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Deep Learning with Persistent Homology for

Orbital Angular Momentum (OAM) Decoding

Soheil Rostami, Walid Saad, and Choong Seon Hong

Abstract—Orbital angular momentum (OAM)-encoding has
recently emerged as an effective approach for increasing the
channel capacity of free-space optical communications. In this
paper, OAM-based decoding is formulated as a supervised
classification problem. To maintain lower error rate in presence
of severe atmospheric turbulence, a new approach that combines
effective machine learning tools from persistent homology and
convolutional neural networks (CNNs) is proposed to decode
the OAM modes. A Gaussian kernel with learnable parameters
is proposed in order to connect persistent homology to CNN,
allowing the system to extract and distinguish robust and unique
topological features for the OAM modes. Simulation results
show that the proposed approach achieves up to 20% gains in
classification accuracy rate over state-of-the-art of method based
on only CNNs. These results essentially show that geometric
and topological features play a pivotal role in the OAM mode
classification problem.

Index Terms—OAM, convolutional neural networks, persistent
homology, free-space optical communication.

I. INTRODUCTION

Free-space optical (FSO) communication is an effective

approach for fixed point-to-point communication, such as

backhaul connectivity and fiber backup over distances up to

several kilometers [1]. In order to increase the transmission

capacity of FSO communication, space division multiplexing

can be exploited. In particular, the use of the orbital angular

momentum (OAM) of a light beam has been recently proposed

to realize space division multiplexing in FSO communication

systems [2]. OAM is expected to play a major role in many

emerging communication systems [3].

Theoretically, Laguerre-Gaussian (LG) beams can carry an

infinite values of OAM modes, by encoding a bit-tuple of

information as superposition of OAM modes [2]. Therefore,

the transmission capacity can be increased with orders-of-

magnitude by allowing beams with different modes to be

multiplexed together and transmitted over the same communi-

cation link. However, in FSO communications, the high sen-

sitivity of the spatial structure of a light beam to atmospheric

conditions such as turbulence can cause cross-talk among

adjacent OAM modes. This, in turn, makes it challenging to

perform error-free OAM mode detection particularly when a

large number of OAM modes are used [2].
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Conventionally, an optical solution based on coherent de-

tection, known as conjugate-mode sorting method is applied

for OAM detection as done in [4]. For the coherent detection

of OAM modes, both the transmitter and receiver can use

spatial light modulators (SLMs). In [4], a first proof-of-

concept experiment, based on coherent detection, is developed

to utilize OAM modes by defining an unlimited dimensional

discrete Hilbert space. Recently, neural network approaches

have been adopted in [5] and [6] in order to enhance OAM

decoding by relying only on an intensity image of the unique

multiplexing patterns. The authors in [5] proposed a deep neu-

ral network approach capable of simultaneously differentiating

110 OAM modes with classification error rate of less than

30%. Meanwhile, the authors in [6], used convolutional neural

networks (CNN) to differentiate 32 OAM modes with over

99% accuracy under high levels of turbulence. The work in

[6] also showed that this new method is robust to various

environmental parameters. However, the performance of the

solutions proposed in [5] and [6] degrades significantly for

large number of OAM modes and high levels of turbulence,

thus motivating the need for new, turbulence-robust solutions.

Recently, OAM communications has attracted significant at-

tention in the wireless communication literature. For instance,

in [7], the authors study the problem of enhancing spectrum

efficiency for multi-user access with different OAM modes

for two-tier wireless networks. Meanwhile, in [8], the authors

conducted important experiments to characterize the OAM

phase properties for long-distance transmission.

The main contribution of this paper is a novel framework

that exploits the powerful machine learning tools of persistent

homology [9] to enhance OAM mode detection, in presence

of turbulence. In particular, the proposed approach combines

a persistent homology-based input layer to a CNN-based

OAM decoder. This input layer allows inference of topological

and geometrical information rather than the intensity images,

for OAM mode detection. Our results show that exploiting

topological features is more effective than phase fronts, applied

in intensity images. In particular, simulation results show that

the proposed approach outperforms CNN, in terms of the

classification accuracy rate, by 10% in presence of severe

atmospheric turbulence and a large number of OAM modes.

II. SYSTEM MODEL

We consider an OAM communication system composed

of a single transmitter and receiver pair. The transmitter

communicates one out of M possible n-bit length messages

s ∈ M, where M = 2n. To transmit each message, n
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different OAM modes {c1, ..., cn} are superpositioned1, and

the corresponding transmitted beam x ∈ C
n is sent over the

channel. Hence, the transmitter can be seen as a mapping

function, T : M 7→ Cn. At the receiver, the received beam

y ∈ Cn is a noisy and distorted version of the transmitted

beam. The receiver must produce an estimate ŝ of the original

message s, and, hence, the receiver can be seen as a mapping

function, R : Cn 7→ M. Both x and y are vectors with each

element corresponding, respectively, to the intensity level of

the transmitted or received beam’s pixel. The length of x and

y equals to the number of pixels per beam p, which depends

on the pixel size of a charge-coupled device image sensor.

The considered OAM communication system must reduce

the message error rate (Pe = Pr(ŝ 6= s)) for a high number

of OAM modes and severe turbulence levels. Moreover, some

OAM modes are more robust to atmospheric turbulence, and,

thus, the n OAM modes that are used for encoding a message

can be selected in such a way to have the least sensitivity to

the channel conditions. Here, we assume that the set of OAM

modes, i.e. {c1, ..., cn} is fixed.

A CNN learning technique can be used for OAM decoding

with the objective of minimizing the message error rate. Such

a neural network can be modeled as a function composition

chain of functions, f(y) = aL◦qL◦aL−1◦qL−1◦· · ·◦a1◦q1(y);
where aj and qj are convolutional (conv1,...,convL) and

pooling (pool1,...,poolL) functions, respectively; and L is the

number of layers in the network. The convolution filters apply

convolution operations to the input, and then pooling applies

a moving window to choose the maximum value over a

local region. The final layer (based on softmax activation)

of the network represents the M messages. Once trained,

during the testing phase, the CNN yields a set of probabilities

{f1, ..., fm, ..., fM}, where fm is essentially the probability

that the CNN’s input message is classified as message m.

Message i is detected as the received message if fm < fi
for all m ∈ M and m 6= i.

Although CNN can be effective for improving OAM recep-

tion as shown in [6], relying solely on CNN for the purpose

of OAM detection can fail if the number of OAM modes is

large. In particular, CNN performs its decoding by relying

solely on the intensity profiles while ignoring the topological

structure of each OAM mode. However, in practice, each OAM

mode, also known as a topological charge, possesses a unique

twisted structure. Such topological structures contain more

discriminate features than intensity profiles. Hence, in order

to enhance the effectiveness of OAM decoding, it is desirable

to design new learning techniques that can exploit such topo-

logical structures, which has not been done in prior works

[5], [6]. In this context, persistent homology has recently

emerged as a powerful tool for addressing the problem of

topological feature detection and shape recognition. By means

of persistent homology, a shape is represented with a family

of simplicial complexes, indexed by a proximity parameter

1The throughput of the FSO communication link is linearly dependent on
n, and hence it is beneficial to increase n as much as possible to achieve
higher throughput for a given error rate.

Table I
SUMMARY OF MAIN NOTATIONS.

Variable Definition

µi = [µi,1, µi,2]T Location parameters of Gaussian Kernel

σi Standard deviation of Gaussian Kernel

ν
Parameter to control the effect of the

persistence and computational complexity

B
Persistence diagram (can be

visualized as multisets of intervals)

|.| Cardinality of a set

[9]. This converts different shapes into global topological

objects. The output of persistent homology is in the form of a

parameterized version of a Betti number, and can be illustrated

by a persistence diagram [9]. Depending on the combination of

OAM modes used in the transmitted beam, the received beam

will exhibit a unique topological structure which differentiates

it from other feasible combinations of OAM modes. Therefore,

persistent homology can be used to extract such features which

can, in turn, be exploited by the CNN to classify the received

message. Table I summarizes our notations.

Due to space limitation, the mathematical intricacies of

persistent homology are not provided in detail; we refer the

reader to [9] for algebraic-topological aspects of persistent

homology. Next, we propose a novel framework that employs

persistent homology as an input layer for CNN in order to

probe topological features of OAM modes and enhance the

OAM receiver performance.

III. PROPOSED FRAMEWORK

The utilization of unique topological structures of OAM

modes is promising to enhance OAM mode detection because

the topological features are independent of any particular

coordinate. As result, no optical alignment process is needed.

Furthermore, the topological features of OAM beams are

deformation invariant, i.e. their topology does not change if

the shape is stretched or compressed, due to atmospheric tur-

bulence. Also, topological analysis of OAM beams enhances

robustness to noise, enabling long distance communication.

Due to the superposition of n-orthogonal topological

charges, each transmitted beam x and hence corresponding

received beam y will exhibit a unique topological structure. In

this regard, persistent homology will allow us to replace each

point of an OAM topological structure with a solid sphere

and, then, record the topological features of the union of

these solid spheres as a function of their radius. When the

radius increases, new components can be created, or existing

components can merge together, or can be eliminated. The 0th

order topological feature captures the connected components,

the 1st order topological feature captures regions forming

a loop structure, and 2nd order topological feature captures

regions forming a void structure. The radius at which the jth

component, referred to as pj , is created is called its birth

time bj and the radius at which component pj is eliminated,

or merged with another component that has an earlier birth

time, is called its death time dj . For our OAM system,



Figure 1. The overall functionality of the proposed method used by an OAM
receiver to classify OAM modes, both projector and CNN are trained as a
single neural network.

persistent homology detects the connected components (0th

order), loops (1st order), and voids (2nd order) of the received

beam. Meanwhile, the corresponding (bj , dj)-tuples measure

how persistent the received beam’s topological features are. In

other words, the difference (dj − bj) is known as the lifetime

of the topological feature and measures its robustness and

prominence.

The persistence diagram can be visualized as multisets of

intervals B = {pj = (bj , dj) : 0 < bj < dj , j = 1, ..., |B|}.

We define a persistent homology as a mapping function

H, which maps the received beam y to its corresponding

persistence diagram B, i.e. y
H
7→ B. The persistence diagram

B does not possess a Hilbert space structure due to its unusual

structure as multisets. As result, machine learning algorithms

(e.g. CNN) operating on a Hilbert space cannot be applied

to persistence diagrams. However, a persistence diagram can

embed the set of persistence diagrams into a Hilbert space

by applying kernels to map the topological features into

machine learning compatible representation [10]. However,

such kernels are pre-defined and fixed, and therefore agnostic

to the learning stage of the supervised classification. For our

case, we propose a modified version of a Gaussian kernel

with learnable parameters. In particular, the parameters of our

kernel are tuned using back-propagation.

For the CNN of our OAM decoder, we introduce a persistent

homology-based input layer that is defined by projecting

any component pj with respect to a collection of kernels.

Therefore, each component pj , is transformed to a single value

zj (i.e. pj
Gσi,µi7→ zj) as follows, Gσi,µi

(pj) = e
−

‖pj−µi‖

2σi
2 ,

where µi = [µi,1, µi,2]
T is a location parameter and σi > 0 is

standard deviation. Both are learned using a backpropagation

learning method during the training stage.

Due to fact that components close to the diagonal of

persistence diagram are mainly noise, we can remove these

components in our analysis, i.e. zj = 0 if dj−bj < ν where ν

is a constant. Consequently, not only the contribution of noise

is discounted but also computational complexity is reduced.

The persistence diagram B per kernel is projected into a sin-

gle value vi =
∑|B|

j=1
Gσi,µi

(pj). By projecting B with respect

to N kernels with different parameters, the topological feature

vector v of the received OAM beam y can be constructed, i.e.

zj
v
7→ v, where v = [v1, ..., vN ]T .

Figure 2. The transmitted OAM beam when M = 16.

The end-to-end operation of the framework is shown in Fig.

1. First, B is computed using any standard persistent homology

algorithm (e.g. [9]) over the received OAM beam y, and then

B is projected to v which itself is an input layer for the CNN.

Therefore, the overall function of the resulting neural network

can be written as follows,

f(y) = aL ◦ qL ◦ aL−1 ◦ qL−1 ◦ · · · ◦ a1 ◦ q1 ◦ v ◦H(y), (1)

where σi and µi (for all i ∈ {1, ..., N}) and corresponding

parameters of L layers are learned during training.

An example of a computer-generated phase diagram without

turbulence for superposition of an OAM mode set {1, 2, 3, 4}
is shown in Fig. 2. The caption of each sub-image is the

encoded 4 bit-length message and the modes that are active

(set of integers in brackets). For instance, 0101[1, 3] means

that for four-bit message 0101, OAM modes 1 and 3 are

superpositioned and transmitted. Now, based on Fig. 2, we

can illustrate the reasons why the proposed approach, that

combines persistent homology and CNN, is more effective

than CNN alone, for OAM communications. In this regard,

the received beam of OAM communication has a unique

“twisted” structure (e.g. see Fig. 2). The persistent homology

acts as a topological feature selector which can automatically

choose those topological OAM features that contribute the

most to the output. However, without persistent homology,

the trained CNN model will rely on the irrelevant features

and noise, which can then reduce the accuracy of the OAM

decoder. Furthermore, by using persistent homology, each

received OAM beam can be properly categorized to its unique

topological structures through topological feature vector v.

Last but not least, the proposed method reduces training time

and algorithm complexity by removing the irrelevant features

and the components that most likely are linked to noise.

In order to intuitively explain how the proposed method out-

performs conventional CNN, the persistence diagram, phase

front and topological structure of a pair of 8-bit length OAM

messages both in transmit and receive are provided in Fig.

3. In particular, two OAM beams corresponding to the 82nd

and 91st messages are chosen. The main reason for choosing



Table II
PARAMETER ANALYSIS OF LAYERS USED IN THE PROPOSED METHOD

(PH+CNN) AND BASELINE (CNN: CONV1, POOL1,..., CONV5, POOL5,
FC1, FC2, FC3) WHEN N = 1000.

Proposed method Baseline Layer Kernel Parameters FLOPs

PH - PH 1 × 1 3 K 1 G

conv1 11 × 11 35 K 40 G

pool1 3 × 3 0 1 G

conv2 5 × 5 615 K 120 G

pool2 3 × 3 0 1 G

CNN CNN conv3 3 × 3 885 K 40 G

conv4 3 × 3 1.33 M 60 G

conv5 3 × 3 885 K 60 G

pool5 3 × 3 0 1 G

fc6 1 × 1 38 M 10 G

fc7 1 × 1 17 M 5 G

fc8 1 × 1 4 M 2 G

Table III
OVERALL FLOP COUNTS, NUMBER OF PARAMETER AND RUNNING TIME

OF PROPOSED METHOD (PH+CNN) AND BASELINE (CNN) WHEN

N = 1000.

Method Parameters FLOPs Running Time

PH+CNN 62.753 M 341 G 42.1 ms

CNN 62.75 M 340 G 42 ms

the pair as example is that, CNN frequently misclassifies

82nd message with 91st. In contrast, our proposed method

classifies this particular example correctly most of time. It

is clear that for both received messages, their persistence

diagrams, especially the 2nd order topological features (shown

in black) do not vary much compared to the phase diagrams.

As result, the CNN which relies on phase diagrams, will

misclassify the received OAM beam. Significant features of

3D topological shape (shown in blue) are far from the diagonal

in the persistence diagram, and their corresponding points

in the diagram do not change significantly. Furthermore,

Fig. 3 e) illustrates the output layer (the probabilistic values

between 0 and 1) resulting from the proposed framework and

conventional CNN, when the transmit message’s index is 82.

Clearly, in the proposed framework, f82 is much higher than

other fm for all 1 ≤ m ≤ 128 and m 6= 82. However, in

case of conventional CNN, f91 is higher than other fm for all

1 ≤ m ≤ 128 and m 6= 91, and thus the CNN misclassifies

the 82nd message as the 91st.

Our network is based on Alexnet [11] and is composed of

5 conv-pooling layers (explained in Section II) and 3 fully

connected (fc) layers. The detailed network architectures of

the proposed method (PH, conv1, pool1,..., conv5, pool5, fc1,

fc2, fc3) and baseline (conv1, pool1,..., conv5, pool5, fc1, fc2,

fc3) are shown in Table II. In order to remove the dependency

of the algorithm’s running time on hardware, the floating-

point instruction (FLOP) counts are calculated. The FLOP

counts of backward propagation layers are listed in Table II,

from which we can see that processing overhead of computing

persistent homology (PH) is much lower than the rest of the

convolutional layers. Also, Table III shows that the running

time and FLOP counts of the proposed method (including

persistent homology plus Alexnet-based CNN) are just 0.3%

and 0.5% higher than the baseline (Alexnet) when both are

running on GTX1080, respectively.

Figure 3. The OAM decoding of M = 128; due to importance, the 1st and
2nd order topological feature are shown with black and red, respectively; a)
the 82nd message is shown at the transmit side (x); b) the 82ed message is
shown at the receive side (y); c) the 91st message is shown at the transmit
side (x); d) the 91st message is shown at the receive side (y); e) fm is
illustrated for both proposed method PH+CNN and CNN.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we demonstrate the performance of the

proposed method in terms of accuracy (Pr(ŝ = s) = 1− Pe),

and we compare it with the CNN-based method (Alexnet) of

[6]. For the purpose of training and testing the framework, the

first-n-adjacent OAM modes, (n ∈ {6, ..., 16}) are generated

and superpositioned, numerically.

Additionally, the effect of varying the turbulence level

and the message length (which is equal to the number of

OAM modes) on the accuracy rate (1 − Pe) are investigated.

Turbulence causes a random phase along the propagation path



of the beam [12], and the turbulence level, denoted by T ,

can be quantified as the ratio between linear dimension of

the SLM and the Fried’s parameter [12]. We compare the

performance of the proposed method, called “PH+CNN”, with

those achieved by the CNN in [6], and we call it “CNN”.

Our dataset is generated numerically by using the “basic

paraxial optics toolkit” in MATLAB [13], and it consists of a

balanced group size (per OAM) of 10000 phase diagrams that

contains a variable amount of turbulence. To train the CNN,

we split the data collected into two separate sets a training set

(85%) and testing set (15%) of the overall dataset. The training

and testing sets are completely independent of one another

and do not share any turbulence realizations. The training and

testing set for the PH+CNN use the same turbulence realiza-

tions as those used for the CNN. In our simulations, the most

meaningful results were found by empirically setting ν to 0.1.

Therefore, all results are reported for ν = 0.1. By adjusting

ν, we can control and discount the effect of the points with

low persistence and computational complexity (explained in

Section III). Furthermore, for computing persistent homology,

the “R package TDA” [14] is used.

Fig. 4 shows the accuracy of decoding for different tur-

bulence levels and bit lengths of CNN and PH+CNN. Fig.

4 shows that, PH+CNN outperforms CNN for different turbu-

lence levels and bit lengths. Fig. 4 shows that the performance

of both methods degrades rapidly with increasing turbulence

level and bit length. However, for higher turbulence levels,

the performance of PH+CNN is much better than CNN while

they perform similarly at low turbulence levels. It can be seen

that for a severe turbulence level of 21, for a message with

16-bit length, PH+CNN yields up to 20% better accuracy than

CNN. This demonstrates that the PH+CNN method can allow

a larger message size or OAM number and can increase the

capacity further even for high turbulence levels.

V. CONCLUSIONS

In this paper, we have proposed a new approach that

combines persistent homology and CNN to decode OAM

modes. We have shown that, after training the proposed

method on set of each superpositioned OAM mode, a high

accuracy, rate even with large number of OAM modes, in

presence of severe atmospheric turbulence can be achieved.

Numerical results have shown a substantial increase in the

number of simultaneously-discriminated OAM modes under

turbulence channel with better accuracy than CNN. Future

work can consider the design of an autoencoder to select OAM

modes with highest discriminative topological features as the

messages, for given channel conditions, data rates and error

rate requirements, adaptively.
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