

1 Protein stores regulate when reproductive displays begin in the male

2 Caribbean fruit fly

- 3 Clancy A. Short^{1*}, John D. Hatle², Daniel A. Hahn¹
- ¹Department of Entomology and Nematology; The University of Florida, Gainesville, FL, USA
- 5 ² Department of Biology, The University of North Florida, Jacksonville, FL, USA
- 6 * Correspondence:
- 7 Clancy A. Short
- 8 cashort@ufl.edu
- 9 Keywords: behavioral regulation, *lsp-2*, male courtship, nutrient storage, Tephritidae,
- 10 hexamerins, fat-body-derived signal, capital-breeding

11 Abstract

12 Many animals exhibit reproductive behavior that requires expenditure of valuable nutrients. In 13 males of many species, competitive energetically demanding displays and the development of sexual 14 ornaments require prior accumulation of nutrient stores. Males must coordinate nutrient stores with 15 ornament development and reproductive displays or they risk depleting their resources mid-16 development or mid-display, reducing their chance of mating. Males may use nutrient stores to regulate their reproductive behavior. Amino acid reserves may be important for reproduction, but the 17 18 roles of amino acid stores in initiating maturation and reproductive behavior are less studied than fat 19 stores. Insects store amino acids as hexamerin storage proteins. Many fly species use a specific 20 hexamerin, larval serum protein 2 (LSP-2), as both a juvenile storage medium and to store protein 21 consumed after adult eclosion. Protein stored as LSP-2 has previously been suggested to regulate 22 reproduction in females, but no role has been proposed for LSP-2 in regulating male maturation. We 23 use males of the Caribbean fruit fly, *Anastrepha suspensa*, a species with nutrient-intensive male 24 sexual displays to test whether LSP-2 stores regulate male reproductive displays. We fed adult A. 25 suspensa males a diet with or without protein, then assayed these males for lsp-2 transcript abundance via gRT-PCR, LSP-2 protein abundance via Western blot, and reproductive display 26 27 behavior via observation. We found that adult males with ad libitum dietary protein had greater lsp-2 28 transcript and protein abundance, earlier sexual display behavior, and were more likely to exhibit sexual display behavior than protein-deprived adult males. We show that *lsp-2* knockdown via RNAi 29 30 decreases the proportion of males exhibiting reproductive displays, particularly early in the onset of 31 reproductive behavior. Our results suggest circulating LSP-2 protein stores regulate reproductive 32 behavior in A. suspensa males, consistent with protein stores modulating reproduction in males with expensive reproductive strategies. Our results are consistent with hexamerin storage proteins 33 34 performing dual roles of protein storage and protein signaling. Our work also has substantial practical 35 applications because tephritid flies are an economically important pest group and the timing and expression of male reproductive displays in this group are important for control efforts using the 36 37 sterile insect technique.

This manuscript contains 1 table and 3 figures

Introduction

39

40

66

67

68 69

70

71

72

73

74

75

76 77

78

79

80

81

82

83

41 Animals require nutrients for expensive life history transitions, especially reproductive 42 maturation and engaging in nutrient-intensive reproductive behaviors (Houston et al., 2006; 43 Soulsbury, 2019; Harshman and Zera, 2007). However, many animals live in nutrient-limited 44 environments, and the availability of abundant nutrient sources may not match a time and place well-45 suited for reproductive behavior (ex. Yuval and Bouskila, 1993; Warner, 1987; Ubukata 1984; 46 Soulsbury, 2019). Accordingly, animals have evolved strategies to mitigate this problem. Capital 47 breeders solve this problem by storing nutrients when they are abundant, then using nutrient stores during maturation and reproduction (Houston et al., 2006; Soulsbury, 2019). Income breeders instead 48 49 match their reproductive output to the immediate availability of nutrients in their habitat (Houston et 50 al., 2006; Soulsbury, 2019). However, many animals rely on a combination of both income and 51 capital to fuel their reproduction, so most reproductive strategies exist on the spectrum between fully 52 capital or fully income breeding (Houston et al., 2006; Soulsbury, 2019). Thus, animals generally 53 modulate their reproductive nutrient expenditure to avoid prematurely depleting their stores 54 (Gauthier-Clerc, et al., 2001; Teal et al., 2013; Shelly and Kenelly, 2003; Lebreton et al., 2017; Yin 55 et al., 1999; Smith and Spencer, 2012; Frisch, 1985; Arrese and Soulages, 2010). Female mammals 56 clearly regulate their reproductive behavior using their fat stores, as do female insects (Frisch's 57 fatness and fertility hypothesis; Smith and Spencer, 2012; Frisch, 1985; Sieber and Spradling, 2015; Glazier, 2000; Ellers, 1996; Badisco et al., 2013). Females are typically considered to have a higher 58 59 cost of reproduction than males. However, reproduction is costly for males of many species because of the expensive nature of mating displays, as well as developing sexual ornaments and provisioning 60 nuptial gifts (Simmons and Parker, 1989; Bleu et al., 2016). Males with low nutrient stores may pay a 61 62 fitness cost because they miss breeding periods, are unable to perform competitive mating displays, 63 and could die from starvation (Sandberg and Moore, 1996; Leather, Ward, and Dixon, 1983). Despite the costly nature of many male breeding strategies, the importance of nutrient reserves to male 64 65 reproductive investment remains poorly investigated.

Many male reproductive displays require expensive signals (Soulsbury, 2019). Expensive signals can range from development of pre-breeding ornaments to pheromone-producing machinery to energetic fuel for behavioral displays. Amino acids are used to build sexual ornaments and the biochemical machinery needed for behavioral and chemical displays (ex. proteins used to construct and maintain male ornaments or enzymes necessary to produce male pheromones). Storing amino acids prior to lekking or producing ornaments could be advantageous. In some birds and fiddler crabs, ornaments can interfere with foraging, so males may benefit from storing amino acids until they have acquired the resources needed to complete ornament growth (Moller et al., 1995; Allen and Levinton, 2007). Other species use lek mating systems, in which males aggregate at sites that are separated from resources and perform competitive reproductive displays to attract sexually selective females (Shelly, 2018). Many tephritid fruit flies use lek-mating systems and have amino acid intensive displays that are physically separated from amino acid sources, so these males may benefit from storing amino acids before travelling to lekking sites and beginning their competitive displays (Warburg and Yuval, 1997; Yuval et al., 1998; Benelli et al., 2014).

Males should delay or forego reproductive development in favor of additional foraging if they have insufficient amino acid stores to successfully reproduce. Although fat stores are associated with breeding behavior in some vertebrates (Welbergen, 2011; Wells, 2001; Pérez-Barberia et al., 1998), the importance of amino acid stores to reproductive displays remains largely uninvestigated.

Vertebrates can undergo muscle histolysis when amino acid intake is insufficient to meet the needs of 85 a life history transition like breeding (Brosnan, 2003; Parker et al., 2009), but vertebrates lack a 86 dedicated store for amino acids, so understanding the role of protein stores in vertebrates can be challenging.

84

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

Insects can also undergo muscle histolysis to fuel male reproductive displays (Mitra et al., 2011), but insects, other hexapods, and some decapod crustaceans have a dedicated amino acid store, hexamerin storage proteins that are evolutionary derived from crustacean hemocyanin respiratory proteins that have lost their copper binding sites for oxygen (Burmester, 1999; Tawfik, et al., 2006; Capurro et al., 2000; Tokar et al., 2014; Wheeler et al., 2000; Xie and Luan, 2014). Hexamerin storage proteins, often abbreviated to "hexamerins", are abundant blood proteins that circulate as hexamers consisting of ~70 kDa subunits (Burmester, 1999). Hexamerins are secreted by the fat body into the hemolymph in both juveniles and adults, but in holometabolous larvae they are reabsorbed by the fat body shortly before metamorphosis (Burmester, 1999). Hexamerin accumulation is associated with providing anabolic substrates for molting and metamorphosis in both sexes, as well as female reproduction (Arrese and Soulages, 2010; Burmester, 1999; Wheeler et al., 2000; Capurro et al., 2000; Hahn et al., 2008; Pan and Telfer, 1996; Wheeler and Buck, 1996). Quantifying and manipulating hexamerin levels could disentangle the effects of current dietary protein availability from the effects of protein storage to explicitly test the extent to which protein storage regulates maturation and reproductive behavior. RNAi knockdown of hexamerins in females of the bean bug, Riptortus pedestris, delays the nymphal-adult molt and decreases the number of eggs a female lays (Lee et al., 2017). These phenotypes are also induced by starvation (Kim and Lim, 2014; Rahman et al., 2018), suggesting that hexamerins may regulate life history transitions in some female insects. However, the extent to which hexamerins regulate reproductive behavior in males remains untested.

Tephritid fruit flies can be used to explore the relationships between protein stores and male reproduction because males of many tephritid species show a clear relationship between protein availability and male maturation (Teal et al., 2013). Adult tephritids may ingest small amounts of amino acids by feeding on bacteria and the residual nutrients that are found on fruit, bird droppings, and the surfaces of leaves (Aluja et al., 1999). These resources vary in availability and amino acid content, suggesting many tephritids experience amino acid limitation. Adult males of many tephritid species perform complex, intensive mating displays including participation in leks. Lekking sites are spatially separated from amino acid sources and feeding for teprhitid fruit flies (Benelli et al., 2014). Male tephritids need amino acids to mature, form ejaculate, build the molecular machinery to synthesize pheromones, and maintain the musculature necessary for producing complex courtship songs (Marchini et al., 2003). Dietary protein availability can accelerate the onset and increase the frequency of lekking behavior in males of many tephritid species (Teal et al., 2013; Warburg and Yuval, 1997), i.e., protein deprivation delays reproductive behavior. Lekking behavior itself also seems to expend amino acids; males begin lekking with high concentrations of total body soluble protein and end lekking behavior with low concentrations of soluble protein (Warburg and Yuval, 1997; Yuval et al., 1998). The depletion of whole-body soluble protein suggests that lekking male tephritids rely on amino acid capital accumulated before they enter leks, but the storage mechanisms for amino acid capital are uninvestigated.

One candidate hexamerin that may provide the stored amino acids necessary for male mating in tephritid flies is larval serum protein 2 (LSP-2). LSP-2 was first identified in the vinegar fly D. melanogaster (Roberts, Wolfe, and Akam, 1977), where it is secreted by the fat body during larval and adult life (Beneš et al., 1990). Larval LSP-2 is then reabsorbed by the fat body and integument shortly before metamorphosis, presumably to provide anabolic substrate for metamorphosis (Tsakas

- et al., 1991; Beneš et al., 1990; Lepesant et al., 1978; Burmester, 1999; but see Chrysanthis et al.,
- 131 1994). LSP-2 appears to be the hexamerin responsible for storing amino acids consumed during the
- adult stage females of higher fly (Suborder: Brachycera) species (Chrysanthis et al., 1994; Beneš et
- al., 1990; Capurro et al., 2000; Hahn et al., 2008; but see Burmester et al., 1998). LSP-2 is
- accumulated with adult protein feeding and depleted with egg production in the vinegar fly
- 135 Drosophila melanogaster, the housefly Musca domestica, and the flesh fly Sarcophaga crassipalpis
- 136 (Chrysanthis et al., 1994; Beneš et al., 1990; Capurro et al., 2000; Hahn et al., 2008; but see
- Burmester et al., 1998). We hypothesize that the hexamerin LSP-2 stores amino acids prior to lekking
- behavior in tephritid fruit fly males, and that males regulate their lekking behavior based on their
- 139 LSP-2 stores. If LSP-2 acts as a protein store in tephritid fruit fly males, then LSP-2 transcript
- abundance should increase in response to protein feeding, and LSP-2 protein should accumulate
- during continued protein feeding. We predict that *lsp-2* knockdown should suppress male
- reproductive behavior.

143 The Caribbean fruit fly Anastrepha suspensa Loew is a competitive lekking tephritid species (Burk, 1983). Anastrepha suspensa is a pest of guava, peach, Surinam cherry, tropical almond, and 144 145 loquat, and has a host range of more than 90 fruits (Baranowski et al., 1993). Like many other 146 tephritids, A. suspensa may feed on bacteria, fungi, and animal faeces (Aluja et al., 1999), but 147 variation in the availability and amino acid content of these food sources, and predation risks 148 associated with foraging (Burk, 1983), may limit amino acid intake. Males form leks where groups of 149 males disperse themselves across individual leaf territories within one region of a plant where the 150 males compete for a limited number of choosy females with wing fanning, song, and pheromone 151 displays (Burk, 1983). Males that do not join leks can attempt to intercept females while they are 152 ovipositing at fruits, but these non-lekking males have a lower chance of mating success than lekking 153 males (Burk, 1983). Protein in the adult diet of A. suspensa increases lek initiation and participation 154 behavior, calling behavior, and mating success (Teal et al., 2013). However, the relationship between 155 adult protein feeding and the age when calling and lekking behavior begin has not been investigated. 156 Here we show that providing protein in the adult diet of males of the tephritid fruit fly *Anastrepha* 157 suspensa increases their lsp-2 transcript and LSP-2 protein abundances. Dietary protein also causes 158 both earlier sexual displays and a greater proportion of males to exhibit sexual display behavior. 159 Knocking down *lsp-2* transcript abundance using RNAi reduces the proportion of males exhibiting sexual display behavior despite dietary protein availability, mimicking the protein-deprived courtship 160 phenotype. Taken together, our results demonstrate that A. suspensa males can use capital protein 161 162 stores, in the form of LSP-2, to regulate reproductive maturation and behavior, the first report of 163 hexamerins regulating male reproduction. In addition to building basic understanding of the 164 regulation of insect reproduction, our results have practical application. Because A. suspensa is a 165 model tephritid for sterile male release programs to control pest tephritid populations, and this 166 technique is predicated on males exhibiting appropriate lekking behavior, understanding ways to 167 accelerate male mating behavior could contribute to greater efficacy and cost efficiency of sterile 168 male programs.

Materials and methods

169

170

3.1 Fly sampling and sexual display analysis

- For our experiments we used a colony of *Anastrepha suspensa* (Loew 1862) (Diptera:
- 172 Tephritidae) that originated from South Florida, USA in the summer of 1998 (Handler and Harrell,
- 173 2001). Our maintenance procedures included *ad libitum* access to larval and adult diets, as described
- by Teets et al. (2019; species background in Aluja et al., 1999). To test the effects of dietary protein

175 on lsp-2 transcript abundance, LSP-2 protein abundance, and reproductive maturation, we used two 176 contrasting experimental diets; a protein-containing diet (3:1 sucrose: enzymatic hydrolyzed brewers 177 yeast from MP Biomedical, Solon, OH) or a protein-deficient diet (sucrose only). Freshly eclosed 178 adult males were caged in groups of ten and given ad libitum access to water and only one of the two 179 experimental diets. Males were sampled at adult eclosion, and 1, 2, 3, 4, 5, 7, and 9 days after adult 180 eclosion. Because females were not caged with males, all males assayed were virgin and naïve to 181 females. For sampling, males aged 3-9 days after adult eclosion from both protein-rich and protein-182 deficient diets were assayed for stereotyped sexual display behavior. that includes lek initiation, 183 calling behavior, lek joining, courtship and copulation (described in Figure 1A). In our study we 184 focus on calling behavior, comprised of (i) the eversion of the pleural and (ii) anal glands to release 185 pheromones, and (iii) the fanning of wings that disperses their pheromones (Benelli et al., 2014; 186 Aluja et al., 1999). Briefly, males were placed in containers and provided with female olfactory and 187 visual cues from 10-14 day post-eclosion females that were previously fed protein ad libitum, and 188 thus were fully reproductively mature. Calling assays were run from 15:00 to 17:00, coincident with 189 peak courtship timing (Landolt and Sivinski, 1992; Burk 1983). Each assay began by placing males 190 into the arena (plastic deli cup, 0.95 L, 105 mm diameter) and giving males a 10-minute acclimation 191 period before females were added to the smaller screened-off container (plastic deli cup, 35 mL, 40 192 mm diameter) within the arena (set-up shown in Fig. 1B). After an additional 10-minutes of 193 acclimation, the flies were monitored for whether they exhibited the calling behaviors described 194 above. Males that exhibited at least two of the three calling behaviors described above were scored 195 as exhibiting sexual displays. Because each male was frozen for subsequent biochemical analysis 196 after being behaviorally assayed, each male was tested for sexual display behavior only once. Ten 197 flies of the same age reared on protein-containing and protein-deficient diets were placed in separate 198 arenas and were observed simultaneously. Each observation session used only one cohort of flies, 199 and included both protein-fed and protein-deprived males, preventing cohort to cohort variation from 200 being falsely attributed to age or diet. Although we did not directly measure feeding, we did measure 201 total soluble protein content. If males that had access to dietary protein are indeed feeding, we predict 202 these should have higher soluble protein content than their protein-deprived counterparts. To test whether our design had generated changes in the total soluble protein content of males, we also 203 204 measured total male protein using BCA assays (PierceTM BCA kit, ThermoFisher, Waltham, MA).

3.2 Characterization of LSP-2

205

206 Because the genome and proteome of A. suspensa remain unpublished, the sequence of LSP-2 207 in A. suspensa is still unpublished, so our study characterized LSP-2 protein from larval and adult 208 blood. To characterize LSP-2 in A. suspensa, blood was drawn from 5 wandering 3rd instar larvae, 15 209 freshly eclosed adult males and 15 freshlyt eclosed adult females, and as well as 15 protein-fed males 210 and 15 protein-fed females 8 days after adult eclosion. Blood proteins were separated by loading 2 to 211 5 μg of protein onto a 10% Mini-PROTEAN® TGXTM Precast PAGE Gels (Bio-Rad, Hercules, CA) 212 with Laemmli Sample Buffer (Bio-Rad, Hercules, CA). SDS-PAGE was run at 145 V for 75 minutes 213 in a Mini-PROTEAN® II Electrophoresis Cell (Bio-Rad, Hercules, CA) according to the 214 manufacturer's instructions. To visualize bands, gels were stained with Coomassie Biosafe (Bio-Rad, Hercules, CA). One band (~72 kDa) was highly abundant in wandering 3rd instar larvae and both 215 sexes 8 days after adult eclosion, as predicted for LSP-2 (SI Figure 1A). The band was excised from 216 217 the lane loaded with blood of protein-fed males 8 days after adult eclosion and LC-MS/MS for 218 peptide identification was performed at the UF ICBR Proteomics core facility. LC-MS/MS of the 219 band detected 9 short peptides that matched the predicted LSP-2 sequence of C. capitata (SI Figure 220 1B; Sequence ID: XP 004530681.1), confirming that LSP-2 circulates in the blood of larval and 221 adult A. suspensa of both sexes.

3.3 Quantification of *lsp-2* transcript abundance

To generate cDNA, samples were homogenized and RNA pellets were extracted using TRIreagent® (Invitrogen, Carlsbad, CA) according to the manufacturer's instructions, except 1-bromo-3-chloropropane (Sigma-Aldrich, St. Louis, MO) was used instead of chloroform for phase separation. RNA quality was checked by selecting every 24th RNA extraction and using 5 μg of RNA for bleach gel electrophoresis (SI Figure 2; Aranda et al., 2012). To generate cDNA from RNA, the SuperScript® SSOAdvanced First-Strand Synthesis Reagents kit (Invitrogen, Carlsbad, CA) was used according to the manufacturer's instructions using 1 μg of total RNA per 20 μl reaction and oligo(dT)20 as the reverse transcription primer.

We used degenerate primers (IDT, Coralville, IA) to isolate a 750 bp fragment of the *lsp-2* mRNA transcript from wandering 3rd instar *A. suspensa* larvae (SI Table 1). Degenerate primers were developed from the consensus region of *lsp-2* in the melon fly, *Bactrocera cucurbitae*, snowberry maggot, *Rhagoletis zephyria*, and *C. capitata* (GenBank sequences: XM_011186009.1, XM_017622567.1, XM_004530624.). Sanger sequencing (performed by GeneWiz, South Plainfield, NJ) revealed our 750 bp fragment had high similarity with *lsp-2* from other flies, so likely represents a partial sequence of the *A. suspensa lsp-2* mRNA (SI Table 2). From this sequence, we developed qRT-PCR primers for *lsp-2* (IDT, Coralville, IA; SI Table 1). Primers described by Nakamura et al. (2016) for the housekeeping gene *rp18* in the West Indian fruit fly, *Anastrepha obliqua* (SI Table 1) were used to estimate the transcript abundance of *rp18* as an *A. suspensa* reference gene. qRT-PCR was run with an annealing temperature of 54°C using SsoAdvancedTM Universal SYBR® Green Supermix (Bio-Rad, Hercules, CA) according to manufacturer's instructions and the CFX Connect Real-Time PCR Detection System (Bio-Rad, Hercules, CA).

To locate *lsp-2* transcripts in adult males, *lsp-2* transcript abundance was examined in the head, legs, and abdomen of protein-fed and protein-deprived males four days after adult eclosion (RNA extracted and cDNA synthesized as described above). Heads, legs, and abdomens were pooled in groups of tissues from five individual flies (30 legs/pool), each pool was replicated four times (n=12). *lsp-2* transcripts were clearly present in both the head and abdomen (SI Figure 3), confirming that using entire carcasses for RNA and protein extraction was appropriate for estimating *lsp-2* transcript abundance between protein-fed and protein-deprived males. Whole bodies were used to estimate *lsp-2* transcript abundance across all ages and dietary treatments.

To test for effects of dietary protein on lsp-2 transcript abundance, we ran qRT-PCR on samples described above that were collected during the first three days of adult life as well as males up to 8 days old that were phenotyped for sexual display behavior. Samples were randomized across qTR-PCR plates and run alongside 3 concentrations of internal standard comprised of mixed cDNA from randomly selected samples. C_q values were calculated using CFX ManagerTM Software's (Bio-Rad, Hercules, CA). lsp-2 C_q was divided by the housekeeping gene rp18 C_q to calculate relative lsp-2 transcript abundance using the $2^{-\Delta\Delta CT}$ method (Livak and Schmittgen, 2001). rp18 transcript abundance was not significantly influenced by age, diet, or RNAi treatment in any experiment (LMM, starting with the model $2^{-rp18Ct}$ ~ Diet * Age, including cohort as a random factor, and reducing via backwards step AIC, p > 0.244 for any model, full or reduced, n = 207).

3.4 Quantification of LSP-2 protein abundance

LSP-2 protein abundance was estimated with western blots. Protein pellets were extracted from the same TRIreagent® (Invitrogen, Carlsbad, CA) homogenate as the RNA, according to

265 manufacturer's instruction. The entire fly body was used in this homogenate. Protein pellets were dissolved in lysis buffer (Kopec et al., 2017). To perform western blots, an anti-LSP-2 antibody for 266 267 A. suspensa was developed (LifeTein, Somerset, NJ). The polyclonal primary rabbit antibody reacted to the epitope sequence C-NFIHGEHKDDMEAVNQLGN translated in silico from our A. suspensa 268 269 lsp-2 fragment. To prepare for western blotting, protein concentration in extracts was measured by 270 Pierce™ BCA assay (ThermoFisher, Waltham, MA). Proteins were separated using the SDS-PAGE 271 procedure described above and 2.5 µg of total protein. Proteins were transferred from gels to 272 polyvinylidene fluoride membranes (Bio-Rad, Hercules, CA) using a Trans-Blot® TurboTM Transfer 273 System (Bio-Rad, Hercules, CA) according to the manufacturer's instructions. Immune probing was 274 conducted using an anti-LSP-2 antibody concentration of 190 µg / L, and a mouse monoclonal Anti-275 α-Tubulin antibody (used as a loading control, produced by Sigma-Aldrich, Carlsbad, CA) 276 concentration of 200 ul / L for primary incubation. Secondary incubation used anti-rabbit and anti-277 mouse IgG HRP-conjugated goat antibody at a concentration of 100 µl / L (EMD Millipore Corp, Burlington, MA). Bands were visualized with Clarity MaxTM Western ECL Blotting Substrates (Bio-278 279 Rad, Hercules, CA) and chemiluminescence was detected with a ChemiDoc™ MP Imaging System 280 (Bio-Rad, Hercules, CA). To account for technical differences between gels and membranes, samples 281 were randomized and an internal protein standard solution (made by mixing protein from randomly 282 selected samples) was included on every blot. LSP-2 intensity was divided by α-Tubulin intensity to 283 calculate normalized LSP-2 protein abundance. We expected that tubulin protein abundance would 284 be stable through time, but tubulin protein abundance was significantly influenced the interaction of 285 diet and age, with tubulin protein content increasing with age (LMM, square root (Standardized 286 tubulin fluorescence) ~ Diet * Age, including cohort as a random factor, Diet*Age had an effect size 287 of 153, S.E. of 52.9, t = 2.89, p < 0.01, Diet had an effect size of 511, S.E. of 273, t = 1.87, p = 0.06, 288 Age had an effect size of 67.3, S.E. of 37.3, t = 1.81, p < 0.07, df = 207). The increasing tubulin 289 concentration with age could affect the interpretation of our results. However, when the difference in 290 tubulin levels between protein-fed and protein-deprived males was largest and had the lowest p-291 values (7 and 9 days after adult eclosion), protein-fed males had greater tubulin levels than protein-292 deprived males. The higher levels of tubulin in protein-fed males compared to protein-deprived males 293 biases our results towards not finding a difference in LSP-2 protein content between protein-fed and 294 protein-deprived males, thus our detection of higher LSP-2 abundance in protein-fed males than in 295 protein-deprived males should be considered a very conservative interpretation.

3.5 RNAi knockdown of lsp-2

296

297

298

299

300

301

302

303

304

305

306

307

308 309

310

311

To disentangle the effects of dietary protein availability from protein storage, we experimentally knocked down lsp-2 transcript abundance using RNAi. Adult flies, 12-24 hours after eclosion, were immobilized on ice, then injected with 0.6 µg of either lsp-2 dsRNA or gfp dsRNA (a control treatment) in elution buffer (ThermoFisher, Waltham, MA). To create the dsRNA, we used the MEGAscriptTM RNAi Kit (ThermoFisher, Waltham, MA), according to the manufacturer's instructions. We used the primers listed in SI Table 1 (IDT, Coralville, IA), and used our internal cDNA standard (described above) and a GFP plasmid (pGLO™ Plasmid, Bio-Rad, Hercules, CA) as templates for synthesis of *lsp-2* and *gfp* amplicons respectively (sequences in SI Table 3). The amplicons were then transcribed into dsRNA overnight. To test for an effect of RNAi treatment on male sexual display behavior, males were caged in groups of ten and given ad libitum access to water and a protein-containing diet or protein-deficient diet (described above). Males were assayed for sexual display behavior as described above at 4 and 7 days after adult eclosion, then preserved for analysis of lsp-2 transcript abundance to determine RNAi efficacy using the qRT-PCR methods described above. To verify that sexual display behavior differences between dsRNA treated flies were not due to off target differences in dietary protein feeding behavior (i.e., to show that lsp-2

- 312 RNAi male flies were not protein-starved), we estimated total body soluble protein content in male
- 313 flies using BCA kits (ThermoFisher, Waltham, MA). We verified that protein-fed anti-lsp-2 dsRNA
- 314 injected flies did not have detectably lower total protein content than protein-fed anti-gfp dsRNA
- 315 injected flies (LMM, Total protein ~ dsRNA treatment, cohort as random factor, RNAi treatment had
- 316 an effect size of 0.002, S.E. of 0.0498, p = 0.97, n = 123).

3.6 Statistical analyses

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343344

345

346

347348

349

350

351352

353

354

To test whether differences in sexual display behavior, *lsp-2* transcript abundance, and LSP-2 protein abundance were different between treatment groups, we used combinations of linear mixed models (LMM) and generalized linear mixed models (GLMM). Models are listed in Table 1 and all include cohort as a random factor. Males from the day of eclosion were not included in any of our models because these males did not consume either diet. All models began as rich models with interactions and were reduced using backwards step AIC, removing the term with the highest pvalue. Once no more terms could be removed without raising the AIC less than 2, the final reduced model comprised the remaining terms. Only reduced models are shown in Table 1, except for the fully parameterized model explaining sexual display behavior using age, diet, *lsp-2* transcript, and LSP-2 protein abundance. For RNAi experiments, males 4 and 7 days after adult eclosion were analyzed separately because protein-deprived males exhibited no sexual display behavior 4 days after adult eclosion, preventing the use of a single generalized linear model. Males 4 days after adult eclosion were analyzed with a Chi-square test, while males 7 days after eclosion were analyzed with a mixed generalized linear model. All analysis of our data was run in the R (3.5.1) statistical program (R Core Team, 2018), using the packages *lme4*, *ggplot2*, and *mosaicData*. We also used Chi-squared and two sample T-tests corrected with false discovery rate corrections as post-hoc linear contrasts for models. Chi-squared tests were used for post-hoc analysis of mixed generalized linear models, while two sample T-tests were used for post-hoc analysis of linear models. For a more detailed description of our statistical tests, our code has been made publicly available on GitHub (URL will be made available concurrent with publication).

Results

4.1 Protein-fed males exhibit sexual display behavior earlier and more often

To test for effects of dietary protein on reproductive maturation and sexual display behavior, we sampled protein-fed and protein-deprived flies over the course of their reproductive maturation and assayed for stereotyped sexual display behavior (Figure 1A), *Isp-2* transcript abundance, and LSP-2 protein abundance. Males fed the experimental diet containing protein had significantly higher total soluble protein than males fed the sucrose-only diet, demonstrating substantial protein feeding (LMM, Total protein ~ Diet, cohort as random factor, Diet had an effect size of 1.06, S.E. of 0.431, p = 0.014, n = 207). Protein-fed males began sexual display behavior one day earlier in adult life and a greater proportion exhibited sexual display behavior 4-7 days after adult eclosion compared to protein-deprived males (GLMM, Model A, df =246, Age*Diet had an effect size of 2.40, S.E. of 1.61, p < 0.01, n = 251; in Chi-square post-hoc analysis for significant comparisons p < 0.05, χ^2 > 5.9, for all non-significant comparisons p > 0.25, χ^2 < 1.3, n=20-28 for each diet x age combination; Figure 1B); although male sexual display behavior increased with age in both diet groups (GLMM, Model A, df =246, Age had an effect size of 0.675, S.E. of 0.120, p < 0.001, n = 251; Figure 1B). However, our initial experiment did not disentangle the effects of dietary protein availability from the effects of protein stores on the initiation of mating behavior.

4.2 Protein-fed males have higher *lsp-2* transcript and LSP-2 protein abundance

Before we tested the extent to which protein storage affected male reproductive behavior, we first characterized and confirmed the identity of the major adult storage protein, LSP-2, in *A. suspensa* (Hahn et al., 2008; Chrysanthis et al., 1994; SI Table 2; SI Figure 1 AB). As expected, the abundance of *lsp-2* transcripts in whole body homogenates increased with age in protein-fed males, but decreased with age in protein-deprived males (LMM, Model B, Age*Diet had an effect size of 0.242, S.E. of 0.0703, p < 0.01, n = 207, Table 1). Protein-fed males had significantly higher *lsp-2* transcript abundance than protein-deprived males 2-9 days after adult eclosion (Two sample T-test, for significant comparisons p < 0.05, t > 2.85, for all nonsignificant comparisons p > 0.70, t < 0.35, n = 14-16 for each diet x age combination; Figure 2A). Freshly eclosed males had low *lsp-2* transcript abundance on the 1st day after adult eclosion. Protein-fed males increased their *lsp-2* transcript abundance 1-4 days after adult eclosion, and remained high 5-7 days after adult eclosion, but protein-deprived males retained low, almost undetectable *lsp-2* transcript abundance through 9 days of adulthood.

In protein-fed males, LSP-2 protein abundance in whole-body homogenates remained high until 7 days after eclosion, likely reflecting newly synthesized LSP-2 maintaining the high LSP-2 abundance carried over from larval life. In contrast, LSP-2 protein abundance fell dramatically 1 day after eclosion in protein-deprived males, likely due to the depletion of larvally derived LSP-2 (post-hoc in Figure 2B, western blot image in 2C). LSP-2 protein abundance was significantly higher in protein-fed males than protein deprived males starting 3 days after adult eclosion and throughout the rest of our sampling to 9 days after adult eclosion (Two sample T-test, p < 0.05 and t > 2.85 for all tests, n = 14-16 for each diet x age combination). lsp-2 transcript abundance and age explained LSP-2 protein abundance (LMM, Model C, lsp-2 transcript abundance had an effect size of 0.454, S.E. of 0.0903, p < 0.001, Age had an effect size of 0.383, S.E. of 0.0710, p < 0.001, n = 207). Males with higher lsp-2 transcript abundance had significantly higher LSP-2 protein concentration (LMM, Model C, lsp-2 transcript abundance had an effect size of 0.454, S.E. of 0.0903, p < 0.001, n = 207). Together, our results suggest that lsp-2 expression is sensitive to dietary protein, leading to different LSP-2 protein titers circulating in the blood of protein-fed and protein-deprived males. These data are consistent with LSP-2 acting as an amino acid store in male A. suspensa.

4.3 LSP-2 abundance between dietary treatments diverges before behavior diverges

If amino acid stores regulate reproductive displays, then LSP-2 protein abundance should diverge between protein-fed and protein-deprived males before their reproductive behavior diverges. We examined when LSP-2 abundance and sexual display behaviors diverged between protein-fed and protein-deprived males. LSP-2 abundance became significantly higher in protein-fed males than in protein-deprived males 1 day before the proportion of males exhibiting sexual display behavior significantly diverged between the two groups (Figure 2B). We examined the effect of age, diet, *lsp-2* transcript abundance, and LSP-2 protein abundance on sexual display behavior. In our fully parameterized model, LSP-2 protein abundance did not significantly influence sexual display behavior (GLMM, Model D, LSP-2 protein abundance had an effect size of 0.0340, S.E. of 0.124, p = 0.783, n = 207). But, because LSP-2 content and sexual displays both strongly covaried with time in each feeding regime (Pearson's correlation, r = -0.17, p = 0.01, n = 207), we were unable to disentangle these effects and determine whether males with higher LSP-2 content called earlier, requiring a manipulative experiment.

4.4 lsp-2 knockdown mimics the protein-deprived mating phenotype

To test the extent to which LSP-2 abundance affects the timing and frequency of male mating behavior, we knocked down *lsp-2* transcript abundance in whole animals using RNAi. Average *lsp-2* transcript abundance was ~45% lower in anti-*lsp-2* dsRNA injected males compared to control dsRNA injected males, suggesting incomplete but detectable knockdown across all ages and diets (LMM, Model F, RNAi treatment had an effect size of 2.30, S.E. of 0.834, p < 0.01, n = 117; Figure 3A). However, the degree of knock down was much greater 4 days after adult eclosion than 7 days after adult eclosion (Figure 3A), likely due to a loss of RNAi efficacy with time since the flies were treated with dsRNA on the day of eclosion. Similar to our previous experiments, protein feeding increased *lsp-2* transcript abundance across all ages and RNAi treatments compared to protein-deprived anti-*lsp-2* dsRNA injected males and protein-deprived control dsRNA injected males (LMM, Model F, Diet had an effect size of 3.08, S.E. of 0.833, p < 0.001, n = 117; Figure 3A). However, *lsp-2* transcript abundance did not detectably change with age, though we only sampled from 2 ages and the age effect did trend toward significance (LMM, Model F, Age had an effect size of 1.76, S.E. of 0.863, p = 0.0721, n = 117; Figure 3A).

Protein-fed anti-*lsp-2* dsRNA injected males were significantly less likely to engage in sexual display behavior than protein-fed control dsRNA injected flies 4 days after adult eclosion (Pearson's Chi-squared, $\chi^2 = 4.5$, df = 1, p = 0.0348, n = 27, Figure 3B). Seven days after adult eclosion, significantly fewer protein-deprived males exhibited sexual display behavior than protein-fed males (GLMM, Model G, Diet had an effect size of 3.00, S.E. of 0.646, p < 0.001, n = 70). However, anti-*lsp-2* dsRNA injection did not significantly decrease sexual display behavior 7 days after adult eclosion in either the protein-deprived or protein-fed males (absent from reduced GLMM model, n = 70, Table 1G), perhaps due to incomplete knock down or loss of knock-down efficiency as time since *lsp-2* dsRNA injection increased. Altogether, our loss-of-function experiment nominates LSP-2 protein stores as a candidate regulatory mechanism for adult reproductive maturation and male sexual display behavior in a lekking fly.

Discussion

5.1 Protein stored as LSP-2 regulates reproductive displays

We show that protein stores regulate male tephritid reproductive maturation and sexual display behavior. Our conclusion is supported by four pieces of evidence. First, the hexamerin storage protein LSP-2 remained abundant in response to dietary protein availability in protein-fed flies, but was quickly depleted in protein-deprived flies. Second, protein-fed male flies began sexual display behavior earlier than protein-deprived males, and a greater proportion of protein-fed males engaged in sexual displays than protein-deprived males. Third, whole body LSP-2 abundance diverged between protein-fed and protein-deprived flies 1 day before their sexual display behavior diverges. Fourth, partial knockdown of *lsp-2* induced a detectable delay in male sexual display behaviors. Notably, we disentangle the effects of protein storage from the availability of dietary protein. We find that inability to store amino acids in LSP-2 mimics the effect of dietary protein-deprivation in *A. suspensa* males.

One caveat to our study is that the well-known difficulties of quantifying feeding in flies prevented us from directly measuring protein consumption. Could the delay in the onset of male mating displays we observed in our *lsp-2* RNAi treatment relative to *gfp* RNAi control flies have been caused by *lsp-2* RNAi males eating less than *gfp* RNAi control flies? To determine whether our *lsp-2* RNAi treated males may have consumed less protein than *gfp* RNAi controls, we estimated total body soluble protein in both treatment groups. We detected no difference in soluble protein

443 content between lsp-2 RNAi injected males and gfp RNAi control males. Yet, we were able to detect 444 that protein-deficient males had lower soluble protein content than protein-fed males. Thus, although 445 we did not quantify protein feeding directly, we believe that the protein-fed *lsp-2* RNAi males were not generally protein malnourished, suggesting their lack of sexual display behavior was due to lack 446 447 of LSP-2 protein stores specifically rather than general protein deficiency. We did not investigate the 448 fate of ingested amino acids in *lsp-2* RNAi males for this study, though we suspect amino acids were still being used as anabolic substrate for the growth of secondary sexual organs and production of 449 450 sperm. Our study illustrates that males, like females, regulate their reproductive behavior based on 451 their nutrient stores (Houston et al., 2006; Soulsbury, 2019). We also found that often overlooked 452 amino acid capital can regulate breeding in an insect. Insects are a highly abundant and diverse class 453 of animals many of which have complex and costly mating behaviors, so the role of amino acid 454 capital and hexamerins in mating behavior warrant further study.

5.2 Hexamerins may signal protein stores

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472473

474

475

476

477

478

479

480

481 482

483

484

485

486

487

488

Capital-breeding is an important reproductive strategy that allows animals to store nutrients when they are abundant and then use nutrient stores later to fuel reproduction. Many animals rely on some combination of nutrient capital and income, and can regulate their behavior based on whether they have adequate nutrient stores to support reproduction (Teal et al., 2013; Lebreton et al., 2017; Yin et al., 1999; Frisch, 1985). The connection between fat storage and female fertility is well known, but our understanding of the relationships between male reproductive behavior and stored nutrition is incomplete (Soulsbury, 2019; Mirth and Piper, 2017). Although fat stores and leptin are reported to promote puberty in vertebrate males, the evidence from humans and rodents is still mixed and excessive fat stores may even inhibit reproduction (Zhang and Gong, 2018). Other studies have found that dietary protein availability regulates reproductive behavior in tephritid male flies, but none have explicitly tested the role of protein stores (Teal et al., 2013; Marchini et al., 2003, Warburg and Yuval, 1997). Our study addresses this gap, finding that protein stores regulate reproductive behavior in male tephritids.

We found that the hexamerin storage protein LSP-2 modulates sexual display behavior in male A. suspensa, suggesting that hexamerin storage proteins could generally regulate reproduction in insects. Hexamerin storage proteins are an arthropod-specific family of proteins that diverged from arthropod hemocyanins early in insect evolution (Burmester, 1999). Hexamerin storage proteins have been found in every insect species that has been investigated for their presence (Burmester, 1999). Hexamerins are also present in the closely related hexapod, Diplura (Xie and Luan, 2014), and even have close homologs in crustaceans (Burmester, 1999). Hexamerins accumulate prior to anabolically demanding life history transitions in many insects, including metamorphosis, diapause, and female reproduction (Burmester, 1999; Hahn and Denlinger, 2007; Pan and Telfer, 1996; Wheeler and Buck, 1996). However, the ability of hexamerin storage proteins to regulate life history transitions has only been cursorily tested, partially because complete hexamerin knockdown is difficult (Tokar et al., 2014; Li et al., 2017). Because many insects have multiple hexamerin storage proteins, knockdown of one hexamerin may induce functional compensation by overexpression of another hexamerin storage protein (Tokar et al., 2014; Li et al., 2017). Higher flies (Brachycera) like A. suspensa and D. melanogaster also have multiple hexamerins expressed during larval life, but only lsp-2 is expressed during the adult stage (Chrysanthis et al., 1994; Capurro et al., 2000; Hahn et al., 2008). Thus, knocking down *lsp-2* provides an opportunity to examine the functional roles of hexamerins. However, even in our study knockdown of *lsp-2* appears temporary. We injected dsRNA on the day of adult eclosion, and knockdown efficiency was much greater 4 days after injection compared to 7 days after injection. Future studies in other insects should perform knockdown or overexpression of

hexamerins individually and in combination to investigate their roles in the timing of life history events. Such experiments could also test the extent to which regulatory roles of hexamerin storage proteins are general across insects. Future studies could also use diet switching to test the relative importance of short- and long-term dietary protein availability, protein feeding, and protein storage in regulating behavior. However, our finding that *lsp-2* knockdown suppressed reproductive behavior suggests that protein stores can indeed regulate male reproduction.

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532533

534

535

For any animal to use their nutrient stores to regulate their reproductive behavior, as we observed with protein stores in A. suspensa, peripheral tissues must communicate a measure of their stores with the brain. One mechanism that animals use to measure and communicate their nutrient stores is circulating signals, hormones. For example, tetrapods secrete a peptide hormone, leptin, that measures stored fat and coordinates this information with growth, development, metabolism (Woods et al., 1998; Paolucci et al., 2001; Mantzoros, 2000; Londraville et al., 2017). Our understanding of leptin function is best developed in mammals: mammalian adipose tissue secretes leptin into the blood and leptin is sensed by receptors in the secretory cells of the brain and pancreas (Woods et al., 1998). The leptin signal coordinates feeding, growth, metabolism, and reproduction with fat stores (Woods et al., 1998; Mantzoros, 2000). How flies and other insects sense their nutrient stores is less clear. In D. melanogaster, a leptin-like hormone, unpaired 2, is secreted into the blood when the fly consumes dietary fat (Rajan and Perrimon, 2012; Londraville et al., 2017). However, whether unpaired 2 is sensitive to fat stores is unclear. Even more unclear is the mechanism(s) for sensing protein stores in insects. We propose that insects use the titers of hexamerin storage proteins like lsp-2 as a circulating signal. In support of this hypothesis, our findings suggest that (i) LSP-2 circulates in the blood of A. suspensa, (ii) LSP-2 levels providing a reliable signal of protein store quantity, (iii) lsp-2 knockdown mimics dietary protein deprivation, and (iv) LSP-2 is secreted by an important nutrient-signaling tissue in insects, the fat body. More broadly, we suggest that the primary role of hexamerins is protein storage, but that specific hexamerins may also have dual roles in storage and as a circulating signal secreted by the fat body. Any circulating signal must also have a receptor, and one receptor of hexamerins has been identified, fat body protein 1 (fbp-1) (Burmester and Scheller, 1999). FBP-1 has previously been shown to participate in receptor-mediated uptake of hexamerins by the fat body immediately before metamorphosis in hololetaboloty larvae (Burmester and Scheller, 1999). Interestingly, transcripts for *fbp-1* have also been found in single-cell transcriptomes of *D*. melanogaster brain neurons (Davie et al., 2018), though FBP-1 specific protein detection is still needed. In D. melanogater fbp-1 transcripts are also still found in the in the adult fat body (Kadener et al., 2006). We propose that FBP-1 in the fat body binds LSP-2 to liberate the amino acids for anabolic functions, while FBP-1 in the brain binds LSP-2 to provide a measure of condition and transduce this information to affect behavior. Our hypothesis is consistent with both *in vivo* and *ex* vivo studies indicating that the insect fat body secretes one or more nutritional hormones, termed fatbody-derived signals, that communicate amino acid status to the brain and reproductive tissues in D. melanogaster (Sousa-Nunes et al., 2011; Géminard et al., 2009). In response to fat-body-derived signals, the brain and reproductive tissues accelerate growth and reproductive development (Géminard et al., 2009; Armstrong et al., 2014). However, the number and identity of fat-bodyderived signals remains unclear. Furthermore, the role of fat-body signals in sensing short-term amino acid income and stored amino acid reserves is also unclear. In D. melanogaster, fat body derived signals generate brain and peripheral tissue responses distinct from those generated by circulating amino acids (Armstrong et al., 2014; Géminard et al., 2009). Colombani et al. (2003) and Arquier et al. (2008) propose that acid-labile protein subunit is a fat-body-derived signal that forms a complex with insulin-like peptides to coordinate amino acid status with growth. Similarly, Koyama and Mirth (2016) propose that growth-blocking peptides are fat-body-derived signals that stimulate

insulin-like peptide release from the brain. These models both account for currently circulating amino acids, but not the longer-term amino acid reserves in stored protein.

No fat-body-derived signal has been proposed that communicates stored protein, yet protein stores are a critical part of insect life-histories from molting to reproduction (Burmester, 1999). We hypothesize that hexamerins like LSP-2 may act as fat-body-derived signals that indicate protein stores directly. Our results are consistent with a signaling role for LSP-2, but do not provide sufficient evidence to fully support our hypothesis. Consistent with our hypothesis, hexamerins can act as mitogens inducing cell proliferation in the midgut of molting lepidopterans and the reproductive organs of honeybees (Blackburn et al., 2004; Hakim et al., 2007; Martins et al., 2011). Hexamerins supply amino acids during molting and reproduction (Arrese and Soulages, 2010; Burmester, 1999; Pan and Telfer, 1996), so hexamerin abundance may signal that molting and reproduction can proceed because the requisite amino acids have been stored. Hexamerins also have been implicated in caste differentiation in termite colonies and *Polistes* wasp colonies (Zhou et al., 2006; Hunt et al., 2007). Nutrition controls caste differentiation in termites and wasps (Scharf et al., 2007; Berens et al., 2015), so hexamerin accumulation could act as a link between nutrient intake and caste differentiation. Juvenile hormone (JH) is also implicated in caste differentiation, and both Braun and Wyatt (1996) and Zhou et al. (2006) have proposed that hexamerins play a functional role modifying juvenile hormone (JH) signaling. In addition to well-known roles regulating juvenile development, JH is also known to regulate reproduction in most insects (Riddiford, 2012). In adult male flies, including D. melanogaster, A. suspensa, and many other tephritids, application of methoprene (a JH analog) increases male courtship behavior (Teal et al., 2013; Wijesekera et al., 2016). In many tephritids, dietary protein during adulthood and methoprene treatment have an additive effect in promoting sexual display behavior (Teal et al., 2013), suggesting that high LSP-2 titers induced by protein feeding may increase the potency of JH signaling. Further research is needed to clarify whether hexamerins and JH may have additive or synergistic effects in inducing sexual display behavior in A. suspensa. More work is also needed to test whether hexamerin storage proteins generally perform a regulatory role during nutrient intensive insect life-history transitions like caste differentiation and reproduction.

Understanding reproduction in male insects also has substantial practical application because many pest insects, especially tephritid fruit flies, are controlled by the sterile insect technique wherein lab-grown sterile males are released into the field to compete with wild males. Sterile male release is an environmentally friendly alternative to chemical insecticides, but is often more expensive than chemical alternatives (Bakri et al., 2005). Dietary protein and methoprene are often used in sterile insect technique programs to promote reproductive behaviors in sterile males (Teal et al., 2013). The success of sterile insect technique programs is predicated on the ability of sterile males to exhibit reproductive displays accurately enough and frequently enough to compete with wild males. Our findings suggest artificially upregulating the LSP-2 signal could potentially accelerate and increase reproductive behavior of tephritids. Hyper-sexual males could improve the efficacy of sterile male biological control agents and decrease the cost of environmentally friendly pest control programs that release sterile males.

Conflict of Interest

536

537

538

539

540541

542543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566567

568

569

570

571

572

573

574

575

576

577

578

579

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author Contributions

- CS carried out the molecular lab work and behavioral assays, collected and analysed data,
- participated in the design of the study and drafted and revised the manuscript; JH participated in
- conceiving of the study and critically revised the manuscript; DH participated in conceiving and
- designing the study and helped draft and revise the manuscript.

584 Funding

588

594

- This work was supported, in part, by NSF DEB 1639005, NSF IOS 1257298, the Florida Agricultural
- 586 Experiment Station, and the joint FAO/IAEA CRP Dormancy Management to Enable Mass-rearing
- to DAH, and NSF predoctoral fellowship DGE 1842473 to CAS.

Acknowledgments

- We thank Diego Rincon-Limas and Lisa Taylor for evaluating and advising our experimental
- 590 designs and assays. We thank Chao Chen, Andrew Nguyen, Leigh Boardman, and Dylan Tussey for
- help editing and improving this article. We also wish to thank the undergraduate volunteers
- 592 Samantha Thomas, Connor Sweeney, Taariq Imami, Sammy Dahan, Hannah Arlinghaus, Priya
- 593 Atodaria, and Valeriya Prytkova.

Data accessibility

- The R code used to analyze data and datasets themselves have been made publicly available at (data
- will be made publicly available on Github concurrent with publication).

597 **References**

- Houston, A. I., Stephens, P. A., Boyd, I. L., Harding, K. C., and McNamara, J. M. (2006). Capital or
- income breeding? A theoretical model of female reproductive strategies. Behav. Ecol. 18, 241-250.
- 600 Soulsbury, C. D. (2019). Income and capital breeding in males: energetic and physiological
- limitations on male mating strategies. J. Exp. Biol. 222, jeb184895.
- Harshman, L. G., and Zera, A. J. (2007). The cost of reproduction: the devil in the details. Trends
- 603 Ecol. Evol. 22, 80-86.
- Yuval, B., and Bouskila, A. (1993). Temporal dynamics of mating and predation in mosquito
- 605 swarms. Oecologia, 95, 65-69.
- Warner, R. R. (1987). Female choice of sites versus mates in a coral reef fish, *Thalassoma*
- 607 bifasciatum. Anim. Behav. 35, 1470-1478.
- 608 Ubukata, H. (1984). Oviposition site selection and avoidance of additional mating by females of the
- dragonfly, Cordulia aenea amurensis Selys (Corduliidae). Res. Popul. Ecol. 26(2), 285-301.
- Gauthier-Clerc, M., Le Maho, Y., Gendner, J. P., Durant, J., and Handrich, Y. (2001). State-
- dependent decisions in long-term fasting king penguins, *Aptenodytes patagonicus*, during courtship
- and incubation. Anim. Behav. 62, 661-669.
- Teal, P. E., Pereira, R., Segura, D. F., Haq, I., Gómez-Simuta, Y., Robinson, A. S., and Hendrichs, J.
- 614 (2013). Methoprene and protein supplements accelerate reproductive development and improve
- mating success of male tephritid flies. J. Appl. Entomol. 137, 91-98.

- Shelly, T. E., and Kennelly, S. S. (2003). Starvation and the mating success of wild male
- Mediterranean fruit flies (Diptera: Tephritidae). J. Insect Behav. 16, 171-179.
- 618 Lebreton, S., Carlsson, M. A., and Witzgall, P. (2017). Insulin signaling in the peripheral and central
- 619 nervous system regulates female sexual receptivity during starvation in *Drosophila*. Front. Physiol. 8,
- 620 685.
- Yin, C. M., Qin, W. H., and Stoffolano Jr, J. G. (1999). Regulation of mating behavior by nutrition
- and the corpus allatum in both male and female *Phormia regina* (Meigen). J. Insect Physiol. 45, 815-
- 623 822.
- Sandberg, R., and Moore, F. R. (1996). Fat stores and arrival on the breeding grounds: reproductive
- 625 consequences for passerine migrants. Oikos 77, 577-581.
- Leather, S. R., Ward, S. A., and Dixon, A. F. G. (1983). The effect of nutrient stress on life history
- parameters of the black bean aphid, *Aphis fabae* (Scop). Oecologia 57, 156-157.
- 628 Smith, J. T., and Spencer, S. J. (2012). Preweaning over-and underfeeding alters onset of puberty in
- the rat without affecting kisspeptin. Biol. Reprod. 86, 145-1.
- 630 Frisch, R. E. (1985). Fatness, menarche, and female fertility. Perspect. Biol. Med. 28, 611-633.
- 631 Sieber, M. H., and Spradling, A. C. (2015). Steroid signaling establishes a female metabolic state and
- regulates SREBP to control oocyte lipid accumulation. Curr. Biol. 25, 993-1004.
- Glazier, D. S. (2000). Is fatter fitter? Body storage and reproduction in ten populations of the
- freshwater amphipod *Gammarus minus*. Oecologia 122, 335-345.
- Ellers, J. (1995). Fat and eggs: an alternative method to measure the trade-off between survival and
- reproduction in insect parasitoids. Neth. J. Zool. 46, 227-235.
- Badisco, L., Van Wielendaele, P., and Vanden Broeck, J. (2013). Eat to reproduce: a key role for the
- 638 insulin signaling pathway in adult insects. Front. Physiol. 4, 202.
- 639 Simmons, L. W., and Parker, G. A. (1989). Nuptial feeding in insects: mating effort versus paternal
- 640 investment. Ethology 81, 332-343.
- Bleu, J., Gamelon, M., and Sæther, B. E. (2016). Reproductive costs in terrestrial male vertebrates:
- insights from bird studies. P. Roy. Soc. B-Biol. Sci. 283: 20152600.
- Moller, A. P., De Lope, F., and Caballero, J. L. (1995). Foraging costs of a tail ornament:
- experimental evidence from two populations of barn swallows *Hirundo rustica* with different degrees
- of sexual size dimorphism. Behav. Ecol. Sociobiol. 37, 289-295.
- Allen, B. J., and Levinton, J. S. (2007). Costs of bearing a sexually selected ornamental weapon in a
- 647 fiddler crab. Funct. Ecol. 21, 154-161.
- 648 Shelly, T. E. (2018). Sexual selection on leks: a fruit fly primer. J. Insect Sci. 18, 9.
- Warburg, M. S., and Yuval, B. (1997). Effects of energetic reserves on behavioral patterns of
- Mediterranean fruit flies (Diptera: Tephritidae). Oecologia 112, 314-319.

- Yuval, B., Kaspi, R. O. Y., Shloush, S., and Warburg, M. S. (1998). Nutritional reserves regulate
- male participation in Mediterranean fruit fly leks. Ecol. Entomol. 23, 211-215.
- Benelli, G., Giunti, G., Canale, A., and Messing, R. H. (2014). Lek dynamics and cues evoking
- mating behavior in tephritid flies infesting soft fruits: implications for behavior-based control tools.
- 655 Appl. Entomol. Zool. 49, 363-37.
- Welbergen, J. A. (2011). Fit females and fat polygynous males: seasonal body mass changes in the
- grey-headed flying fox. Oecologia 165, 629-637.
- Wells, K. D. (2001). The energetics of calling in frogs. In M.J. Ryan (Ed.), Anuran Communication
- 659 (pp. 45–60). Washington, DC: Smithsonian Institution Press.
- Pérez-Barberia, F. J., Mutuberria, G., and Nores, C. (1998). Reproductive parameters, kidney fat
- index, and grazing activity relationships between the sexes in Cantabrian chamois *Rupicapra*
- 662 pyrenaica parva. Acta Theriol. 43, 311-324.
- Brosnan, J. T. (2003). Interorgan amino acid transport and its regulation. J. Nutr. 133, 2068S-2072S.
- Parker, K. L., Barboza, P. S., and Gillingham, M. P. (2009). Nutrition integrates environmental
- responses of ungulates. Funct. Ecol. 23, 57-69.
- Burmester, T. (1999). Evolution and function of the insect hexamerins. Eur. J. Entomol. 96, 213-225.
- Tawfik, A. I., Kellner, R., Hoffmann, K. H., and Lorenz, M. W. (2006). Purification, characterisation
- and titre of the haemolymph juvenile hormone binding proteins from Schistocerca gregaria and
- 669 Gryllus bimaculatus. J. Insect Physiol. 52, 255-268.
- 670 Capurro, M. D. L., Moreira-Ferro, C. K., Marinotti, O., James, A. A., and De Bianchi, A. G. (2000).
- Expression patterns of the larval and adult hexamerin genes of *Musca domestica*. Insect Molec. Biol.
- 672 9, 169-177.
- 673 Tokar, D. R., Veleta, K. A., Canzano, J., Hahn, D. A., and Hatle, J. D. (2014). Vitellogenin RNAi
- halts ovarian growth and diverts reproductive proteins and lipids in young grasshoppers. Am. Zool.
- 675 54, 931-941.
- Wheeler, D. E., Tuchinskaya, I., Buck, N. A., and Tabashnik, B. E. (2000). Hexameric storage
- proteins during metamorphosis and egg production in the diamondback moth, *Plutella xylostella*
- 678 (Lepidoptera). J. Insect Physiol. 46, 951-958.
- Xie, W., and Luan, Y. X. (2014). Evolutionary implications of dipluran hexamerins. Insect Biochem.
- 680 Molec. 46, 17-24.
- Arrese, E. L., and Soulages, J. L. (2010). Insect fat body: energy, metabolism, and regulation. Annu.
- 682 Rev. Entomol. 55, 207-225.
- Hahn, D.A., James, L.N., Milne, K.R., Hatle, J.D. (2008). Life-history plasticity after attaining a
- dietary threshold for reproduction is associated with protein storage in flesh flies. Funct. Ecol. 22,
- 685 1081-1090.

- Pan, M. L., and Telfer, W. H. (1996). Methionine-rich hexamerin and arylphorin as precursor
- reservoirs for reproduction and metamorphosis in female luna moths. Arch. Insect Biochem. 33, 149-
- 688 162.
- Wheeler, D. E., and Buck, N. A. (1996). A role for storage proteins in autogenous reproduction in
- 690 Aedes atropalpus. J. Insect Physiol. 42, 961-966.
- 691 Lee, J. B., Park, K. E., Lee, S. A., Jang, S. H., Eo, H. J., Am Jang, H., ... & Futahashi, R. (2017). Gut
- 692 symbiotic bacteria stimulate insect growth and egg production by modulating hexamerin and
- ovitellogenin gene expression. Dev. Comp. Immunol. 69, 12-22.
- Kim, E., & Lim, U. T. (2014). Effect of food deprivation period on the development and
- reproduction of *Riptortus pedestris* (Hemiptera: Alydidae), and its egg parasitism. J. Econ. Entomol.
- 696 107, 1785-1791.
- Rahman, M. M., Kim, E., & Lim, U. T. (2018). Seasonal reproductive performance and pre-
- diapausing mating status of female *Riptortus pedestris* (Hemiptera: Alydidae) collected in fields. J.
- 699 Econ. Entomol. 111, 1202-1209.
- Aluja, M., Piñero, J., Jácome, I., Díaz-Fleischer, F., and Savinski, J. (1999). Behavior of flies in the
- 701 genus Anastrepha (Trypetinae: Toxotrypanini). In M. Aluja and A. L. Norrbom (Eds.), Fruit flies
- 702 (Tephritidae): Phylogeny and Evolution of Behavior (pp. 375-406). Boca Raton, FL: CRC Press.
- Marchini, D., Del Bene, G., Cappelli, L., and Dallai, R. (2003). Ultrastructure of the male
- 704 reproductive accessory glands in the medfly *Ceratitis capitata* (Diptera: Tephritidae) and preliminary
- characterization of their secretions. Arthropod Struct. Dev. 31, 313-327.
- Roberts, D., Wolfe, J., and Akam, M. (1977). Developmental profiles of 2 major hemolymph
- proteins from *Drosophila melanogaster*. J. Insect Physiol. 23, 871-873, 875-878.Beneš, H.,
- Edmondson, R. G., Fink, P., Kejzlarová-Lepesant, J., Lepesant, J. A., Miles, J. P., and Spivey, D. W.
- 709 (1990). Adult expression of the *Drosophila lsp-2* gene. Dev. Biol. 142, 138-146.
- 710 Tsakas, S., Katsoris, P. G., Bourtzis, K., & Marmaras, V. J. (1991). Incorporation of arylphorins
- 711 (LSP-1) and LSP-2 like protein into the integument of *Ceratitis capitata* during pupariation. Insect
- 712 Biochem. 21, 507-515.
- Lepesant, J. A., Kejzlarova-Lepesant, J., & Garen, A. (1978). Ecdysone-inducible functions of larval
- fat bodies in *Drosophila*. P. Natl. Acad. Sci. 75, 5570-5574.
- 715 Chrysanthis, G., Kaliafas, A. D., and Mintzas, A. C. (1994). Biosynthesis and tissue distribution of
- 716 four major larval serum proteins during development of *Ceratitis capitata* (Diptera). Insect Biochem.
- 717 Molec. 24, 811-818.
- Burmester, T., Kölling, C., Schroer, B., and Scheller, K. (1998). Complete sequence, expression, and
- evolution of the hexamerin LSP-2 of *Calliphora vicina*. Insect Biochem. Molec. 28, 11-22.
- Burk, T. (1983). Behavioral ecology of mating in the Caribbean fruit fly, *Anastrepha suspensa*
- 721 (Loew)(Diptera: Tephritidae). Fla. Entomol. 330-344.
- Baranowski, R., Glenn, H., and Sivinski, J. (1993). Biological control of the Caribbean fruit fly
- 723 (Diptera: Tephritidae). Fla. Entomol. 245-251.

- Handler, A.M., and Harrell, II, R.A. (2001). Transformation of the Caribbean fruit fly, Anastrepha
- suspensa, with a piggyBac vector marked with polyubiquitin-regulated GFP. Insect Biochem. Molec.
- 726 31, 199-205.
- Teets, N. M., Dias, V. S., Pierce, B. K., Schetelig, M. F., Handler, A. M., and Hahn, D. A. (2019).
- Overexpression of an antioxidant enzyme improves male mating performance after stress in a lek-
- 729 mating fruit fly. Proc. Royal Soc. B. 286, 20190531.
- Landolt, P.J., and Sivinski, J. (1992). Effects of time of day, adult food, and host fruit on incidence of
- calling by male Caribbean fruit flies (Diptera: Tephritidae). Environ. Entomol. 21, 382-387.
- Aranda, P.S., LaJoie, D.M., and Jorcyk, C.L. (2012). Bleach gel: a simple agarose gel for analyzing
- RNA quality. Electrophoresis 33, 366-369.
- Nakamura, A. M., Chahad-Ehlers, S., Lima, A. L. A., Taniguti, C. H., Sobrinho Jr, I., Torres, F. R.,
- and De Brito, R. A. (2016). Reference genes for accessing differential expression among
- developmental stages and analysis of differential expression of OBP genes in *Anastrepha obliqua*.
- 737 Sci. Rep. 6, 17480 (2016).
- Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time
- 739 quantitative PCR and the $2-\Delta\Delta CT$ method. Methods 25, 402-408.
- Kopec, A.M., Rivera, P.D., Lacagnina, M.J., Hanamsagar, R., and Bilbo, S.D. (2017). Optimized
- solubilization of TRIzol-precipitated protein permits Western blotting analysis to maximize data
- available from brain tissue. J. Neurosci. Meth. 280, 64-76.
- R Core Team (2018). R: A language and environment for statistical computing (R Foundation for
- 744 Statistical Computing, Vienna).
- Mirth, C. K., and Piper, M. D. (2017). Matching complex dietary landscapes with the signaling
- pathways that regulate life history traits. Cur. Opin. Genet. Dev. 47, 9-16.
- Zhang, J., and Gong, M. (2018). Review of the role of leptin in the regulation of male reproductive
- 748 function. Andrologia 50, e12965.
- Hahn, D. A., and Denlinger, D. L. (2007). Meeting the energetic demands of insect diapause: nutrient
- storage and utilization. J. Insect Physiol. 53, 760-773.
- Li, Y., Zhang, Z., Feng, L., Zhao, X., Zhang, D. C., and Yin, H. (2017). Gene and expression
- analysis of the hexamerin family proteins from the grasshopper, *Locusta migratoria* (Orthoptera:
- Acridoidea). Biotechnol. Biotec. Eq. 31, 1139-1147.
- Woods, S. C., Seeley, R. J., Porte, D., and Schwartz, M. W. (1998). Signals that regulate food intake
- and energy homeostasis. Science 280, 1378-1383.
- Paolucci, M., Rocco, M., and Varricchio, E. (2001). Leptin presence in plasma, liver and fat bodies in
- 757 the lizard *Podarcis sicula*: fluctuations throughout the reproductive cycle. Life Sci. 69, 2399-2408.
- 758 Mantzoros, C. S. (2000). Role of leptin in reproduction. Ann. NY Acad. Sci. 900, 174-183.

- Londraville, R. L., Prokop, J. W., Duff, R. J., Liu, Q., and Tuttle, M. (2017). On the molecular
- evolution of leptin, leptin receptor, and endospanin. Front. Endocrinol. 8, 58.
- Rajan, A., and Perrimon, N. (2012). *Drosophila* cytokine *unpaired 2* regulates physiological
- homeostasis by remotely controlling insulin secretion. Cell 151, 123-137.
- Burmester, T., & Scheller, K. (1999). Ligands and receptors: common theme in insect storage protein
- transport. Naturwissenschaften 86, 468-474.
- Davie, K., Janssens, J., Koldere, D., De Waegeneer, M., Pech, U., Kreft, Ł., ... & Poovathingal, S.
- 766 (2018). A single-cell transcriptome atlas of the aging *Drosophila* brain. Cell 174, 982-998.
- Kadener, S., Villella, A., Kula, E., Palm, K., Pyza, E., Botas, J., ... & Rosbash, M. (2006). Neurotoxic
- protein expression reveals connections between the circadian clock and mating behavior in
- 769 *Drosophila*. Proc. Natl. Acad. Sci. 103, 13537-13542.
- Sousa-Nunes, R., Yee, L. L., and Gould, A. P. (2011). Fat cells reactivate quiescent neuroblasts via
- TOR and glial insulin relays in *Drosophila*. Nature 471, 508-512.
- Géminard, C., Rulifson, E. J., and Léopold, P. (2009). Remote control of insulin secretion by fat cells
- 773 in *Drosophila*. Cell Metab. 10, 199-207.
- Armstrong, A. R., Laws, K. M., and Drummond-Barbosa, D. (2014). Adipocyte amino acid sensing
- controls adult germline stem cell number via the amino acid response pathway and independently of
- 776 Target of Rapamycin signaling in *Drosophila*. Development 141, 4479-4488.
- Colombani, J., Raisin, S., Pantalacci, S., Radimerski, T., Montagne, J., and Léopold, P. (2003). A
- nutrient sensor mechanism controls *Drosophila* growth. Cell 114, 739-749.
- Arquier, N., Géminard, C., Bourouis, M., Jarretou, G., Honegger, B., Paix, A., and Léopold, P.
- 780 (2008). Drosophila ALS regulates growth and metabolism through functional interaction with
- insulin-like peptides. Cell Metab. 7, 333-338.
- Koyama, T., and Mirth, C. K. (2016). Growth-blocking peptides as nutrition-sensitive signals for
- insulin secretion and body size regulation. PLoS Biol. 14, e1002392.
- Blackburn, M. B., Loeb, M. J., Clark, E., & Jaffe, H. (2004). Stimulation of midgut stem cell
- proliferation by *Manduca sexta* α-arylphorin. Arch. Insect Biochem. 55, 26-32.
- Hakim, R. S., Blackburn, M. B., Corti, P., Gelman, D. B., Goodman, C., Elsen, K., ... & Smagghe, G.
- 787 (2007). Growth and mitogenic effects of arylphorin in vivo and in vitro. Arch. Insect Biochem. 64,
- 788 63-73.
- Martins, J. R., Anhezini, L., Dallacqua, R. P., Simoes, Z. L., & Bitondi, M. M. (2011). A honey bee
- hexamerin, HEX 70a, is likely to play an intranuclear role in developing and mature ovarioles and
- testioles. PLoS One, 6.
- 792 Zhou, X., Oi, F. M., and Scharf, M. E. (2006). Social exploitation of hexamerin: RNAi reveals a
- major caste-regulatory factor in termites. P. Natl. Acad. Sci. U.S.A. 103, 4499-4504.

- Hunt, J. H., Kensinger, B. J., Kossuth, J. A., Henshaw, M. T., Norberg, K., Wolschin, F., and
- Amdam, G. V. (2007). A diapause pathway underlies the gyne phenotype in *Polistes* wasps,
- revealing an evolutionary route to caste-containing insect societies. P. Natl. Acad. Sci. U.S.A. 104,
- 797 14020-14025.
- 798 Scharf, M. E., Buckspan, C. E., Grzymala, T. L., and Zhou, X. (2007). Regulation of polyphenic
- 799 caste differentiation in the termite *Reticulitermes flavipes* by interaction of intrinsic and extrinsic
- 800 factors. J. Exp. Biol. 210, 4390-4398.
- Berens, A. J., Hunt, J. H., and Toth, A. L. (2015). Nourishment level affects caste-related gene
- expression in *Polistes* wasps. BMC Genomics 16, 235.
- Braun, R. P., and Wyatt, G. R. (1996). Sequence of the hexameric juvenile hormone-binding protein
- from the hemolymph of *Locusta migratoria*. J. Biol. Chem. 271, 31756-31762.
- Riddiford, L. M. (2012). How does juvenile hormone control insect metamorphosis and
- reproduction? Gen. Comp. Endocr. 179, 477-484.
- Wijesekera, T. P., Saurabh, S., and Dauwalder, B. (2016). Juvenile hormone is required in adult
- males for *Drosophila* courtship. PloS One 11, e0151912.
- Bakri, A., Mehta, K., and Lance, D. (2005). Sterilizing insects with ionizing radiation. In V.A. Dyck,
- J. Hendrichs, and A.S. Robinson (Eds.), Sterile Insect Technique (pp. 233-268). Dordrecht,
- 811 Netherlands: Springer.
- Nation, J.L. (1972). Courtship behavior and evidence for a sex attractant in the male Caribbean fruit
- 813 fly, Anastrepha suspensa. Ann. Entomol. Soc. Am. 65, 1364-1367.

814

815816

817

818

819

820 Table

- Table 1. Results of statistical linear models. The response variable precedes "~", while explanatory
- variables follow "~". All models include cohort as a random factor. Age is a numeric factor. "*"
- 823 indicates p < 0.05, "**" indicates p < 0.01, "***" indicates p < 0.001.

Model	Variable	Estimated	Std.	z or t	Pr(> z)	Sig
		Effect Size	Error	value		
A) Generalized Linear Mixed Model	Intercept	4.10	0.768	-5.34	9.49E-08	***
	Age	0.675	0.120	5.62	1.94E-08	***

(GLMM): Behavior ~ Age * Diet (df = 246)	Diet	2.40	1.61	-1.49	0.136	
	Age*Diet	0.960	0.367	2.62	0.00891	**
B) Linear Mixed Model (LMM): <i>lsp-2</i> transcript abundance ~ Age * Diet (df > 75)	Intercept	0.6112	0.317	1.93	0.0570	
	Age	0.0784	0.0613	-1.28	0.202	
	Diet	1.37	0.448	3.06	0.0024	**
	Age * Diet	0.242	0.0703	2.79	0.00582	**
C) LMM: LSP-2 protein abundance ~ Age + lsp-2 transcript abundance (df > 14) (Diet absent from model)	Intercept	2.92	0.419	6.97	5.01e-06	***
	Age	-0.383	0.0710	-5.39	1.95e-07	***
	<i>lsp-2</i> transcript abundance	0.454	0.0903	5.03	1.07e-06	***
D) Rich Model: GLMM: Sexual Display Behavior ~ Age * Diet + LSP-2 protein + lsp-2 transcript (df = 200)	Intercept	4.79	0.885	-5.42	6.03E-08	***
	Age	0.0801	0.150	5.32	1.01E-07	***
	Diet	2.54	1.84	-1.38	0.167	
	Age*Diet	0.893	0.413	2.16	0.031	*
	LSP-2 protein abundance	-0.0340	0.124	-0.0276	0.783	
	<i>lsp-2</i> transcript abundance	0.207	0.154	1.347	0.178	
E) Reduced Model: GLMM: Sexual Display Behavior ~ Age + (Age × Diet) (df = 203)	Intercept	5.43	0.777	-6.98	2.94E-12	***
	Age	0.910	0.135	6.74	1.61E-11	***
	Age × Diet	0.466	0.113	4.13	3.61E-05	***
F) <i>lsp-2</i> transcript abundance ~ Age + Diet + dsRNA treatment (df > 9)	Intercept	4.40	0.898	4.90	0.00023	***
	Age	-1.76	0.863	-2.04	0.0721	
	Diet	3.08	0.833	3.70	0.000339	***
	dsRNA treat.	2.30	0.834	-2.75	0.00687	**
G) GLMM: Day 7	Intercept	1.40	0.455	-3.01	0.00202	**
behavior ~ Diet (dsRNA treat. Absent from model) (df = 67)	Diet	3.00	0.646	4.64	6.42e-06	***

Figure captions

Fig. 1. The complicated sexual display behavior of *Anastrepha suspensa* is sensitive to protein deprivation. (A) *Anastrepha suspensa* males follow a stereotyped sequence of behaviors leading to mating. Briefly, a male will select a site and defend it against other males (lek initiation), then evert his pleural and anal glands to release pheromone (calling behavior), then other males will select adjacent sites and begin their own calling behavior (lek joining). A female will come to the lek and males will begin courtship song and dance (courtship), and finally a female may allow copulation (Benelli et al.,2014; Burk, 1983). For our experiments, we measured the proportion of males exhibiting calling behavior, and refer to calling throughout as sexual display behavior. Calling behavior is comprised of 3 events: (i) the eversion of the pleural and (ii) anal glands to release

- pheromones, and (iii) the fanning of wings that disperses their pheromones (Nation, 1972; Benelli et
- al., 2014). (B) The assay design for inducing sexual display behavior included one male and one
- female in each container, and 20 containers were run in parallel. Though calling normally occurs
- within a lek, it can also occur in isolation, and our males were isolated from other males to reduce
- confounding factors. Only males that displayed at least 2 of the 3 calling behaviors were scored as
- exhibiting sexual display behavior. (C) Protein-fed males began sexual displays earlier than protein-
- deprived males, and protein-fed males called significantly more than protein-deprived males 4, 5, and
- 7 days after adult eclosion (Pearson's Chi-squared, * indicates p < 0.05 (χ^2 > 5.9), p > 0.25 (χ^2 < 1.3)
- for all nonsignificant comparisons). In a reduced model explaining sexual display behavior, age and
- its interaction with diet were both significant (Table 1; n=251, n=20-28 for each diet x age
- combination). Error bars represent standard error.
- Fig. 2. *lsp-2* transcript and protein abundance in whole animals were sensitive to protein feeding. (A)
- 847 *lsp-2* transcript abundance increased with age in protein-fed males, but was almost undetectable in
- protein-deprived males 2 through 9 days after adult eclosion (Two sample T-test, * indicates p < 0.05
- 849 (t > 2.85), *** indicates p < 0.001 (t > 4.5), p > 0.70 (t < 0.35) for all nonsignificant comparisons, n =
- 850 14-16 for each diet x age combination; Table 1). Error bars represent standard error. (**B**) Protein-fed
- 851 flies had significantly higher LSP-2 protein abundance 3 through 9 days after adult eclosion (Two
- sample T-test, * indicates p < 0.05 (t > 2.85), ** indicates p < 0.01 (t > 3.5), p > 0.1 (t < 1.75) for all
- nonsignificant comparisons, n = 14-16 for each diet x age combination; Table 1). Dashed black line
- indicates the age at which protein-fed males began calling significantly more than protein-deprived
- males. Error bars represent standard error. (C) Representative Western blot showing that LSP-2
- 856 content was higher in protein-fed males.
- Fig. 3. Anti-lsp-2 dsRNA injection decreased lsp-2 transcript abundance in whole animals and
- reduced the proportion of males exhibiting sexual display behavior. (A) Diet and injection treatment
- each independently significantly influenced *lsp-2* transcript abundance (GLMM (diet), t = 3.695, p <
- 860 0.001, n = 117; GLMM (injection treatment), t = 2.75, p < 0.01, n = 117). Across all diets and ages,
- average *lsp-2* transcript abundance was ~45% lower in anti-*lsp-2* dsRNA injected males compared to
- 862 control dsRNA injected males. Error bars represent standard error. (B) Protein-fed anti-lsp-2 dsRNA
- sexual display behavior than anti-gfp dsRNA injected males
- (Pearson's Chi-squared, $\chi^2 > 5.9$, p = 0.0348, n=27). However, the RNAi effect was no longer
- detectable 7 days after adult eclosion (RNAi treatment was absent from the reduced model, n = 70).
- As in previous experiments, protein fed males exhibited significantly more sexual display behavior
- than protein-deprived males (GLMM (diet), z = 4.64, p < 0.001, n = 12-18 for each diet x age x
- dsRNA treatment combination in both A and B). Error bars represent standard error. Although *lsp-2*
- knockdown was incomplete and temporary, together our results suggest that LSP-2 regulates sexual
- 870 display behavior in A. suspensa.