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Abstract—TIn this paper, the problem of dynamical deployment
of unmanned aerial vehicles (UAVs) equipped with visible light
communication (VLC) capabilities for optimizing the energy
efficiency of UAV-enabled networks is studied. In the studied
model, the UAVs can simultaneously provide communications and
illumination to service ground users. Since ambient illumination
increases the interference over VLC links while reducing the
illumination threshold of the UAVs, it is necessary to consider the
illumination distribution of the target area for UAV deployment
optimization. This problem is formulated as an optimization
problem which jointly optimizes UAV deployment, user associ-
ation, and power efficiency while meeting the illumination and
communication requirements of users. To solve this problem,
an algorithm that combines the machine learning framework of
gated recurrent units (GRUs) with convolutional neural networks
(CNNys) is proposed. Using GRUs and CNNs, the UAVs can model
the long-term historical illumination distribution and predict
the future illumination distribution. Given the prediction of
illumination distribution, the original nonconvex optimization
problem can be divided into two sub-problems and is then solved
using a low-complexity, iterative algorithm. Then, the proposed
algorithm enables UAVs to determine the their deployment and
user association to minimize the total transmit power. Simulation
results using real data from the Earth observations group (EOG)
at NOAA/NCEI show that the proposed approach can achieve
up to 68.9% reduction in total transmit power compared to a
conventional optimal UAV deployment that does not consider the
illumination distribution and user association.

Index Terms—Visible light communication, unmanned aerial
vehicles, drones, machine learning, gated recurrent units, convo-
lutional neural networks, energy efficiency.

I. INTRODUCTION

Deploying unmanned aerial vehicles (UAVs) as flying base
stations (BSs) for wireless networking is a flexible and cost-
effective approach to providing on-demand communications
[2]-[7]. However, for tomorrow’s ultra dense wireless net-
works, UAVs deployed as aerial BSs using radio frequency
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(RF) will interfere with ground devices, hence significantly
affecting the performance of the ground network. In addition,
the limited energy will restrict the applicability of UAVs using
RF resource to provide high-speed communication services for
ground users. These challenges can be addressed by equipping
UAVs with visible light communication (VLC) capabilities
[8]. Indeed, VLC has recently attracted attention due to its
large license-free bandwidth and high energy efficiency. For
instance, a VLC system that uses light-emitting diodes (LEDs)
to transmit wireless signals can provide both illumination
and communication services [9]. Moreover, the altitude of
the UAVs ensures the line of sight channel for VLC. There-
fore, using VLC can be a promising approach to provide
energy-efficient UAV communications with sufficiently avail-
able bandwidth. However, deploying VLC-enabled UAVs also
faces many challenges that include illumination interference
detection and prediction, UAV deployment optimization, and
energy efficiency.

The existing literature such as in [5]-[7] and [10]-[17]
studied a number of problems related to UAV deployment.
However, the works in [5]-[7] ignored the energy efficiency
of UAVs in optimizing the deployment of UAVs, and the works
in [10]-[12] only optimized the locations of UAVs under fixed
user association. Moreover, all of the existing works such as in
[5]-[7] and [10]-[17] are over limited capacity radio frequency
bands which may not allow the UAVs to meet the high data
rate demands of ground users. Instead, VLC-enabled UAVs
can be considered to provide high speed communications [9].
In [18], the authors developed a novel integrated VLC and
UAV framework that simultaneously provide communication
and illumination and optimized the locations of UAVs to
minimize the total power consumption. However, this work
does not consider the impact of nighttime illumination such
as vehicle lights, street lights, and building lights, which will
cause strong interference to VLC links [19]. Therefore, it is
necessary to analyze the illumination distribution of the service
areas so as to optimize the deployment of VLC-enabled UAV.
Naturally, machine learning (ML) [20] can be used to predict
future illumination distribution due to its strong ability on the
analysis of historical illumination distribution.

More recently, there has been significant interest in ap-
plying ML techniques to optimize UAV deployment such as
in [21]-[26]. The existing works such as in [21]-[23] used
reinforcement learning (RL) algorithms to optimize network
performance. However, such works cannot be used to analyze
historical illumination data and predict future illumination dis-
tribution. Meanwhile, the works in [24]-[26] only considered
the temporal correlation of the network state dataset to predict
future network states. Therefore, the works in [21]-[26] do



not analyze the potential of using ML for predicting two
dimensional (2D) illumination distribution which needs a com-
prehensive analysis of joint spatial and temporal correlations.

A number of existing works such as in [27]-[30] has studied
the use of ML to capture the spatiotemporal correlations so
as to predict two dimensional time-series data. In particular,
the authors in [27] and [28] studied the use of convolutional
autoencoder networks (CAE) to predict time-dependent future
video frame. However, the works in [27] and [28] can only
analyze the data in two consecutive time slots but ignore long-
term historical information. The authors in [29] presented an
entity segmentation-based deep learning model to predict the
image of a given scene. However, the works in [29] cannot
deal with the prediction of illumination distribution since it
cannot be segmented by identifying the boundaries. In [30],
the authors used deep learning to predict the rainfall intensity
in a local region. However, the work in [30] performed
zero-padding to ensure the output is the same size as the
input, which leads to blurry images. Therefore, the solutions
proposed in the prior art [27]-[30] cannot accurately predict
the illumination distribution since the boundaries and intensity
of nighttime illumination caused by human activities vary in
real time. For example, during evenings, the illumination of
factories will decrease while the illumination of residential or
commercial areas will increase. Meanwhile, the illumination
of each road changes with the density of vehicles. Nighttime
illumination causes interference over the VLC link while re-
ducing the illuminance requirements of users, hence affecting
the data rate of each user that is serviced by VLC links and the
deployment of VLC-enabled UAVs. Hence, it is necessary to
develop a novel ML framework for the analysis and prediction
of illumination distribution over ten minutes. Based on the
predictions, the network can optimally deploy UAVs to the
service area for on-demand wireless service.

The main contribution of this work is a novel framework for
dynamically optimizing the locations of VLC-enabled UAVs
based on accurate predictions of the illumination distribution
of a given area. Our key contributions include:

e We consider a VLC-enabled UAV network that can
simultaneously provide illumination and high data rate
communication services to ground users. Compared with
a conventional VLC system that uses static terminal de-
vices, the considered VLC-enabled UAVs can avoid time-
varying outdoor illumination interference. To enhance the
energy efficiency of the considered network, the UAVs
must find their optimal locations and user association
by predicting the distribution of ambient lighting. This
problem is formulated as an optimization problem whose
goal is to minimize the total transmit power of UAVs
under illumination, communication, and user association
constraints.

o To solve this optimization problem, we propose a deep
learning-based prediction approach by combining convo-
lutional neural networks (CNNs), gated recurrent units
(GRUs), and deconvolution networks (DeCNNs). The
proposed approach can analyze the temporal and spatial
characteristics of the long-term historical illumination
distribution. Compared to the existing time-series pre-
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Fig. 1: The architecture of a cellular network that consists of
UAVs and users.

diction approach of 2D data, the proposed approach can
effectively overcome the problem of blurred predictions
thus enabling the UAVs to accurately predict future
illumination distributions.

o Given the predicted illumination distribution, we trans-
form the original, nonconvex problem into a convex
equivalent by using a physical relaxation for the user
association constraints. Then, we develop a feasible, ef-
ficient, and low-overhead iterative algorithm via dual de-
composition, which can be implemented in VLC-enabled
UAV networks.

Simulation results show that the proposed approach can
achieve up to 68.9% reduction in terms of transmit power
compared to a conventional optimal UAV deployment without
considering illumination distribution. Our results also show
that UAVs should hover over areas with strong illumination.
To the best of our knowledge, this is the first work that studies
the use of the predictions of the illumination distribution to
provide a power-efficient deployment of VLC-enabled UAVs.

The rest of this paper is organized as follows. The system

model and the problem formulation are described in Section
II. The proposed deep learning model to predict the future
illumination distribution is proposed in Section III. The pro-
posed iterative UAV deployment, user association, and power
efficiency algorithm is presented in Section IV. In Section V,
the numerical results are discussed. Finally, conclusions are
drawn in Section VI

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless network composed of a set D of D
VLC-enabled UAVs that serve a set U of U ground users
distributed over a geographical area A. The UAVs provide
downlink transmission and illumination simultaneously, as
shown in Fig. 1. Hereinafter, we use aerial cell to refer to
the service area of each UAV. Note that each UAV does not
service ground users until it moves to the optimal location.
Thus, during wireless transmission, the UAVs can be seen as
static aerial base stations.

A. Transmission Model

Given a UAV i € D located at (z; ¢,y ., H) at time slot
t and a ground user j € U located at (vj,w;) € A, the
probabilistic line-of-sight (LoS) and non-line-of-sight (NLoS)



channel model is used to model the VLC link between UAV %
and ground user j [6]. For simplicity, we do not consider the
diffusion of visible light in outdoor environments. Therefore,
the LoS and NLoS channel gain of the VLC link between
UAV i and user j can be given by [31]:

(m+1)p
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where p is the detector area and d;; =

\/(vj — )%+ (w; — y;)? + H? is the distance between
UAV i and ground user j. m = —In2/In(cos ®y/5) is the
Lambert order with ®;,, being the transmitter semiangle (at
half power); ¥ and ¢ represent the angle of incidence and
irradiance, respectively. As such, cos¢ = cosy = fj . Let
W, be the receiver field of vision (FOV) semi-angle. The gain
of the optical concentrator g(1)) is defined as:

2
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where n. represents a refractive index. According to [6],
the probability of the LoS link will be: B (hk°S) =
(1+ X exp(=Y[r; — X]))~!, where X and Y are environ-
mental parameters and 7; = sin~'(H/d;;) is the elevation
angle. Clearly, the average channel gain from UAV i to user
J can be given by:

hj((h',t) =B (h?oS) % h?oS +B (h;}TLoS) % h?ILOS, (4)

where qir = (2i¢,9:¢) and B (hj1°%) =1 — B (h}°5).

Let u;;; be the association for UAV 4 and user j at time ¢,
ie., u;;; = 1 indicates that user j is associated with UAV ¢
at time ¢; otherwise, we have u;; ¢ = 0. Assuming that each
user is associated with only one UAV, we have:

> e =1,Yj el (5)
i€D
For static user j located at (v;,w;) associated with UAV 4,
the channel capacity at time ¢ can be given by:
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where ¢ is the illumination target, P;; ¢ is the transmit power
of UAV ¢ serving user j at time ¢, and n,, represents the
standard deviation of the additive white Gaussian noise. In (6),
I(vj,w;) is the ambient illumination at (v;,w;), which also
indicates the interference over the VLC link between the UAV
and the user j. To obtain the illumination for each location,
we define the illumination distribution of the service area as
I; that will be specified in Section III.

Due to the limited energy of UAVs, their deployment must
be optimized to minimize the transmit power while satisfying
the data rate and illumination requirements of users. Since the
area of aerial cells is small and ground users served by UAVs
are static, as done in [32], we do not consider the mobility
energy consumption of the UAVs.

B. Problem Formulation

To formulate the deployment problem, we must first de-
termine the minimum transmit power that each UAV i uses
to meet the data rate and illumination requirements of its
associated users. Then, substituting (4) into (6), the power
required for UAV 1 to satisfy the data rate requirement R; of
user 5 will be:

wije(w + T (v, w5)) (/2 (2275 = 1)
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From (7) we can see that, the power required to satisfy the
data rate requirement of user j depends on both the position
of associated UAV i and the LoS probability B (h}°%).
This makes (7) difficult to handle for the purpose of UAV
deployment optimization. As done in [33], we use a homo-
geneous approximation for the LoS probability, i.e. by letting
B (h5°S) ~ B,Vj € U. B is set as the average value based
on a certain UAV deployment. Given B, the power required
for UAV 1 to satisfy the data rate constraint of user j is:

wije(nw + T (v, wy)) /28 (2285 — 1)
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A UAV can successfully satisfy all the users’ requirements
once the user that has the maximum power requirement is
satisfied. Therefore, the minimum transmit power of UAV ¢

satisfying the data rate requirements of its associated users is
given by:

P = )

®)

ij,t =

Pir)“tin = maX{Pij,tLVj clu. (9)

Given this system model, our goal is to find an effective
deployment of UAVs that meets the data rate and illumination
requirements of each user while minimizing the transmit power
of the UAVs. This problem involves predicting the illumination
and adjusting the user association, the locations as well as the
transmit powers of UAVs and is given by:
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P,y > Py Vi € D, (10b)
Zum‘,t =LVjelu, (10c)
1€D
uje € {0,1}, Vi € D,Vj €U, (10d)
IGit — @nil|” = duin, Vi, k € Dyi # k, (10¢)

where P;; is the transmit power of UAV ¢ at time ¢,
Wit = Wi, Uint, - - -, Wiu,e] 18 the user association vector of
UAV i, n, denotes the illumination demand, £P; jh;(x;, ;)
is the illumination of UAV ¢ at time ¢, and d,,;, is the
minimum distance between any two UAVs. (10a) indicates
that each UAV ¢ needs to provide illumination to meet the
illumination threshold of its associated users. (10b) indicates
that the transmit power of UAV i should satisfy the data rate
requirements of its associated users from (9). (10c) and (10d)
imply that each user can only associate with one UAV at
each time slot. (10e) guarantee the service area of each UAV
does not overlap with the service areas of other UAVs, and,
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Fig. 2: Overall architecture of the proposed learning model.

hence, we ignore the interference caused by other UAVs. Note
that ambient illumination causes interference over the VLC
link while reducing the illuminance requirements of users.
The distribution of ambient illumination at night that consists
of vehicle, street, and building lights varies in real time.
For example, during nights, the illumination of factories will
decrease while the illumination of residential or commercial
areas will increase. In addition, the illumination of each
road changes as the vehicle density changes. Therefore, it is
necessary to predict the illumination distribution of the target
area to deploy the UAVs at the beginning of each time interval.
We next introduce a machine learning algorithm to predict the
illumination distribution of the service area over ten minutes
and, then, deploy the UAVs based on the solution of (10).

III. MACHINE LEARNING FOR ILLUMINATION PREDICTION

Since predicting the illumination distribution requires both
spatial and temporal sequence information, we propose a deep
learning approach that integrates GRUs with CNNs. The pro-
posed approach enables the UAVs to analyze the relationship
among historical illumination distributions and to predict the
future illumination distribution. We first apply an CNN to
extract spatial features of the illumination distribution at each
time slot ¢. Then, the time-varying spatial features are fed to
GRUs for predicting the features of illumination distribution at
time ¢+ 1 based on the learned temporal dependencies. Finally,
a deconvolution network (DeCNN) is used to transform the
multidimensional features, which are predicted by GRUs, to
the illumination distribution. The architecture of the integrated
GRU and CNN predictive model is shown in Fig. 2. Next, we
introduce the three components of our model: a) CNNs, b)
GRUs, and c¢) DeCNNs.

A. CNN for Encoding Illumination Distribution

Since illumination is caused by human activities such as
business and industrial operation, the illumination at a given
position always has very strong spatial correlations with the
illumination distribution of nearby regions. Therefore, we use
CNN s to capture spatial correlations between the illumination
of a given location and the illumination of its nearby regions,
and then build the feature representations that preserve the
changes in local illumination.

Given an illumination distribution I; at time ¢, a CNN en-
coder is used to extract the feature vector x,, which represents

the spatial features extracted from I,. The proposed CNN
algorithm consists of L convolutional layers, L. max-pooling
layers, and a flatten layer. In particular, each convolutional
layer is followed by a max-pooling layer and the last layer of
the CNN is a flatten layer. Next, we introduce each layer of
the proposed CNN.

o Convolutional layer: In a CNN, a convolutional layer
is used to extract spatial features which are useful in
the next illumination distribution predicting stage. Math-
ematically, the input of each convolutional layer [ is
H!™"™ where H ™™ 1 =1,.. L is the feature map
m in convolutional layer [ — 1 and the input H? 1oof
convolutional layer 1 is an illumination distribution at
time ¢ (e.i., I; = Ht0 ’1). The output of each convolutional
layer [ is given by:

Kt
= () Y e Wl

k=1

+ber), (D)
where f(-) = max(0,-) is rectifier activation function,
K!~! is the number of feature maps in convolutional
layer | — 1, ® denotes the convolution operation, and
WhT e RS*S and blCT are convolution kernels and bias
of feature map m in convolutional layer [, respectively,
with S being a constant that controls the spatial granu-
larity. Note that, for each feature map Hj”" e RMxA
the size of the feature map )\; satisfies \; = \j_1 —S+1
and H® € RYx%o,

e Max-pooling layer: The input of each max-pooling layer
[ is the feature map Hf’m. Max-pooling layers compress
the input feature map, which allows a CNN encoder to
extract robust spatial features while reducing the compu-
tation complexity. The position of max-pooled features in
feature maps are recorded in switch variables (switches),
which will be used to decode the predicted features of
the future illumination distribution in the DeCNN.

e Flatten layer: A flatten layer is used at the end of the
CNN encoder, whose input is the combination of feature
maps extracted by max-pooling layer L. The flatten layer
generate a spatial feature vector ; € RY, where N =
A LQK 1, is the number of the features extracted by the
CNN encoder.

B. Illumination Distribution Prediction

Next, we introduce the use of GRUs [34] for the predic-
tion of the illumination distribution. GRUs are extensions of
conventional recurrent neural networks (RNNs) [20]. GRUs
can effectively solve the gradient vanishing and the gradient
exploding problem in long-term memory RNNs. Due to inter-
connected neurons at hidden layers and their internal gating
mechanisms, GRUs can model the temporal characteristics of
the long-term illumination distribution. In addition, GRUs can
dynamically update the model based on the current illumina-
tion distribution due to the variable-length recurrent structure,
hence, GRUs enable the UAVs to predict future illumination
distribution.

A GRU-based prediction algorithm consists of three com-
ponents: a) input, b) output, and ¢) GRU model. The key
components of our GRU-based prediction approach are:



o Input:

The input of the GRU is the output of
the CNN encoder which is represented as X =
(mlamQa"' y Lty e amT)-

Output: The output of the GRU-based prediction algo-
rithm is a vector 71, that represents the spatial features
of illumination distribution at time slot 7"+ 1.

GRU model: A GRU model is used to approximate the
function between the input X and output xr;, thus
building a relationship between historical illumination
distribution and future illumination distribution. A GRU
model is essentially a dynamic neural network that con-
sists of an input layer, a hidden layer, and an output
layer. The hidden states h; of the units of the in hidden
layer at time ¢ are used to store information related to
the illumination distribution from time slot 1 to ¢. For
each time ¢, the hidden states h; of the GRU are updated
based on the input x; and h;_;. Next, we introduce how
to update the hidden state h] of hidden unit j given a
new illumination distribution ;.

At each time slot ¢, the hidden state hj is determined by
two gates reset gate ] and update gate 2] . First, the reset
gate 7] is used to determine the historical illumination
distribution information retained in the candidate hidden
state ht, which can be given by:

rl = a<[WTa:t]j + [Urhii];), a2

where o() = 5 + 7 is the logistic sigmoid function
and []; is element j of a vector. W, € RV*Pr and
U, € RP»*DPr represent the weight matrices of reset
gate, where N is the length of the input x; and Dy, is
the number of the units in hidden layer. Based on the
value of the reset gate 77, the candidate hidden state h’
that is used to combine the input illumination distribution
x; with the previous memory h;_; is given by:

iLg = tanh ([Wﬁwtb + [Ufl("'t O] htfl)]j) s

where r, € RP" is a reset gate vector at time ¢ and © is
an element-wise multiplication. For example, given two
vectors p = (a,b) and q = (¢,d), p ® g = (ac, bd).
W; € RV*Pn and U, € RPr*Pr represent the hidden
state weight matrices. .

Similarly, the update gate 2] is used to decide the size
of the information stored in the candidate hidden state to
update the hidden state h?, which can be given by:

# =0 ((Waay]j + [Ushi—1];), (14)

where W, € RV*Pr and U, € RP»*Pr represent the
weight matrices of the update gate. The actual hidden
state h] of hidden unit j is updated by:

hl =2lhi |+ (1 —z)hl.

13)

15)

The proposed GRU model iteratively updates the hid-
den states to store the input X until the hidden state of
the current time 7" is computed. The output layer of the
GRU model will predict the illumination distribution at
time 7"+ 1 based on the hidden state h:

741 = Wohr, (16)

where W, € RP»*N is the output weight matrix. Based
on (16), we get output x7,; from the hidden state hp
that stores the information of input X.

C. Illumination Distribution Deconvolution Network

We now study the decoding of the predicted feature vector
x4 into the illumination distribution Iry;. Since GRU-
based predictions @7, only contain the spatial features of
illumination distribution Ir; rather than a complete illumi-
nation distribution, we use a DeCNN to decode the predicted
features. The proposed DeCNN decoder is a mirrored version
of the CNN encoder introduced before, which consists of
L unpooling layers and L deconvolutional layers. Next we
introduce each layer of the proposed DeCNN.

e Unpooling layer: The input of the first unpooling layer
is 41 predicted by GRUs and the input of unpooling
layer [ (I > 1) is the feature maps output from the
deconvolutional layer [ — 1. The unpooling layers are used
to reconstruct the illumination distribution of service area
to the original size. Therefore, the output of an unpooling
layer is an enlarged, yet sparse feature map.

o Deconvolutional layer: The input of each deconvolutional
layer [ is the enlarged feature maps output from the
unpooling layer [ — 1. The deconvolutional layers effec-
tively reconstruct the detailed structure of illumination
distribution based on the learned weights, which is:

Kt
l,m -1, k l,m l,m
HT+1 f( Z HT+1 @Wyr, +bir), (A7)
k=1

where HlT 1118 reconstructed feature map m in decon-
volutional layer [, K, =1 is the number of feature maps
in deconvolutional layer [ -1, and Wdl 741 and bfi’f; 41
are convolution kernels and bias of feature map m in
deconvolutional layer [, respectively. The output of the
last deconvolutional layer is H. L 11 € RA0xX0equivalent
to fT+1, which represents the prediction of illumination
distribution at time 7'+ 1.

Finally, the trained integrated GRU and CNN predictive
model can output the illumination distribution prediction I T41
based on the input historical illumination distributions. Once
I~T+1 is obtained, given a user located at (vj,w;) where
v; € {0,1,---, X} and w; € {0,1,---, Ao}, the ambient
illumination Iy (vj,w;) can be obtained. Then, the ambient
illumination I744(v;,w;) of each user j can be substituted
into the optimization problem (10).

D. Integrated GRU and CNN Predictive Model Training

The proposed integrated GRU and CNN predictive
model build the relationship between output I~T+1 and
the input time series historical illumination distribution
I, I, --- I, --- , IT using the weight parameters. To build
this relationship, a batch gradient descent approach is used
to train the weight matrices which are initially generated
randomly via a uniform distribution. The update rule of the
gradient descent approach is given by:

W =W —aVE(W,), UH'=U! —

—aVE(U,,), (18)



Algorithm 1 Integrated GRU and CNN Predictive Model for
[lumination Distribution Prediction.

1: Input: The time series illumination distribution of service area,
n,L, - I, - Ir.

2: Initialize: W, 1, - -
and W, are initially generated randomly via a uniform
distribution. The number of iterations e.

3: fori=1—edo

4:  for each time t do

5: Input I; and encode I; into a feature vector x; based on
(11).

6: Predict the spatial feature vector «+41 based on (16).

7: Decode the predicted a1 into the illumination distribution
Iitq.

8:  end for

9:  Calculate the loss E based on (19).

10:  Update the weight matrices based on (18).
11: end for

12: Output: Prediction I74;.

where « is the learning rate, n € {c d,r, 2, ﬁ,o}, and m €

r,z,f}}. VE(W,) = 22 and VE(U,,) = 22 are the
gradients of the loss function E which is defined as:
(J 0 _ 2
P ZZ||IT+1 (@,9) = Irpa(z, )|l . (19)
2)\0 rz=1y=1

I, and I~t"+1 represent the actual illumination and the pre-
dicted illumination at location n at time ¢+ 1, respectively. The
specific process of using the proposed deep learning model
to predict the illumination distribution for each UAV ¢ is
summarized in Algorithm 1.

IV. OPTIMIZATION OF UAV DEPLOYMENT, USER
ASSOCIATION, AND POWER EFFICIENCY

Once the illumination distribution is predicted, the UAVs
can determine their optimal deployment at the beginning
of each time interval by solving the optimization problem
defined in (10). We assume that the positions of UAVs remain
unchanged during each prediction period. As analyzed in
Section II, a UAV only needs to consider the users with
the maximum power requirement since, by doing so, the
requirements of all other users will be automatically satisfied.
Therefore, substituting (4), (8), and (9) into (10), we have:

i P11, 20
Qi,T+1,qu,171“I}rl>Pi,T+1 Z T+ 20)
1€D
s.t. P, 1 ZIMGd P ugpiq, Vie D,V €U,
(20a)
Pi,T+1 >led” uij7T+1,VZ'€’D,Vj ceu,
(20b)
Y uijra=1Yj €, (200)
i€D
Ui, T+1 € {O, 1}7 Vie D,VjelU, (20d)
I girs1 — Qs l|” = diin, Vi, k€D, i £k,
(20e)
where [ W]W, M; = n,—Ipq(vj, w;),

and Nj = (nw +IT+1<’UJ‘,UJJ‘)> 2%(221?‘3' - 1). Note that

7Wc,T7 Wd,T+l7 W?"y Ur; W27 U27 Wﬁa Uﬂ’

problem (20) is nonconvex. We present an iterative algorithm
for solving the nonconvex problem. In particular, we first
optimize the UAV deployment and power allocation with fixed
user association. Then, given the UAV deployment, we find the
optimal user association.

A. UAV Deployment and Power Efficiency with Fixed User
Association

Since constraints (20c) and (20d) are only determined
by user association w4, the UAV deployment and power
efficiency problem (20) with fixed user association w4 iS
expressed as:

Py, 21
q;, TJrrrll}nL T+IZ Tl ( )
st. Popgr > IMd] 0 Vi€ D,Vj € U, (21a)
Piry1 > ledj’;” Vi € D,VYj € U;, (21b)

1gi 71— i1 ]|” = dmin, Vi, k€D, i £k, (21c)

where U; = {j € U|u;r+1 = 1}. In constraint (21c),

since ||q; 7+1 — qr,7+1]|” is a convex function with respect

to g; 7+1 and qi, 741, we have the following inequality by

applying the first-order Taylor expansion at the given point
T .

q; 741 and g 74

2
g, 7+1— k741l 22(QETT)+1 q,(f)ﬂl) (@i;r+1—Qr,741)
Vi, keD,ik,

‘ qz(r%ﬂ
(22)
where the superscript (1) is the value of the variable at iteration
r. Here, we assume that:

g

dx T+1‘

A qlS:T%“+1) (@i, 7+1—Qr,7+1)

") g™ H2

Qi 741, Ak, T+1) 22(

‘ (23)
Then, the UAV deployment optimization subproblem can be
expressed as:

9;7+1 9,741

min P; , 24
qi, 7+1,P; T+1Z T+ ( )
st Pypy e > a;d},Vie DY €U, (24a)

9N 415 Qrri1) = duin, Vi, k€D i Ak, (24b)

where a; = (max {IM;, IN;})7+5.

Given the user association, problem (24) is a convex prob-
lem due to its convex objective functions and constraints,
which can be optimally solved by using the dual method [35].
The Lagrange function of problem (24) will be:

L(GiT+1, Piri1, A% NP)

—ZRT+1 +Z Z)\ ( i 1T+1’"+")

i€D €D jeU;

+Z Z)\ﬁ (dmin - g(r)(Qi,T—Ha Qk,T+1)> ;

i€DKED, kA

(25)

where A% = {A% }iep jeu, and A = {)\fj}iep,jew are the
dual variable associated with constraint (24a) and constraint
(24b), respectively.



The optimal first-order conditions of (24) will be:

oL
- Z A% PTT-‘rl m+3 :0, (26)
] By
aPz,TJrl m+ 3 =
e ~2 2 Nirn—w) =3 2 =0, oo
e JEeU; keD, kA
oL _QZ)\a (i . ’)_Z)‘ﬂ2 =g
ayi 41 - . i3 @i \Yi, T+1 —Wj li]’ y\" =0, 28)
’ jEU; keD ik
where qgi}ﬂ q](;%H (2, y ™).
Solving (26) to (28) yields
m43
m+41
Pirer =0 3 DA , (29)
JjeEU;
T :Zjéu )‘%aj(xi T4+1 — vj)
i, T+1 Z )\ﬂ x(r) )
keD Jti
(30)
n :Zjeui A a;(Yire1 — wy)
@, T+1 Z /\fy(r)
keDht

Given z;, y;, and P; r4q, the value of )\?j and )\fj can
be determined by the sub-gradient method [36]. The updating
procedure is:

_2 \1*t
Aij = [)‘%—7 (ajdzgj - Pi,T+1m+3)]

XB [/\’B (dmin — 9" qi 711, %,Tﬂ)ﬂ " ;. (32

where v is a dynamic step size and [a]" = max(a,0). By
solving (21), we can obtain the collaborative deployment of
multiple UAVs.

With regards to convergence, we have the following theo-
rem:

Theorem 1: The proposed optimization algorithm used to
solve UAV deployment problem (21) always converges.

Proof: See Appendix A. O

To find the lower bound of the minimum transmit power,
inf P;‘%“H, we state the following result:

Proposition 1: If the illumination at the location of user j
satisfies the following conditions:

€29

: TGy e e 2y (22 1),
I (v, wi)= . [
0, Ny <Ny ?(22 /j_l)a

(33)
then the transmit power of each UAV ¢ achieves the lower
bound, which is given by:

% 2m 2R, m-+3
=1max (2 17 (v, wy) ) [ (225 =1) |35 i -
(34)
Proof: See Appendix B. O

Proposition 1 captures the relationship between the illumi-
nation distribution of service area and the minimum transmit

power of each UAV. From Proposition 1, we can see that,
given the illuminance requirement 7, and data rate constraint
R; of each user j, the minimum transmit power of each UAV
depends on the illuminance at (v;,w;). Based on Proposition
1, we can compute the optimal illuminance that allows the
transmit power of each UAV 1 to achieve the lower bound.

B. User Association and Power Efficiency with Fixed UAV
Deployment

The original optimal problem in (20) is combinatorial due
to the binary variable wu;;741. Due to the complexity of
solving combinatorial problems, the computation is essentially
impossible even for a modest-sized wireless network. To over-
come this, we temporarily adopt the fractional user association
relaxation, where association variable u;; 741 can take on any
real value in [0, 1]. We will later show that the optimal solution
to wu;; 741 must be either 1 or 0 even though the feasible
region of u;; 741 is relaxed to be continuous. Therefore, the
relaxation does not cause any loss of optimality to the final
solution of problem (20). Given the optimal UAV deployment
in (21), the relaxed problem (20) can be formulated as:

Py, 35
Tgllil T+IZ i, T+1 (35)
s.t. P,;7T+1élajd;?+3u,;j7T+1,Vi€D,VjEU, (352)
> uijra =1,V €U, (35b)

i€D
Wij, T+1 >0,Vi € D,V] EU. (35¢)

To obtain the optimal solution of problem (35), we can state
the following theorem:

Theorem 2: For problem (35), the optimal user associa-
tion w;; 741 and transmit power P; 71 can be respectively
expressed as:

e . 3
. 1, ifi=argmingep uk.de;Jr (36)
i, T+1 0, otherwise,
* _ m—+3, *x
Pirg = Ijngj(lajdij Ui T+1 (37)

where 11;; is the Lagrange multiplier associated with constraint
(35a), and Y jeu Mij < 1. If there are multiple minimal points
in arg mingcp /,ijd%*g, we will choose any one of them.

Proof: See Appendix C. a

From Theorem 2, we can see that, even though the feasible
region of w;; 741 is relaxed to be continuous, the optimal
solution to problem (35) can be effectively solved via its dual
problem, while satisfying the discrete constraints w;; 741 €
{0,1}, Vi € D,Vj € U.

The values of 1;; can be determined by the gradient method
[36]. The updating procedure is given by:

Pi,T+1)] * )

where § > 0 is a dynamically chosen step-size sequence.
By iteratively optimizing primal variable and dual variable,
the optimal user association and transmit power are obtained.
Notice that the optimal w;j 741 is either O or 1 according to
(36).

Mij = [uij + 5(lajd,Z-L+3’U,ij7T+1 — (38)



Algorithm 2 Proposed Algorithm for Deploying UAVs.

1: Input: A time series dataset I, the set of users’ locations, UAV
altitude H, and the data rate requirement R;.
2: Initialize: The user association w; 741 and dual variables A“,
AP and p.
3: Input I into Algorithm 1 to predict the illumination distribution
IT+1.
: repeat
Given w; 7+1, solve (21) using (29)-(30).
Update dual variables A® and A® using (31) and (32).
Given (zi, 741, Yyi,r+1), solve (35) using (36) and (37).
Update dual variable g using (38).
: until the objective value (10) converges.
: Output: P = > Piry1.
i€D

SOYRXIDNE

C. Complexity and Overhead of the Proposed Algorithms

The proposed algorithm used to solve problem in (10) is
summarized in Algorithm 2, which includes predicting illu-
mination distribution in service area and iteratively optimizing
UAV deployment, user association, and energy efficiency. The
complexity of the proposed algorithm lies in training an
integrated GRU and CNN predictive model and iteratively
updating UAV location (z;, y;) and user association wp 1. The
complexity for training an integrated GRU and CNN predictive
model is detailed in the following lemmas:

Lemma 1: For the CNN-based illumination distribution
encoder and DeCNN-based decoder, the complexity are both

L
O M S?KLIKL).

[l’;éof' See Appendix D. O

From Lemma 1, we can see that the complexity of CNN
encoder and DeCNN decoder depends on the size and number
of feature maps in each layer.

Lemma 2: For the GRU-based illumination distribution
predictor, the complexity is given as O (T Dy (N + Dy)).

Proof: See Appendix E. O

From Lemma 2, we can see that the complexity of GRU
predictor depends on the length of input time series and the
size of weight matrices. Since the integrated GRU and CNN
predictive model is trained by the BS which has enough
computational ability for training, the overhead of training the
predictive model can be ignored. Meanwhile, once the training
process is completed, the trained integrated GRU and CNN
model can used to predict the illumination distribution in a
long term period.

Next, we investigate the complexity of solving the opti-
mization problem, which lies in solving two subproblems:
UAV deployment problem and user association problem. For
the UAV deployment problem, the overhead of calculating
(z4,y;) of each UAV 1 in (30) is O (LlDzU), where L, is the
average number of iterations until (21) convergence. For the
user association problem, the overhead of obtaining w; 741
from (36) is O(LyDU), where Lo is the average iteration
number until (35) converges. The two subproblems are solved
by dual method. According to [36], a sharp estimate of L
and each L, can be expressed as O ﬁ), where € is the
accuracy of the dual method. As a result, the complexity to
solve the UAV deployment problem and the user association

TABLE I: System Parameters

Parameters Value Parameters Value

P 90 T, 90

p 0.5 m? 3 0.8 Amp./W

ne L5 Ny 1x10° 10

X 10 Y 0.6

N 5x 10~ % S 3

N 256 Dy, 64

D, 16 L 4

5 0.01 ) 0.01

e 107 € 107

2

problem can be further simplified as O D—\/U> and O (?}F] 2,
respectively. Therefore, the UAVs only need to implement the

optimization algorithm with the linear complexity and thus
reducing energy consumption of UAVs.

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, an 80 m x 80 m square area is
considered with U = 40 uniformly distributed users and
D = 4 UAVs deployed at a height of 20 m. The downlink
rate requirement I2; of each user j is generated randomly and
uniformly over [0.5,1.5] Mbps. Other parameters are listed
in Table I. Furthermore, the homogeneous regularized LoS
probability B in (8) is set as the value corresponding to
the elevation angle of 90°. The time series illumination data
used to train integrated GRU and CNN predictive model is a
dataset of average radiance composite nighttime remote sens-
ing images, obtained from the Earth observations group (EOG)
at NOAA/NCEI [37]. Since there is no public illumination
dataset collected by UAVs, we use the satellite remote sensing
dataset to verify the performance of our proposed prediction
and optimization algorithm.

Fig. 3 shows how the predicted illumination distributions
change as the input time series change. We randomly select
two areas for the predictions of illumination distribution. In
Fig. 3, we can see that the prediction at the first time step is
initialized to zero. Fig. 3 also shows that, as time elapses, the
accuracy of illumination distribution prediction generated by
the model increases. This is because the proposed model can
build a relationship between the prediction and the historical
illumination distribution. As the number of input historical
illumination distribution increases, the proposed model can
extract obtain more time-varying information about the illu-
mination distribution.

In Fig. 4, we show how the integrated GRU and CNN
model predicts the illumination distribution at next time slot.
Here, we combine the representative features in each layer
for effective visualization. Fig. 4(a) is an actual illumination
distribution at time slot ¢ and it is also an input of the pro-
posed predictive model. Figs. 4(b) to 4(j) show the extracted
feature maps in the CNN encoding components, which are
extracted from 256 x 256 convolutional layer, 128 x 128 max-
pooling layer, 128 x 128 convolutional layer, 64 x 64 max-
pooling layer, 64 x 64 convolutional layer, 32 x 32 max-
pooling layer, 32 x 32 convolutional layer, 16 x 16 max-
pooling layer, and 16 x 16 flatten layer, respectively. Fig. 4(k)
visualizes the predicted features of illumination distribution
at time slot ¢ + 1, x4y, obtained by GRUs. Based on x4, 1,
Figs. 4(1) to 4(s) are the output maps in the DeCNN decoding
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Fig. 4: Visualization of extracted features in the proposed predictive model.

components, which are reconstructed from 32 x 32 unpooling
layer, 32 x 32 deconvolutional layer, 64 x 64 unpooling layer,
64 x 64 deconvolutional layer, 128 x 128 unpooling layer,
128 x 128 deconvolutional layer, 256 x 256 unpooling layer,
and 256 x 256 deconvolutional layer, respectively. Fig. 4(t)
shows the predicted illumination distribution at time slot £+ 1
output from the integrated GRU and CNN model. From
Figs. 4(b) to 4(j) we can see that the CNN encoder captures
the boundary information and shading information of the
illumination distribution. This is because the features that are
closely related to the change of illumination distribution are

amplified through forward-propagation while noisy features
from background are suppressed. From Figs. 4(1) to 4(s) we
can see that the coarse-to-fine structures of the illumination
distribution are reconstructed after the predicted features prop-
agate through DeCNN decoder layers. This is due to the fact
that, unpooling layers trace predicted features back to the
original locations in service area and deconvolutional layers
effectively reconstruct the detailed structure of illumination
distribution based on the learned weights.

Fig. 5 shows how the prediction accuracy of the illumination
distribution on two test service areas changes as the size
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of input time series ¢ varies. In Fig. 5, for comparison, we
include the results of an integrated GMM and GRU model
[1] and an autoencoder in [38] trained on single time interval
illumination distribution. 210 area samples are used to train
the proposed model, with each area containing 78 illumination
distributions in time series. We randomly choose 5% of each
illumination series for validation and testing, and discard the
chosen continuous segments from the training set. From Fig. 5,
we can see that, as the length of input illumination series t
increases, the mean-square error (MSE) of the proposed model
decreases, while the variation of the illumination distribution
over each time slot is random. This is due to the fact that, as the
input series ¢ increases, the proposed model can accumulate
information on the change of illumination distribution. The av-
erage MSE of training data prediction and test data prediction
are 6.01x10~* and 6.03x 1074, respectively. Fig. 5 also shows
that the proposed model can yield up to 46.5% and 53.6%
reduction in terms of MSE compared with integrated Gaussian
mixture model (GMM) and GRU model and conventional
autoencoder, respectively. These gains stem from the fact that,
the proposed model can simultaneously extract the spatial and
temporal features of historical illumination distributions so as
to accurately predict future illumination distributions. In Fig. 5,
the MSE for conventional autoencoder being a constant due
to the fact that the autoencoder can only analyze the input
data over two consecutive time slots. Therefore, even if the
time series of input illumination distribution becomes longer,
the autoencoder still generates the illumination distribution
prediction based on the single input at last time slot. Fig. 5
also shows that, as the length of input illumination series
t increases, the gap between the minimum transmit power
resulting from the proposed algorithm and the minimum
transmit power resulting from the optimization algorithm using
the actual illumination distribution decreases. This is because,
as the input series ¢ increases, the accuracy of illumination
distribution prediction of the proposed algorithm improves and
the optimal UAV deployment and user association is related to
the illumination distribution. Hence, the accurate illumination
distribution predictions can effectively reduce the required
transmit power of UAVs.
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Fig. 6: The required sum power of UAVs as the number of
users varies.

Fig. 6 shows how the transmit power used to meet the users’
data rate and illumination requirements changes as the number
of users varies. In Fig. 6, we can see that the proposed algo-
rithm can reduce transmit power by up to 37.4% on average
compared to a conventional optimal UAV deployment which
is the center of the service area. In addition, the proposed
algorithm can yield up to 31.3% and 15.5% reductions in
terms of the total transmit power compared to only optimizing
the user association optimization and only optimizing the
UAV deployment, respectively. These reductions are due to
the fact that the power required by the users is related to
the illumination of the service area and the deployment of
the associated UAV. The proposed algorithm can iteratively
optimize user association and UAV deployments, which will
reduce the total transmit power of all the UAVs. From Fig. 6
we can also see that the proposed algorithm can reduce up
to 9.3% transmit power compared to an algorithm that uses
the latest illumination distribution. Moreover, the proposed
algorithm is closer to the UAV deployment optimization using
actual illumination distribution and the gap between the two
schemes is less than 2.8%. This is because the proposed
prediction algorithm can accurately predict the illumination
distribution so as to optimize UAV deployment. In Fig. 6,
we can also see that the gap between the proposed iterative
algorithm and the exhaustive search algorithm is less than
1.5%, which indicates that the proposed iterative algorithm
approaches the near globally optimal solution. Fig. 6 also
shows that, as the number of users increases, the performance
gain of the proposed deployment becomes less significant. This
is because when enough users are considered, the users will
be uniformly distributed in the square and the optimal position
of the UAV will be fixed.

Fig. 7 shows how the transmit power used to meet the
users’ data rate and illumination requirements changes as the
height of UAVs varies. In Fig. 7, we can see that, as the
height of the UAVs increases, the total transmit power of
all algorithms increases since the deployment of UAVs at
a high altitude increases the distance from the user to the
associated UAV. In Fig. 7, we can also see that the proposed
algorithm achieves up to 68.9% gain in terms of transmit
power reduction compared to a conventional optimal UAV



—_
o]
o

—4— Center deployment with fixed user association ‘
—+—Only optimizing user association
Only optimizing UAV deployment
——Using latest illumination
—*— Proposed algorithm
Exhaustive search algorithm
-v Using actual illumination

—_
2]
(=]

—
>
o

—
N
o

@
o
T

Total transmit power of all UAVs (W)
» >
o o

5 1‘0 15 26 2‘5 36 35 40
Height of UAVs (m)
Fig. 7: The required sum power of UAVs as the height of

UAVs varies.

&0 X Users

Locations of UAVs

70— User association

60

0 20 40 60 80
X axis (m)
Fig. 8: Optimal deployment of UAVs using the proposed
algorithm.

deployment without considering the illumination distribution
and user association. Fig. 7 also shows that the proposed
algorithm can yield up to 29.2% and 43.0% reductions in terms
of the total transmit power compared to only optimizing the
user association optimization and only optimizing the UAV
deployment, respectively. This implies that, as the height of
the UAVs increases, the transmit power gain achieved by
optimizing the user association becomes more significant than
the gain achieved by optimizing the UAV deployment. This
is because, when the UAVs are deployed at a very high
altitude, the proposed algorithm prefers to associate all the
users with as few UAVs as possible, while other UAVs are
idle. Therefore, the optimal user association obtained by the
proposed algorithm will significantly limit the increase in total
transmit power of all the UAVs cause by the long distance
between UAVs and users.

In Fig. 8, we show an example of how the proposed algo-
rithm can optimize the deployment of UAVs. In the example,
four UAVs are deployed at a height of 20 m to serve a 80 m
x 80 m square area. Fig. 8 shows the optimal location of
each UAV and the optimal user association which result in

the minimum total transmit power. From Fig. 8, we can see
that users in the area with strong illumination are served by
a single UAV and scattered users are served by other UAVs.
This is because, the minimum transmit power of each UAV
depends on the maximum requirement of its associated users,
which usually occurs at the bright area. Once the users located
in the bright area are simultaneously satisfied by one UAYV, the
minimum transmit power of other UAVs reduce significantly,
thus achieving a minimum total transmit power.

VI. CONCLUSION

In this paper, we have developed a novel UAV deployment
framework for dynamically optimizing the locations and user
association of UAVs in a VLC-enabled UAV based network.
We have formulated an optimization problem that seeks to
minimize the transmit power while meeting the illumination
and communication requirements of each user. To solve this
problem, we have developed an integrated GRU and CNN
prediction algorithm, which can model the long-term historical
illumination distribution and predict the future illumination
distribution. We have then transformed the nonconvex original
problem into convex reformulation through physical relaxation
of the user association. Therefore, the optimal solution of the
optimization problem is obtained by an iterative algorithm.
Simulation results have shown that the proposed approach
yields significant power reduction compared to conventional
approaches.

APPENDIX
A. Proof of Theorem 1

To prove the convergence of the algorithm used to solve
problem (21), we first need to prove that the solution of
problem (24) at each iteration is optimal. At each iteration,
problem (24) is convex and it is solved by the dual method
using (25)-(32). According to [36], the dual method can find
an optimal solution for problem (24) at each iteration. To prove
that the proposed algorithm used to solve the entire problem
(21) converges, we assume that:

f(@irs1,qer41) = || Qa1 — Qk,T+1||2~ (39

Then, (21c) and (24b) at iteration r can be represented as
(@41, Qe r41) = dmin and g7 (@i 41, @or41) = dinin,
respectively. Since (24b) is the first-order Taylor expansion of
(21c), we have:

9N @iri1s Qi) = (@G, Qo) YT 01,Yq0 711,
(40)

r r—1)% r—1)x* (r—1)x r—1)*
9" (qz( T+i ’ql(c T+)1 ) =f (qz T+1 7qli T+)1 ) (41)

where ql( T4 1) and q,grgi)l* is the optimal solution of problem

(24) at 1terat10n r — 1. Given (38) and (39), we can conclude
that, every qfrf ﬂ* and q,(:;i)l* satisfy all conditions of the

original problem (21). Let qz(TT)_s_1 = qZ(TT_a* and q](g:%"+1 =

q,(:Ti)l at each iteration r. Substituting g7 41 and q\"), 1
into (21), we can calculate the total transmit power, which

is represented by Z . T 41- Since qZ(TT) 41 and q,(:; 4 are

the optimal solutlons for problem (24) using the start point



(r—1)=

(r—1)=
q; 711 !

1)x
and g, 7)), we have E 1T+1 < Z PZ(C[H )
Since the total transmit power Z P71 is ﬁnltely lower-

i€D
bounded by zero, the optimization algorithm for solving (21)
must converge. This completes the proof.

B. Proof of Proposition 1

Based on (8) and (24), the minimum transmit power of UAV
1 to satisfy the requirements of user j can be given by:

min

Ry = max {M;, N;} " V) € U;. (42)

where  M; = nr — Li(vj,w;) and N; =
(nw + I (v, w;)) /22 (225 — 1). Given illuminance and
data rate requirements of each user j, to obtain the lower
bound of Pj5r.,, we derive the first derivative with respect
Irii(vj,wj) as:

OPFT _ld;?+3 » Mj > Nj,
OlIri1(vj,w;) (228 — 1)1d] T, My < Nj,
(43)
Since —ld;;”rg < 0 and y/25(2205 — 1)ld?}+3 > 0, there

is a unique I7yq(vj,w;) that allows the minimum transmit
power to reach the lower bound. To find the lower bound of
the minimum transmit power of UAV ¢, we need to compare
the power used to satisfy the illumination requirement of its
associated users and the transmit power used to satisfy the
data rate requirement of its associated users. Next, we analyze
the optimal illumination, 7., (v;, w;), that allows Pj% | to
reach the lower bound.

If M; < N; for VIpyi(vj,w;) > 0, that is
M < Mg/ 2ZE(22 — 1), we have PRIR = Njldj+o.

Hpmin
u T+1 2R; m+3
Since sy ,/ (2 Zd > 0 and

Ipgq(vy, wy) 2 0, the optlmal IT+1(’UJ,’LU]) that allows

P77 41 to reach the lower bound will be:

I;:+1(vjij) = 07 (44)

and the lower bound of the minimum transmit power of UAV
1 to satisfy its associated user j will be:

inf P’irjrtITI"l+1 = Ny / 22R dm+3

27(228; —1). From
(43), we can see that Pi’;‘,i:}l 41 achieves the minimum
value when M; = Nj, that is 7, — I7,,(vj,w;) =
(nw + Ipoq(vj,w;))y/25(228 — 1). Then, we have 7, —

N/ 2 (228 — 1) = I;, (vj, w;) ( (2R 1) + 1)'

Therefore, the optimal 17, (v;,w;) will be:

(45)

Otherwise, we have 7, = ny

— N/ 2Z (2285 —

I (v, ) =
1+ 2{(22&' -1
Nr 4 Ny

22R

(46)

_nu)a

and the lower bound of the minimum transmit power of UAV
1 to satisfy its associated user j will be:

2m —_

?(221% — 1)l
47

Therefore, the optimal illumination at the location of user

7 is given by:

lnf 17, 1,1111+1 (’I’Lw + I;“+1(Uj7 w]))

Nr+Nw
/22 (227 -1)
0 3 N <Ny %(QQRj_l)v
(48)
Based on (45) and (47), the lower bound of the minimum
transmit power of each UAV ¢ at time 7'+ 1 is given as:

— Ny NMr >nw 2?77(22Rj _1)7

I7 o (vj,wy) =

inf zmTlrJlﬂ
« 21 2R m-+3
=max (oo Tea (v wy )\ [ (2250 = 1) | 15 g o -

(49)
This completes the proof.
C. Proof of Theorem 2

The dual problem of problem (35) with relaxed constraints
can be given by:

mﬁax D(B), (50)
where
min  L(P; 141, Wi r+1,0)
P ry1,%i, 741
D(B)= s.t Y iep UijTrr1=1,Vj € U, 1)
U5, T+1 >O»Vi € D, Vj € U,
with
L(P;1y1,%i1741,0)
- Z Piri+ Z Z Bij(lagdiy  uijri1 — Pirs1)
i€D i€D jeu
(52)
and B = {f;;}.

To minimize the objective function in (50), which is a linear
combination of u;; 741, we should let the smallest association
coefficient corresponding to the u;; 741 be 1 among all UAV ¢
with given user j. Therefore, the optimal u;; - ; is thus given
as:

+3

0, otherwise.

To obtain the optimal P}, from (51), we derive the first
derivative with respect P; 71 as

(9,C(PZ"T+1, Ui, T+1, ﬁ)

54
OP; 741 >4)

=1-> By

JeEU

Note that the optimal P}z, ; = +ooif 1-37,, di; <0 and
dual value is —oo. To avoid this, we must have deu Bij <
1. As a result, we can obtain the optimal solution P} to
problem (35) as (37). This completes the proof.



D. Proof of Lemma 1

The complexity of the CNN-based illumination distribution
encoder and decoder depends on the calculations in con-
volutional (deconvolutional) layers, max-pooling (unpooling)
layers, and a flatten layer.

For each convolutional layer, the calculations based on (11)
is given as:

lm
i,
Kl—l
:f(z hi—ylkwllyln+ : '+hl_1 Swl ‘ot +hi-_hlsl;ksws s"‘bl’m)

k=1
(55)
where hi’]” is the element of row 7 and column j in Hl’m

h,lfjl’k is the element of row ¢ and column j in Hkl wllql
LY . 1 !
is the element of row 1 and column 1 in W,"™, and ;"™

is the element k of b)™. For each hﬁ;n the complexity of
calculation is O(K'~15?). Note that, each convolutional layer
I consists of K! feature maps and each feature map Htl’m
RM*A1 . Then, we have i = 1,---,\;, j = 1,---, )\ and
m = 1,--- , K!. Therefore, the complexity of convolutional
layer [ is O(\°KLKL-182).

For each max-pooling layer [, the max- poohng operation

A2
divides the input feature map H, =1m into 52 square areas.
In each S,, x S,, square area, the max-pooling operation

records the most robust feature, whose complex1ty is O(S2).
—1 S2 )

Hence, the complexity of max-pooling layer [ is (9(
O\ ).

For the flatten layer, the flatten operation rewrites input
HL’m to &y € RY, where HtL’m e RMXA gy =

, KL, and N = A2 KL. Therefore, the complexity of

the flatten layer is (’)(/\%Kf).

As a result, the complexity of the CNN-based illumination
distribution encoder is:

Z)\2K1Kz—152+z)\ L+ A2KL

S2

(56)
=0 Z N KIKTS?
=1
Due to the symmetry between the CNN-based illumina-
tion distribution encoder and the DeCNN-based decoder, the
L
complexity of the decoder is also O(> \* K} K 71S?). This

=1
completes the proof.

E. Proof of Lemma 2

Given representation x; for illumination distribution at time
slot ¢, the GRU-based predictor extract the temporal character-
istics based on (12)-(14). For each input x;, the complexity of
reset gate operation in (12) is O (N Dy, + DQ) which depends
on the size of W,. € RV*Pr and U, € RPr*Dn, Slmllarly,
the complexity of calculating candidate hidden state hj in (13)
and the complexity of calculating update gate 2] in (14) are
both O (NDj, + D?). The proposed GRU model iteratively
updates the hidden states based on (12)-(14). Therefore, the
complexity of extracting temporal feature for all the input
illumination distributions X = (x1,x2, -+ , T, -+ , 1) is

)

given as O (T x 3(NDj, + D?)). Then, the complexity for
the GRU model to output the illumination distribution predic-
tion based on (16) is O(N D), which depends on the size of
W, € RVxDn,

Finally, the total complexity of the GRU-based predictor is
given as:

O (T(3(NDy+D3))+NDy) =0 (TDy(N+Dy)). (57)
This completes the proof.
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