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Abstract

At a fixed halo mass, galaxy clusters with larger differences in brightness between the brightest central galaxy
(BCG) and fourth-brightest cluster member (mgap) have larger BCG stellar masses. Recent studies have shown that
by including mgap as a latent parameter in the cluster stellar mass–halo mass (SMHM) relation, one can make more
precise measurements of the SMHM relation’s amplitude, slope, and intrinsic scatter. We use galaxy clusters from
the Sloan Digital Sky Survey to measure the SMHM–mgap relation and its evolution out to z=0.3. Using a fixed
comoving aperture of 100 kpc to define the central galaxy’s stellar mass, we report statistically significant negative
evolution in the slope of the SMHM relation to z=0.3 (>3.5σ). The steepening of the slope over the past 3.5 Gyr
can be explained by late-time merger activity at the cores of galaxy clusters. We also find that the inferred slope
depends on the aperture used to define the radial extent of the central galaxy. At small radii (20 kpc), the slope of
the SMHM relation is shallow, indicating that the core of the central galaxy is less related to the growth of the
underlying host halo. By including all of the central galaxy’s light within 100 kpc, the slope reaches an asymptote
value.
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1. Introduction

The stellar mass–halo mass (SMHM) relation is one of the
primary mechanisms used to quantify the galaxy–dark matter
halo connection. For clusters ( M h Mlog 14.010 halo

1 -
( ( ))/ ),

this linear relation relates the stellar mass of the brightest
central galaxy (BCG) to the total cluster halo mass, including
the dark matter. The inferred intrinsic scatter (σint) associated
with this relation can be used to constrain the processes that
quench star formation within galaxies (Tinker 2017) and
characterize the growth of their massive, underlying, dark
matter halos (Gu et al. 2016).

BCGs, the stellar mass portion of the cluster-scale SMHM
relation, are massive, extended, luminous elliptical galaxies
that account for a significant fraction of light emitted from their
host cluster halos (e.g., Schombert 1986; Jones et al. 2000; Lin
& Mohr 2004; Bernardi et al. 2007; Lauer et al. 2007; von der
Linden et al. 2007; Aguerri et al. 2011; Brough et al. 2011;
Proctor et al. 2011; Harrison et al. 2012). Unlike other cluster
members, their location near the X-ray center of the cluster
leads to their properties correlating with that of their host
cluster halo (Jones & Forman 1984; Rhee & Latour 1991; Lin
& Mohr 2004; Lauer et al. 2014). The current theory of BCG
formation is the two-phase formation scenario, where a dense
core forms at high redshifts via in situ star formation and the
outer portions of the BCG grow as a result of the hierarchical
merging of satellite galaxies (Oser et al. 2010). This theory is
well supported by observations (van Dokkum et al. 2010;
Huang et al. 2018) and dark-matter-only cosmological simula-
tions that use semiempirical or semi-analytic prescriptions for
the stellar mass growth of central galaxies (e.g., Croton et al.
2006; De Lucia & Blaizot 2007; Guo et al. 2011; Tonini et al.
2012; Shankar et al. 2015).

One observational measurement intrinsically tied to the stellar
mass growth of the BCG is the magnitude gap (mgap), the
difference in the r-band magnitude between the BCG and either

the second-brightest (M12) or fourth-brightest (M14) cluster
member within half of the radius that encloses 200× the critical
density of the universe (R200; Jones et al. 2003; Dariush et al.
2010). For the purpose of this paper, we use the fourth-brightest
member, since it best identifies early forming clusters (Dariush
et al. 2010). Based on dissipationless simulations of young and
previrialized groups, Solanes et al. (2016) find that the stellar
mass of the central galaxy linearly increases with the number of
progenitor galaxies, in agreement with hierarchical growth.
Furthermore, BCGs grow at the expense of the second-brightest
galaxy. Thus, as the BCG merges with the surrounding fainter
galaxies, the stellar mass and magnitude of the BCG increase,
relative to the second- or fourth-brightest galaxy, increasing
mgap. Therefore, mgap is a latent third parameter in the cluster
SMHM relation as shown in Golden-Marx & Miller (2018,
hereafter GM&M18).
GM&M18 incorporate mgap and alter the cluster-scale

SMHM relation from

M Mlog log 110 10 halo*
a b= +( ) ( ) ( )

to

M M Mlog log 14, 210 10 halo*
a b g= + +( ) ( ) ( )

where α is the offset, β is the slope, γ is the mgap stretch

parameter, and M14 is the selected mgap. These parameters are

measured for the Sloan Digital Sky Survey (SDSS) C4 cluster

sample ( M h Mlog 14.010 halo
1 -

( ( ))/ ; Miller et al. 2005) with

caustic halo masses (Gifford et al. 2013) using a hierarchical

Bayesian MCMC analysis. Incorporating γ into the SMHM

relation reduces the inferred intrinsic scatter and uncertainties

on the amplitude and slope of the SMHM relation (GM&M18).
BCGs grow hierarchically; therefore, the slope of the

SMHM relation may change over time because at higher
redshifts fewer mergers will have occurred and the stellar mass
of the BCG will be lower (Solanes et al. 2016). Moreover, dark
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matter halos are thought to grow hierarchically, as smaller
subhalos merge with the cluster halo over time, so the average
halo mass should also decrease (White & Rees 1978; Springel
et al. 2005; De Lucia & Blaizot 2007).

The redshift evolution of the SMHM relation has been
investigated using observations, empirical models, and simula-
tions. Observationally, Oliva-Altamirano et al. (2014) use
BCGs and brightest group galaxies from the Galaxy and Mass
Assembly survey and find no evolution in the SMHM relation’s
slope over the redshift range 0.1<z<0.3, while Gozaliasl
et al. (2016) use a sample of X-ray-selected galaxy groups and
find that the SMHM relation’s slope does not evolve over the
redshift range 0.1<z<1.3. Using empirical models and
abundance matching techniques to infer halo masses, Behroozi
et al. (2013) and Moster et al. (2013) find that the slope evolves
by 40%–50% from z=0.0 to z=1.0. Moster et al. (2013)
also find moderate evolution out to just z=0.5. In contrast,
Pillepich et al. (2018) use the Illustris TNG300 cosmological
hydrodynamical simulation and report little change in the slope
between z=0.0 and z=1.0. In addition to the redshift
evolution in the slope of the SMHM relation, the evolution of
the intrinsic scatter has also been investigated using hydro-
dynamical simulations (Matthee et al. 2017; Pillepich et al.
2018), N-body simulations (Gu et al. 2016), and empirical
models (Behroozi et al. 2019; Moster et al. 2018). However,
the results from these different approaches are inconsistent with
one another and may depend on the initial conditions of the
simulations. The most likely reason no consensus exists for the
redshift evolution of the intrinsic scatter and SMHM relation
slope is due to differences in how the stellar and halo masses,
as well as the associated uncertainties, are estimated in
simulations, empirical models, and observations.

As previously noted, including mgap as a latent parameter in
the SMHM relation allows other parameters, such as the slope,
to be measured with higher precision. Thus, Equation (2) plays
a critical role in detecting redshift evolution of the SMHM
relation. One can also allow the stretch parameter to evolve,
which may provide information about the BCG merger history
and the fraction of stellar matter from major and minor mergers
that ends up as part of the intracluster light (ICL) that surrounds
the BCG.

The outline for the remainder of this paper is as follows. In
Section 2, we summarize the goals, methods, and results of
GM&M18. In Section 3, we discuss the observations and
simulated data used to measure stellar masses, halo masses, and
mgap values for our SMHM relation. In Section 4, we describe
the hierarchical Bayesian MCMC model used to evaluate the
redshift evolution of the SMHM relation. In Section 5, we
describe how we use the low-redshift data to calibrate the higher-
redshift clusters and their observational errors. In Section 6, we
present our results. In Section 7 we discuss our findings and
conclude.

Except for the case of simulated data, in which the
cosmological parameters are previously defined (Springel et al.
2005), for our analysis we assume a flat ΛCDM universe, with
ΩM=0.30, ΩΛ=0.70, and H=100hkm s−1Mpc−1 with
h=0.7.

2. Summary of Golden-Marx & Miller (2018)

Many of the analyses in this paper build on GM&M18, so we
briefly summarize those results. GM&M18 set out to explain the
discrepancy between amplitudes of previously published SMHM

relations using the low-redshift SDSS-C4 (Miller et al. 2005)
sample of clusters (zmed = 0.086). BCG Petrosian magnitudes
were properly corrected for known SDSS background subtrac-
tion issues, and stellar masses were determined using the Bell
et al. (2003) mass-to-light ratio (M/L) conversion. Halo masses
were measured individually for each cluster using the caustic
technique (e.g., Gifford et al. 2013). mgap was measured using
red sequence cluster members within 0.5 Rvir and introduced as a
third parameterized variable in the linear SMHM relation.
GM&M18 termed this third parameter the “stretch” parameter
(γ) and found it to be nonzero with high statistical significance.
GM&M18 also showed that mgap plays an equally important role
in the SMHM relation from semi-analytic galaxy catalogs,
suggesting that it stems naturally from hierarchical growth (Guo
et al. 2011; Henriques et al. 2012).
To achieve their results, GM&M18 developed a hierarchical

Bayesian model that accounts for errors on all observables,
including the intrinsic uncertainty in stellar mass at fixed halo
mass (σint). The model also incorporates a level of uncertainty
on the estimated errors. GM&M18 used simulated light-cone
data based on the Millennium Simulation (Henriques et al.
2012) to test the model and its ability to accurately recover the
true underlying SMHM–mgap parameters using only projected
measurements (e.g., projected dynamical cluster masses,
projected mgap values, and stellar masses inferred from galaxy
magnitudes). In this new work, we use the same model, except
that we add parameters to allow for redshift evolution in the
amplitude, slope, stretch, and intrinsic scatter.
GM&M18 showed that the majority of the discrepancies in the

reported amplitude of the cluster-scale SMHM can be explained
by simply accounting for mgap in the cluster sample selection.
GM&M18 also noted that the inferred errors on the parameters in
the SMHM relation, as well as σint, are significantly reduced (by
as much as a factor of 2) after incorporating mgap into the SMHM
model.

3. Data

The observational data used for this analysis come from
SDSS DR8 (Aihara et al. 2011) and DR12 (Alam et al. 2015).
For the full cluster sample, we combine the SDSS-C4 (Miller
et al. 2005) sample used in GM&M18 with v6.3 of the
SDSS-redMaPPer catalog (Rykoff et al. 2014). The SDSS-C4
cluster sample used in GM&M18 is highly complete from
0.03�z�0.1, while redMaPPer has high completeness over
the range 0.10�z�0.35 (Groenewald et al. 2017). Since we
are studying redshift evolution, we want our final sample of
clusters to cover the widest possible redshift range. Therefore,
we need to make measurements of halo masses, mgap values,
and BCG stellar masses for SDSS-C4 and redMaPPer clusters
in a homogeneous fashion.

3.1. redMaPPer mgap

The redMaPPer algorithm is a red-sequence-based photo-
metric cluster-finding algorithm. The redMaPPer red sequence
model was constructed using a sample of spectroscopically
confirmed clusters. Using this calibrated model, clusters are
identified using luminosity and radial filters. redMaPPer also
assigns a membership probability for cluster member galaxies,
Pmem, which depends on the richness, cluster density profile,
and background density. According to Rykoff et al. (2014), if
Pmem>0.70, a galaxy should be considered a member. These

2

The Astrophysical Journal, 878:14 (13pp), 2019 June 10 Golden-Marx & Miller



high-probability members are then used to estimate photo-
metric redshifts, which we use in our Bayesian MCMC analysis
(Section 4.2). redMaPPer provides a probability for being the
central galaxy for the five most likely candidate centrals, and
we identify the BCG as the most likely candidate.

Galaxy membership in the SDSS-C4 sample (GM&M18)
differs from the redMaPPer sample owing to color selection and
sky apertures. SDSS-C4 cluster members are identified using
individual cluster red sequences in six distinct SDSS colors (u–g,
g–r, g–i, r–i, i–z, and r–z), which are fit using all potential cluster
member galaxies with an r-band magnitude brighter than
mr=19 within 0.5Rvir of the BCG, where Rvir is estimated
using the caustic halo mass. We note that this includes two
additional colors compared to the SDSS-C4 cluster-finding
algorithm (Miller et al. 2005). Cluster members are those
galaxies simultaneously within 3σ of the red sequence for the
u–g, g–r, and g–i colors and 2σ for the r–i, i–z, and r–z colors
(GM&M18). The SDSS-C4 BCGs are visually confirmed and
are identified as being the brightest in the red sequence.

We calibrate the redMaPPer mgap values to the SDSS-C4
mgap measurements, where for both samples the fourth brightest
is chosen from within the red sequence. To calibrate these
samples, we need to homogenize the membership of the
clusters in color–magnitude space. As noted earlier, redMaPPer
membership depends on a specified Pmem threshold. We
determine this threshold using 112 clusters found in both
catalogs. For these clusters, we match the density of galaxies
within color–magnitude space between SDSS-C4 and red-
MaPPer by adjusting the latter’s Pmem threshold. As we adjust
Pmem and the sky aperture size, we can raise or lower the
number of galaxies in the color–magnitude diagrams of the
redMaPPer clusters.

We use only galaxies within an estimate of 0.5×Rvirial∼
0.5× R200. Although redMaPPer does not provide R200, we can
approximate R200 using Equation (3) from Rykoff et al. (2014),

R R1.5 , 3c200 l» ( ) ( )

where λ is the redMaPPer cluster richness and Rc is the

redMaPPer cutoff radius, given by

R h1.0 Mpc 100 . 4c
1 0.2l l= -( ) ( ) ( )

Figure 1 shows that a median value of P 0.984mem =
matches the two membership definitions with good precision.

Therefore, we apply this Pmem threshold when identifying
cluster members used to determine mgap for the redMaPPer
sample. We note that when we examine how the number of
members changes as a function of Pmem, we observe little
change in the range 0.7<Pmem<0.9 but large decreases in
membership at Pmem>0.9.
Unlike in GM&M18, we no longer use Petrosian magni-

tudes. Instead, we measure mgap as the difference between the
k-corrected r-band model magnitudes of the BCG and fourth-
brightest cluster member. Applying our restrictive cluster
member criterion and using the model magnitudes, we find
good agreement in the distribution of mgap values for the
overlapping redMaPPer and SDSS-C4 clusters. We discuss the
errors on the mgap measurements in Section 5.

3.2. redMaPPer Halo Mass

To determine halo masses for the redMaPPer sample, we use
the mass–richness relation from Simet et al. (2017), given by

M h M 10 40 . 5halo
1 14.344 1.33l=-

( ) ( ) ( )

Here λ is the standard redMaPPer richness, or galaxy count as

given in Rykoff et al. (2014). The minimum redMaPPer

richness we use is >22, depending on the minimum mass

threshold applied.
In GM&M18, we used individual dynamically inferred

cluster masses from the caustic technique (Gifford et al. 2013).
However, to homogenize the analysis between the low-z SDSS-
C4 and redMaPPer clusters, we require a mass–richness
relation for the SDSS-C4 sample. For both samples, we need
an estimate of the intrinsic scatter in mass at a fixed richness,
which is discussed in Section 5.

3.3. Final redMaPPer Sample

We analyze the redshift evolution of the SMHM relation in
two ways. First, we bin our data by redshift and determine the
posteriors from our Bayesian MCMC model for each bin with
the redshift evolution parameters set to 0.0, and second, we
incorporate redshift evolution using four additional parameters in
Equation (2) and fit against all of the redMaPPer clusters. For
this analysis, we look at the redshift range 0.08�z�0.30,
where redMaPPer is suggested to be most complete (Groenewald
et al. 2017) and we have enough clusters for a statistically
significant sample.
The total sample of 1005 redMaPPer clusters with stellar

masses measured out to 100 kpc, with greater than four members
with Pmem�0.984 within 0.5R200, and within 0.08�z�0.3
has no mass limit applied. However, we do not expect the
redMaPPer sample to have the same lower mass limit throughout
this redshift range, and we must also check for mgap incomplete-
ness since SDSS is a flux-limited survey.
Therefore, the redMaPPer sample was divided into four

redshift bins, each initially with ∼251 clusters. For each bin, as
done in GM&M18, we use an mgap completeness analysis
where we bin the absolute magnitude of the BCG and fourth-
brightest member against both the BCG’s apparent magnitude
and mgap to determine the apparent magnitude limit of the
sample (a redshift-dependent limit; Colless 1989; Garilli et al.
1999; La Barbera et al. 2010; Trevisan et al. 2017; Golden-
Marx & Miller 2018).
To account for halo mass incompleteness, for each redshift

bin, the halo mass distribution can be approximated as a

Figure 1. Distribution of the Pmem values required to match the number of
cluster members brighter than r=18.0 in the SDSS-C4 and redMaPPer
baseline sample. The median value is Pmem=0.984.
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Gaussian, where the peak indicates the mass at which the
sample starts to become incomplete. Instead of applying a
model-dependent correction to the analysis, we apply a lower
halo mass cut where the amplitude of the binned halo mass
distribution decreases to 70% of the peak value to ensure high
completeness as a function of redshift. This is a conservative
choice that results in a redMaPPer richness threshold of ∼22,
well above the detection limit for the redMaPPer algorithm.
However, when combined with the mgap completeness analysis,
these cuts shrink our available sample down to 843 clusters, a
reduction of ∼16%. A slightly more restrictive (higher) halo
mass lower limit has no effect on our final results.

Since we study clusters out to z=0.3, where the SDSS-
redMaPPer sample is volume limited, we do not apply any
corrections for volume effects from Malmquist bias.

3.4. SDSS-C4 Sample and Richness-based Halo Masses

The SDSS-C4 clusters are nearly identical to those used in
GM&M18. The samples differ because the stellar masses are
estimated, as described in Section 3.5, within 100 kpc, instead
of within the Petrosian radius. Additionally, we use a mass–
richness relation to infer the redMaPPer halo masses. There-
fore, instead of the individual dynamical cluster masses, we
also use a mass–richness relation for the SDSS-C4 sample. For
this analysis, we use only clusters with clean phase spaces to
ensure that our richness measurement is meaningful and
unimpacted by foreground and background contamination.
Given these individual masses and the observed galaxy and
background counts, we make a preliminary constraint on the
SDSS-C4 mass–richness relation using techniques similar to
Andreon & Hurn (2010). We find

M h M 10 33.1 . 6C
halo

1 14.195 4 1.134l=-
( ) ( ) ( )

We note that the richnesses (λC4
) for the SDSS-C4 sample are

not calculated in the same manner as the redMaPPer richnesses.

However, using the sample of clusters found in both SDSS-C4

and SDSS-redMaPPer, we find that the offset between the

redMaPPer and C4 mass estimates is 0.1 dex, with a standard

devation of 0.15 dex. As shown in Table 2, when this offset is

removed, the results of our analysis do not change. A more

detailed analysis of the SDSS-C4 mass–richness relation will be

presented elsewhere (C. J. Miller et al. 2019, in preparation).

Using this mass–richness relation, we apply the mass limits of

M h M14.0 log 14.710 halo
1 -

( ( ))/ . The upper limit was

selected to eliminate Malmquist bias in the low-redshift (and

small-volume) sample. Overall, these changes result in a sample

of 142 clusters with clean richnesses used in this analysis.

3.5. BCG Stellar Masses

In GM&M18, we emphasized the importance of correcting
the BCG magnitudes because of the SDSS background
subtraction error (Bernardi et al. 2007, 2013; von der Linden
et al. 2007; Harrison et al. 2012). This correction is a strong
function of the apparent size of the galaxies and is especially
problematic at low redshifts. The BCGs in redMaPPer are
smaller in their apparent sizes and suffer much less from the
known issues of the background light subtraction compared to
the SDSS-C4 sample (Bernardi et al. 2007; von der Linden
et al. 2007; Harrison et al. 2012; Golden-Marx & Miller 2018),
so we do not need to remeasure the BCG light profiles to

correct for missed light within selected radii of the BCGs and
include additional uncertainties on the BCG stellar mass
estimates. Instead, we use the stellar mass measured within a
fixed and precise 100 kpc radial extent, a choice that is justified
in Section 5.1, which results in a much smaller uncertainty on
the stellar masses. To measure the 100 kpc magnitudes, we
queried the SDSS DR12 (Alam et al. 2015) database to obtain
the SDSS azimuthally averaged radial light profile for each
BCG and then integrated these profiles to 100 kpc.
To calculate BCG stellar masses, unlike in GM&M18, we do

not use the Bell et al. (2003) M/L to estimate stellar mass
because this relation is calibrated for z=0.0. Instead, we use
the EzGal spectral energy distribution (SED) modeling
software (Mancone & Gonzalez 2012) to estimate stellar mass.
We note that GM&M18 found no differences in their fits to the
SMHM relation when using the EzGal-based stellar masses
versus the stellar masses estimated using Bell et al. (2003).
When estimating stellar masses using EzGal, we use a

Bruzual & Charlot (2003) stellar population synthesis model, a
Salpeter (1955) initial mass function, a formation redshift of
z=4.9, and a constant metallicity of 0.4 ze. We apply a
Bayesian MCMC approach, done in emcee (Foreman-Mackey
et al. 2013). We treat the absolute magnitude (the normalization
parameter selected for EzGal) as a free parameter, with a uniform
prior, to determine the absolute magnitude that minimizes the
chi-squared between the EzGal modeled g-, r-, and i-band
magnitudes measured at the observed redshift and the SDSS g-,
r-, and i-band magnitudes measured at 100 kpc. We note that
initially metallicity was treated as a free parameter. However,
≈99% had a minimum chi-squared when the metallicity of 0.4 ze
was chosen, so we removed this free parameter. Using this
approach, we estimate the stellar mass uncertainty to be 0.08 dex,
consistent with the suggestion from Bell et al. (2003). This is
about half the uncertainty used in GM&M18, where the precision
in determining the Petrosian radius and the induced error from
the background correction dominate the error budget.

3.6. Simulated Data

In addition to studying the evolution of the SMHM–mgap

relation in the SDSS-C4 and redMaPPer data, we also analyze
the same trend using the Guo et al. (2011) prescription of
the semi-analytic representations of low-redshift clusters in the
Millennium Simulation. Unlike in GM&M18, we do not
use the Henriques et al. (2012) prescription because it is
magnitude limited to Ks≈21.8, which at z=0.3 corresponds
to r≈18, far fainter than that of our observed sample. Also, the
periodic replications within Henriques et al. (2012) may
introduce additional, unaccounted-for noise in our MCMC
model. For this analysis, we use the Guo et al. (2011) simulation
boxes analyzed at redshifts of 0.089, 0.116, 0.144, 0.174, and
0.242, the redshifts that best match our binned sample and
correspond to snapshot numbers 59, 58, 57, 56, and 54.
For the simulated data analysis we use the 3D information

provided directly from the Guo et al. (2011) prescription of the
Millennium Simulation for each cluster, which includes halo
masses, measured within R200×ρcrit; the galaxy positions, x,
y, z; R200; the semi-analytic stellar masses; and the magnitudes.
To determine cluster membership, we use the positional
information (x, y, z) to determine whether potential cluster
members are within 0.5R200. For those galaxies within this
sphere, we identify galaxies within 2 standard deviations from
the red sequence as cluster members. M14 is then measured as

4
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the difference between the fourth-brightest member and BCG
in the r band. Since the BCG stellar masses are provided by the
Guo et al. (2011) prescription of the Millennium Simulation
and we have access to the entire simulation box, we do not
apply a completeness criterion to our simulated sample for each
redshift bin. However, to make our samples comparable, we
apply the halo mass distribution function of the binned SDSS-
redMaPPer data to the simulation snapshot at the corresponding
redshift.

4. The Hierarchical Bayesian Model

We use a hierarchical Bayesian MCMC analysis to
determine the values of α, β, γ, σint, and the redshift evolution
parameters given in Equation (7). The Bayesian approach can
be described as convolving prior information for a given model
with the likelihood of the observations given the model to yield
the probability of observing the data given the model, or the
posterior distribution up to a normalization constant called the
Bayesian evidence.

To generate the posterior distributions for each of the
parameters, our MCMC model generates values for the observed
stellar masses, halo masses, and mgap values at each step in our
likelihood analysis, which are then directly compared to the
observed measurements. As described in Section 2, we modified
our previous MCMC model (GM&M18) to improve the speed
of convergence. Our new model is summarized below.

4.1. Bayesian Model Incorporating Redshift Evolution

4.1.1. The Observed Quantities

For our redshift evolution model, we use similar equations
and relations to quantify the observed or measured values for
the halo mass and mgap and the same relation for stellar mass as
described in GM&M18. The log10 BCG stellar masses (y),
log10 halo masses (x), and M14 values (z) are modeled as being
drawn from Gaussian distributions with mean values (loca-
tions) taken from the observed data. The standard deviations
are the errors on each measurement and include an estimate of
the observational uncertainty ( x0s , y0

s , z0s ) and an additional
stochastic component from a beta function β(0.5,100)
(GM&M18), which allows for realistic uncertainty on the
observational errors. These are treated statistically in the
Bayesian model as free nuisance parameters σx, σy, and σz.

One modification we made to the likelihood and prior from
GM&M18 is that we no longer model the underlying halo mass
and mgap distributions as truncated normal distributions;
instead, we use a Gaussian distribution and allow the halo
mass values for any step of the trace to be below our lower
limit. However, the median halo mass of each cluster generated
in the MCMC chains reflects the halo mass lower limit listed in
Table 3.

4.2. The Unobserved Quantities

The new version of this model incorporates redshift
evolution through parameters on α, β, γ, and σint. As in
GM&M18, we are only concerned with the cluster portion of
the SMHM relation, which is modeled linearly. As such,

Equation (2) becomes

y 1 z 1 z x 1 z z .

7
i

n n n
red red i red i

1 2 3a b g= + + + + +( ) ( ( ) ) ( ( ) )

( )

In Equation (7), zred is the photometric redshift determined via

red sequence fitting from redMaPPer (Rykoff et al. 2014) or the

spectroscopic redshift for the SDSS-C4 clusters, not to be

confused with z, the shorthand for the mgap, M14. We assume a

Gaussian likelihood form, with an intrinsic scatter that can also

evolve with redshift: z1 n
int red

4s +( ) . The four parameters, n1,

n2, n3, and n4, measure the redshift evolution of α, β, γ, and

σint, respectively. When we use this model for the redshift

binned sample described in Section 3.3, these parameters are

set to 0.0, which reduces Equation (7) to Equation (2). This

means that the zero redshift model used in GM&M18 is nested

within our new model. By using nested models, we can

interpret how much better a given model is (e.g., with redshift

evolution vs. without) using only the posterior distribution.
Our Bayesian model regresses against the observed stellar

mass, halo mass, and mgap values simultaneously and self-
consistently. We treat parameters that model the underlying
distributions and their uncertanties as nuisance parameters, and
we marginalize over them when we present the posterior
distributions in Section 6.1. All parameters in the Bayesian
analysis are presented in Table 1 along with their priors. We
discuss the strong priors on the observed uncertainties in
Section 5.
We can express the entire posterior as
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  

  

( )

( )

( ∣ ) ( ∣ ) ( ∣ )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

where each ith cluster is a component in the summed log

likelihood.
Like the model presented in GM&M18, we use a

hierarchical Bayes model because the priors on the true halo
masses (xi) and M14 values (zi) depend on models themselves
(the observed halo mass and M14 distributions).

5. Calibration

For this paper, we study a larger sample out to a higher
redshift (z� 0.3) than in the SDSS-C4 sample (zmed= 0.086).
The larger sample allows us to reduce the statistical noise in the
data, while the higher redshift allows us to search for late-time
evolution in the SMHM relation (i.e., in the past∼3.5 Gyr). Two
important trade-offs when using the bigger and deeper red-
MaPPer data combined with the lower-redshift SDSS-C4 data
are that we need to calibrate the observables (see Section 3) and
that we have less secure mean values of the observational
uncertainties, such as the mgap values and the halo masses.

5.1. Aperture Radius and the Slope of the SMHM Relation

Because we are studying redshift evolution, we need to use a
BCG aperture for the stellar masses that is unbiased owing to
the decrease in apparent size and signal-to-noise ratio of the
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galaxies out to z=0.3. Since we expect little physical growth
in BCGs over this redshift range, we choose a fixed kiloparsec
aperture.

Zhang et al. (2016), using DES science verification data,
measure the slope of the SMHM relation using photometry
measured within four radial extents ranging from 15 to 60 kpc
and stellar masses estimated using EzGal (Mancone &
Gonzalez 2012) SED fitting. Zhang et al. (2016) detect a weak
correlation (although their measurements are all within 1σ),
such that stellar mass and halo mass are more strongly
correlated at larger aperture radii, in agreement with observa-
tions of inside-out galaxy growth (e.g., van Dokkum et al.
2010). We investigate this trend by reintegrating the SDSS
light profiles at fixed physical radii of 10, 20, 30, 40, 50, 60, 70,
80, 90, and 100 kpc for the 189 SDSS-C4 clusters with radial
extents greater than 100 kpc from GM&M18 and measure the
SMHM–mgap relation at each radial extent. For each Bayesian
MCMC analysis, we use the same mgap from the Petrosian
magnitudes and the caustic halo masses with reduced
uncertainty. This analysis was performed using the Bayesian
formalism described in Section 4, with the redshift parameters
set to 0.0. Additionally, we do a second analysis where we set γ
to 0.0. The results are shown in Figure 2 for both analyses.
Figure 2 also shows the slope measured by Pillepich et al.
(2018) for the Illustris TNG300 simulation, where stellar
masses are determined using the SUBFIND algorithm to
identify and sum the stellar particles bound to a galaxy within a
fixed 3D physical radius.

The primary takeaway from Figure 2 is that the choice of
radial extent within which the BCG’s stellar mass is measured
significantly impacts the SMHM relation’s slope. This result
confirms the idea presented by Zhang et al. (2016) and suggests
that the outer halo of the BCG is indeed tied to the underlying
parent (cluster) halo. Moreover, our result observationally
confirms a trend suggested by the EMERGE empirical model
(Moster et al. 2018). Moster et al. (2018) find that to match
observational baryon conversion efficiencies at low redshifts,
empirical models must incorporate a fraction of the ICL, since
the baryon conversion efficiency of central galaxies (a proxy for
stellar mass) in clusters at fixed halo mass is underapproximated

by empirical models when compared to observational results,

which generally measure BCG stellar masses within larger radii

than those used in empirical models. Thus, similar to our results,

Moster et al. (2018) find that the conversion efficiency, at fixed

halo mass, which is similar to the slope of the SMHM relation,

increases when parts of what have been previously classified as

ICL are included in the stellar mass estimate of the BCG.
This trend between slope and radial extent is important

because previously published SMHM relations often use model

magnitudes or state that their stellar masses are estimated
within Kron or Petrosian radii, which, unless the specific radial

extents are provided, can lead to a biased comparison between

published results and an improper comparison between BCGs

in large samples where those radii greatly differ. Additionally,

the slope of the SMHM relation levels off around 80–100 kpc,

Table 1

Bayesian Analysis Parameters for the Combined SDSS-C4 and SDSS-redMaPPer Sample

Symbol Description Prior

α The offset of the SMHM relation 20, 20 -( )

β The high-mass power-law slope Linear regression prior

γ The stretch parameter, which describes the stellar mass–M14 stratification Linear regression prior

σint The uncertainty in the intrinsic stellar mass at fixed halo mass 0.0, 0.5( )

yi The underlying distribution in stellar mass Equation (7)

xi The underlying halo mass distribution 14.28, 0.222( )

zi The underlying mgap distribution 2.13, 0.572( )

n1 The power law associated with the redshift evolution of α 10.0, 10.0 -( )

n2 The power law associated with the redshift evolution of β 10.0, 10.0 -( )

n3 The power law associated with the redshift evolution of γ 10.0, 10.0 -( )

n4 The power law associated with the redshift evolution of σint 20.0, 20.0 -( )

y i0
s The uncertainty between the observed stellar mass and intrinsic stellar mass distribution 0.08 dex

x i0s The uncertainty associated with the mass–richness relation 0.087 dex

z i0s The uncertainty between the underlying and observed mgap distribution 0.15

Note. a b,( ) refers to a uniform distribution, where a and b are the upper and lower limits, respectively. The linear regression prior is of the form

1.5 log 1 value2- ´ +( ). a b,( ) refers to a normal distribution with mean and variance of a and b. Additionally, we note that for xi and zi the means and widths

given in this table are example values belonging to the lowest SDSS-redMaPPer redshift bin.

Figure 2. Slope of the SMHM relation as a function of the BCG’s radial extent,
where mgap is incorporated (green) and when it is not (purple). The results of
Zhang et al. (2016) are shown in red and yellow. The results from Pillepich
et al. (2018) using ILLUSTRIS TNG300 are shown in blue. For comparison,
the slope measurement from GM&M18 is shown in black with the gray bar.
The radial range represents the median and standard deviations of the Petrosian
radii for the SDSS-C4 sample. Measuring the stellar mass within a larger radial
extent steepens the slope of the SMHM relation because the outer regions of
BCGs are tied to the parent clusters. Additionally, incorporating M14 also
steepens the slope, which is expected if M14 is related to BCG growth.
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which shows that beyond this radial extent we gain no
additional information. This result agrees with the analysis of
Huang et al. (2018), who use Hyper Suprime Cam Subaru
Strategic Program observations of massive galaxies over the
redshift range 0.3<z<0.5 and find that the difference
between the stellar mass within 100 kpc and the total stellar
mass is on average ∼0.02 dex. Moreover, Zhang et al. (2019),
who use DES Year 1 observations to study the ICL
surrounding BCGs in the redshift range 0.2<z<0.3, suggest
that 100 kpc marks the transition region between the ICL and
BCG. Therefore, our choice of a 100 kpc aperture for our BCG
magnitudes accounts for the majority of the stellar mass in
the BCG.

The second significant result we find is that the slope is
statistically different depending on whether we use the latent
mgap and its stretch parameter in the SMHM relation. We found
no significant difference in GM&M18 and attribute this to the
use of the Petrosian magnitudes to estimate stellar masses. The
Petrosian radius is a measured quantity that causes a blending
of the underlying physical apertures depending on the BCG
redshift. Therefore, not only does using a small aperture lead to
a shallower slope, but the absence of accounting for the BCG’s
assembly history, via mgap, does as well.

At the largest radii, we find excellent agreement with the
results from the ILLUSTRIS TNG300 simulation (Pillepich
et al. 2018). Unlike the Guo et al. (2011) semi-analytic galaxy
treatment, ILLUSTRIS TNG is a full hydrodynamic N-body
simulation that contains the following astrophysical properties:
gas cooling and photoionization, star formation within an
interstellar medium, stellar evolution and feedback, and black
holes with feedback.

5.2. Error Calibration

The deeper redMaPPer sample lacks good spectroscopic
coverage, so we expect some issues with projection when
measuring mgap. In GM&M18, we used 0.1z0s = dex as our
uncertainty in mgap, which is consistent with the 3D simulations
for the spectroscopically complete low-redshift SDSS-C4 sample
and the precision of our Petrosian magnitudes. We expect a
slightly larger z0s for the redMaPPer sample because the
reduction of the photometric error in the BCG magnitudes is
offset by issues such as projection effects and the Pmem criterion
when determining mgap. However, we need to determine a
reasonable value to use for z0s for the redMaPPer sample in our
Bayesian analysis.

In addition to the above issue, by employing a mass–richness
relation, the Bayesian analysis requires the scatter in mass at
fixed richness Ms l( ∣ ). To date, this quantity is not well
constrained. Andreon (2015) report this scatter to be as low as

Mln 0.05200s l <( ∣ ) at 90% confidence. In contrast, Rozo et al.
(2015) find a larger scatter of 0.17–0.21, depending on what
they assume for the intrinsic scatter in cluster SZ-based masses
and its covariance with the observed richness.

We begin the error calibration of the SDSS-C4 mass–
richness scatter by conducting a simultaneous analysis of the
SDSS-C4 SMHM relation using both the individual cluster
caustic masses and the masses determined from the SDSS-C4
mass–richness relation. Regardless of the cluster mass used, we
require the resultant parameters of the SMHM to agree within
1σ. In this analysis, we allow caustic mass errors σ(M)data to be
a free parameter. The intrinsic scatter, Ms l( ∣ ), is then
constrained by the observed scatter in the mass–richness

relation: M M Mobs
2

data
2

intrinsic
2s l s s l= +( ∣ ) ( ) ( ∣ ) . Without the

additional constraint from the SMHM relation, our inferred
Ms l( ∣ ) would be fully degenerate with the unknown true

errors on the observational measurements.
To ensure the completeness of the sample, we use only the

128 clusters with M h Mlog 14.010 halo
1 >-

( ( ))/ , regardless of
whether it is the dynamically inferred caustic mass or the

richness-inferred mass. We find that Mln 0.20C
200

4
0.04
0.03s l = -

+( ∣ )

(where log10 and ln refer to the log base 10 and natural log,
respectively). At the same time, we find that the simulation-
calibrated caustic errors provided in Gifford et al. (2013) are
overestimated by Mln 0.19200s =( ) , on average. We note that
we could have just chosen Mln 0.20200s l =( ∣ ) (Rozo et al.
2015). However, the joint mass–richness and SMHM relation
analysis suggests that Mln 0.20200s l ( ∣ ) is well motivated
observationally. The full details of this analysis are beyond the
scope of this work and can be found in C. J. Miller et al. (2019,
in preparation). However, this analysis gives us a purely data-
inferred constraint on the appropriate intrinsic mass–richness
scatter to use for the SDSS-C4 sample.
We still need to estimate the intrinsic scatter in the redMaPPer

mass–richness relation, as well as uncertainties in mgap values
and the stellar masses for the redMaPPer sample. We choose to
calibrate the redMaPPer observational uncertainties, ,x y0 0

s s , and

z0s , by defining a redMaPPer subsample that matches the SDSS-
C4 redshift distribution function (down to z= 0.081) and apply
the richness-based mass limit M h Mlog 14.010 halo

1 -
( ( ))/ .

With this new redMaPPer calibration sample, we treat ,x y0 0
s s ,

and z0s as nuisance parameters on a coarse grid in the Bayesian
analysis and solve for their mean best values by requiring that
the inferred slope, amplitude, stretch parameter, and intrinsic
scatter of the redMaPPer calibration sample are within 1σ of the
values found for the SDSS-C4 sample.
The posterior distributions for the calibration samples are

given in lines 2 and 3 of Table 3. We find good agreement
between the SDSS-C4 richness sample and the redMaPPer
calibration sample for α, β, γ, and σint when the stellar mass
uncertainties are 0.08y0

s  dex, the magnitude-gap uncertain-

ties are 0.15z0s  , and the inferred intrinsic scatter in the
mass–richness relation is Mln 0.20200s l =( ∣ ) , which corre-
sponds to 0.087x0s = dex. The slope (β) and intrinsic scatter
σint for the redMaPPer and SDSS-C4 low-redshift calibration
samples are within 1σ of each other. The inferred stretch
parameter γ and offset α differ between SDSS-C4 and
redMaPPer by 1.5σ, and the redMaPPer value for γ is closer
to the result presented for the caustic-based SDSS-C4 sample in
GM&M18.
To match the results of the SDSS-C4 richness sample, we

adjust some measurement uncertainties from the values used in
GM&M18 for the SDSS-C4 sample. y0

s is the same for the
SDSS-C4 and SDSS-redMaPPer samples since both have
stellar masses estimated via EzGal (Mancone & Gonzalez 2012)
using the SDSS 100 kpc BCG magnitudes. However, as
previously discussed, this is a reduction from what was used
in GM&M18, which is due to the von der Linden et al. (2007)
corrected Petrosian magnitudes, which add uncertainty due to
the background correction and measurement of Petrosian radii.

z0s is slightly larger, at 0.15 for the redMaPPer data owing to
our concerns about projection effects and our high-Pmem

criterion. Most importantly, x0s is the same for the SDSS-C4
richness sample and the redMaPPer calibration sample, which
highlights that despite using different mass–richness relations,
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the uncertainty associated with this mass estimate is relatively
constant.

The above error calibration provides us with estimates of the
uncertainties on the observables. The values we obtain are
reasonable and in agreement with expectations. We do not
have good estimates on the errors on these uncertainties in the
observables. However, it is important to recall that Equation (8)
does allow for uncertainty in the observed errors. So while we
set an initial mean value using the techniques described in this
subsection (i.e., x0s , y0

s , z0s ), the observational errors applied in
the Bayesian analysis are actually free (nuisance) parameters.

We make a final note that the subset used to calibrate the
observable errors in the redshift overlap range between the
SDSS-C4 and redMaPPer samples is different from the matched
SDSS-C4/redMaPPer sample used to calibrate the redMaPPer
membership probability threshold. These redMaPPer subsamples
each serve their own purposes and differ to maximize the
amount of usable data. However, once the errors are calibrated
between SDSS-C4 and redMaPPer, we can use all available
redMaPPer and C4 data in the final analysis over the redshift
range 0.03�z�0.3. Without this calibration, there could be
underlying and unaccounted-for systematic uncertainties
between the two baseline samples that would cloud the statistical
inference.

6. Results

6.1. Combined redMaPPer and SDSS-C4 Results

In this section, we present the qualitative and quantitative
results from our analysis of the C4 and redMaPPer data. We
highlight the qualitative results of this study in Figure 3, which
compares the stellar masses estimated using EzGal (Mancone
& Gonzalez 2012) to the halo masses, estimated using the
Simet et al. (2017) mass–richness relation. In addition, we
include the 142 richness-selected SDSS-C4 clusters, bringing
our total sample to 985 clusters. The color bar is based on the
M14 values for each cluster. The data shown in Figure 3
encompass the redshift range 0.03�z�0.30. Therefore, the
stratification observed in our low-redshift SDSS-C4 sample (at
fixed halo mass, as stellar mass increases, so does M14) exists
at higher redshifts than observed in GM&M18. Furthermore,
although not shown, when the sample is binned by redshift, the

stellar mass–M14 stratification also exists. Additionally, this
stratification is present in the Guo et al. (2011) prescription of
the Millennium Simulation at each of the discrete redshift
snapshots discussed in Section 3.6.
We evaluate the impact of incorporating mgap and redshift

into the SMHM relation using our previously described
MCMC model (Section 4), Bayesian formalism, and linear
SMHM relation (Equation (7)). In Figure 4, we present a
triangle plot that shows the 1D and 2D posterior distributions
for each of the eight parameters, α, β, γ, n1, n2, n3, n4, and σint.
For this analysis, as well as the initial calibration analysis, we
shifted the x- and y-axes to eliminate the covariance between α
and β. To do this, we subtracted the median values of the halo
mass and stellar mass of the combined SDSS-C4 richness and
SDSS-redMaPPer samples: xmed= 14.41 and ymed= 11.50.
The posterior results, as well as the posterior results when mgap

is not included, are presented in Table 2. The difference
between these results is discussed in Section 7.
In Figure 4, excluding the original parameters and their

associated redshift evolution parameters, only a few pairs of
parameters are strongly covariant: α and γ, α and n3, γ and n1,
and n1 and n3. α and γ are covariant because of the shifted axis,
which results in the location of α corresponding to where
M14=0.0. Figure 4 illustrates that the primary results
presented in GM&M18 still hold true; γ is definitively nonzero,
σint is ∼0.1 dex, and incorporating mgap decreases σint by
∼0.04 dex, or 30%» . We note that the error bars on the
redMaPPer values are similar to those presented in GM&M18
because of the addition of the redshift evolution parameters.
The most important takeaway from Figure 4 is the

significance of the redshift evolution parameter, n2, which is
definitively nonzero. n1 and n3 are within 1σ of 0.0, while n4 is
slightly greater than 1σ from 0.0. n2 is also the most interesting
parameter because no covariance exists between n2 and any
parameter other than β, which signifies that for the first time we
detect statistically significant (>3.5σ) redshift evolution in the
slope of the SMHM relation. To improve our understanding of
our measurements of the redshift evolution of α and γ, we need
to eliminate the covariance between these parameters, without
reintroducing covariance with β.
To reach these results, we have devloped and implemented a

detailed and careful analysis to ensure that the lower-redshift
SDSS-C4 data and the higher-redshift SDSS-redMaPPer data
are homogeneous. Specifically, we ensured that both data sets
utilize the same underlying instrumentation (SDSS), the same
underlying photometric detrending pipeline (SDSS), the same
underlying spectroscopic pipeline (SDSS), the same physical
fixed-aperture photometry for all BCGs, the same cluster
galaxy membership to define the magnitude gap (as discussed
in Section 3.1), the same algorithm and parameters to
determine the stellar masses, the same mass–richness technique
to infer cluster masses, the same cluster masses in the overlap
sample (to within errors), and the same algorithm to measure
completeness criteria defining the underlying cluster samples in
both mgap and cluster mass. However, it is possible that there is
still some systematic error that we have missed in the SDSS-C4
sample that is dominating the evolution in the slope. The best
we can do is remove this data set from our Bayesian analysis,
even though it is the only available data set complete below
z<0.10, thus limiting our ability to track late-time evolution
in the SMHM relation. We list the inferred parameters without
the SDSS-C4 data in Table 2. The parameters are within 1σ for

Figure 3. SMHM relation for the combined redMaPPer and SDSS-C4 clusters
colored via M14. As in GM&M18, we see that a stellar mass–mgap stratification
exists at higher redshifts. The black plus sign represents the error in halo mass,
0.087 dex, and stellar mass, 0.08 dex.
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α, β, σint, n1, n2, and n4, while γ and n3 are within 1.5σ. After

dropping the SDSS-C4 data, we still find evolution in the slope,

albeit at a slightly lower (as expected) statistical significance

(99% versus 99.9% when including SDSS-C4). Therefore, we

conclude that while including the C4 data strengthens our

detection, it is not responsible for it. We conduct a similar

analysis by dropping the highest-redshift cluster data (line 5 of

Table 2). We find the evolution at a slightly higher significance

(99.98%). Thus, we argue that the significance of the detection

in the evolution of the slope is fairly robust to the upper and
lower ends of the redshift distribution of our data.

6.2. Comparison to Simulations and Binned Results

Here we compare the trends shown for the binned SDSS-
redMaPPer clusters to those measured in the Guo et al. (2011)
prescription of the Millennium Simulation. The results for each
of the measured parameters, α, β, γ, and σint, are presented in

Figure 4. Posterior distribution for α, β, γ, n1, n2, n3, n4, and σint. As in GM&M18, we see that γ is significantly nonzero and σint is approximately 0.1 dex. We note
that the posteriors measured here are extrapolations out to redshift=0.0. To see the values at the redshifts measured in our study, see Figures 5–8. The redshift
parameter n2 is the only parameter that is significantly nonzero. Therefore, some, albeit weak, redshift evolution in the slope of the SMHM relation can be detected
over 0.03�z�0.3.

9

The Astrophysical Journal, 878:14 (13pp), 2019 June 10 Golden-Marx & Miller



Table 3. For a more accurate comparison, the Guo et al. (2011)
measurements are taken on data samples described in
Section 3.6. Due to the limits of the Guo et al. (2011)
prescription, using the halo mass distribution functions from
the SDSS-redMaPPer data significantly decreases the number
of clusters, particularly in the higher-redshift simulation boxes,
resulting in larger posterior uncertainties. To illustrate the
trends we observe in Tables 2 and 3, in Figures 5–8 we present
the redshift evolution of the offset (α), slope (β), stretch factor
(γ), and intrinsic scatter (σint), respectively, given by the
posterior distributions shown in Figure 4.

Figure 6 illustrates that our redshift-dependent Bayesian
MCMC model finds that the slope of the SMHM relation
decreases with increasing redshift for the combined SDSS-C4
and SDSS-redMaPPer clusters. In contrast, Figures 5, 7, and 8
illustrate that, using our Bayesian MCMC model, we observe
either no or weak redshift evolution in the amplitude, in
agreement with the results from Zhang et al. (2016), mgap

stretch parameter, and intrinsic scatter. Interestingly, the SDSS-
redMaPPer data (blue points) for each of the four measured
parameters and the Guo et al. (2011) Millennium Simulation
measurements show similar trends in how each parameter
varies with redshift. Since the Guo et al. (2011) prescription of
the Millennium Simulation is modeled to look like the SDSS
observational data, this is likely an artifact of the semi-analytic
modeling. We discuss the meaning of these redshift evolution
parameters in the context of hierarchical growth in Section 7.

6.3. Comparison to Golden-Marx & Miller (2018) Results

The use of the richness-based masses compared to caustic-
based masses reduces the uncertainties on the SMHM
parameters, even for the smaller sample size. The offset α is
different from the value presented in GM&M18 because we use

a different method to estimate stellar mass, as discussed earlier,

and have offset the axes by subtracting the median values of the

stellar mass and halo mass. The slope (β) and the intrinsic scatter

(σint) are statistically the same (within 1σ). The inferred stretch

parameter γ is smaller (by ∼1.5σ) in the richness-based SDSS-

C4 SMHM relation, but still significantly nonzero. Therefore,

the conclusions from GM&M18 hold when we switch to using

richness-based masses for the SDSS-C4 sample. The measured

posteriors for the entire SDSS-C4 richness sample (containing

142 clusters) can be found in Table 3 and agree with the

posteriors for the calibration sample containing 128 clusters.

Table 2

Posterior Distribution Results with Redshift Evolution

Data α(z=0) β(z=0) γ(z=0) σint(z=0) n1 n2 n3 n4

With M14 0.29 0.05
0.04- -

+ 0.72 0.12
0.14

-
+ 0.15±0.02 0.099 0.014

0.017
-
+ 0.23 0.99

0.96
-
+ 4.55 1.26

1.22- -
+ 0.17 0.87

0.85- -
+ 0.92 1.04

1.00- -
+

Without M14 0.14 0.02
0.03

-
+ 0.37 0.10

0.13
-
+

L 0.142 0.014
0.016

-
+ 2.03 1.22

1.27- -
+ 2.25 1.96

1.86- -
+

L 0.68 0.68
0.67- -

+

With Mhalo C4 shifted 0.31 0.06
0.05- -

+ 0.72 0.14
0.15

-
+ 0.14±0.02 0.109 0.015

0.017
-
+ 0.03 1.09

1.08
-
+ 4.98 1.39

1.41- -
+ 0.41 0.94

0.90
-
+ 1.49 0.96

1.00- -
+

Without C4 0.44 0.09
0.07- -

+ 0.60 0.11
0.13

-
+ 0.23±0.04 0.100 0.017

0.021
-
+ 1.67 1.16

1.12- -
+ 2.95 1.35

1.26- -
+ 2.53 1.07

1.01- -
+ 1.07 1.15

1.13- -
+

Without M14 and C4 0.18 0.04
0.06

-
+ 0.25 0.06

0.08
-
+

L 0.149 0.017
0.019

-
+ 4.92 1.99

1.90- -
+ 0.84 1.66

1.61
-
+

L 1.09 0.74
0.77- -

+

Without z > 0.25 −0.34±0.06 0.75 0.13
0.16

-
+ 0.17 0.02

0.03
-
+ 0.108 0.016

0.018
-
+ 0.55 1.16

1.17- -
+ 5.09 1.42

1.43- -
+ 0.81 1.00

1.02- -
+ 1.44 1.13

1.10- -
+

Table 3

Posterior Distribution Results

Data zmin zmax zmed log10(Mhalo h M1-
( )/ )min nclusters α(z=zmed) β(z=zmed) γ(z=zmed) σint(z=zmed)

GM&M18 0.030 0.151 0.086 14.0 236 3.13±2.09 0.56±0.15 0.173±0.022 0.085±0.024
SDSS-C4 richness 0.030 0.146 0.081 14.0 142 −0.23±0.05 0.52±0.08 0.122±0.019 0.098±0.012

redMaPPer calibration 0.081 0.146 0.098 14.0 70 −0.40±0.06 0.48±0.13 0.190±0.024 0.087±0.017

redMaPPer 0.081 0.135 0.113 14.00 222 −0.38±0.04 0.42±0.05 0.182±0.016 0.092±0.009
redMaPPer 0.135 0.169 0.153 14.06 208 −0.34±0.03 0.44±0.05 0.168±0.014 0.068±0.009

redMaPPer 0.169 0.208 0.184 14.17 203 −0.29±0.03 0.30±0.06 0.131±0.015 0.087±0.008

redMaPPer 0.208 0.300 0.247 14.39 210 −0.34±0.03 0.32±0.06 0.150±0.013 0.082±0.009

Guo et al. (2011) 0.089 0.089 0.089 14.00 815 −0.34±0.01 0.44±0.02 0.226±0.006 0.093±0.002
Guo et al. (2011) 0.116 0.116 0.116 14.00 458 −0.37±0.02 0.45±0.02 0.230±0.008 0.093±0.003

Guo et al. (2011) 0.144 0.144 0.144 14.06 212 −0.36±0.03 0.45±0.03 0.229±0.014 0.105±0.005

Guo et al. (2011) 0.175 0.175 0.175 14.17 199 −0.32±0.02 0.41±0.04 0.207±0.011 0.089±0.005

Guo et al. (2011) 0.242 0.242 0.242 14.39 42 −0.33±0.06 0.33±0.08 0.224±0.025 0.089±0.011

Note.The Guo et al. (2011) data have the same zmin and zmax because these are data analyzed at individual snapshots, not data from a light cone.

Figure 5. Binned offsets and respective error bars plotted as a function of redshift
for the SDSS-redMaPPer binned and calibration samples, SDSS-C4 richness
sample, and the Guo et al. (2011) prescription of the Millennium Simulation. The
green line represents the redshift evolution suggested from the posterior results
presented in Figure 4. The green shaded region represents the combined total error
from uncertainty on n1 and α. This comparison highlights that the offset of the
SMHM relation does not evolve over the redshift range 0.03�zred�0.3.
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7. Discussion

The change of the SMHM relation’s slope and σint can tell us

about central galaxy hierarchical growth. In semi-analytic

models (SAMs), some researchers find stellar mass growth in

BCGs at late times. Between the redshift range z=0.5 and

z=0.0, De Lucia & Blaizot (2007) find that BCG stellar mass

increases by a factor of 2, Shankar et al. (2015) find a growth

factor of 1.5, and Guo et al. (2011) measure an increase in

stellar mass by a factor of 1.9. The effect of BCG growth in

Guo et al. (2011) can be seen on the slope of the SMHM

in Figure 6, which decreases by ∼30% out to z=0.3.
In this work, we extended our study of the cluster-scale

SMHM relation to zred=0.3. By incorporating the stretch

parameter and mgap, we reduce σint and the uncertainty on the

slope in the SMHM relation, allowing us to observe redshift

evolution. As shown in Table 2, when mgap information is not

incorporated, we measure a much weaker redshift evolution

parameter, n2, for the slope. Instead of a >3.5σ detection, we

measure a <1.5σ detection for n2 if the C4 data are included
and no detection when they are not. Therefore, it is only when
incorporating mgap that we see that the slope of the SMHM
relation evolves over the redshift range 0.03�z�0.3. Thus,
environment strongly impacts the SMHM relation.
One can interpret the observed redshift evolution in the

SMHM relation’s slope in the context of results from Gu et al.
(2016). When BCGs grow hierarchically, their stellar mass
increases owing to major and minor mergers. Gu et al. (2016)
suggest that the steepening of the slope is related to σint, such
that an increase in the σint corresponds to an increase in the
slope and that the slope and σint are tied to the progenitor
history of the BCG such that a wider range of progenitor
galaxies yield a steeper slope and a larger σint. Additionally, a
steeper SMHM relation results from a growth history where
minor mergers dominate over major mergers. Moreover, the
late-time evolution in the slope we observe suggests that the
BCGs residing in more massive halos undergo a greater growth
over this period of time than those in less massive halos, which
may result from differences in the galactic populations of high-
and low-mass cluster halos.
In Figure 6, the Guo et al. (2011) SAMs show a similar

decrease in the slope over the redshift range z0.03 0.3  .
The similarity in this trend between the observations and
simulations is interesting because other observational studies
do not find a similar result (Oliva-Altamirano et al. 2014;
Gozaliasl et al. 2016). This discrepancy was previously
justified because the continued growth in simulations is in
the stellar mass of BCG cores and not in the outer portion of
BCG envelopes, the ICL (Zhang et al. 2016), as is observed
(van Dokkum et al. 2010; Burke et al. 2015). However, by
comparing the stellar masses measured within a radial extent of
100 kpc, we are not analyzing just the inner profile of the BCG,
which is relatively constant over this redshift range (van
Dokkum et al. 2010); instead, we are incorporating many of the
radial regimes that have been previously treated as ICL.
Therefore, the novelty of our detected evolution over the
redshift range 0.03<z<0.30 likely results from our choice
to measure the BCG stellar mass within a large radial extent,
which incorporates the radial regions where BCGs actively
grow, and the incorporation of mgap, as previously discussed.

Figure 6. Binned slopes and respective error bars plotted as a function of
redshift for SDSS-redMaPPer binned and calibration samples and the Guo et al.
(2011) prescription of the Millennium Simulation. The green line represents the
redshift evolution suggested from the posterior results presented in Figure 4.
The green shaded region represents the combined total error from uncertainty
on n2 and β. This comparison highlights that the slope of the SMHM relation
evolves over the redshift range 0.03�zred�0.3.

Figure 7. Binned stretch factors and respective error bars plotted as a function
of redshift for the SDSS-redMaPPer binned and calibration samples, SDSS-C4
richness sample, and Guo et al. (2011) prescription of the Millennium
Simulation. The green line represents the redshift evolution suggested from the
posterior results presented in Figure 4. The green shaded region represents the
total error incorporating both the uncertainty on n3 and γ. This trend highlights
that there is no redshift evolution in γ in this redshift range.

Figure 8. Binned stretch factors and respective error bars plotted as a function
of redshift for the SDSS-redMaPPer binned and calibration samples and Guo
et al. (2011) prescription of the Millennium Simulation. The green line
represents the redshift evolution suggested from the posterior results presented
in Figure 4. The green shaded region represents the total error incorporating
both the uncertainty on n4 and σint. This trend highlights that there is weak
redshift evolution in σint.
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Our results also allow us to comment on the absence of a
trend in the evolution of the mgap stretch parameter over this
redshift range, as shown in Figure 7. This can be interpreted as
meaning that with respect to stellar mass, mgap is constant. The
lack of redshift evolution of γ in our data is expected because
even though mgap and stellar mass growth are correlated, since
our stellar mass measurement accounts for the outer portion of
the BCG, it likely accounts for any recent merger material that
may change either mgap or the stellar mass. If γ were to
decrease with redshift, it means that as we move forward in
time, mgap increases with respect to the stellar mass. This would
occur if the BCGs were to have mergers with brighter galaxies
in the given redshift range and the resulting additional mass
were to go predominately to stellar mass located in the outer
envelope of the BCGs (in our case at radii greater than
100 kpc). However, while stellar material from a merger is
ejected into the ICL, major mergers involving the brightest
galaxies are not common for BCGs in this redshift range
(Burke et al. 2015).

Since the growth in mgap depends on BCG growth (Solanes
et al. 2016), our results suggest that mgap values for BCGs at
z≈1 would be much lower (although γ may not change).
Furthermore, if in fact both stellar mass and mgap continue to
decrease at these higher redshifts, in agreement with hierarch-
ical growth, then we may be able to enhance this analysis and
better constrain the redshift evolution of the parameters of our
SMHM relation if we extend our analysis out to redshifts of
z�0.5. This can be tested in simulations using current SAMs
that follow the growth history of the BCG (e.g., Guo et al.
2011), where these models have better agreement with
observations (e.g., Lidman et al. 2012; Lin et al. 2013).

The observational challenge of extending our analysis of the
SMHM–mgap relation out to higher redshifts is to acquire good
spectroscopic coverage for each cluster, again understand the
additional systematic errors that increase the error associated
with the photometric data used in each of the observed
measurements in our SMHM relation, and have deep enough
photometry to measure the BCG light profiles out to large
radial extents.
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