012)
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X

not assessed

X

X

not assessed

not assessed

X

not assessed

not assessed

not assessed

X

not assessed

not assessed

not assessed

not assessed

Apis mellifera

Apis mellifera

Bombyx mori

Bombyx mori

Spodoptera
frugiperda

Manduca sexta

Malacosoma
disstria

Locusta
migratoria

Locusta
migratoria

Acheta
domesticus

Aplysia spp.

Hymenoptera

Hymenoptera

Lepidoptera

Lepidoptera

Lepidoptera

Lepidoptera

Lepidoptera

Orthoptera

Orthoptera

Orthoptera

Anaspidea
(Mollusca:
Gastropoda)

whole-brain homogenate

ectopic exposure of whole-
brain tissue to octopamine

Bombyx mori-cloned
receptors derived from nerve
tissue expressed in cultured
HEK-293 cells

Bombyx mori-cloned
receptors expressed in
cultured HEK-293 cells

expression in Sf9 (pupal
ovarian) cell line cultures

injection of octopamine into
heart tissue

extracted hemolymph cell
culture

isolated fat body and air sac
cells

hemolymph and fat body
homogenates

hemolymph from
prothoracic legs (cCAMP
response inferred from
phosphorylase activity)

sensory neuron-derived
Aplysia octopamine
receptors cloned and
expressed in HEK-293 cells

variably effects odorant
stimulation in neurons

increased heart rate

air sac cells displayed 40

fold increase in cAMP
levels while fat body
showed no response

hyperglycaemia and
hyperlypaemia

membraine depolarization,

increase in membrane
excitability, action
potential broadening,

increased neurotransmitter

release

Balfanz et al. (2014)

Rein et al. (2013)

Ohtani et al. (2006)

Ohta et al. (2004)

Orr et al. (1992)

Prier et al. (1994)

Jahagirdar et al. (1987)

Zeng et al. (1996)

Orchard et al. (1982);
Orchard et al. (1993);
Wang et al. (1990)

Fields and Woodring
(1991)

Chang et al. (2000)
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expression of OCT receptor
Lymnaeoidea in HEK-293 cell culture
(Mollusca: (calcium secondary - Gerhardt et al. (1997)
Gastropoda) messenger activity inferred
from IP3 presence)

Lymnaea
stagnalis

Abbreviations: cAMP (cyclic adenosine monophosphate); PKA (protein kinase A); PKC (protein kinase C); OCT
(octopamine); HEK (human embryonic kidney); IP3 (inositol-1,4,5-triphosphate); Sf9 (Spodoptera frugiperda cell line
9); AmMOAL1 (Apis mellifera octopamine receptor 1); CHO (Chinese hamster ovary

64



Sensory transmission and neurosecretion Hormonal transport and tissue-specific activation Biochemical, cellular, and organismal responses

AKH and OCT AKH-mediated
Insect
nse transported in activation of Ca?*- ApoLplil is Additional context-
OAH axis e hemolymph to fat body dependent intracellular : dependent
( ) Octopaminergic neurons and the and other tissues cAMP signaling conformationally neurchormanes,
corpus cardiacum release OCT and ch_a nged and binds molecular
AKH, respectively, into the hemolymph ‘ E——— e —— ’ W) f Ok T Mot + chaperones, and
following predator/cue exposure [ complex to fransport antioxidants aid in
Transcriptional modulation of stress-related DAG to energy- meintaining
P genetic pathways, including metabolic limited tissues homeostasis
chaperones, antioxidants, and other molecules
Activation of sympathetic Stressful stimulus
Vertebrate nervous system and release of » triggers signal Cellular and organismal I .
{H PA axi 5) E/NE from the brain and transmission from Cortisol and/or other Bt L] Increase_d h_e_art rate, resp:ratlor], glucqneogenasm
adrenal medulla amygdala to glucocorticoid po via lipid release from adipose tissue
hypothalamus followed by + Decreased immune capacity, digestive metabolism,
-~ 6 PO : hormone release transcriptional e AvaiGi di od
/_ N e e e - from the adrenal regulation of long-term AU ODIKARAY S ISRy S e S chat
| & . e : cortex : antioxidant activity to maintain homeostasis during
1 Hypothalamus signals pituitary gland via CRH homeostatic responses prolonged stressor exposure

C =% + signaling which further activates the adrenal
— gland by releasing ACTH into the bloodstream

Figure 1. Biochemical and cellular stress responses in insects (top), here denoted as ‘octopamine-adipokinetic hormone axis,” and the
analogous hypothalamo-pituitary-adrenal axis (bottom) in vertebrates. Abbreviations: ACTH = adrenocorticotropic hormone, AKH =
adipokinetic hormones, ApoLp = apolipophorin, Ca?>" = calcium ion, cAMP = cyclic adenosine monophosphate, CRH = corticotropin-
releasing hormone, DAG = diacylglycerol, E = epinephrine, HPA = hypothalmo-pituitary-adrenal axis, NE = norepinephrine, OAH =

octopamine-adipokinetic hormone axis, OCT = octopamine.

*2-column fitting artwork
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Release from fat body by AKH receptor activity

ApoLplll

(unbound, recognizes pathogens)

Co-option (ApoLp I, II, lll + DAG bound,
transports lipids) |
\ Hemolymph

Figure 2. Conceptual diagram showing the co-option of apolipophorin III (ApoLplll) away from
immunorecognition activity towards lipid transport as a component of the low-density lipoprotein

(LDLp) complex upon release of diacylglycerol (DAG) from the fat body into the hemolymph.
Adapted from Adamo (2017a).
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e — @ () |onata (6 /6,000 spp.)
s [-phemeroptera (3,000 spp.)
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L ——— @ Orthoptera (4 /27,000 spp.)

[ —— (irylloblattodea + Mantophasmatodea (50 spp.)
i o s Embioptera (2,000 spp.)

s " hasmatodea (3,000 spp.)
4'7 —— @ Mantodea (14 /2,400 spp,)*

] —— Blattodea + Isoptera (6,100 spp.)

—— e Thysanoptera (6,000 spp.)

; X
— ——— ) |{c miptera (1 /50,000 - 80,000 spp.)

r —EE—— Psocodea (11,000 spp.)
e — @) | |ymcnoptera (1 /150,000 spp.)
e Raphidioptera (260 spp.)
[ ——  Me galoptera (300 spp.)
E——— Ncuroptera (6,000 spp.)
‘ 1 —— S trepsiptera (600 spp.)
| @ Coleoptera (2 / 400,000 spp. y¥
- @ Trichoptera (1 / 14,500 spp.)*
‘ e — @ Lcpidoptera (139 /160,000 spp.)

[ s Siphonaptera (2,500 spp.)

— | - Mecoptera (600 spp.)
® Diptera (2 /130,000 spp.)

500Ma 430 400 330 300 250 200 130 100 X 0

Figure 3. Evolution of insects and their taxonomic diversity in the context of studies on predator-
induced stress. Tree based on Misof et al. (2014). Thick lines indicate the length of time over which
that order is thought to have proliferated; circles at branch tips indicate orders in which studies of
predation-related stress have been conducted, with * indicating orders that have been studied for
whole-organism responses only. Numbers in parentheses indicate the number of species studied
for predator-induced stress relative to known or estimated ordinal diversity.
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( Cue Detection J

¥

Signal Transduction

v
Constitutive Post- S_y slomic Blogemt_: Constitutive Effector
; e Amine & Neuropeptide e
Translational Modifications Raleash Activation

Transcriptional
Regulation

!

Downstream Post-Translational :
Modifications & Effector Activation _

Figure 4. Flow chart describing the sequence of physiological events that occur when a prey
insect perceives the presence of a predator cue.
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1. Establish ecological relevance
A B C
Predator and Natural stimulus Effects of stimulus
cue used exposure over-exposure?

¥

2. Establish the effect size

A B c D
( Behavior ’ (Life History} ‘ Physiology ’ [ Fitness ’

\ 4

3. Identify complementary biomolecular hypotheses

A Neurophysiology of B Signaling molecules © Downstream
cue and risk and transcription physiological
perception factors effectors

$

4, Leverage information and resource needs

A - B € Instrumental and
Data -
interpretability KOst A
availability

*

5. Plan for validation

A : B c D
Genetic loss ; : : :
) Field Behavioral Neurophysiological
or gain of
. study study study
function

Figure 5. Protocol for studying predator-induced stress in insects, including: 1) establishing the
ecological relevance of A) the predator and cue used, B) comparing experimental exposures with
natural stimuli frequency, and C) accounting for the possible effects of stimulus over- or under-
exposure relative to the natural stimulus frequency; 2) establishing the effect size of exposure in
terms of A) behavior, B) life history, C) physiology, and/or D) fitness; 3) identifying
complementary mechanistic hypotheses regarding A) the neurophysiology of cue and risk
perception, B) hypothesized signaling molecules and transcription factors involved, and C)
downstream physiological effector molecules; 4) leveraging information and resource needs, such
as A) data interpretability, B) cost, and C) instrumental and analytical tool availability; and 5)
planning for further experimental validation via A) genetic loss or gain of function experiments,
B) field studies, C) behavioral studies, and/or D) neurophysiological studies.
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/ Stage Response

Sensory organs stimulate neurons that transmit signal from

1. Sensory PNS to CNS and on to brain for further processing

OCT-ergic neurons release OCT immediately within the
nervous system and receptor binding on the CC
releases AKH into hemolymph

o)
i
@]
g OCT and AKH binding to receptors on fat body and other
a

/ 3. Tissue organs triggers intracellular signaling cascades resulting in
transcriptional regulation of homeostasis-promoting genes

During prolonged exposure to predators/cues, the stress vs. immune

tradeoff and molecular resource limitations decrease immune and

2. Neurohormonal

4. Organismal reproductive capacity while increasing antioxidant and molecular
\ chaperone activity to accommodate for oxidative damage from

enhanced metabolic state

Figure 6. Hypothesized biochemical and cellular stress responses to predation risk/cue perception in a generalized insect. Abbreviations:
AKH = adipokinetic hormone, CC = corpora cardiaca, CNS = central nervous system, OCT = octopamine, PNS = peripheral nervous
system.
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