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I. SYSTEM MODEL 

The hard disk drive (HDD) industry is facing a physical limit on the areal density (AD) of one-dimensional 
magnetic recording (1DMR) on traditional magnetic media. To increase capacity without media redesign, two-
dimensional magnetic recording (TDMR) has been introduced. The effective channel model has a media noise 
term which models signal dependent noise due to, e.g., magnetic grains intersected by bit boundaries. Trellis 
based detection with pattern dependent noise prediction (PDNP) [1] is standard practice in HDDs. The trellis 
detector sends soft coded bit estimates to a channel decoder, which outputs user information bit estimates. 
PDNP uses a relatively simple autoregressive noise model and linear prediction; this model is somewhat 
restrictive and may not accurately represent the media noise, especially at high storage densities. To address this 
modeling problem, we design and train deep neural network (DNN) based media noise predictors. As DNN [2] 
models are more general than autoregressive models, they more accurately model media noise compared to 
PDNP. The proposed turbo detector assumes a channel model for the kth linear equalizer filter output 𝑦(𝑘): 

𝑦(𝑘)  =  (𝐡 ∗  𝐮)  + 𝑛௠(𝑘)  +  𝑛௘(𝑘)                                                       (1) 

where 𝐡 is the PR target, 𝐮 are the coded bits on the track, ∗ indicates 1D/2D convolution, 𝑛௠(𝑘) is media 
noise, and 𝑛௘(𝑘) is AWGN. We use a grain flipping probabilistic (GFP) model data (based on micro-magnetic 
simulations [3]) to train and evaluate our system. The simulated media grain density is 11.4 Teragrains/in2. The 
GFP waveforms correspond to five tracks of coded bits (±1), denoted as tracks 0 through 4, written using 
shingled writing with a bit length (BL) of 11 nm. For 1DMR, the track pitch (TP) is 48 nm, and there are 9.33 
grains per coded bit (GPB).  For TDMR, TP =18 nm, and GPB = 3.50. There are 41206 and 41202 coded bits 
per track for TP 48 nm and 18 nm respectively, which are close to the sector size of 32768 bits in a typical 
HDD. For 1DMR, we use the readings from Track #2 as inputs, and for TDMR, the readings are from Track #1 
through #3. The proposed methods are evaluated in comparison with baseline PDNP detectors.  

II. BCJR-LDPC-DNN TURBO DETECTOR 

In [4], we proposed a BCJR-DNN turbo detector for 1DMR, without LDPC decoding. Here, we generalize 
to three-track TDMR and include decoding. Fig. 1 shows the BCJR-LDPC-DNN turbo detector for TDMR with 
separate trellis-based ISI/ITI detection and DNN-based media-noise prediction. Log-likelihood-ratio (LLR) and 
media noise estimates are exchanged between these two detectors until the BER converges. In Fig. 1, the GFP 
simulated read-head output vector r contains two samples per coded bit. The odd samples r(1) (the “first 
samples” per bit) for all five input tracks are passed to a 2D partial response (PR) equalizer designed to 
minimize the mean squared 
error (MMSE) between the 
three-track filtered output 
y(1) and the convolution of 
the coded bits u with the 2D 
PR mask h. The 2D-BCJR 
trellis detector performs ISI 
equalization on  input y(1), 
and generates LLR outputs. 
The PR target h is 3 × 3 , 
hence, the 2D-BCJR state 
bits are 3 × 2, so the trellis 
has 64 states.  In the 1st 
iteration, the 2D-BCJR 
LLRs 𝐋𝐋𝐑௕బ

, y(1) and the 
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Fig. 1 BCJR-LDPC-DNN turbo detector for TDMR. 
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Table II Simulation of PDNP and BCJR- 
LDPC-DNN detectors for TDMR at TP 18 nm 

unfiltered even samples r(2) are passed to the DNN to estimate the media noise 𝐧ෝ௠. The noise 𝐧ෝ௠ is fed back to 
the 2D-BCJR to obtain a lower BER. Next, the 2D-BCJR passes LLRs 𝐋𝐋𝐑௕ to a low density parity check 
(LDPC) decoder. The decoder generates the final LLRs 𝐋𝐋𝐑௟ at the end of each turbo-iteration. 

AD is determined by increasing the LDPC code rate until the decoded BER is ≤ 10ିହ. For the 2nd iteration, 
the decoder LLRs 𝐋𝐋𝐑௟ are passed as inputs to the DNN instead of 𝐋𝐋𝐑௕. The system exchanges LLRs between 
DNN, BCJR and decoder iteratively to achieve higher AD. The dotted lines in Fig. 1 indicate optional inner 
iterations between the BCJR and the LDPC decoder. We investigate two approaches to interface the BCJR and 
LDPC with the DNN. In the first approach labeled as “3 CNNs 1 pass” in Table II, we use one convolutional 
neural network (CNN) to estimate the media noise 𝑛ො௠ೖ

 for the kth BCJR trellis stage for the three tracks. The 
second approach labeled as “3 CNNs 1 pass” predicts 𝑛ො௠ೖ

 using a separate CNN for each track. By employing 
three CNNs, we expand the search space to improve the estimation of the media noise.    

III. SIMULATION RESULTS 

 Table I presents simulation results for PDNP and BCJR-LDPC-DNN detectors for 1DMR. The 1D turbo 
detector processes only the middle track, and its PR target h has three taps, thus its trellis has 4 states. The 1D-
PDNP uses the same PR target, but has 128 trellis states. LLRs are exchanged between the 1D-PDNP and the 
LDPC decoder iteratively in a turbo architecture. To train and test the 1D-PDNP parameters, 20 and 80 blocks 
are used respectively. The performance of the detectors is 
evaluated on the TP 48 nm dataset. To be consistent with [4] 
we use 16 blocks for the training data set, and 84 blocks for 
the test dataset. Two turbo-iterations are performed for both 
methods. For 1D-PDNP, the second iteration does not 
improve the AD, hence, we only report its first iteration. The 
first turbo-iteration of BCJR-LDPC-DNN detector labeled as 
“CNN 1 pass” acheives 1.60% density gain over 1D-PDNP. 
The second iteration labeled as “CNN 2 passes” has density 
gain of 2.01% over 1D-PDNP. 

 Table II presents simulation results for PDNP and BCJR-
LDPC-DNN detectors for TDMR; the PDNP results are from 
[5].  The two-track 2D-PDNP looks at 2 × 3 bit patterns and 
has 64 states; 40 and 60 blocks are used for training and 
testing, respectively. The best PDNP performance belongs to 
1D-PDNP with two turbo-iterations labeled as “1D-PDNP 2 
passes”, which we consider as the baseline. For the BCJR-
LDPC-DNN detector, we use 80 and 20 blocks as the training 
and test datasets respectivly. The one-CNN architecture  
(labeled “1 CNN 1 pass”) achieves a density gain of 27.52% 
over the baseline. For the three-CNNs architecture (labeled “3 
CNNs 1 pass”), the BCJR-LDPC-DNN detector has a density 
gain of 27.75% compared to the baseline. 
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TDMR 
Detectors 

Areal 
Density 
(Tb/𝐢𝐧𝟐) 

User Bits 
per Grain 

Code 
Rate 

1D-PDNP 1.186 0.1041 0.9710 

CNN 
1 pass 

1.205 0.1057 0.9865 

CNN 
2 passes 

1.210 0.1062 0.9905 

TDMR 
Detectors 

Areal 
Density 
(Tb/𝐢𝐧𝟐) 

User Bits 
per Grain 

Code  
Rate 

1D-PDNP  
1 pass 

2.482 0.2177 0.7600 

1D-PDNP  
2 passes 

2.531 0.2220 0.7750 

2D-PDNP  
1 pass 

2.230 0.1957 0.6830 

1 CNN 
1 pass 

3.228 0.2833 0.9883 
 

3 CNNs 
1 pass 

3.234 0.2838 0.9901 

Table I Simulation of PDNP and BCJR- 
LDPC-DNN detectors for 1DMR at TP 48 nm 
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