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I. SYSTEM MODEL

The hard disk drive (HDD) industry is facing a physical limit on the areal density (AD) of one-dimensional
magnetic recording (IDMR) on traditional magnetic media. To increase capacity without media redesign, two-
dimensional magnetic recording (TDMR) has been introduced. The effective channel model has a media noise
term which models signal dependent noise due to, e.g., magnetic grains intersected by bit boundaries. Trellis
based detection with pattern dependent noise prediction (PDNP) [1] is standard practice in HDDs. The trellis
detector sends soft coded bit estimates to a channel decoder, which outputs user information bit estimates.
PDNP uses a relatively simple autoregressive noise model and linear prediction; this model is somewhat
restrictive and may not accurately represent the media noise, especially at high storage densities. To address this
modeling problem, we design and train deep neural network (DNN) based media noise predictors. As DNN [2]
models are more general than autoregressive models, they more accurately model media noise compared to
PDNP. The proposed turbo detector assumes a channel model for the kth linear equalizer filter output y(k):

y(k) = (h * w) + np(k) + ne(k) )

where h is the PR target, u are the coded bits on the track, * indicates 1D/2D convolution, n,, (k) is media
noise, and n, (k) is AWGN. We use a grain flipping probabilistic (GFP) model data (based on micro-magnetic
simulations [3]) to train and evaluate our system. The simulated media grain density is 11.4 Teragrains/in?. The
GFP waveforms correspond to five tracks of coded bits (£1), denoted as tracks O through 4, written using
shingled writing with a bit length (BL) of 11 nm. For IDMR, the track pitch (TP) is 48 nm, and there are 9.33
grains per coded bit (GPB). For TDMR, TP =18 nm, and GPB = 3.50. There are 41206 and 41202 coded bits
per track for TP 48 nm and 18 nm respectively, which are close to the sector size of 32768 bits in a typical
HDD. For IDMR, we use the readings from Track #2 as inputs, and for TDMR, the readings are from Track #1
through #3. The proposed methods are evaluated in comparison with baseline PDNP detectors.

II. BCJR-LDPC-DNN TURBO DETECTOR

In [4], we proposed a BCJR-DNN turbo detector for IDMR, without LDPC decoding. Here, we generalize
to three-track TDMR and include decoding. Fig. 1 shows the BCJR-LDPC-DNN turbo detector for TDMR with
separate trellis-based ISI/ITI detection and DNN-based media-noise prediction. Log-likelihood-ratio (LLR) and
media noise estimates are exchanged between these two detectors until the BER converges. In Fig. 1, the GFP
simulated read-head output vector r contains two samples per coded bit. The odd samples r) (the “first
samples” per bit) for all five input tracks are passed to a 2D partial response (PR) equalizer designed to
minimize the mean squared
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Fig. 1 BCJR-LDPC-DNN turbo detector for TDMR.
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unfiltered even samples r® are passed to the DNN to estimate the media noise fi,,,. The noise fi,,, is fed back to
the 2D-BCJR to obtain a lower BER. Next, the 2D-BCJR passes LLRs LLR;, to a low density parity check
(LDPC) decoder. The decoder generates the final LLRs LLR; at the end of each turbo-iteration.

AD is determined by increasing the LDPC code rate until the decoded BER is < 107>, For the 2" iteration,
the decoder LLRs LLR; are passed as inputs to the DNN instead of LLR;,. The system exchanges LLRs between
DNN, BCJR and decoder iteratively to achieve higher AD. The dotted lines in Fig. 1 indicate optional inner
iterations between the BCJR and the LDPC decoder. We investigate two approaches to interface the BCJR and
LDPC with the DNN. In the first approach labeled as “3 CNNs 1 pass” in Table II, we use one convolutional
neural network (CNN) to estimate the media noise fi,,, for the kth BCIR trellis stage for the three tracks. The
second approach labeled as “3 CNNs 1 pass” predicts 7i,,, using a separate CNN for each track. By employing
three CNNs, we expand the search space to improve the estimation of the media noise.

III. SIMULATION RESULTS

Table I presents simulation results for PDNP and BCJR-LDPC-DNN detectors for IDMR. The 1D turbo
detector processes only the middle track, and its PR target h has three taps, thus its trellis has 4 states. The 1D-
PDNP uses the same PR target, but has 128 trellis states. LLRs are exchanged between the 1D-PDNP and the
LDPC decoder iteratively in a turbo architecture. To train and test the 1D-PDNP parameters, 20 and 80 blocks
are used respectively. The performance of the detectors is
evaluated on the TP 48 nm dataset. To be consistent with [4]
we use 16 blocks for the training data set, and 84 blocks for

Table I Simulation of PDNP and BCJR-
LDPC-DNN detectors for IDMR at TP 48 nm

the test dataset. Two turbo-iterations are perfo.rmed for both TDMR Arcal | User Bits | Code

methods. For 1D-PDNP, the second iteration does not . .

. . . . Detectors | Density |per Grain| Rate

improve the AD, hence, we only report its first iteration. The (Th/in?)

first turbo-iteration of BCJR-LDPC-DNN detector labeled as

“CNN 1 pass” acheives 1.60% density gain over 1D-PDNP. 1D-PDNP 1.186 0.1041 0.9710

The second iteration labeled as “CNN 2 passes” has density

gain of 2.01% over 1D-PDNP. CNN 1.205 0.1057 | 0.9865
Table II presents simulation results for PDNP and BCJR- 1 pass

LDPC-DNN detectors for TDMR; the PDNP re.sults are from CNN 1.210 0.1062 0.9905

[5]. The two-track 2D-PDNP looks at 2 X 3 bit patterns and 2 passes

has 64 states; 40 and 60 blocks are used for training and

testing, respectively. The best PDNP performance belongs to
1D-PDNP with two turbo-iterations labeled as “1D-PDNP 2

Table II Simulation of PDNP and BCJR-
LDPC-DNN detectors for TDMR at TP 18 nm

passes”, which we consider as the baseline. For the BCJR-

~ TDMR Areal User Bits Code
LDPC-DNN detector, we use 80 and 20 blocks as the training | pyetectors Density |per Grain| Rate
and test datasets respectivly. The one-CNN architecture (Tb/in?)
(labeled “1 CNN 1 pass”) achieves a density gain of 27.52%
over the baseline. For the three-CNNs architecture (Iabeled “3 12-;’;)51:1) 2:482 0.2177 0.7600
CNNS 1 pass”), the BCJR—LDPC—DNN detector has a density ID-PDNP | 2.531 02220 07750
gain of 27.75% compared to the baseline.
2 passes
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