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Abstract

Many animals exhibit reproductive behavior that requires expenditure of valuable nutrients. In
males of many species, competitive energetically demanding displays and the development of sexual
ornaments require prior accumulation of nutrient stores. Males must coordinate nutrient stores with
ornament development and reproductive displays or they risk depleting their resources mid-
development or mid-display, reducing their chance of mating. Males may use nutrient stores to
regulate their reproductive behavior. Amino acid reserves may be important for reproduction, but the
roles of amino acid stores in initiating maturation and reproductive behavior are less studied than fat
stores. Insects store amino acids as hexamerin storage proteins. Many fly species use a specific
hexamerin, larval serum protein 2 (LSP-2), as both a juvenile storage medium and to store protein
consumed after adult eclosion. Protein stored as LSP-2 has previously been suggested to regulate
reproduction in females, but no role has been proposed for LSP-2 in regulating male maturation. We
use males of the Caribbean fruit fly, Anastrepha suspensa, a species with nutrient-intensive male
sexual displays to test whether LSP-2 stores regulate male reproductive displays. We fed adult 4.
suspensa males a diet with or without protein, then assayed these males for Isp-2 transcript
abundance via qRT-PCR, LSP-2 protein abundance via Western blot, and reproductive display
behavior via observation. We found that adult males with ad libitum dietary protein had greater Isp-2
transcript and protein abundance, earlier sexual display behavior, and were more likely to exhibit
sexual display behavior than protein-deprived adult males. We show that /sp-2 knockdown via RNAi
decreases the proportion of males exhibiting reproductive displays, particularly early in the onset of
reproductive behavior. Our results suggest circulating LSP-2 protein stores regulate reproductive
behavior in 4. suspensa males, consistent with protein stores modulating reproduction in males with
expensive reproductive strategies. Our results are consistent with hexamerin storage proteins
performing dual roles of protein storage and protein signaling. Our work also has substantial practical
applications because tephritid flies are an economically important pest group and the timing and
expression of male reproductive displays in this group are important for control efforts using the
sterile insect technique.
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This manuscript contains 1 table and 3 figures
Introduction

Animals require nutrients for expensive life history transitions, especially reproductive
maturation and engaging in nutrient-intensive reproductive behaviors (Houston et al., 2006;
Soulsbury, 2019; Harshman and Zera, 2007). However, many animals live in nutrient-limited
environments, and the availability of abundant nutrient sources may not match a time and place well-
suited for reproductive behavior (ex. Yuval and Bouskila, 1993; Warner, 1987; Ubukata 1984;
Soulsbury, 2019). Accordingly, animals have evolved strategies to mitigate this problem. Capital
breeders solve this problem by storing nutrients when they are abundant, then using nutrient stores
during maturation and reproduction (Houston et al., 2006; Soulsbury, 2019). Income breeders instead
match their reproductive output to the immediate availability of nutrients in their habitat (Houston et
al., 2006; Soulsbury, 2019). However, many animals rely on a combination of both income and
capital to fuel their reproduction, so most reproductive strategies exist on the spectrum between fully
capital or fully income breeding (Houston et al., 2006; Soulsbury, 2019). Thus, animals generally
modulate their reproductive nutrient expenditure to avoid prematurely depleting their stores
(Gauthier-Clerc, et al., 2001; Teal et al., 2013; Shelly and Kenelly, 2003; Lebreton et al., 2017; Yin
et al., 1999; Smith and Spencer, 2012; Frisch, 1985; Arrese and Soulages, 2010). Female mammals
clearly regulate their reproductive behavior using their fat stores, as do female insects (Frisch’s
fatness and fertility hypothesis; Smith and Spencer, 2012; Frisch, 1985; Sieber and Spradling, 2015;
Glazier, 2000; Ellers, 1996; Badisco et al., 2013). Females are typically considered to have a higher
cost of reproduction than males. However, reproduction is costly for males of many species because
of the expensive nature of mating displays, as well as developing sexual ornaments and provisioning
nuptial gifts (Simmons and Parker, 1989; Bleu et al., 2016). Males with low nutrient stores may pay a
fitness cost because they miss breeding periods, are unable to perform competitive mating displays,
and could die from starvation (Sandberg and Moore, 1996; Leather, Ward, and Dixon, 1983). Despite
the costly nature of many male breeding strategies, the importance of nutrient reserves to male
reproductive investment remains poorly investigated.

Many male reproductive displays require expensive signals (Soulsbury, 2019). Expensive
signals can range from development of pre-breeding ornaments to pheromone-producing machinery
to energetic fuel for behavioral displays. Amino acids are used to build sexual ornaments and the
biochemical machinery needed for behavioral and chemical displays (ex. proteins used to construct
and maintain male ornaments or enzymes necessary to produce male pheromones). Storing amino
acids prior to lekking or producing ornaments could be advantageous. In some birds and fiddler
crabs, ornaments can interfere with foraging, so males may benefit from storing amino acids until
they have acquired the resources needed to complete ornament growth (Moller et al., 1995; Allen and
Levinton, 2007). Other species use lek mating systems, in which males aggregate at sites that are
separated from resources and perform competitive reproductive displays to attract sexually selective
females (Shelly, 2018). Many tephritid fruit flies use lek-mating systems and have amino acid
intensive displays that are physically separated from amino acid sources, so these males may benefit
from storing amino acids before travelling to lekking sites and beginning their competitive displays
(Warburg and Yuval, 1997; Yuval et al., 1998; Benelli et al., 2014).

Males should delay or forego reproductive development in favor of additional foraging if they
have insufficient amino acid stores to successfully reproduce. Although fat stores are associated with
breeding behavior in some vertebrates (Welbergen, 2011; Wells, 2001; Pérez-Barberia et al., 1998),
the importance of amino acid stores to reproductive displays remains largely uninvestigated.
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Vertebrates can undergo muscle histolysis when amino acid intake is insufficient to meet the needs of
a life history transition like breeding (Brosnan, 2003; Parker et al., 2009), but vertebrates lack a
dedicated store for amino acids, so understanding the role of protein stores in vertebrates can be
challenging.

Insects can also undergo muscle histolysis to fuel male reproductive displays (Mitra et al.,
2011), but insects, other hexapods, and some decapod crustaceans have a dedicated amino acid store,
hexamerin storage proteins that are evolutionary derived from crustacean hemocyanin respiratory
proteins that have lost their copper binding sites for oxygen (Burmester, 1999; Tawfik, et al., 2006;
Capurro et al., 2000; Tokar et al., 2014; Wheeler et al., 2000; Xie and Luan, 2014). Hexamerin
storage proteins, often abbreviated to “hexamerins”, are abundant blood proteins that circulate as
hexamers consisting of ~70 kDa subunits (Burmester, 1999). Hexamerins are secreted by the fat body
into the hemolymph in both juveniles and adults, but in holometabolous larvae they are reabsorbed
by the fat body shortly before metamorphosis (Burmester, 1999). Hexamerin accumulation is
associated with providing anabolic substrates for molting and metamorphosis in both sexes, as well
as female reproduction (Arrese and Soulages, 2010; Burmester, 1999; Wheeler et al., 2000; Capurro
et al., 2000; Hahn et al., 2008; Pan and Telfer, 1996; Wheeler and Buck, 1996). Quantifying and
manipulating hexamerin levels could disentangle the effects of current dietary protein availability
from the effects of protein storage to explicitly test the extent to which protein storage regulates
maturation and reproductive behavior. RNAi knockdown of hexamerins in females of the bean bug,
Riptortus pedestris, delays the nymphal-adult molt and decreases the number of eggs a female lays
(Lee et al., 2017). These phenotypes are also induced by starvation (Kim and Lim, 2014; Rahman et
al., 2018), suggesting that hexamerins may regulate life history transitions in some female insects.
However, the extent to which hexamerins regulate reproductive behavior in males remains untested.

Tephritid fruit flies can be used to explore the relationships between protein stores and male
reproduction because males of many tephritid species show a clear relationship between protein
availability and male maturation (Teal et al., 2013). Adult tephritids may ingest small amounts of
amino acids by feeding on bacteria and the residual nutrients that are found on fruit, bird droppings,
and the surfaces of leaves (Aluja et al., 1999). These resources vary in availability and amino acid
content, suggesting many tephritids experience amino acid limitation. Adult males of many tephritid
species perform complex, intensive mating displays including participation in leks. Lekking sites are
spatially separated from amino acid sources and feeding for teprhitid fruit flies (Benelli et al., 2014).
Male tephritids need amino acids to mature, form ejaculate, build the molecular machinery to
synthesize pheromones, and maintain the musculature necessary for producing complex courtship
songs (Marchini et al., 2003). Dietary protein availability can accelerate the onset and increase the
frequency of lekking behavior in males of many tephritid species (Teal et al., 2013; Warburg and
Yuval, 1997), i.e., protein deprivation delays reproductive behavior. Lekking behavior itself also
seems to expend amino acids; males begin lekking with high concentrations of total body soluble
protein and end lekking behavior with low concentrations of soluble protein (Warburg and Yuval,
1997; Yuval et al., 1998). The depletion of whole-body soluble protein suggests that lekking male
tephritids rely on amino acid capital accumulated before they enter leks, but the storage mechanisms
for amino acid capital are uninvestigated.

One candidate hexamerin that may provide the stored amino acids necessary for male mating
in tephritid flies is larval serum protein 2 (LSP-2). LSP-2 was first identified in the vinegar fly D.
melanogaster (Roberts, Wolfe, and Akam, 1977), where it is secreted by the fat body during larval
and adult life (Benes et al., 1990). Larval LSP-2 is then reabsorbed by the fat body and integument
shortly before metamorphosis, presumably to provide anabolic substrate for metamorphosis (Tsakas
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etal., 1991; Benes et al., 1990; Lepesant et al., 1978; Burmester, 1999; but see Chrysanthis et al.,
1994). LSP-2 appears to be the hexamerin responsible for storing amino acids consumed during the
adult stage females of higher fly (Suborder: Brachycera) species (Chrysanthis et al., 1994; Benes et
al., 1990; Capurro et al., 2000; Hahn et al., 2008; but see Burmester et al., 1998). LSP-2 is
accumulated with adult protein feeding and depleted with egg production in the vinegar fly
Drosophila melanogaster, the housefly Musca domestica, and the flesh fly Sarcophaga crassipalpis
(Chrysanthis et al., 1994; Benes et al., 1990; Capurro et al., 2000; Hahn et al., 2008; but see
Burmester et al., 1998). We hypothesize that the hexamerin LSP-2 stores amino acids prior to lekking
behavior in tephritid fruit fly males, and that males regulate their lekking behavior based on their
LSP-2 stores. If LSP-2 acts as a protein store in tephritid fruit fly males, then LSP-2 transcript
abundance should increase in response to protein feeding, and LSP-2 protein should accumulate
during continued protein feeding. We predict that Isp-2 knockdown should suppress male
reproductive behavior.

The Caribbean fruit fly Anastrepha suspensa Loew is a competitive lekking tephritid species
(Burk, 1983). Anastrepha suspensa is a pest of guava, peach, Surinam cherry, tropical almond, and
loquat, and has a host range of more than 90 fruits (Baranowski et al., 1993). Like many other
tephritids, 4. suspensa may feed on bacteria, fungi, and animal faeces (Aluja et al., 1999), but
variation in the availability and amino acid content of these food sources, and predation risks
associated with foraging (Burk, 1983), may limit amino acid intake. Males form leks where groups of
males disperse themselves across individual leaf territories within one region of a plant where the
males compete for a limited number of choosy females with wing fanning, song, and pheromone
displays (Burk, 1983). Males that do not join leks can attempt to intercept females while they are
ovipositing at fruits, but these non-lekking males have a lower chance of mating success than lekking
males (Burk, 1983). Protein in the adult diet of A. suspensa increases lek initiation and participation
behavior, calling behavior, and mating success (Teal et al., 2013). However, the relationship between
adult protein feeding and the age when calling and lekking behavior begin has not been investigated.
Here we show that providing protein in the adult diet of males of the tephritid fruit fly Anastrepha
suspensa increases their Isp-2 transcript and LSP-2 protein abundances. Dietary protein also causes
both earlier sexual displays and a greater proportion of males to exhibit sexual display behavior.
Knocking down Isp-2 transcript abundance using RN A1 reduces the proportion of males exhibiting
sexual display behavior despite dietary protein availability, mimicking the protein-deprived courtship
phenotype. Taken together, our results demonstrate that 4. suspensa males can use capital protein
stores, in the form of LSP-2, to regulate reproductive maturation and behavior, the first report of
hexamerins regulating male reproduction. In addition to building basic understanding of the
regulation of insect reproduction, our results have practical application. Because A. suspensa is a
model tephritid for sterile male release programs to control pest tephritid populations, and this
technique is predicated on males exhibiting appropriate lekking behavior, understanding ways to
accelerate male mating behavior could contribute to greater efficacy and cost efficiency of sterile
male programs.

Materials and methods
3.1 Fly sampling and sexual display analysis

For our experiments we used a colony of Anastrepha suspensa (Loew 1862) (Diptera:
Tephritidae) that originated from South Florida, USA in the summer of 1998 (Handler and Harrell,
2001). Our maintenance procedures included ad libitum access to larval and adult diets, as described
by Teets et al. (2019; species background in Aluja et al., 1999). To test the effects of dietary protein
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on Isp-2 transcript abundance, LSP-2 protein abundance, and reproductive maturation, we used two
contrasting experimental diets; a protein-containing diet (3:1 sucrose: enzymatic hydrolyzed brewers
yeast from MP Biomedical, Solon, OH) or a protein-deficient diet (sucrose only). Freshly eclosed
adult males were caged in groups of ten and given ad libitum access to water and only one of the two
experimental diets. Males were sampled at adult eclosion, and 1, 2, 3, 4, 5, 7, and 9 days after adult
eclosion. Because females were not caged with males, all males assayed were virgin and naive to
females. For sampling, males aged 3-9 days after adult eclosion from both protein-rich and protein-
deficient diets were assayed for stereotyped sexual display behavior. that includes lek initiation,
calling behavior, lek joining, courtship and copulation (described in Figure 1A). In our study we
focus on calling behavior, comprised of (i) the eversion of the pleural and (ii) anal glands to release
pheromones, and (iii) the fanning of wings that disperses their pheromones (Benelli et al., 2014;
Aluja et al., 1999). Briefly, males were placed in containers and provided with female olfactory and
visual cues from 10-14 day post-eclosion females that were previously fed protein ad libitum, and
thus were fully reproductively mature. Calling assays were run from 15:00 to 17:00, coincident with
peak courtship timing (Landolt and Sivinski, 1992; Burk 1983). Each assay began by placing males
into the arena (plastic deli cup, 0.95 L, 105 mm diameter) and giving males a 10-minute acclimation
period before females were added to the smaller screened-off container (plastic deli cup, 35 mL, 40
mm diameter) within the arena (set-up shown in Fig. 1B). After an additional 10-minutes of
acclimation, the flies were monitored for whether they exhibited the calling behaviors described
above . Males that exhibited at least two of the three calling behaviors described above were scored
as exhibiting sexual displays. Because each male was frozen for subsequent biochemical analysis
after being behaviorally assayed, each male was tested for sexual display behavior only once. Ten
flies of the same age reared on protein-containing and protein-deficient diets were placed in separate
arenas and were observed simultaneously. Each observation session used only one cohort of flies,
and included both protein-fed and protein-deprived males, preventing cohort to cohort variation from
being falsely attributed to age or diet. Although we did not directly measure feeding, we did measure
total soluble protein content. If males that had access to dietary protein are indeed feeding, we predict
these should have higher soluble protein content than their protein-deprived counterparts. To test
whether our design had generated changes in the total soluble protein content of males, we also
measured total male protein using BCA assays (Pierce™ BCA kit, ThermoFisher, Waltham, MA).

3.2 Characterization of LSP-2

Because the genome and proteome of A. suspensa remain unpublished, the sequence of LSP-2
in A. suspensa is still unpublished, so our study characterized LSP-2 protein from larval and adult
blood. To characterize LSP-2 in A4. suspensa, blood was drawn from 5 wandering 3™ instar larvae, 15
freshly eclosed adult males and 15 freshlyt eclosed adult females, and as well as 15 protein-fed males
and 15 protein-fed females 8 days after adult eclosion. Blood proteins were separated by loading 2 to
5 pg of protein onto a 10% Mini-PROTEAN® TGX™ Precast PAGE Gels (Bio-Rad, Hercules, CA)
with Laemmli Sample Buffer (Bio-Rad, Hercules, CA). SDS-PAGE was run at 145 V for 75 minutes
in a Mini-PROTEAN® II Electrophoresis Cell (Bio-Rad, Hercules, CA) according to the
manufacturer’s instructions. To visualize bands, gels were stained with Coomassie Biosafe (Bio-Rad,
Hercules, CA). One band (~72 kDa) was highly abundant in wandering 3™ instar larvae and both
sexes 8 days after adult eclosion, as predicted for LSP-2 (SI Figure 1A). The band was excised from
the lane loaded with blood of protein-fed males 8 days after adult eclosion and LC-MS/MS for
peptide identification was performed at the UF ICBR Proteomics core facility. LC-MS/MS of the
band detected 9 short peptides that matched the predicted LSP-2 sequence of C. capitata (SI Figure
1B; Sequence ID: XP_004530681.1), confirming that LSP-2 circulates in the blood of larval and
adult A. suspensa of both sexes.
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3.3 Quantification of Isp-2 transcript abundance

To generate cDNA, samples were homogenized and RNA pellets were extracted using
TRIreagent® (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions, except 1-
bromo-3-chloropropane (Sigma-Aldrich, St. Louis, MO) was used instead of chloroform for phase
separation. RNA quality was checked by selecting every 24th RNA extraction and using 5 pg of
RNA for bleach gel electrophoresis (SI Figure 2; Aranda et al., 2012). To generate cDNA from RNA,
the SuperScript® SSOAdvanced First-Strand Synthesis Reagents kit (Invitrogen, Carlsbad, CA) was
used according to the manufacturer’s instructions using 1 pug of total RNA per 20 ul reaction and
oligo(dT)20 as the reverse transcription primer.

We used degenerate primers (IDT, Coralville, IA) to isolate a 750 bp fragment of the Isp-2
mRNA transcript from wandering 3™ instar A. suspensa larvae (SI Table 1). Degenerate primers were
developed from the consensus region of Isp-2 in the melon fly, Bactrocera cucurbitae, snowberry
maggot, Rhagoletis zephyria, and C. capitata (GenBank sequences: XM_011186009.1,
XM_017622567.1, XM_004530624.). Sanger sequencing (performed by GeneWiz, South Plainfield,
NJ) revealed our 750 bp fragment had high similarity with Isp-2 from other flies, so likely represents
a partial sequence of the A. suspensa Isp-2 mRNA (SI Table 2). From this sequence, we developed
gRT-PCR primers for Isp-2 (IDT, Coralville, IA; SI Table 1). Primers described by Nakamura et al.
(2016) for the housekeeping gene rp /8 in the West Indian fruit fly, Anastrepha obliqua (SI Table 1)
were used to estimate the transcript abundance of rp/8 as an 4. suspensa reference gene. QqRT-PCR
was run with an annealing temperature of 54°C using SsoAdvanced™ Universal SYBR® Green
Supermix (Bio-Rad, Hercules, CA) according to manufacturer’s instructions and the CFX Connect
Real-Time PCR Detection System (Bio-Rad, Hercules, CA).

To locate Isp-2 transcripts in adult males, Isp-2 transcript abundance was examined in the
head, legs, and abdomen of protein-fed and protein-deprived males four days after adult eclosion
(RNA extracted and cDNA synthesized as described above). Heads, legs, and abdomens were pooled
in groups of tissues from five individual flies (30 legs/pool), each pool was replicated four times
(n=12). Isp-2 transcripts were clearly present in both the head and abdomen (SI Figure 3), confirming
that using entire carcasses for RNA and protein extraction was appropriate for estimating Isp-2
transcript abundance between protein-fed and protein-deprived males. Whole bodies were used to
estimate [sp-2 transcript abundance across all ages and dietary treatments.

To test for effects of dietary protein on Isp-2 transcript abundance, we ran qRT-PCR on
samples described above that were collected during the first three days of adult life as well as males
up to 8 days old that were phenotyped for sexual display behavior. Samples were randomized across
qTR-PCR plates and run alongside 3 concentrations of internal standard comprised of mixed cDNA
from randomly selected samples. Cq values were calculated using CFX Manager™ Software’s (Bio-
Rad, Hercules, CA). Isp-2 Cq was divided by the housekeeping gene rp18 Cqto calculate relative Isp-
2 transcript abundance using the 2-44¢" method (Livak and Schmittgen, 2001). rp/8§ transcript
abundance was not significantly influenced by age, diet, or RNAI1 treatment in any experiment
(LMM, starting with the model 277/8¢! ~ Diet * Age, including cohort as a random factor, and
reducing via backwards step AIC, p > 0.244 for any model, full or reduced, n = 207).

3.4 Quantification of LSP-2 protein abundance

LSP-2 protein abundance was estimated with western blots. Protein pellets were extracted
from the same TRIreagent® (Invitrogen, Carlsbad, CA) homogenate as the RNA, according to
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manufacturer’s instruction. The entire fly body was used in this homogenate. Protein pellets were
dissolved in lysis buffer (Kopec et al., 2017). To perform western blots, an anti-LSP-2 antibody for
A. suspensa was developed (LifeTein, Somerset, NJ). The polyclonal primary rabbit antibody reacted
to the epitope sequence C-NFIHGEHKDDMEAVNQLGN translated in silico from our A. suspensa
Isp-2 fragment. To prepare for western blotting, protein concentration in extracts was measured by
Pierce™ BCA assay (ThermoFisher, Waltham, MA). Proteins were separated using the SDS-PAGE
procedure described above and 2.5 pg of total protein. Proteins were transferred from gels to
polyvinylidene fluoride membranes (Bio-Rad, Hercules, CA) using a Trans-Blot® Turbo™ Transfer
System (Bio-Rad, Hercules, CA) according to the manufacturer’s instructions. Immune probing was
conducted using an anti-LSP-2 antibody concentration of 190 pg / L, and a mouse monoclonal Anti-
a-Tubulin antibody (used as a loading control, produced by Sigma-Aldrich, Carlsbad, CA)
concentration of 200 pl / L for primary incubation. Secondary incubation used anti-rabbit and anti-
mouse IgG HRP-conjugated goat antibody at a concentration of 100 ul / L (EMD Millipore Corp,
Burlington, MA). Bands were visualized with Clarity Max™ Western ECL Blotting Substrates (Bio-
Rad, Hercules, CA) and chemiluminescence was detected with a ChemiDoc™ MP Imaging System
(Bio-Rad, Hercules, CA). To account for technical differences between gels and membranes, samples
were randomized and an internal protein standard solution (made by mixing protein from randomly
selected samples) was included on every blot. LSP-2 intensity was divided by a-Tubulin intensity to
calculate normalized LSP-2 protein abundance. We expected that tubulin protein abundance would
be stable through time, but tubulin protein abundance was significantly influenced the interaction of
diet and age, with tubulin protein content increasing with age (LMM, square root (Standardized
tubulin fluorescence) ~ Diet * Age, including cohort as a random factor, Diet* Age had an effect size
of 153, S.E. 0f 52.9, t=2.89, p < 0.01, Diet had an effect size of 511, S.E. of 273, t=1.87,p =0.06,
Age had an effect size of 67.3, S.E. of 37.3, t=1.81, p < 0.07, df = 207). The increasing tubulin
concentration with age could affect the interpretation of our results. However, when the difference in
tubulin levels between protein-fed and protein-deprived males was largest and had the lowest p-
values (7 and 9 days after adult eclosion), protein-fed males had greater tubulin levels than protein-
deprived males. The higher levels of tubulin in protein-fed males compared to protein-deprived males
biases our results towards not finding a difference in LSP-2 protein content between protein-fed and
protein-deprived males, thus our detection of higher LSP-2 abundance in protein-fed males than in
protein-deprived males should be considered a very conservative interpretation.

3.5 RNAi knockdown of Isp-2

To disentangle the effects of dietary protein availability from protein storage, we
experimentally knocked down Isp-2 transcript abundance using RNAi. Adult flies, 12-24 hours after
eclosion, were immobilized on ice, then injected with 0.6 pg of either Isp-2 dsRNA or gfp dsRNA (a
control treatment) in elution buffer (ThermoFisher, Waltham, MA). To create the dSRNA, we used
the MEGAscript™ RNA1 Kit (ThermoFisher, Waltham, MA), according to the manufacturer’s
instructions. We used the primers listed in SI Table 1 (IDT, Coralville, IA), and used our internal
cDNA standard (described above) and a GFP plasmid (pGLO™ Plasmid, Bio-Rad, Hercules, CA) as
templates for synthesis of Isp-2 and gfp amplicons respectively (sequences in SI Table 3). The
amplicons were then transcribed into dSRNA overnight. To test for an effect of RNAi treatment on
male sexual display behavior, males were caged in groups of ten and given ad libitum access to water
and a protein-containing diet or protein-deficient diet (described above). Males were assayed for
sexual display behavior as described above at 4 and 7 days after adult eclosion, then preserved for
analysis of Isp-2 transcript abundance to determine RNAI efficacy using the qRT-PCR methods
described above. To verify that sexual display behavior differences between dsRNA treated flies
were not due to off target differences in dietary protein feeding behavior (i.e., to show that Isp-2
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RNAI1 male flies were not protein-starved), we estimated total body soluble protein content in male
flies using BCA kits (ThermoFisher, Waltham, MA). We verified that protein-fed anti-Isp-2 dsRNA
injected flies did not have detectably lower total protein content than protein-fed anti-gfp dSRNA
injected flies (LMM, Total protein ~ dsSRNA treatment, cohort as random factor, RNA1 treatment had
an effect size of 0.002, S.E. of 0.0498, p = 0.97, n=123).

3.6 Statistical analyses

To test whether differences in sexual display behavior, /sp-2 transcript abundance, and LSP-2
protein abundance were different between treatment groups, we used combinations of linear mixed
models (LMM) and generalized linear mixed models (GLMM). Models are listed in Table 1 and all
include cohort as a random factor. Males from the day of eclosion were not included in any of our
models because these males did not consume either diet. All models began as rich models with
interactions and were reduced using backwards step AIC, removing the term with the highest p-
value. Once no more terms could be removed without raising the AIC less than 2, the final reduced
model comprised the remaining terms. Only reduced models are shown in Table 1, except for the
fully parameterized model explaining sexual display behavior using age, diet, Isp-2 transcript, and
LSP-2 protein abundance. For RNA1 experiments, males 4 and 7 days after adult eclosion were
analyzed separately because protein-deprived males exhibited no sexual display behavior 4 days after
adult eclosion, preventing the use of a single generalized linear model. Males 4 days after adult
eclosion were analyzed with a Chi-square test, while males 7 days after eclosion were analyzed with
a mixed generalized linear model. All analysis of our data was run in the R (3.5.1) statistical program
(R Core Team, 2018), using the packages /me4, ggplot2, and mosaicData. We also used Chi-squared
and two sample T-tests corrected with false discovery rate corrections as post-hoc linear contrasts for
models. Chi-squared tests were used for post-hoc analysis of mixed generalized linear models, while
two sample T-tests were used for post-hoc analysis of linear models. For a more detailed description
of our statistical tests, our code has been made publicly available on GitHub (URL will be made
available concurrent with publication).

Results
4.1 Protein-fed males exhibit sexual display behavior earlier and more often

To test for effects of dietary protein on reproductive maturation and sexual display behavior,
we sampled protein-fed and protein-deprived flies over the course of their reproductive maturation
and assayed for stereotyped sexual display behavior (Figure 1A), Isp-2 transcript abundance, and
LSP-2 protein abundance. Males fed the experimental diet containing protein had significantly higher
total soluble protein than males fed the sucrose-only diet, demonstrating substantial protein feeding
(LMM, Total protein ~ Diet, cohort as random factor, Diet had an effect size of 1.06, S.E. of 0.431, p
=0.014, n = 207). Protein-fed males began sexual display behavior one day earlier in adult life and a
greater proportion exhibited sexual display behavior 4-7 days after adult eclosion compared to
protein-deprived males (GLMM, Model A, df =246, Age*Diet had an effect size of 2.40, S.E. of
1.61, p<0.01, n = 251; in Chi-square post-hoc analysis for significant comparisons p < 0.05, ¥* >
5.9, for all non-significant comparisons p > 0.25, ¥> < 1.3, n=20-28 for each diet x age combination;
Figure 1B); although male sexual display behavior increased with age in both diet groups (GLMM,
Model A, df =246, Age had an effect size of 0.675, S.E. of 0.120, p <0.001, n = 251; Figure 1B).
However, our initial experiment did not disentangle the effects of dietary protein availability from the
effects of protein stores on the initiation of mating behavior.
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4.2 Protein-fed males have higher Isp-2 transcript and LSP-2 protein abundance

Before we tested the extent to which protein storage affected male reproductive behavior, we
first characterized and confirmed the identity of the major adult storage protein, LSP-2, in 4.
suspensa (Hahn et al., 2008; Chrysanthis et al., 1994; SI Table 2; SI Figure 1 AB). As expected, the
abundance of Isp-2 transcripts in whole body homogenates increased with age in protein-fed males,
but decreased with age in protein-deprived males (LMM, Model B, Age*Diet had an effect size of
0.242, S.E. 0of 0.0703, p <0.01, n =207, Table 1). Protein-fed males had significantly higher /Isp-2
transcript abundance than protein-deprived males 2-9 days after adult eclosion (Two sample T-test,
for significant comparisons p < 0.05, t > 2.85, for all nonsignificant comparisons p > 0.70, t <0.35, n
= 14-16 for each diet x age combination; Figure 2A). Freshly eclosed males had low Isp-2 transcript
abundance, and both protein-fed and protein-deprived males had low Isp-2 transcript abundance on
the 1st day after adult eclosion. Protein-fed males increased their Isp-2 transcript abundance 1-4 days
after adult eclosion, and remained high 5-7 days after adult eclosion, but protein-deprived males
retained low, almost undetectable Isp-2 transcript abundance through 9 days of adulthood.

In protein-fed males, LSP-2 protein abundance in whole-body homogenates remained high
until 7 days after eclosion, likely reflecting newly synthesized LSP-2 maintaining the high LSP-2
abundance carried over from larval life. In contrast, LSP-2 protein abundance fell dramatically 1 day
after eclosion in protein-deprived males, likely due to the depletion of larvally derived LSP-2 (post-
hoc in Figure 2B, western blot image in 2C). LSP-2 protein abundance was significantly higher in
protein-fed males than protein deprived males starting 3 days after adult eclosion and throughout the
rest of our sampling to 9 days after adult eclosion (Two sample T-test, p < 0.05 and t > 2.85 for all
tests, n = 14-16 for each diet x age combination). /sp-2 transcript abundance and age explained LSP-2
protein abundance (LMM, Model C, Isp-2 transcript abundance had an effect size of 0.454, S.E. of
0.0903, p <0.001, Age had an effect size of 0.383, S.E. 0of 0.0710, p <0.001, n =207). Males with
higher Isp-2 transcript abundance had significantly higher LSP-2 protein concentration (LMM,
Model C, Isp-2 transcript abundance had an effect size of 0.454, S.E. of 0.0903, p <0.001, n = 207).
Together, our results suggest that Isp-2 expression is sensitive to dietary protein, leading to different
LSP-2 protein titers circulating in the blood of protein-fed and protein-deprived males. These data are
consistent with LSP-2 acting as an amino acid store in male 4. suspensa.

4.3 LSP-2 abundance between dietary treatments diverges before behavior diverges

If amino acid stores regulate reproductive displays, then LSP-2 protein abundance should
diverge between protein-fed and protein-deprived males before their reproductive behavior diverges.
We examined when LSP-2 abundance and sexual display behaviors diverged between protein-fed
and protein-deprived males. LSP-2 abundance became significantly higher in protein-fed males than
in protein-deprived males 1 day before the proportion of males exhibiting sexual display behavior
significantly diverged between the two groups (Figure 2B). We examined the effect of age, diet, Isp-2
transcript abundance, and LSP-2 protein abundance on sexual display behavior. In our fully
parameterized model, LSP-2 protein abundance did not significantly influence sexual display
behavior (GLMM, Model D, LSP-2 protein abundance had an effect size of 0.0340, S.E. of 0.124, p
=0.783, n =207). But, because LSP-2 content and sexual displays both strongly covaried with time
in each feeding regime (Pearson’s correlation, r =-0.17, p = 0.01, n = 207), we were unable to
disentangle these effects and determine whether males with higher LSP-2 content called earlier,
requiring a manipulative experiment.

4.4 Isp-2 knockdown mimics the protein-deprived mating phenotype
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To test the extent to which LSP-2 abundance affects the timing and frequency of male mating
behavior, we knocked down Isp-2 transcript abundance in whole animals using RNAi. Average Isp-2
transcript abundance was ~45% lower in anti-Isp-2 dsRNA injected males compared to control
dsRNA injected males, suggesting incomplete but detectable knockdown across all ages and diets
(LMM, Model F, RNAI treatment had an effect size of 2.30, S.E. of 0.834, p <0.01, n = 117; Figure
3A). However, the degree of knock down was much greater 4 days after adult eclosion than 7 days
after adult eclosion (Figure 3A), likely due to a loss of RNA1 efficacy with time since the flies were
treated with dSRNA on the day of eclosion. Similar to our previous experiments, protein feeding
increased [sp-2 transcript abundance across all ages and RNA1 treatments compared to protein-
deprived anti-Isp-2 dsRNA injected males and protein-deprived control dSRNA injected males
(LMM, Model F, Diet had an effect size of 3.08, S.E. of 0.833, p <0.001, n = 117; Figure 3A).
However, Isp-2 transcript abundance did not detectably change with age, though we only sampled
from 2 ages and the age effect did trend toward significance (LMM, Model F, Age had an effect size
of 1.76, S.E. of 0.863, p =0.0721, n = 117; Figure 3A).

Protein-fed anti-/sp-2 dsRNA injected males were significantly less likely to engage in sexual
display behavior than protein-fed control dsSRNA injected flies 4 days after adult eclosion (Pearson's
Chi-squared, > = 4.5, df = 1, p = 0.0348, n = 27, Figure 3B). Seven days after adult eclosion,
significantly fewer protein-deprived males exhibited sexual display behavior than protein-fed males
(GLMM, Model G, Diet had an effect size of 3.00, S.E. of 0.646, p < 0.001, n = 70). However, anti-
Isp-2 dsRNA injection did not significantly decrease sexual display behavior 7 days after adult
eclosion in either the protein-deprived or protein-fed males (absent from reduced GLMM model, n =
70, Table 1G), perhaps due to incomplete knock down or loss of knock-down efficiency as time since
Isp-2 dsRNA injection increased. Altogether, our loss-of-function experiment nominates LSP-2
protein stores as a candidate regulatory mechanism for adult reproductive maturation and male sexual
display behavior in a lekking fly.

Discussion
5.1 Protein stored as LSP-2 regulates reproductive displays

We show that protein stores regulate male tephritid reproductive maturation and sexual
display behavior. Our conclusion is supported by four pieces of evidence. First, the hexamerin
storage protein LSP-2 remained abundant in response to dietary protein availability in protein-fed
flies, but was quickly depleted in protein-deprived flies. Second, protein-fed male flies began sexual
display behavior earlier than protein-deprived males, and a greater proportion of protein-fed males
engaged in sexual displays than protein-deprived males. Third, whole body LSP-2 abundance
diverged between protein-fed and protein-deprived flies 1 day before their sexual display behavior
diverges. Fourth, partial knockdown of Isp-2 induced a detectable delay in male sexual display
behaviors. Notably, we disentangle the effects of protein storage from the availability of dietary
protein. We find that inability to store amino acids in LSP-2 mimics the effect of dietary protein-
deprivation in A. suspensa males.

One caveat to our study is that the well-known difficulties of quantifying feeding in flies
prevented us from directly measuring protein consumption. Could the delay in the onset of male
mating displays we observed in our /sp-2 RNAI treatment relative to gfp RNAI1 control flies have
been caused by Isp-2 RNAi males eating less than gfp RNAi control flies? To determine whether our
Isp-2 RNAI treated males may have consumed less protein than gfp RNAi controls, we estimated
total body soluble protein in both treatment groups. We detected no difference in soluble protein

. . . . 10
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content between Isp-2 RNAI injected males and gfp RNAi control males. Yet, we were able to detect
that protein-deficient males had lower soluble protein content than protein-fed males. Thus, although
we did not quantify protein feeding directly, we believe that the protein-fed /sp-2 RNAi males were
not generally protein malnourished, suggesting their lack of sexual display behavior was due to lack
of LSP-2 protein stores specifically rather than general protein deficiency. We did not investigate the
fate of ingested amino acids in Isp-2 RNAi1 males for this study, though we suspect amino acids were
still being used as anabolic substrate for the growth of secondary sexual organs and production of
sperm. Our study illustrates that males, like females, regulate their reproductive behavior based on
their nutrient stores (Houston et al., 2006; Soulsbury, 2019). We also found that often overlooked
amino acid capital can regulate breeding in an insect. Insects are a highly abundant and diverse class
of animals many of which have complex and costly mating behaviors, so the role of amino acid
capital and hexamerins in mating behavior warrant further study.

5.2 Hexamerins may signal protein stores

Capital-breeding is an important reproductive strategy that allows animals to store nutrients
when they are abundant and then use nutrient stores later to fuel reproduction. Many animals rely on
some combination of nutrient capital and income, and can regulate their behavior based on whether
they have adequate nutrient stores to support reproduction (Teal et al., 2013; Lebreton et al., 2017,
Yin et al., 1999; Frisch, 1985). The connection between fat storage and female fertility is well
known, but our understanding of the relationships between male reproductive behavior and stored
nutrition is incomplete (Soulsbury, 2019; Mirth and Piper, 2017). Although fat stores and leptin are
reported to promote puberty in vertebrate males, the evidence from humans and rodents is still mixed
and excessive fat stores may even inhibit reproduction (Zhang and Gong, 2018). Other studies have
found that dietary protein availability regulates reproductive behavior in tephritid male flies, but none
have explicitly tested the role of protein stores (Teal et al., 2013; Marchini et al., 2003, Warburg and
Yuval, 1997). Our study addresses this gap, finding that protein stores regulate reproductive behavior
in male tephritids.

We found that the hexamerin storage protein LSP-2 modulates sexual display behavior in
male 4. suspensa, suggesting that hexamerin storage proteins could generally regulate reproduction
in insects. Hexamerin storage proteins are an arthropod-specific family of proteins that diverged from
arthropod hemocyanins early in insect evolution (Burmester, 1999). Hexamerin storage proteins have
been found in every insect species that has been investigated for their presence (Burmester, 1999).
Hexamerins are also present in the closely related hexapod, Diplura (Xie and Luan, 2014), and even
have close homologs in crustaceans (Burmester, 1999). Hexamerins accumulate prior to anabolically
demanding life history transitions in many insects, including metamorphosis, diapause, and female
reproduction (Burmester, 1999; Hahn and Denlinger, 2007; Pan and Telfer, 1996; Wheeler and Buck,
1996). However, the ability of hexamerin storage proteins to regulate life history transitions has only
been cursorily tested, partially because complete hexamerin knockdown is difficult (Tokar et al.,
2014; Li et al., 2017). Because many insects have multiple hexamerin storage proteins, knockdown
of one hexamerin may induce functional compensation by overexpression of another hexamerin
storage protein (Tokar et al., 2014; Li et al., 2017). Higher flies (Brachycera) like A. suspensa and D.
melanogaster also have multiple hexamerins expressed during larval life, but only Isp-2 is expressed
during the adult stage (Chrysanthis et al., 1994; Capurro et al., 2000; Hahn et al., 2008). Thus,
knocking down Isp-2 provides an opportunity to examine the functional roles of hexamerins.
However, even in our study knockdown of Isp-2 appears temporary. We injected dSRNA on the day
of adult eclosion, and knockdown efficiency was much greater 4 days after injection compared to 7
days after injection. Future studies in other insects should perform knockdown or overexpression of
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hexamerins individually and in combination to investigate their roles in the timing of life history
events. Such experiments could also test the extent to which regulatory roles of hexamerin storage
proteins are general across insects. Future studies could also use diet switching to test the relative
importance of short- and long-term dietary protein availability, protein feeding, and protein storage in
regulating behavior. However, our finding that Isp-2 knockdown suppressed reproductive behavior
suggests that protein stores can indeed regulate male reproduction.

For any animal to use their nutrient stores to regulate their reproductive behavior, as we
observed with protein stores in 4. suspensa, peripheral tissues must communicate a measure of their
stores with the brain. One mechanism that animals use to measure and communicate their nutrient
stores is circulating signals, hormones. For example, tetrapods secrete a peptide hormone, leptin, that
measures stored fat and coordinates this information with growth, development, metabolism (Woods
et al., 1998; Paolucci et al., 2001; Mantzoros, 2000; Londraville et al., 2017). Our understanding of
leptin function is best developed in mammals: mammalian adipose tissue secretes leptin into the
blood and leptin is sensed by receptors in the secretory cells of the brain and pancreas (Woods et al.,
1998). The leptin signal coordinates feeding, growth, metabolism, and reproduction with fat stores
(Woods et al., 1998; Mantzoros, 2000). How flies and other insects sense their nutrient stores is less
clear. In D. melanogaster, a leptin-like hormone, unpaired 2, is secreted into the blood when the fly
consumes dietary fat (Rajan and Perrimon, 2012; Londraville et al., 2017). However, whether
unpaired 2 is sensitive to fat stores is unclear. Even more unclear is the mechanism(s) for sensing
protein stores in insects. We propose that insects use the titers of hexamerin storage proteins like /sp-
2 as a circulating signal. In support of this hypothesis, our findings suggest that (1) LSP-2 circulates
in the blood of 4. suspensa, (ii) LSP-2 levels providing a reliable signal of protein store quantity, (iii)
Isp-2 knockdown mimics dietary protein deprivation, and (iv) LSP-2 is secreted by an important
nutrient-signaling tissue in insects, the fat body. More broadly, we suggest that the primary role of
hexamerins is protein storage, but that specific hexamerins may also have dual roles in storage and as
a circulating signal secreted by the fat body. Any circulating signal must also have a receptor, and
one receptor of hexamerins has been identified, fat body protein 1 (fbp-1) (Burmester and Scheller,
1999). FBP-1 has previously been shown to participate in receptor-mediated uptake of hexamerins by
the fat body immediately before metamorphosis in hololetaboloty larvae (Burmester and Scheller,
1999). Interestingly, transcripts for fbp-1 have also been found in single-cell transcriptomes of D.
melanogaster brain neurons (Davie et al., 2018), though FBP-1 specific protein detection is still
needed. In D. melanogater fbp-1 transcripts are also still found in the in the adult fat body (Kadener
et al., 2006). We propose that FBP-1 in the fat body binds LSP-2 to liberate the amino acids for
anabolic functions, while FBP-1 in the brain binds LSP-2 to provide a measure of condition and
transduce this information to affect behavior. Our hypothesis is consistent with both in vivo and ex
vivo studies indicating that the insect fat body secretes one or more nutritional hormones, termed fat-
body-derived signals, that communicate amino acid status to the brain and reproductive tissues in D.
melanogaster (Sousa-Nunes et al., 2011; Géminard et al., 2009). In response to fat-body-derived
signals, the brain and reproductive tissues accelerate growth and reproductive development
(Géminard et al., 2009; Armstrong et al., 2014). However, the number and identity of fat-body-
derived signals remains unclear. Furthermore, the role of fat-body signals in sensing short-term
amino acid income and stored amino acid reserves is also unclear. In D. melanogaster, fat body
derived signals generate brain and peripheral tissue responses distinct from those generated by
circulating amino acids (Armstrong et al., 2014; Géminard et al., 2009). Colombani et al. (2003) and
Arquier et al. (2008) propose that acid-labile protein subunit is a fat-body-derived signal that forms a
complex with insulin-like peptides to coordinate amino acid status with growth. Similarly, Koyama
and Mirth (2016) propose that growth-blocking peptides are fat-body-derived signals that stimulate
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insulin-like peptide release from the brain. These models both account for currently circulating amino
acids, but not the longer-term amino acid reserves in stored protein.

No fat-body-derived signal has been proposed that communicates stored protein, yet protein
stores are a critical part of insect life-histories from molting to reproduction (Burmester, 1999). We
hypothesize that hexamerins like LSP-2 may act as fat-body-derived signals that indicate protein
stores directly. Our results are consistent with a signaling role for LSP-2, but do not provide
sufficient evidence to fully support our hypothesis. Consistent with our hypothesis, hexamerins can
act as mitogens inducing cell proliferation in the midgut of molting lepidopterans and the
reproductive organs of honeybees (Blackburn et al., 2004; Hakim et al., 2007; Martins et al., 2011).
Hexamerins supply amino acids during molting and reproduction (Arrese and Soulages, 2010;
Burmester, 1999; Pan and Telfer, 1996), so hexamerin abundance may signal that molting and
reproduction can proceed because the requisite amino acids have been stored. Hexamerins also have
been implicated in caste differentiation in termite colonies and Polistes wasp colonies (Zhou et al.,
2006; Hunt et al., 2007). Nutrition controls caste differentiation in termites and wasps (Scharf et al.,
2007; Berens et al., 2015), so hexamerin accumulation could act as a link between nutrient intake and
caste differentiation. Juvenile hormone (JH) is also implicated in caste differentiation, and both
Braun and Wyatt (1996) and Zhou et al. (2006) have proposed that hexamerins play a functional role
modifying juvenile hormone (JH) signaling. In addition to well-known roles regulating juvenile
development, JH is also known to regulate reproduction in most insects (Riddiford, 2012). In adult
male flies, including D. melanogaster, A. suspensa, and many other tephritids, application of
methoprene (a JH analog) increases male courtship behavior (Teal et al., 2013; Wijesekera et al.,
2016). In many tephritids, dietary protein during adulthood and methoprene treatment have an
additive effect in promoting sexual display behavior (Teal et al., 2013), suggesting that high LSP-2
titers induced by protein feeding may increase the potency of JH signaling. Further research is
needed to clarify whether hexamerins and JH may have additive or synergistic effects in inducing
sexual display behavior in 4. suspensa. More work is also needed to test whether hexamerin storage
proteins generally perform a regulatory role during nutrient intensive insect life-history transitions
like caste differentiation and reproduction.

Understanding reproduction in male insects also has substantial practical application because
many pest insects, especially tephritid fruit flies, are controlled by the sterile insect technique
wherein lab-grown sterile males are released into the field to compete with wild males. Sterile male
release 1s an environmentally friendly alternative to chemical insecticides, but is often more
expensive than chemical alternatives (Bakri et al., 2005). Dietary protein and methoprene are often
used in sterile insect technique programs to promote reproductive behaviors in sterile males (Teal et
al., 2013). The success of sterile insect technique programs is predicated on the ability of sterile
males to exhibit reproductive displays accurately enough and frequently enough to compete with
wild males. Our findings suggest artificially upregulating the LSP-2 signal could potentially
accelerate and increase reproductive behavior of tephritids. Hyper-sexual males could improve the
efficacy of sterile male biological control agents and decrease the cost of environmentally friendly
pest control programs that release sterile males.
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Table

[

Table 1. Results of statistical linear models. The response variable precedes “~”, while explanatory

({2
~

variables follow “~”. All models include cohort as a random factor. Age is a numeric factor. “*”

indicates p < 0.05, “**” indicates p < 0.01, “***” indicates p < 0.001.

Model Variable Estimated |Std. |zort |Pr(>z]) | Sig
Effect Size | Error | value

A) Generalized Linear | Intercept 4.10 0.768 | -5.34 9.49E-08 | ***

Mixed Model Age 0.675 0.120 | 5.62 1.94E-08 | ***
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(GLMM): Behavior ~ | Diet 2.40 161 [-149 |0.136
Age * Diet (df =246) | Age*Diet 0.960 0367 | 2.62 |0.00891 | **
B) Linear Mixed Intercept 0.6112 0.317 | 1.93 0.0570
Model (LMM): Isp-2 | Age 0.0784 0.0613 | -1.28 | 0.202
transcript abundance ~ | Djet 1.37 0.448 |3.06 0.0024 | **
Age * Diet (df>75) | Age * Diet 0.242 0.0703 [2.79  [0.00582 | **
C) LMM: LSP-2 Intercept 2.92 0.419 |6.97 5.01e-06 | ***
protein abundance ~ Age -0.383 0.0710 | -5.39 [ 1.95¢-07 | ***
Age + Isp-2 transeript 770, 5> anseript | 0.454 0.0903 | 5.03 1.07e-06 | ***
abundance (df > 14) abundance
(Diet absent from
model)
D) Rich Model: Intercept 4.79 0.885 |-5.42 | 6.03E-08 | ***
GLMM: Sexual Age 0.0801 0.150 | 532 | L.OIE-07 | ***
Display Behavior ~ Diet 2.54 1.84 |-138 |0.167
Age* Diet +LSP-2 170 Dt 0.893 0413 | 2.16 0031 | *
protein + Isp-2 .
transcript (df = 200) LSP-2 protein | -0.0340 0.124 |-0.0276 | 0.783
abundance
Isp-2 transcript | 0.207 0.154 | 1.347 [0.178
abundance
E) Reduced Model: Intercept 5.43 0.777 | -6.98 2.94E-12 | ***
GLMM: Sexual Age 0.910 0.135 | 6.74 | LOI1E-11 | ***
Display Behavior ~ Age x Diet 0.466 0.113 | 413 | 3.61E-05 | ***
Age + (Age x Diet) (df
=203)
F) Isp-2 transcript Intercept 4.40 0.898 |4.90 0.00023 | ***
abundance ~ Age + Age -1.76 0.863 | -2.04 |0.0721
Diet + dsRNA Diet 3.08 0.833 [3.70 | 0.000339 | ***
treatment (df> 9) dsRNA treat. | 2.30 0.834 | -275 |0.00687 | **
G) GLMM: Day 7 Intercept 1.40 0.455 |-3.01 0.00202 | **
behavior ~ Diet Diet 3.00 0.646 | 4.64 6.42e-06 | ***
(dsRNA treat. Absent
from model) (df = 67)

Figure captions

Fig. 1. The complicated sexual display behavior of Anastrepha suspensa is sensitive to protein

deprivation. (A) Anastrepha suspensa males follow a stereotyped sequence of behaviors leading to
mating. Briefly, a male will select a site and defend it against other males (lek initiation), then evert
his pleural and anal glands to release pheromone (calling behavior), then other males will select
adjacent sites and begin their own calling behavior (lek joining). A female will come to the lek and
males will begin courtship song and dance (courtship), and finally a female may allow copulation
(Benelli et al.,2014; Burk, 1983). For our experiments, we measured the proportion of males
exhibiting calling behavior, and refer to calling throughout as sexual display behavior. Calling
behavior is comprised of 3 events: (i) the eversion of the pleural and (ii) anal glands to release
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pheromones, and (iii) the fanning of wings that disperses their pheromones (Nation, 1972; Benelli et
al., 2014). (B) The assay design for inducing sexual display behavior included one male and one
female in each container, and 20 containers were run in parallel. Though calling normally occurs
within a lek, it can also occur in isolation, and our males were isolated from other males to reduce
confounding factors. Only males that displayed at least 2 of the 3 calling behaviors were scored as
exhibiting sexual display behavior. (C) Protein-fed males began sexual displays earlier than protein-
deprived males, and protein-fed males called significantly more than protein-deprived males 4, 5, and
7 days after adult eclosion (Pearson's Chi-squared, * indicates p < 0.05 (x> > 5.9), p > 0.25 (3> < 1.3)
for all nonsignificant comparisons). In a reduced model explaining sexual display behavior, age and
its interaction with diet were both significant (Table 1; n=251, n=20-28 for each diet x age
combination). Error bars represent standard error.

Fig. 2. Isp-2 transcript and protein abundance in whole animals were sensitive to protein feeding. (A)
Isp-2 transcript abundance increased with age in protein-fed males, but was almost undetectable in
protein-deprived males 2 through 9 days after adult eclosion (Two sample T-test, * indicates p < 0.05
(t>2.85), *** indicates p < 0.001 (t > 4.5), p > 0.70 (t < 0.35) for all nonsignificant comparisons, n =
14-16 for each diet x age combination; Table 1). Error bars represent standard error. (B) Protein-fed
flies had significantly higher LSP-2 protein abundance 3 through 9 days after adult eclosion (Two
sample T-test, * indicates p < 0.05 (t > 2.85), ** indicates p < 0.01 (t>3.5), p > 0.1 (t < 1.75) for all
nonsignificant comparisons, n = 14-16 for each diet x age combination; Table 1). Dashed black line
indicates the age at which protein-fed males began calling significantly more than protein-deprived
males. Error bars represent standard error. (C) Representative Western blot showing that LSP-2
content was higher in protein-fed males.

Fig. 3. Anti-Isp-2 dsRNA injection decreased Isp-2 transcript abundance in whole animals and
reduced the proportion of males exhibiting sexual display behavior. (A) Diet and injection treatment
each independently significantly influenced Isp-2 transcript abundance (GLMM (diet), t = 3.695, p <
0.001,n=117; GLMM (injection treatment), t =2.75, p < 0.01, n = 117). Across all diets and ages,
average Isp-2 transcript abundance was ~45% lower in anti-/sp-2 dsRNA injected males compared to
control dsRNA injected males. Error bars represent standard error. (B) Protein-fed anti-/sp-2 dsSRNA
injected males exhibit significantly less sexual display behavior than anti-gfp dsSRNA injected males
(Pearson's Chi-squared, y? > 5.9, p = 0.0348, n=27). However, the RNAI effect was no longer
detectable 7 days after adult eclosion (RNAI treatment was absent from the reduced model, n = 70).
As in previous experiments, protein fed males exhibited significantly more sexual display behavior
than protein-deprived males (GLMM (diet), z=4.64, p < 0.001, n = 12-18 for each diet x age x
dsRNA treatment combination in both A and B). Error bars represent standard error. Although Isp-2
knockdown was incomplete and temporary, together our results suggest that LSP-2 regulates sexual
display behavior in 4. suspensa.
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