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I. INTRODUCTION 

Conventional detection systems in hard disk drives (HDD) typically include a 2D partial response (PR) 
equalizer that pre-processes the readback signals and shapes the output to a controlled target response, followed 
by a maximum likelihood (ML) or maximum a posteriori (MAP) detector which outputs log-likelihood ratios 
(LLRs) to be passed to a channel decoder. Pattern dependent noise prediction (PDNP) algorithm [1] is usually 
incorporated into the metric computation of the trellis in the ML/MAP detector to combat media noise intrinsic 
to the magnetic recording (MR) channel. For next generation two-dimensional magnetic recording (TDMR) 
HDDs, such conventional systems would suffer from impractically large trellis state cardinality when 
performing multi-track detection, and they may no longer be capable of handling the increased nonlinearities in 
high density recording channels. This work investigates applying advanced machine learning techniques to 
TDMR. Convolutional neural networks (ConvNets) are employed in place of the PR equalizer and ML/MAP 
detector with PDNP to directly process the un-equalized readback signals and output soft estimates. ConvNets 
are special deep neural networks (DNNs) that assume the inputs are images and perform convolution instead of 
affine function in the network forward pass [2]. This enables far fewer parameters in ConvNets than regular 
DNNs of the same depth and therefore allows for deeper networks. The motivation to use ConvNets is the 
resemblance between data detection problem in MR and typical image processing problems. In MR channels, 
the write process converts temporal data into spatial patterns recorded on a magnetic medium, which transforms 
sequential correlation into spatial ISI/ITI. Data detection can be viewed as an image processing problem, 
proceeding from the 2D image of the shingled bits (see Fig. 1), to higher level abstractions of features by means 
of convolutional layers that finally allow classification of individual bits. Several variations of ConvNets are 
compared in terms of network complexity and performance. The best performing ConvNet detector can provide 
data storage density of up to 3.7489 Terabits/in2 on low track pitch TDMR channel simulated with a grain 
flipping probabilistic (GFP) model. 

II. SYSTEM MODEL 

The ConvNet detection system assumes a discrete 
channel model for the kth readback signal 𝑟(𝑘): 

𝑟(𝑘)  =  (𝐡 ∗  𝐮)(𝑘)  +  𝑛௘(𝑘),                (1)                              

where 𝐡 is the channel response, 𝐮 are the coded bits, ∗ 
indicates 2D convolution and 𝑛௘(𝑘) is reader electronics 
additive white Gaussian noise (AWGN). The channel 
response h is implicitly time varying and pattern dependent, because the channel is inherently nonlinear. 
Therefore, pattern-dependent media noise arises. The system is trained and tested using data from a GFP model, 
a realistic model which closely replicates output from micro-magnetic simulations but can be generated several 
orders of magnitude faster [3]. The simulated media has grain density of 11.4 Teragrains/in2. Waveforms include 
5 tracks (tracks 0 through 4), each of length 41,206 bits; only the coded bits for the three central tracks (tracks 1-
3) are available. Fig. 1 shows a capture of the GFP readback signals. The blue and red stripes represent 1 and 
+1 coded bits; they are curved because of the shingled writing process. The ConvNet system is tested on two 
GFP data sets, each containing 100 blocks. Both data sets have bit length (BL) 11 nm, but different track pitches 
(TP): TP 15 nm (equivalently 2.916 grains per coded bit (GPB)) and TP 18 nm (equivalently 3.491 GPB).  

III. ConvNet DETECTOR 

Fig. 2 shows the block diagram for the proposed ConvNet detection system. Three identically structured 
ConvNets estimate tracks 1, 2 and 3 simultaneously in a downtrack sliding window. The ConvNet detector 
processes a 2D patch of readback signals 𝐫 from three tracks and outputs a probability estimate for the center bit 
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Fig. 1 A capture of the readback signals simulated 
from grain flipping probabilistic (GFP) model. 
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of the patch. These soft estimates are converted to 
LLRs before being de-interleaved, weighted and 
passed to a low-density parity check (LDPC) 
decoder. The dotted lines and box in Fig. 2 indicate 
future work, i.e., iterative detection between the 
ConvNet detector and the LDPC decoder.  

The ConvNet detector has a general architecture 
of [INPUT - CONV - RELU - CONV - RELU - FC]. 
INPUT denotes the input to the network. It is a matrix representation of an image-like object: [3 × 𝑤௜], where 
𝑤௜  is the width of the input. CONV layer #𝑘 computes dot products between 𝑐௞ different trained filters of size 
[3 × 𝑤௖ೖ

] (white rectangles in Fig. 1) and same-sized patches in its input (assuming input dimension [ℎ × 𝑤]), 
with the filter moving in a sliding window fashion in both ℎ and 𝑤 direction of the layer input (white arrow in 
Fig. 1). The dimension of CONV layer output is [ℎ × 𝑤] with the help of zero padding. RELU layer applies the 
rectified linear unit (ReLU) activation function 𝑓(𝑥) = max (0, 𝑥) element wise on its input. Between CONV 
and RELU layer, a batch normalization layer is added to accelerate the training [4]. FC stands for fully 
connected layer, wherein each node is connected to all nodes in the previous layer output, and an affine function 
𝑧௝ = ∑ 𝑤௜௝𝑥௜  ௜ is applied to them. Probability estimates are then formed using the softmax function 
𝑝௜௞ = 𝑒௫೔ೖ ∑ 𝑒௫೔ೖ௄

௞ୀଵ⁄ , and binary classification can be made. The network is optimized during training using 
gradient descent with cross entropy loss 𝐽 = ∑ ∑ 1(𝑢ො(𝑖) = 𝑘) × log (𝑝௜௞)ଶ

௞ୀଵ௜ . Experiments show that two stacks 
of CONV-RELU layers are sufficient to yield a low bit error rate (BER) or 10ିହ or lower.  

IV. SIMULATION RESULTS 

Table I summarizes the 
BER performance and 
computational complexity of 
ConvNets with different values of 
𝑤௜ , 𝑤௖ೖ

, 𝑐௞, for track 2 of TP 15 nm 
data set. 80 blocks are used for 
training and the remaining 20 blocks 
for testing. Comparing the first four 
rows, input width 𝑤௜ = 21  yields 
lowest BER. Comparing the last 
four rows, we conclude the number 
of filters 𝑐௞ at each CONV layer has 
the most influence on both 
complexity and performance. 
Specifically, rows 4 and 5 show that 
reducing both 𝑐௞  by half lowers the 
complexity by roughly a factor of 
3.8 but only suffers a factor of 3 
BER increase. Table II shows 
average user areal density (UAD) 
results over tracks 1, 2 and 3 from 
the ConvNets in rows 4 and 5 of 
Table I, for both TP 15 nm and TP 
18 nm datasets. The UAD values in parentheses are scaled density values after a 6.4 nm squeeze margin. 
Complexity-performance tradeoff can be helpful in real-time hardware implementation.  
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Network Structure BER train-test # learnables 

[3,11], [3,11]*128, [3,9]*64 0.0060-0.0118 230,210 

[3,15], [3,11]*128, [3,9]*64 0.0021-0.0053 231,746 

[3,17], [3,11]*128, [3,9]*64 0.0016-0.0040 232,514 

[3,21], [3,11]*128, [3,9]*64 0.0011-0.0029 234,050 

[3,21], [3,11]*64, [3,9]*32 0.0035-0.0068 61,730 

[3,21], [3,9]*128, [3,7]*64 0.0017-0.0041 184,130 

[3,21], [3,11]*32, [3,9]*16 0.0186-0.0213 17,042 

TP Network Structure Average 
Code Rate 

Average User 
Areal Density 

15 [3,21], [3,11]*128, [3,9]*64 0.9567 3.7489 (2.6278) 

15 [3,21], [3,11]*64, [3,9]*32 0.9367 3.6706 (2.5728) 

18 [3,21], [3,11]*128, [3,9]*64 0.9783 3.1949 (2.3569) 

18 [3,21], [3,11]*64, [3,9]*32 0.9700 3.1677 (2.3368) 

Table I ConvNet BER and complexity, TP 15nm, track 2 

Table II Overall ConvNet density performance 

Fig. 2 Block diagram for the ConvNet detection system 
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