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Deep Learning with Persistent Homology for
Orbital Angular Momentum (OAM) Decoding

Soheil Rostami, Walid Saad, and Choong Seon Hong

Abstract—Orbital angular momentum (OAM)-encoding has
recently emerged as an effective approach for increasing the
channel capacity of free-space optical communications. In this
paper, OAM-based decoding is formulated as a supervised
classification problem. To maintain lower error rate in presence
of severe atmospheric turbulence, a new approach that combines
effective machine learning tools from persistent homology and
convolutional neural networks (CNNs) is proposed to decode
the OAM modes. A Gaussian kernel with learnable parameters
is proposed in order to connect persistent homology to CNN,
allowing the system to extract and distinguish robust and unique
topological features for the OAM modes. Simulation results
show that the proposed approach achieves up to 20% gains in
classification accuracy rate over state-of-the-art of method based
on only CNNs. These results essentially show that geometric
and topological features play a pivotal role in the OAM mode
classification problem.

Index Terms—OAM, convolutional neural networks, persistent
homology, free-space optical communication.

I. INTRODUCTION

Free-space optical (FSO) communication is an effective
approach for fixed point-to-point communication, such as
backhaul connectivity and fiber backup over distances up to
several kilometers [1]. In order to increase the transmission
capacity of FSO communication, space division multiplexing
can be exploited. In particular, the use of the orbital angular
momentum (OAM) of a light beam has been recently proposed
to realize space division multiplexing in FSO communication
systems [2]. OAM is expected to play a major role in many
emerging communication systems [3].

Theoretically, Laguerre-Gaussian (LG) beams can carry an
infinite values of OAM modes, by encoding a bit-tuple of
information as superposition of OAM modes [2]. Therefore,
the transmission capacity can be increased with orders-of-
magnitude by allowing beams with different modes to be
multiplexed together and transmitted over the same communi-
cation link. However, in FSO communications, the high sen-
sitivity of the spatial structure of a light beam to atmospheric
conditions such as turbulence can cause cross-talk among
adjacent OAM modes. This, in turn, makes it challenging to
perform error-free OAM mode detection particularly when a
large number of OAM modes are used [2].
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Conventionally, an optical solution based on coherent de-
tection, known as conjugate-mode sorting method is applied
for OAM detection as done in [4]. For the coherent detection
of OAM modes, both the transmitter and receiver can use
spatial light modulators (SLMs). In [4], a first proof-of-
concept experiment, based on coherent detection, is developed
to utilize OAM modes by defining an unlimited dimensional
discrete Hilbert space. Recently, neural network approaches
have been adopted in [5] and [6] in order to enhance OAM
decoding by relying only on an intensity image of the unique
multiplexing patterns. The authors in [5] proposed a deep neu-
ral network approach capable of simultaneously differentiating
110 OAM modes with classification error rate of less than
30%. Meanwhile, the authors in [6], used convolutional neural
networks (CNN) to differentiate 32 OAM modes with over
99% accuracy under high levels of turbulence. The work in
[6] also showed that this new method is robust to various
environmental parameters. However, the performance of the
solutions proposed in [5] and [6] degrades significantly for
large number of OAM modes and high levels of turbulence,
thus motivating the need for new, turbulence-robust solutions.

Recently, OAM communications has attracted significant at-
tention in the wireless communication literature. For instance,
in [7], the authors study the problem of enhancing spectrum
efficiency for multi-user access with different OAM modes
for two-tier wireless networks. Meanwhile, in [8], the authors
conducted important experiments to characterize the OAM
phase properties for long-distance transmission.

The main contribution of this paper is a novel framework
that exploits the powerful machine learning tools of persistent
homology [9] to enhance OAM mode detection, in presence
of turbulence. In particular, the proposed approach combines
a persistent homology-based input layer to a CNN-based
OAM decoder. This input layer allows inference of topological
and geometrical information rather than the intensity images,
for OAM mode detection. Our results show that exploiting
topological features is more effective than phase fronts, applied
in intensity images. In particular, simulation results show that
the proposed approach outperforms CNN, in terms of the
classification accuracy rate, by 10% in presence of severe
atmospheric turbulence and a large number of OAM modes.

II. SYSTEM MODEL

We consider an OAM communication system composed
of a single transmitter and receiver pair. The transmitter
communicates one out of M possible n-bit length messages
s € M, where M = 2". To transmit each message, n


http://arxiv.org/abs/1911.06858v1

different OAM modes {cy, ...,c, } are superpositioned', and
the corresponding transmitted beam « € C” is sent over the
channel. Hence, the transmitter can be seen as a mapping
function, € : M — C". At the receiver, the received beam
y € C" is a noisy and distorted version of the transmitted
beam. The receiver must produce an estimate 5 of the original
message s, and, hence, the receiver can be seen as a mapping
function, R : C" — M. Both x and y are vectors with each
element corresponding, respectively, to the intensity level of
the transmitted or received beam’s pixel. The length of  and
y equals to the number of pixels per beam p, which depends
on the pixel size of a charge-coupled device image sensor.

The considered OAM communication system must reduce
the message error rate (P. = Pr(§ # s)) for a high number
of OAM modes and severe turbulence levels. Moreover, some
OAM modes are more robust to atmospheric turbulence, and,
thus, the n OAM modes that are used for encoding a message
can be selected in such a way to have the least sensitivity to
the channel conditions. Here, we assume that the set of OAM
modes, i.e. {c1,...,¢,} is fixed.

A CNN learning technique can be used for OAM decoding
with the objective of minimizing the message error rate. Such
a neural network can be modeled as a function composition
chain of functions, f(y) = aroqroar_10qr_10---0ajoq(y);
where a; and ¢; are convolutional (convl,....,convL) and
pooling (pooll,...,poolL) functions, respectively; and L is the
number of layers in the network. The convolution filters apply
convolution operations to the input, and then pooling applies
a moving window to choose the maximum value over a
local region. The final layer (based on softmax activation)
of the network represents the M messages. Once trained,
during the testing phase, the CNN yields a set of probabilities
{f1, s fms s far}, where f,, is essentially the probability
that the CNN’s input message is classified as message m.
Message ¢ is detected as the received message if f,, < f;
for all m € M and m # 1.

Although CNN can be effective for improving OAM recep-
tion as shown in [6], relying solely on CNN for the purpose
of OAM detection can fail if the number of OAM modes is
large. In particular, CNN performs its decoding by relying
solely on the intensity profiles while ignoring the topological
structure of each OAM mode. However, in practice, each OAM
mode, also known as a topological charge, possesses a unique
twisted structure. Such topological structures contain more
discriminate features than intensity profiles. Hence, in order
to enhance the effectiveness of OAM decoding, it is desirable
to design new learning techniques that can exploit such topo-
logical structures, which has not been done in prior works
[5], [6]. In this context, persistent homology has recently
emerged as a powerful tool for addressing the problem of
topological feature detection and shape recognition. By means
of persistent homology, a shape is represented with a family
of simplicial complexes, indexed by a proximity parameter

'The throughput of the FSO communication link is linearly dependent on
n, and hence it is beneficial to increase n as much as possible to achieve
higher throughput for a given error rate.

Table 1
SUMMARY OF MAIN NOTATIONS.

Variable Definition
M = (11, M,z}T Location parameters of Gaussian Kernel

e} Standard deviation of Gaussian Kernel

y Parameter to control the effect of the
persistence and computational complexity

B Persistence diagram (can be

visualized as multisets of intervals)
| Cardinality of a set

[9]. This converts different shapes into global topological
objects. The output of persistent homology is in the form of a
parameterized version of a Betti number, and can be illustrated
by a persistence diagram [9]. Depending on the combination of
OAM modes used in the transmitted beam, the received beam
will exhibit a unique topological structure which differentiates
it from other feasible combinations of OAM modes. Therefore,
persistent homology can be used to extract such features which
can, in turn, be exploited by the CNN to classify the received
message. Table I summarizes our notations.

Due to space limitation, the mathematical intricacies of
persistent homology are not provided in detail; we refer the
reader to [9] for algebraic-topological aspects of persistent
homology. Next, we propose a novel framework that employs
persistent homology as an input layer for CNN in order to
probe topological features of OAM modes and enhance the
OAM receiver performance.

III. PROPOSED FRAMEWORK

The utilization of unique topological structures of OAM
modes is promising to enhance OAM mode detection because
the topological features are independent of any particular
coordinate. As result, no optical alignment process is needed.
Furthermore, the topological features of OAM beams are
deformation invariant, i.e. their topology does not change if
the shape is stretched or compressed, due to atmospheric tur-
bulence. Also, topological analysis of OAM beams enhances
robustness to noise, enabling long distance communication.

Due to the superposition of mn-orthogonal topological
charges, each transmitted beam x and hence corresponding
received beam y will exhibit a unique topological structure. In
this regard, persistent homology will allow us to replace each
point of an OAM topological structure with a solid sphere
and, then, record the topological features of the union of
these solid spheres as a function of their radius. When the
radius increases, new components can be created, or existing
components can merge together, or can be eliminated. The 0"
order topological feature captures the connected components,
the 1%¢ order topological feature captures regions forming
a loop structure, and 2"? order topological feature captures
regions forming a void structure. The radius at which the j**
component, referred to as p;, is created is called its birth
time b; and the radius at which component p; is eliminated,
or merged with another component that has an earlier birth
time, is called its death time dj. For our OAM system,
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Figure 1. The overall functionality of the proposed method used by an OAM
receiver to classify OAM modes, both projector and CNN are trained as a
single neural network.

persistent homology detects the connected components (0"
order), loops (1°* order), and voids (2" order) of the received
beam. Meanwhile, the corresponding (b, d;)-tuples measure
how persistent the received beam’s topological features are. In
other words, the difference (d; — b;) is known as the lifetime
of the topological feature and measures its robustness and
prominence.

The persistence diagram can be visualized as multisets of
intervals B = {pj = (bj,dj) 0 < bj < dj7j = 1,,|B|}
We define a persistent homology as a mapping function
), which maps the received beam y to its corresponding
persistence diagram B, i.e. y 3 B. The persistence diagram
B does not possess a Hilbert space structure due to its unusual
structure as multisets. As result, machine learning algorithms
(e.g. CNN) operating on a Hilbert space cannot be applied
to persistence diagrams. However, a persistence diagram can
embed the set of persistence diagrams into a Hilbert space
by applying kernels to map the topological features into
machine learning compatible representation [10]. However,
such kernels are pre-defined and fixed, and therefore agnostic
to the learning stage of the supervised classification. For our
case, we propose a modified version of a Gaussian kernel
with learnable parameters. In particular, the parameters of our
kernel are tuned using back-propagation.

For the CNN of our OAM decoder, we introduce a persistent
homology-based input layer that is defined by projecting
any component p; with respect to a collection of kernels.
Therefore, each component p;, is transformed to a singHIe Vahﬁe

Pj—Hq
zj (le. p; V" z) as follows, Gy, .. (pj) = € s
where p1; = 1.1, pi 2] is a location parameter and o; > 0 is
standard deviation. Both are learned using a backpropagation
learning method during the training stage.

Due to fact that components close to the diagonal of
persistence diagram are mainly noise, we can remove these
components in our analysis, i.e. z; = 0 if d; —b; < v where v
is a constant. Consequently, not only the contribution of noise
is discounted but also computational complexity is reduced.

The persistence diagram B per kernel is projected into a sin-
gle value v; = Z‘jill Go, u,(p;). By projecting B with respect
to N kernels with different parameters, the topological feature
vector v of the received OAM beam y can be constructed, i.e.
25 5 v, where v = [v1, .., on] T
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Figure 2. The transmitted OAM beam when M = 16.

The end-to-end operation of the framework is shown in Fig.
1. First, B is computed using any standard persistent homology
algorithm (e.g. [9]) over the received OAM beam y, and then
B is projected to v which itself is an input layer for the CNN.
Therefore, the overall function of the resulting neural network
can be written as follows,

fly)=aroqroar_10qr_10---0aioqovofN(y), (1)

where o; and p,; (for all ¢ € {1,...,N}) and corresponding
parameters of L layers are learned during training.

An example of a computer-generated phase diagram without
turbulence for superposition of an OAM mode set {1,2,3,4}
is shown in Fig. 2. The caption of each sub-image is the
encoded 4 bit-length message and the modes that are active
(set of integers in brackets). For instance, 0101[1, 3] means
that for four-bit message 0101, OAM modes 1 and 3 are
superpositioned and transmitted. Now, based on Fig. 2, we
can illustrate the reasons why the proposed approach, that
combines persistent homology and CNN, is more effective
than CNN alone, for OAM communications. In this regard,
the received beam of OAM communication has a unique
“twisted” structure (e.g. see Fig. 2). The persistent homology
acts as a topological feature selector which can automatically
choose those topological OAM features that contribute the
most to the output. However, without persistent homology,
the trained CNN model will rely on the irrelevant features
and noise, which can then reduce the accuracy of the OAM
decoder. Furthermore, by using persistent homology, each
received OAM beam can be properly categorized to its unique
topological structures through topological feature vector v.
Last but not least, the proposed method reduces training time
and algorithm complexity by removing the irrelevant features
and the components that most likely are linked to noise.

In order to intuitively explain how the proposed method out-
performs conventional CNN, the persistence diagram, phase
front and topological structure of a pair of 8-bit length OAM
messages both in transmit and receive are provided in Fig.
3. In particular, two OAM beams corresponding to the 827¢
and 91°¢ messages are chosen. The main reason for choosing



Table 11
PARAMETER ANALYSIS OF LAYERS USED IN THE PROPOSED METHOD
(PH+CNN) AND BASELINE (CNN: CONV1, POOLI,...,CONVS5, POOLS,
FCl1, FC2, FC3) WHEN N = 1000.

Proposed method | Baseline | Layer Kernel Parameters ~ FLOPs
PH - PH 1x1 3K 1G
convl 11 x 11 35K 40 G
pooll 3x3 0 1G
conv2 5x5 615 K 120 G
pool2 3x3 0 1G
CNN CNN conv3 3x3 885 K 40 G
conv4 3x3 133 M 60 G
convs 3x3 885 K 60 G
pool5 3x3 0 1G
fc6 1x1 38 M 10 G
fc7 1x1 17M 5G
fc8 1x1 4 M 2 G
Table IIT

OVERALL FLOP COUNTS, NUMBER OF PARAMETER AND RUNNING TIME
OF PROPOSED METHOD (PH+CNN) AND BASELINE (CNN) WHEN

N = 1000.
Method Parameters ~ FLOPs  Running Time
PH+CNN 62.753 M 341 G 42.1 ms
CNN 62.75 M 340 G 42 ms

the pair as example is that, CNN frequently misclassifies
82"? message with 91%. In contrast, our proposed method
classifies this particular example correctly most of time. It
is clear that for both received messages, their persistence
diagrams, especially the 2" order topological features (shown
in black) do not vary much compared to the phase diagrams.
As result, the CNN which relies on phase diagrams, will
misclassify the received OAM beam. Significant features of
3D topological shape (shown in blue) are far from the diagonal
in the persistence diagram, and their corresponding points
in the diagram do not change significantly. Furthermore,
Fig. 3 e) illustrates the output layer (the probabilistic values
between 0 and 1) resulting from the proposed framework and
conventional CNN, when the transmit message’s index is 82.
Clearly, in the proposed framework, fso is much higher than
other f,, for all 1 < m < 128 and m # 82. However, in
case of conventional CNN, fo; is higher than other f,,, for all
1 < m < 128 and m # 91, and thus the CNN misclassifies
the 82"¢ message as the 91°%.

Our network is based on Alexnet [11] and is composed of
5 conv-pooling layers (explained in Section II) and 3 fully
connected (fc) layers. The detailed network architectures of
the proposed method (PH, convl, pooll,..., conv5, pools5, fcl,
fc2, fc3) and baseline (convl, pooll,..., conv5, pool3, fcl, fc2,
fc3) are shown in Table II. In order to remove the dependency
of the algorithm’s running time on hardware, the floating-
point instruction (FLOP) counts are calculated. The FLOP
counts of backward propagation layers are listed in Table II,
from which we can see that processing overhead of computing
persistent homology (PH) is much lower than the rest of the
convolutional layers. Also, Table III shows that the running
time and FLOP counts of the proposed method (including
persistent homology plus Alexnet-based CNN) are just 0.3%
and 0.5% higher than the baseline (Alexnet) when both are
running on GTX1080, respectively.
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Figure 3. The OAM decoding of M = 128; due to importance, the 15 and
274 order topological feature are shown with black and red, respectively; a)
the 827¢ message is shown at the transmit side (x); b) the 82°¢ message is
shown at the receive side (y); c) the 915¢ message is shown at the transmit
side (x); d) the 915t message is shown at the receive side (y); €) fm is
illustrated for both proposed method PH+CNN and CNN.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we demonstrate the performance of the
proposed method in terms of accuracy (Pr(§ =s) =1 — P.),
and we compare it with the CNN-based method (Alexnet) of
[6]. For the purpose of training and testing the framework, the
first-n-adjacent OAM modes, (n € {6, ...,16}) are generated
and superpositioned, numerically.

Additionally, the effect of varying the turbulence level
and the message length (which is equal to the number of
OAM modes) on the accuracy rate (1 — P.) are investigated.
Turbulence causes a random phase along the propagation path



of the beam [12], and the turbulence level, denoted by 7T,
can be quantified as the ratio between linear dimension of
the SLM and the Fried’s parameter [12]. We compare the
performance of the proposed method, called “PH+CNN”, with
those achieved by the CNN in [6], and we call it “CNN”.

Our dataset is generated numerically by using the “basic
paraxial optics toolkit” in MATLAB [13], and it consists of a
balanced group size (per OAM) of 10000 phase diagrams that
contains a variable amount of turbulence. To train the CNN,
we split the data collected into two separate sets a training set
(85%) and testing set (15%) of the overall dataset. The training
and testing sets are completely independent of one another
and do not share any turbulence realizations. The training and
testing set for the PH+CNN use the same turbulence realiza-
tions as those used for the CNN. In our simulations, the most
meaningful results were found by empirically setting v to 0.1.
Therefore, all results are reported for v = 0.1. By adjusting
v, we can control and discount the effect of the points with
low persistence and computational complexity (explained in
Section III). Furthermore, for computing persistent homology,
the “R package TDA” [14] is used.

Fig. 4 shows the accuracy of decoding for different tur-
bulence levels and bit lengths of CNN and PH+CNN. Fig.
4 shows that, PH+CNN outperforms CNN for different turbu-
lence levels and bit lengths. Fig. 4 shows that the performance
of both methods degrades rapidly with increasing turbulence
level and bit length. However, for higher turbulence levels,
the performance of PH+CNN is much better than CNN while
they perform similarly at low turbulence levels. It can be seen
that for a severe turbulence level of 21, for a message with
16-bit length, PH+CNN yields up to 20% better accuracy than
CNN. This demonstrates that the PH+CNN method can allow
a larger message size or OAM number and can increase the
capacity further even for high turbulence levels.

V. CONCLUSIONS

In this paper, we have proposed a new approach that
combines persistent homology and CNN to decode OAM
modes. We have shown that, after training the proposed
method on set of each superpositioned OAM mode, a high
accuracy, rate even with large number of OAM modes, in
presence of severe atmospheric turbulence can be achieved.
Numerical results have shown a substantial increase in the
number of simultaneously-discriminated OAM modes under
turbulence channel with better accuracy than CNN. Future
work can consider the design of an autoencoder to select OAM
modes with highest discriminative topological features as the
messages, for given channel conditions, data rates and error
rate requirements, adaptively.
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