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I. INTRODUCTION

Conventional detection systems in hard disk drives (HDD) typically include a 2D partial response (PR)
equalizer that pre-processes the readback signals and shapes the output to a controlled target response, followed
by a maximum likelihood (ML) or maximum a posteriori (MAP) detector which outputs log-likelihood ratios
(LLRs) to be passed to a channel decoder. Pattern dependent noise prediction (PDNP) algorithm [1] is usually
incorporated into the metric computation of the trellis in the ML/MAP detector to combat media noise intrinsic
to the magnetic recording (MR) channel. For next generation two-dimensional magnetic recording (TDMR)
HDDs, such conventional systems would suffer from impractically large trellis state cardinality when
performing multi-track detection, and they may no longer be capable of handling the increased nonlinearities in
high density recording channels. This work investigates applying advanced machine learning techniques to
TDMR. Convolutional neural networks (ConvNets) are employed in place of the PR equalizer and ML/MAP
detector with PDNP to directly process the un-equalized readback signals and output soft estimates. ConvNets
are special deep neural networks (DNNs) that assume the inputs are images and perform convolution instead of
affine function in the network forward pass [2]. This enables far fewer parameters in ConvNets than regular
DNNs of the same depth and therefore allows for deeper networks. The motivation to use ConvNets is the
resemblance between data detection problem in MR and typical image processing problems. In MR channels,
the write process converts temporal data into spatial patterns recorded on a magnetic medium, which transforms
sequential correlation into spatial ISI/ITI. Data detection can be viewed as an image processing problem,
proceeding from the 2D image of the shingled bits (see Fig. 1), to higher level abstractions of features by means
of convolutional layers that finally allow classification of individual bits. Several variations of ConvNets are
compared in terms of network complexity and performance. The best performing ConvNet detector can provide
data storage density of up to 3.7489 Terabits/in’> on low track pitch TDMR channel simulated with a grain
flipping probabilistic (GFP) model.

II. SYSTEM MODEL

The ConvNet detection system assumes a discrete
channel model for the kth readback signal r(k):

r(k) = (h * w)(k) + ne(k), M
where h is the channel response, u are the coded bits, * Fig. 1 A capture of the readback signals simulated
indicates 2D convolution and n, (k) is reader electronics from grain flipping probabilistic (GFP) model.

additive white Gaussian noise (AWGN). The channel

response h is implicitly time varying and pattern dependent, because the channel is inherently nonlinear.
Therefore, pattern-dependent media noise arises. The system is trained and tested using data from a GFP model,
a realistic model which closely replicates output from micro-magnetic simulations but can be generated several
orders of magnitude faster [3]. The simulated media has grain density of 11.4 Teragrains/in>. Waveforms include
5 tracks (tracks 0 through 4), each of length 41,206 bits; only the coded bits for the three central tracks (tracks 1-
3) are available. Fig. 1 shows a capture of the GFP readback signals. The blue and red stripes represent —1 and
+1 coded bits; they are curved because of the shingled writing process. The ConvNet system is tested on two

GFP data sets, each containing 100 blocks. Both data sets have bit length (BL) 11 nm, but different track pitches
(TP): TP 15 nm (equivalently 2.916 grains per coded bit (GPB)) and TP 18 nm (equivalently 3.491 GPB).

III. ConvNet DETECTOR

Fig. 2 shows the block diagram for the proposed ConvNet detection system. Three identically structured
ConvNets estimate tracks 1, 2 and 3 simultaneously in a downtrack sliding window. The ConvNet detector
processes a 2D patch of readback signals r from three tracks and outputs a probability estimate for the center bit
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of the patch. These soft estimates are converted to
LLRs before being de-interleaved, weighted and
passed to a low-density parity check (LDPC)
decoder. The dotted lines and box in Fig. 2 indicate
future work, i.e., iterative detection between the
ConvNet detector and the LDPC decoder.

The ConvNet detector has a general architecture
of [INPUT - CONV - RELU - CONV - RELU - EC].
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Fig. 2 Block diagram for the ConvNet detection system

INPUT denotes the input to the network. It is a matrix representation of an image-like object: [3 X w;], where
w; is the width of the input. CONV layer #k computes dot products between c,, different trained filters of size
[3 X w, ] (white rectangles in Fig. 1) and same-sized patches in its input (assuming input dimension [h X w]),
with the filter moving in a sliding window fashion in both h and w direction of the layer input (white arrow in
Fig. 1). The dimension of CONV layer output is [h X w] with the help of zero padding. RELU layer applies the
rectified linear unit (ReLU) activation function f(x) = max(0, x) element wise on its input. Between CONV
and RELU layer, a batch normalization layer is added to accelerate the training [4]. FC stands for fully
connected layer, wherein each node is connected to all nodes in the previous layer output, and an affine function
zj = Y;wi;x; is applied to them. Probability estimates are then formed using the softmax function
pix = e*ik/¥K_| e¥ik and binary classification can be made. The network is optimized during training using
gradient descent with cross entropy loss ] = Y; ¥%_, 1(fi(i) = k) X log(p;). Experiments show that two stacks
of CONV-RELU layers are sufficient to yield a low bit error rate (BER) or 10~5 or lower.

Table 1 summarizes the
BER performance and
computational complexity of
ConvNets with different values of
Wi, We,, €k, for track 2 of TP 15 nm
data set. 80 blocks are used for
training and the remaining 20 blocks
for testing. Comparing the first four
rows, input width w; = 21 yields
lowest BER. Comparing the last
four rows, we conclude the number
of filters ¢, at each CONV layer has
the most influence on both
complexity and  performance.
Specifically, rows 4 and 5 show that
reducing both ¢, by half lowers the
complexity by roughly a factor of
3.8 but only suffers a factor of 3
BER increase. Table II shows
average user areal density (UAD)
results over tracks 1, 2 and 3 from
the ConvNets in rows 4 and 5 of
Table I, for both TP 15 nm and TP

IV. SIMULATION RESULTS

Table I ConvNet BER and complexity, TP 15nm, track 2

Network Structure

BER train-test

# learnables

[3,11], [3,11]*128, [3,9]*64 0.0060-0.0118 230,210
[3,15], [3,11]*128, [3,9]*64 0.0021-0.0053 231,746
[3,17], [3,11]*128, [3,9]*64 0.0016-0.0040 232,514
[3,21], [3,11]¥128, [3,9]*64 0.0011-0.0029 234,050
[3,21], [3,11]%64, [3,9]*32 0.0035-0.0068 61,730
[3,21], [3,9]*128, [3,7]*64 0.0017-0.0041 184,130
[3,21], [3,11]*32, [3,9]*16 0.0186-0.0213 17,042

Table II Overall ConvNet density performance

TP Network Structure Average Average User

Code Rate | Areal Density
15 [3,21], [3,11]*128, [3,9]*64 0.9567 3.7489 (2.6278)
15 [3,21], [3,11]*64, [3,9]*32 0.9367 3.6706 (2.5728)
18 [3,21], [3,11]*128, [3,9]*64 0.9783 3.1949 (2.3569)
18 [3,21], [3,11]*64, [3,9]*32 0.9700 3.1677 (2.3368)

18 nm datasets. The UAD values in parentheses are scaled density values after a 6.4 nm squeeze margin.
Complexity-performance tradeoff can be helpful in real-time hardware implementation.
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