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Abstract

Reduced density matrix cumulants play key roles in the theory of both reduced
density matrices and multiconfigurational normal ordering. We present a new, simpler
generating function for reduced density matrix cumulants that is formally identical to
equating the coupled cluster and configuration interaction ansitze. This is shown to
be a general mechanism to convert between a multiplicatively separable quantity and
an additively separable quantity, as defined by a set of axioms. It is shown that both
the cumulants of probability theory and reduced density matrices are entirely combi-
natorial constructions, where the differences can be associated to changes in the notion
of “multiplicative separability” for expectation values of random variables compared
to reduced density matrices. We compare our generating function to that of previous
works and criticize previous claims of probabilistic significance of the reduced density
matrix cumulants. Finally, we present a simple proof of the Generalized Normal Order-

ing formalism to explore the role of reduced density matrix cumulants therein. While



the formalism can be used without cumulants, the combinatorial structure of express-
ing RDMs in terms of cumulants is the same combinatorial structure on cumulants

that allows for a simple extended generalized Wick’s Theorem.

1 Introduction

Reduced density matrix cumulants are fundamental in both reduced density matrix (RDM)
theories and multireference theories that use the generalized normal ordering formalism
(GNO) of Kutzelnigg and Mukherjee.'> To RDM theories, RDM cumulants are the addi-
tively separable, size-extensive parts of the RDMs. This is one of the primary reasons why
cumulants are either parameterized or varied directly in many RDM-based theories. 51t Ad-
ditive separability of cumulants is a crucial consideration in the derivations of References 12,
13, and Section IIC of 14. In GNO, second quantized operators are decomposed into linear
combinations of operators “normal ordered” with respect to an arbitrary reference, ¥, via
the Generalized Wick’s Theorem. This theorem gives the expansion coefficients of the linear
combination in terms of contractions. This is analogous to the normal ordering procedure
and contractions familiar from correlated single-reference wavefunction theory. 1>16 However,
in the single-reference theory, the contractions are Kronecker deltas. In GNO, the contrac-
tions are no longer just Kronecker deltas but now include the RDM cumulants of W. The
GNO formalism has also been used in many studies. " 2

Broadly speaking, there have been four approaches to defining reduced density matrix
cumulants in the literature. One definition is an explicit formula for them in terms of re-
duced density matrices.?!"23 Apart from one presentation of the two-body cumulant,'?® this
presentation is ad hoc, and the connection to additive separability is not established. Alter-
natively, Mukherjee defined the cumulants as an intermediate in a proof of the Generalized
Wick’s Theorem, which involved several unitary coupled cluster similarity transformations.?

While this definition is natural within that proof, it is not known in other contexts. Another

definition begins by identifying the connected components of the perturbation expansion



of the n-particle propagators.? The terms can then be related to terms of a perturbation
expansion of the reduced density matrices,?® and the connected terms isolated. These latter
two definitions were nearly immediately replaced with the remaining definition. This defi-
nition is based on Kubo’s presentation of cumulants in probability theory?® and is now the
13,27-31

exclusive formalism used to discuss additive separability of the RDM cumulants.

Given random variables X1, ..., X,,, Kubo began by defining the moment generating func-

tion
N
M(ty, ..., tn) = (exp() _ :X;)) (1)
=0
and the cumulant generating function
]((tl,.u,tn) ::log_Al(tl,.u,tn) . (2)

Any moment, or expectation value, of a product of the variables can be written in the

N N
form (J] Xi»). That moment is the coefficient of [] (i,!)~'ti» in (1). Kubo defined the

n=0 n=0
cumulant of random variables, which we call the probabilistic cumulant, as the coefficient of

N
[T (i,)) " in (2). Kubo showed that the probabilistic cumulants so defined are “additively

ze:;arable” with respect to variables that are “multiplicatively separable.” Specifically, Kubo
defined sets of random variables as being statistically independent if any moment of variables
factors into a product of moments, one for each set. For example, if the sets {X} and {Y, Z}
are statistically independent, then (X?Y Z) = (X?)(Y Z). Then the value of any cumulant of
variables from multiple independent sets is its original value if the variables are from the same
subset, and zero otherwise. This is the probabilistic analogue of the additive separability
of coupled cluster amplitudes for non-interacting subsystems producing a “high-spin”, i.e.,
antisymmetrized product, combined wavefunction.

To adapt Kubo’s definition of probabilistic cumulants to define RDM cumulants, we must

change expectation values of random variables to expectation values of second quantized

operators. However, Kubo’s proof of additive separability assumed that the random variables



commute, but our second quantized operators do not. To define cumulants of non-commuting
objects while keeping additive separability, Kubo proposed that the multiplication appearing
in the power series of exp and log from (1) and (2) be replaced with a “multiplication” which
does make the objects commute. This idea has been key in the fourth approach to defining
RDM cumulants, via a generalization of Kubo’s generating functions.

We are convinced that the current definitions of RDM cumulants from generating func-
tions, while perfectly legitimate, have left important points open to clarification, and that

these points have hindered broader use of cumulants among electronic structure theorists:

1. It is not clear why a problem in quantum chemistry should need to borrow a tool
from probability theory. This has led to speculation that RDM cumulants of arbitrary
rank have some further probabilistic interpretation. Kutzelnigg and Mukherjee tried to
offer such an interpretation?® but later said it did not apply to the “exclusion-principle
violating” cumulants.3? Kong and Valeev interpreted some RDM cumulant elements as
probabilistic correlations of electron occupation, within some restrictive assumptions. 23

Hanauer and Kohn gave the same interpretation with looser assumptions, but could still

not provide a definitive probabilistic interpretation for all RDM cumulant elements. 2"

The latter paper was explicitly motivated by trying to understand the analogy between

probabilistic cumulants and RDM cumulants. The formal results of those papers do

not depend on the probabilistic interpretation. What is at stake instead is a compelling

physical picture of cumulants, to make them more digestible to new users of cumulant

formalisms.

2. Adapting cumulants from probability theory to RDMs requires modifying the definition
of multiplication in the exp and log series, but it is not a priori obvious what the
“correct” definition is. This has led to two distinct schemes to adapt Kubo’s cumulants

to RDM cumulants.

(a) The approach dominant in generalized normal ordering literature was pioneered



by Kutzelnigg and Mukherjee,?® and a variant was later made by Hanauer and
Kohn. 2" Accordingly, we call it the KMHK approach. In this formalism, the
analogue of random variables are the particle-conserving operators al, and exp
and log must be redefined. The two variants redefine them differently. In the
original version of Kutzelnigg and Mukherjee, the exp in the analogue of (1) is
modified to use a normal ordered product, while the log in the analogue of (2)
uses an unrelated antisymmetrized product operation. The two functions are
no longer inverses, as in the probabilistic case. In the variant of Hanauer and
Ko6hn, the relevant exp and log series are inverses but use a modified normal
ordered product, the significance of which is unclear. Further, the presentation of
Hanauer and Kohn uses six different product operations: the Grassmann product
(A), the alternative Grassmann product (®), the normal order product ({}), the
scalar product of tensors (), the antisymmetrized tensor product (x4), and the

modified normal order product ({}').

The approach dominant in reduced density matrix literature was pioneered by
Mazziotti.?” In this formalism, the analogue of random variables are the creation
and annihilation operators aL and a,, and the exponential is modified by apply-
ing an “ordering” operator. The analogue of the “formal variables”, ¢, ..., t,, are
neither real nor complex numbers, but anticommuting numbers. Throughout the
literature, it has been typical?2%:3933736 to obtain RDM cumulants by using the
exponentiated analogue of (2), rather than using the log series, and to differentiate
with respect to the formal variables rather than match coefficients of products of
formal variables. (The two actions are equivalent.) The required differentiation
operators also anticommute. Obtaining an n-electron RDM cumulant element
requires 2n differentiations or 2n variables. This is surprising, as both the prob-
abilistic cumulants and the KMHK approach for the n-electron RDM cumulant

require n differentiations or n variables.



3. Some sources have cautioned that cumulants are not size-extensive in general, but will

be if the wavefunction is full configuration interaction (FCI) in some active space. %2337
Mukherjee’s proof of additive separability further depends on the multiplicative separa-
bility of the wavefunction.? From this, the fact that cumulants from non-multiplicatively
separable wavefunctions, e.g., spin-coupled energy eigenstates, are not additively sep-

arable27’38’39

is expected. However, ensemble averages of such states can still be ad-
ditively separable.?® (Such qualifiers are frequently neglected without comment in the
literature.) But it is not obvious from the generating function definition why a multi-
plicatively separable FCI wavefunction is of such importance to additive separability.
This is so for two reasons. First, the proof that the RDM cumulants are additively
separable using the KMHK definition is more complicated than in Kubo’s case, be-
cause not all “random variables” can be assigned to one subsystem or the other.?"4!
(Mazziotti’s approach does not have this drawback.) Second, when the formula for a
cumulant is simplified to a polynomial, it is not clear why one polynomial is additively
separable while another is not. For example, why is 7?7 — P~ 4-~P~q additively separa-

ble but not 24 4-yP~? — 4P~97 Neither generalization of Kubo’s approach immediately

offers insight.

4. We are aware of no attempt to explain the fact that the contractions of the GNO

formalism are the cumulants defined via this generating function.

In this research, we address all these points. We begin by considering the question of
additive separability. We propose a new definition of the RDM cumulants that starts not
from the cumulant generating function of Kubo but by a generalization of the relationship
between coupled cluster and configuration interaction amplitudes. This provides a famil-
iar and convenient “generating function” for RDM cumulants that makes the combinatorial
mechanism of their additive separability apparent. That analysis further motivates a more
abstract definition of RDM cumulants using three axioms, inspired by Percus,*? that char-

acterize a solution to the general problem of breaking a multiplicatively separable second



quantized quantity into additively separable parts. Our “generating function” for the RDM
cumulants can thus be trivially adapted to construct an additively separable quantity from
any multiplicatively separable one. All this will be covered in Section 2. We refer read-
ers interested in a detailed look at the connection between our generating function and the
combinatorial problem of the three axioms to Appendix A.

In Section 3, we compare our generating function with that of the KMHK approach
and the Mazziotti approach to analyze how they generalize the idea of Kubo, and how all
three generating functions can lead to the same answer. Section 3.1 shall review generating
functions in detail. Section 3.2 will analyze the use of generating functions in the definition
of the probabilistic cumulant. We intend to establish that the probabilistic cumulant and
RDM cumulant are similar because they both solve the problem of constructing an additively
separable quantity from a multiplicatively separable one, and differences between the two
can be understood in terms of differences in the notion of multiplicative separability. In
Section 3.3, we discuss how the previous RDM cumulant generating functions of the KMHK
and Mazziotti approaches simplify to ours and lead to the same answer. By this point in our
argument, it will be clear that the analogy between the probabilistic and RDM cumulants
is entirely a matter of combinatorics and the three axioms, and probability theory plays no
role in the analogy. In Section 3.4, we shall criticize claims of a probabilistic interpretation
of RDM cumulants.

Lastly, we return to RDM cumulants from the perspective of generalized normal ordering
in Section 4. We consider why cumulants appear in the formalism of generalized normal
ordering in Section 4 and give a relatively simple proof of the Generalized Wick Theorems.
While cumulants are not strictly necessary (the theory can instead be formulated in terms
of RDMs), choosing to use cumulants offers advantages such as the additive separability of
contractions. Importantly, invoking cumulant decomposition also allows for a simple formula
for normal order products in terms of the generalized normal order product, which in turns

allows for a simple Extended Generalized Wick Theorem. This is best understood in terms



of the formula to write an RDM in terms of cumulants.

2 Additive Separability from Multiplicative Separabil-
ity
2.1 Cumulant Definition

Let us try to construct additively separable cumulants from the reduced density matrices.
The well-known relation between additively separable coupled cluster (CC) amplitudes and

the configuration interaction (CI) amplitudes is given by

1+ C =exp(T) (3)
where
_ 2 ab
C_Z( 2al+z Qanu (4>
1,a zyab
and

—Zwt;aﬁ Z ng all + .. (5)

4,75, b

and the operators af etc. are the usual second quantized excitation operators of many-

P ’L]7

fermion theory. 15:16:43

The excitation operators in (4) and (5) perform two roles. First, they make the left and
right hand sides of (3) operators that transform the reference ® into the target state W.%
The need for an operator to act on a wavefunction is the usual rationale for the appearance of
second quantized operators in (3). 516434 For our purposes, this role is irrelevant. Second,

equating the coefficients of the operators af etc. on each side of (3) gives a ¢ amplitude

7 7,]?



as a polynomial in the ¢ amplitudes. > After taking log of (3), matching coefficients on
both sides then solves for a CC amplitude as a polynomial in CI amplitudes. This role is
what we will generalize to define RDM cumulants.

Let us define RDM elements with

e = (Y]l v) (6)

Other normalization conventions are known in the RDM literature. This is known as the
McWeeny normalization?® and is especially convenient for our purposes.
Since we want cumulant elements to be additively separable and expressed in terms of

RDM elements, replace (4) and (5) with

C=D i+ > 5 27§§f§+ (")
p.q

PlIﬂ"S

and

T = quap Z 2A;;;af;g e (8)

p,q,7,s
We may attempt to use 1 + C = exp(T), but our second quantized operators need not
commute, so we lose the property that exp(A + B) = exp(A) exp(B), which plays a central
role in the logic that the cluster operators are additively separable. 1643 Modifying an idea

47 we redefine the multiplication in the exponential to be the vacuum-normal

from Lindgren,
order product rather than the operator product; so for example, we use the multiplication
{aPal} = aP? rather than aPa? = aP? + §%a®. (In notation such as {aPal}, the braces denote
redefining multiplication, not a function applied to aPal. The latter approach leads to
contradictions of the type discussed in References 48 and 49.) The normal product always

commutes for particle-conserving operators and reduces to the usual exponential when we

only need excitation operators, as in coupled cluster. While normal ordered exponentials



also appear explicitly in the KMHK approach to cumulants?72831:50:51 and in the Mazziotti

13,29,30,33-36 i those formalisms, normal ordered exponentials do not

approach to cumulants,
relate the moment and cumulant generating functions, as in this formalism. We discuss this
in detail in Section 3.3.

Therefore, our candidate solution to our additive separability problem is given by

14+C = {exp(T)} (9)

or equivalently

{log1+C)} =T . (10)

We have used the fact that the logarithm and exponential are inverses as long as the product
operation commutes because they must be inverses as formal power series.?? 4

Is the quantity additively separable, as desired? To show that (or rather, when) it is, we
follow the standard proof used to show the additive separability of CC amplitudes. Let A

and B be two subsystems of a larger system. Then the proof is simply:

14+ Carp ={(1+Ca)(1+Cp)} = {{exp(Ta) Hexp(Tp)}} = {exp(Ta+Tp)} - (11)

We have used the fact that exp(A) exp(B) = exp(A + B) whenever the multiplication com-
mutes, which is guaranteed by our use of normal ordered multiplication, but also the impor-

tant relation

1+ Carp={(1+Ca)(1+CB)} . (12)

(12) encodes the requirement that the RDM have multiplicative separability.
We say a tensor is multiplicatively separable if the orbitals can be divided into subsets
(usually but not necessarily corresponding to orbitals localized on noninteracting subsys-

tems) so that any tensor element factors into a product of tensor elements, each containing

10



only the indices of one subsystem. For example, 77 = ~P~? if p, r are on a different subsys-
tem from ¢, s, or ) = —4P~y2" if p,t are on one subsystem and g, r, s,u on another. This
property manifestly requires a family of tensors across different ranks and that all orbitals
be assigned to some subsystem. Furthermore, multiplicative separability of a family of ten-
sors with respect to some division into subsystems is not automatic, but must be rigorously
proven. If the tensor elements are determined by applying some function (such as a statis-
tical or quantum mechanical expectation value) to a second quantized operator, then the
multiplicative separability of the tensor depends on the properties of that function. And if
the tensor is not multiplicatively separable, our proof is invalid, and additive separability
does not follow.

It can be shown, after straightforward second quantized algebra on (6), that (12) is satis-
fied if ¥ 4p is an antisymmetrized product of ¥ 4 and V. So in that case, the cumulants are
additively separable. However, ¥ 4,5 need not be multiplicatively separable for two reasons.
First, the exact target ¥ 45 may not have this property, usually because ¥ 45 is a “low-spin”
eigenstate, but an antisymmetrized product of W, and Vg will always be a “high-spin”
eigenstate. It has been shown theoretically and numerically that cumulants with orbitals

27,3839 and cumulants have even been

from multiple subsystems will not vanish in this case,
studied as a way to measure the resulting spin-entanglement.3® The second reason is that
the wavefunctions or reduced density matrices may be computed by an approximation that
artificially changes the multiplicative separability structure. Examples of this behavior, even
with size-extensive energies, include the orbital unrelaxed density matrices of coupled clus-
ter,®” the orbital optimized methods studied by Bozkaya and co-workers, > ®® and the RDM
formulation of CEPA given by Mazziotti and related to his parametric RDM method. %%
This multiplicative separability structure is preserved in FCI within a complete active space

as well as several approximate RDM methods. %

We close this subsection by observing that formulas to convert between RDMs and their

11



cumulants can be extracted from (9) and (10). Some explicit examples are

b= (13)
W= XL+ AL — AN (1)
M= s = v+ (15)

Vetu = Mot + MeATy — ML, + AU — AN + AT, — ADAGE + AN — AT+ AL (16)

+ APXINT — APAINT — APAINT 4 NPAIAT 4 AP AINT — AP XN
Nt = Votu — V5 Veu TV Vew — VYot T VeV — ViVow T VaVst — Vs Vew T Ve Vow — VuVor a7

+ 2909y = 2989 — 29y E, + 298 vivs + 298I — 29Eis

To write the general formula, we need some more notation. Each term corresponds to
a way to partition the upper and lower indices onto RDMs or cumulants. These groupings
are more abstract than a product of terms of a particular tensor, and we call each grouping
a “fermionic partition”. Given a fermionic partition p, the associated product of RDM
or cumulant elements (with parity factor) is written as y(p) or A(p), and the number of
tensor elements in the product is written as #p. So for the fermionic partition {}}{Z},

A{THED) = AL, and #{7 {2} = 2. Then we have

W= Ap) (18)

and

A= (=1)# (#p — Dy(p) (19)

p

where summation is over all fermionic partitions. Equation 19 is derived in detail in Appendix

B.

12



2.2 Combinatorial Nature of Cumulants

Now that we have defined RDM cumulants, we can make some further observations about
the definition.

First, the only fact specific to RDMs and their cumulants that we used is that they obey
(12) for non-interacting subsystems with a high-spin wavefunction. Accordingly, precisely
the same mechanism defines an additively separable “cumulant” from any tensor that is
multiplicatively separable. Our results thus extend to more exotic quantities, such as the

3435 or the amplitudes of valence universal multiref-

reduced transition matrices of Mazziotti
erence coupled cluster.*® Alternately, the familiar coupled cluster expansion can be viewed
as a specific case of the general construction of this paper. (By the argument in Section
4.3.1 of Reference 43, coupled cluster amplitudes have the same factorization property that
we require of RDMs.) While there have been previous attempts to connect reduced density

matrix cumulants and coupled cluster, 22:343537.61

we do not believe it has been previously
observed that near identical “generating functions” can be produced for the two, or that
this is a general solution to the problem of converting between multiplicative and additive
separability.

Second, our cumulant formulas can be shown to be additively separable just from their
polynomial form, even without the explicit appearance of the exponential, if there is some
way to separate the orbitals of the RDMs onto noninteracting subsystems. We will follow
the argument of Herbert and Harriman.!® Consider how (15) simplifies if any factorization
of the RDM is assumed. For example, if 7?7 = P44 corresponding to p,r being on one
subsystem and ¢, s on another non-interacting subsystem, (15) becomes 22 —~2y7+0 = 0.
Or if 427 = —~P~4_ corresponding to p, s and ¢, r being on the two subsystems, (15) simplifies
to =PI — 0 4+ 4Py4 = 0. Exactly the same logic, but with many more cases to consider,
can be used to show the additive separability of (17) if the RDMs are multiplicatively

separable. This shows the explicit mechanism by which the additive separability of cumulants

is achieved: the coefficients of the terms in the cumulants are exactly such that if any RDM

13



factorization occurs, the cumulant vanishes.

This requirement that a cumulant turns a multiplicatively separable quantity into an
additively separable quantity can be used to provide an alternate characterization of cumu-
lants. Rather than using our “generating functions” to define cumulants, we can define them
by providing a list of conditions they must satisfy and showing that only one definition is
acceptable. In this viewpoint, the generating functions emerge as a clever solution to the
problem, but not as the definition themselves.

Our alternate definition mirrors the definition of probabilistic cumulants given by Per-
cus?? and latter refined by Simon, %2 and can also be adapted to define an additively separable

counterpart of any quantity which may have multiplicative separability:

1. Functional Form

AL =D i (p) (20)

This axiom uses notation introduced at the end of Section 2.1. It says that the cumulants
are some linear combination of products of RDMs with parity factors, one for each way to
split the orbitals in (PZ77) across multiple RDM elements (the fermionic partitions). To fully
define cumulants, the expansion coefficients p need to be specified. Because each orbital

appears in exactly one RDM, orbital invariance is guaranteed.
2. Normalization pre- =1

This axiom gives the normalization for the cumulants. Without it, we could multiply cumu-

lants by an arbitrary scalar and still get something additively separable.

3. Additive Separability If v(?27) is multiplicatively separable with respect to some
separation of the orbitals (other orbitals not being relevant), A(?2") is identically zero,

for any choice of the unspecified 7.

This axiom specifies the key property that multiplicative separability of the RDMs implies

additively separable cumulants, discussed in the previous subsection. This axiom can be

14



used to determine all remaining coefficients from (20) by recursing over the number of RDM
elements in each term. For a given p, factorize all RDM elements according to that partition,
and set the coefficient of v(p) to 0. You can then solve for the desired coefficient as a sum of
the coefficients from partitions with fewer RDM elements, which have already been solved
for.

From these axioms, it is possible to define cumulants without any generating functions,
but just sophisticated counting. We take this approach in Appendix A, although recognizing
that (10) leads to the desired form is far more convenient.

What should be abundantly clear at this point is that cumulants are a combinatorial
construction to convert multiplicative separability to additive separability. RDM cumulants
are just a very important special case. Whatever uses for them RDM theory may have, their

definition conveys nothing special about either RDMs or probability theory.

3 Generating Functions

Equations (9) and (10) provide a way to construct a multiplicatively separable quantity
from an additively separable one and vice versa. However, we have not yet established why
a function should be so useful in solving what is an essence a combinatorial problem, how the
differences between RDM cumulants and the probabilistic cumulants should be understood,
how the difference between our generating functions and those of the KMHK and Mazziotti
approaches should be understood, or what this means for earlier attempts to interpret RDM
cumulants probabilistically. We address each of these questions in turn in the following

subsections.

3.1 Mathematicians’ Generating Functions

While RDM cumulant generating functions have been defined numerous times, 13-2731,33:36,50,51

as have generating functions for the more general reduced transition matrix cumulants,3*3°

15



we are aware of no general discussion of generating functions in the chemistry literature. As
this is crucial for this research, we provide one, emphasizing the underlying ideas in language
accessible to quantum chemists rather than mathematical rigor. We refer readers interested
in detailed mathematical treatments of generating functions to References 53, 54, 63, 64,
and 65.

Combinatorialists frequently study arrays of numbers. For example, a, may be the num-
ber of connected graphs with v vertices. This sequence can be encoded into a formal power
series. A formal power series is a power series in a variable that is associative and commuta-
tive, but indeterminate. This variable is called a formal variable. Formal variables cannot be
evaluated at specific numbers, and accordingly, questions of convergence do not exist. The
formal power series that a sequence is converted into is called a generating function. For
example, one can imagine the sequence »_ a,x"

Although generating functions have gﬁltiple uses, the one most relevant to the present
work is that they convert combinatorial problems into algebraic ones. It is possible to define
algebraic operations on formal power series that replicate familiar operations on functions
and that also automate some combinatorially significant operation on the sequence. We can
thus solve a problem algebraically and only afterwards rephrase the result in terms of the
original combinatorial problem.

Let us illustrate the combinatorial significance of the familiar algebraic operation of
multiplying functions. Suppose that there are a, ways to put a structure of type A on
n objects and b, ways to put a structure of type B on n objects. Given n objects, how
many ways are there to divide them into a structure of type A and structure of type B? If
different ways to partition the objects into A and B produce different objects, the answer

is Z () amby—m. Now, from the sequences {a,} and {b,}, construct the functions a(z) =
Z a, %7 and b(z) = Z bp%r. (The % denominator is optional, and using it means we have

exponential generating functions.) If we compute a(z) * b(z), we find the coefficient of Z: is

n
> (;:) ambn_m. Multiplying exponential generating functions corresponds precisely to our
m=0

16



problem of counting labeled structures.
Alternately, if different ways to partition the objects into A and B produce the same

object, the answer to our counting problem is > a;,b,—p. If we now form the functions

m=0
a(x) = Y a,z™ and b(x) = > bya™, we find the coefficient of ™ in a(z) * b(x) is the
n=0 n=0
desired ) a;,by—pm. These generating functions without the # are called ordinary generating
m=0
functions.

This example illustrates an important principle: the nature of the counting that is of
interest determines which kind of generating function is best.
These ideas can be extended to sequences indexed by n natural numbers rather than just

one, requiring multivariable functions. The generating functions then use n formal variables

oo d

7 through z,,, and the generating functions are written as a(21, ..., 2,) = >_ aq [[ Z7 for an
d =1
T .d
exponential generating function and a(xy,...,x,) = > aq [[ ;" for an ordinary generating
d =1

function. The counting principles are the same, although the details are more complex.

3.2 Probabilistic Cumulants

We are now prepared to address the probabilistic cumulants. We noted in the introduction
that multiplicative separable moments turn into additively separable probabilistic cumulants.
We may turn this into an abstract definition of probabilistic cumulants, independent of any
generating functions, much as we did for RDM cumulants. This will reveal why mirroring
probabilistic cumulants leads to useful RDM cumulants.

First, let us write some explicit formulas for probabilistic cumulants, k, in terms of

moments, m.

17



K(X) =m(X) (21)
m(XY) = k(XY) 4+ k(X)r(Y) (22)
K(XY) =m(XY) —m(X)m(Y) (23)
m(XYZ)=k(XYZ)+ c(X)k(YZ) + k(Y)k(XZ) + k(Z)k(XY) + k(X)r(Y)r(Z) (24)
R(XYZ)=m(XYZ) —m(X)mY Z) —m(Y)m(XZ) —m(Z)m(XY) -
+2m(X)m(Y)m(2) )
These closely parallel the RDM cumulant formulas from (13) to (17). It is apparent from
these examples that we will need to put all of our variables into groups and take products
of the moments or cumulants of each group. If one of these groupings is p, we will write the
corresponding product as m(p) or k(p) for moments and cumulants, respectively.

We can now write our abstract definition, following Percus*? and Simon,%? as

1. Functional Form

KXY ) = 3 (o) (26)

This axiom uses the notation introduced immediately above. It says that the cumulants
are some linear combination of products of moments, one for each way to split the variables
across different moments (a partition). To fully define cumulants, the expansion coefficients

1 need to be specified.
2. Normalization uxy.. =1

This axiom gives the normalization for the cumulants. Without it, we could multiply cumu-

lants by an arbitrary scalar and still get something additively separable.

3. Additive Separability If m(XY ---) is multiplicatively separable with respect to
some separation of the variables, k(XY ---) is identically zero, for any choice of the

unspecified m.
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This axiom specifies the key property that multiplicative separability of the moments implies
additively separable of the cumulants. This axiom can be used to determine all remaining
coefficients from (26) by recursing over the number of moments in each term. For a given p,
factorize all moments according to that partition, and set the coefficient of m(p) to 0. You
can then solve for the desired coefficient as a sum of the coefficients from partitions with
fewer moments, which have already been solved for.

As before, we may check that the cumulant generating function given by (2) satisfies
the axioms, confirming that the more familiar generating function and the more abstract
axiomatic approach give the same result.

More importantly for our purposes, this definition is nearly identical to that of RDM
cumulants earlier. All differences arise from only two sources. First, probabilistic cumulants
are polynomials in moments where RDM cumulants are polynomials in RDM elements. Sec-
ond, the multiplicative separability that matters for probabilistic cumulants is separation of
variables, where the multiplicative separability that matters for RDM cumulants is simul-
taneous separation of creation and annihilation operators, giving rise to different notions of
“partitions.” This leads us to the reason why cumulants should be so useful both in proba-
bility theory and in RDMs: in both cases, we want to construct a polynomial in something
that may be multiplicatively separable that will be additively separable if it is multiplicatively
separable. 1t is precisely the same combinatorial problem, just arising in different contexts.

This insight was present as early as Reference 28, but it has new significance when
rationalizing the different forms of the generating functions. First, the fact that we want
to convert multiplicative separability into additive separability is a strong indicator that log
should appear in both cases.

Second, why does the multiplication differ? As discussed in Section 3.1, different kinds
of generating functions are suited to different counting problems. In both cases, to read off
relations of form (20) and (26) from our generating functions, we want to count how many

times each variable or creation/annihilation operator appears in our cumulant of interest,
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find the corresponding terms, and match the coefficient of that term in those equations.
The left-hand side gives a cumulant element, while the right-hand side gives it in terms of
products of moments using our multiplication. The multiplication thus governs how the
simple starting “counts” of moments can be combined to give “counts” that will add to the
final desired term.

For probabilistic cumulants, the standard multiplication of Section 3.1 counts this per-
fectly well. Just correlate the degree of each formal variable ¢,, with the number of times the
random variable X, appears in the moment.

For RDM cumulants, we must keep separate counts of creation and annihilation operators,
and must also count the overall phase factor. For efficiency, we should assume the same
number of creation as annihilation operators. It is possible to adapt the formal variable
approach to this, and as we shall discuss in Section 3.3, this is exactly what the KMHK and
Mazziotti approaches to RDM cumulants do. However, quantum chemists already have a
multiplication to count this: the normal ordered product of particle-conserving operators.
This is the fundamental reason why the normal ordered product must be used rather than
the operator product in equations (9) and (10).

The final difference between the two functions is that an exponential appears in the
creation of the moment-generating function (1) for probabilistic cumulants, but not in our
RDM analogue, (7). In brief, this is a simplification that emerges because RDMs do not have

to consider repeated orbitals, by antisymmetry. The argument is discussed in Appendix C.

3.3 Comparison with Previous Generating Functions

While both the KMHK and Mazziotti approaches provide perfectly legitimate definitions
of cumulants, they acquire added complexity by sticking too closely to formal variables.
Products of formal variables reflect the factorizations of probabilistic cumulants but not
RDM cumulants, so products of formal variables are not an optimal tool for defining RDM

cumulants. We now describe how the concepts of our approach in Section 2.1 emerge from

20



those previous. The comparison is summarized in Table 1.

Table 1: A comparison of different generating functions of reduced density matrix cumu-
lants.

Descriptor KMHK Approach® Mazziotti Approach® This Work®
Moment Generating Function ([ {exp(kPad)} |[4) (| {exp(Jpal, + Jrap)} [v) 143 Clab
Formal Variable KL Jiy Jis al
Product of Formal Variables kP« k[ = kDR] # —kPK] Jpx = Jipdy = =y, {abal} = abi = —al;
Particle-conserving variables only? Yes No Yes
Role of af Construct RDMs Construct RDMs Formal variables
Multiplication in exp/log X A Standard {}
Match coefficients of... Antisym. products of variables Products of variables Products of variables
Rank n cumulant needs n variables 2n variables n variables
¢ Kutzelnigg, Mukherjee, Hanauer, and Kohn; 2728315951 b NMazziotti??33 36 and other
reduced density matrix investigators; 3% ¢ Section 2.1 of the present research

Both the KMHK and Mazziotti approaches obtain their RDM generating functions by
taking the normal ordered exponential of a sum of “minimal” second quantized operators
multiplied by formal variables indexed by the “minimal” operator. An expectation value is
then taken. This constructs the moment-generating function. For probabilistic moments,
where repeated variables exist, this is a very useful device to construct the moment-generating
function and much easier to remember than the explicit factorials. However, for our fermionic
quantities, we can instead use (7), which is an easy generalization of the familiar configuration
interaction form (4). This is exactly as discussed in Appendix C.

We now consider the two approaches separately.

First is the KMHK approach. As Hanauer and Kohn’s presentation uses six different

product operations, 27

we comment only on the variant of Kutzelnigg and Mukherjee. 28:31:50:51
In the KMHK approach, each formal variable is indexed by both a creation operator and
an annihilation operator. This ensures that each term contains the same number of cre-
ation operators as annihilation operators. However, different products may be related by
antisymmetry. Namely, kPk? and —kPE? both count the same thing. To resolve this, when

extracting terms from the generating functions, the KMHK approach matches coefficients of

antisymmetrized products of their formal variables, such as kPk? — kPk?, instead of simply

21



matching coefficients of the formal variables. Our formalism avoids this entirely because
{aPal} = —{aPal}. Instead of the normal ordered logarithm that appears in our formalism,
the KMHK approach uses an “antisymmetrized logarithm” to enforce that each product
of their formal variables appearing in the Taylor series of log(1 + X) is antisymmetric. In
our formalism, this is unnecessary because the formal variables have been replaced with the
fermionic second-quantized operators, which are already antisymmetric.

In the Mazziotti approach, each formal variable is indexed by a single operator, creation or
annihilation. In that case, the formal variables are ordered in the same way as the creation
and annihilation operators used to produce the reduced density matrix. In Mazziotti’s
moment-generating function, every string of “probe variables” can be replaced with a second-
quantized operator to convert to our notation. The anticommutation of the probe variables
so JyJ JIJI = —J,J,JIJ1 is just the familiar equation in our formalism, a?? = —a. That
the probe variables are ordered so that the ones associated with creation operators are on
the left of those with annihilation operators again is more naturally stated in our formalism
as {aPal} = aP?. In Mazziotti’s approach, a traditional exponential is used rather than a
normal ordered one. However, the multiplication used by Mazziotti’s approach is not that
of a second-quantized operator product, but multiplication of formal variables. Further,
different orderings of the operator are not treated as distinct, so .J,.J,JIJI and J,JIJ,JI are
treated as the same. This is again the behavior of the familiar normal ordering our formalism
uses, aP? = {aPal}. However, we reiterate that Mazziotti’s formalism generates terms with
different numbers of creation and annihilation operators that must eventually vanish. This
does not occur in our formalism, which is particle-conserving from the start.

So we see that both previous formalisms can be understood in terms of our cumulants.

3.4 Probabilities and the RDM Cumulant

The arguments of the preceding sections establish that the cumulants are a fundamentally

combinatorially entity that construct an additively separable quantity from a multiplicative
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separable one. This has different forms for probabilities compared to RDM cumulants and
related quantities because they have different notions of multiplicative separability. Prob-
abilistic cumulants have probabilistic significance only because they are polynomials in ex-
pectation values, which themselves have probabilistic significance. Accordingly, we revisit
and correct the claims of Hanauer and Kohn?” that there is a probabilistic interpretation of
the RDM cumulant.

Hanauer and Koéhn concluded that “in a natural orbital basis, the diagonal elements of
A, are in fact the covariances of the occupation numbers of n spin orbitals” and stated that a
paper by Kong and Valeev?® made the same conclusion. The actual conclusion of Kong and
Valeev was limited to the special cases of Ay and A3, but conspicuously made no statement
for A\, of higher ranks. For ranks higher than 3, the statement is false.

Hanauer and Kohn correctly claimed that a diagonal RDM element, where the creation
and annihilation operators are the same, can be interpreted as the probability that the
relevant orbitals are simultaneously occupied. We can thus say 75 = m(p), 75 = m(pg), and
so forth. Let us then take the RDM cumulant, A\, and see if it agrees with the probabilistic
cumulant we obtain by regarding RDMs as probabilistic quantities, k.

For the two-electron case, we have \bI = 724 —yPy7+~4P~y0 and k(pq) = m(pq) —m(p)m(q).
The two cumulants A and « disagree by the non-diagonal terms. If we choose our orbitals to
be the natural spin orbitals, 7, is diagonal by definition, so 7# and 4/ vanish, and the two
formulas then agree. The same argument shows equality for the A3 case. However, for A4,
the argument fails because the RDM cumulant will contain terms such as —%%v7, which
cannot be assumed to vanish. The RDM cumulant then disagrees with the probabilistic
cumulant of the probabilistic interpretation of the RDM.

This disagreement is unsurprising from the framework of this article. The functional
forms for the RDM cumulant, (20), and the probabilistic cumulant, (26), differ precisely
by such terms. These represent valid multiplicative separations for RDMs, which have n

creation and n annihilation indices, but not for expectation values of variables, which simply
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have n variables.

Hanauer and Kohn further attempted to give a probabilistic interpretation for off-diagonal
RDMs but struggled to make sense of negative RDM elements. The situation is in fact worse.
The second quantized operators of off-diagonal RDMs are non-Hermitian. These quantities
may be complex numbers, which cannot be a probability. For example, consider the hydrogen
atom RDM element, (py1|abr [pi1) = L

While RDM cumulants give some information about orbital occupation, we must reject
claims that this information is the same statistical information of probabilistic cumulants.
The similarities between RDM cumulants and probabilistic cumulants should be understood
on the basis that they solve very similar problems of constructing an additively separable

quantity from a multiplicatively separable one using very similar techniques.

4 Generalized Normal Ordering

We now shift our perspective entirely to view cumulants from the GNO formalism.!® We
shall primarily consider why RDM cumulants appear here. In brief, RDM elements appear
so that the expectation values of normal ordered second-quantized operators (which will
themselves be RDM elements) vanish. It is then a choice whether to invoke cumulant de-
composition or not. The decomposition has several advantages: it makes the contractions
additively separable for RDMs corresponding to an antisymmetrized product of wavefunc-
tions, it is a certain generalization of the contraction patterns of single-reference normal
ordering, and it crucially simplifies the formula to write a product of GNO operators as
a sum of other GNO operators. The latter property has little to do with cumulants in
particular but follows from the contraction pattern.

There are many uses of GNO concepts, and we cannot describe all of them here. We

refer interested readers to the papers describing the methods that use GNO for the use of

66-68 5,17,20,69-71

many-body residual expressions, construction of GNO excitation operators,
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18,67,68,72

neglect of high-rank cumulants, neglect of high-rank generalized normal order oper-

18,20,66-68,70-72

ators, use of state-averaged reduced density matrices, 575%™ forming the zeroth-

5,20,32,70,71 12,69

order Hamiltonian in perturbation theory, and elimination of disconnected terms.

4.1 Wick Expansion

1516 wwhich says that an

We seek to generalize the familiar single-reference Wick Theorem,
arbitrary string of creation and annihilation operators can be expanded into a scalar and a
linear combination of operator strings “normal ordered” with respect to ®, meaning their
expectation value for wavefunction ® is zero. We do so in two steps: we generalize this for
vacuum-normal operator strings, and then extend this result to arbitrary operator strings.
Our presentation shall follow that of Reference 1. There is an alternate presentation? which
requires a detour through unitary coupled cluster theory but does have the GNO operators
appear naturally as intermediates. We discuss this proof in relation to cumulants in Appendix
D.

First, let us assume a vacuum-normal operator string, where all creation operators are to
the left of annihilation operators. In any such expansion, the scalar must be the expectation
value of the string because all other terms in the expansion have zero expectation value. If
the operator is particle-conserving, this expectation value is an RDM element; otherwise, it
is zero.

Now, in the single-reference formalism, we write the scalar term as the sum of all possible
“contractions.” Contractions take a creation operator and an annihilator operator into
an additively separable tensor element, and multiple contractions are allowed. If we want
additively separable contractions in GNO, we must perform a cumulant expansion of the
RDM, per (18), and say that each contraction is a cumulant. Accordingly, the rules for
which contractions are allowed are dictated by the possible cumulant patterns in Equation
(18). Multiple contractions are still allowed, but contractions now may take n creation

and n annihilation operators for any n. As usual, there is a sign factor associated with
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anticommuting operators to bring operators together for a contraction.

Alternatively, we could have started by generalizing the rule that the scalar term is the
sum of all possible complete contractions, which takes us to (27). If we take the expectation
value of both sides and insist that normal-ordered operators have zero expectation value,
we conclude that the RDM is the sum of all possible complete contractions. The equation
for a rank n operator has exactly the same structure as the rank n case of (18), but with
contractions instead of cumulants. This is why the contraction structure of Reference 1 must
have the contractions be cumulants. It follows immediately that contractions are cumulants,
multiple contractions remain allowed, and contractions must be able to take n creation
and n annihilation operators. Generalizing this contraction structure was the heart of the
approach with convolutions and Hopf algebras by Brouder and coworkers, ”® although they
did not recognize the importance of the cumulants.

We could just as easily have not bothered with cumulant decomposition at all but kept
contractions as RDMs. We can then no longer have multiple contractions, and the proper
way to generalize n repeated contractions from the single-reference Wick theorem is as a
single contraction involving n creation and n annihilation operators, yielding an n-RDM
element. The same property holds true in the alternate proof discussed in Appendix D.

Writing a creation or annihilation operator as ¢, we can write the Wick expansion of a

vacuum normal operator as

AAAAAAAAAAAAAAAAAAAAAAAAAA

(27)
where the sums range over all possible contractions, and there can be any number of con-
tractions, and contractions can connect n creation and n annihilation operators for any n.
At this point in the argument, contractions are defined by aaq = A, amr = A4 and so

r8)

forth. As usual, there is a permutational sign factor to bring non-adjacent operators in the
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string together. It is also possible to define a “quasi-normal order” where (27) holds, but the
contractions are not RDM cumulants. Then it will not be true that the normal-ordered op-
erators have zero expectation value with respect to ¥, as only cumulants have this property.
For now, we shall note that (27) alone is needed for all the remaining proofs.

Before proceeding to the general case, let us confirm that our procedure defined on
operator strings is well-defined on operators. There are two ways by which different strings
can refer to the same operator: the use of anticommutation relations and expanding one
orbital as a linear combination of others. The only way to use anticommutation relations on
a vacuum-normal order string to get another vacuum-normal order string is to anticommute
creation and annihilation operators, so we need to check orbital invariance and antisymmetry.
Both of these properties can be shown by a straightforward recursion on the minimum
of the number of creation operators and the number of annihilation operators, assuming
contractions are antisymmetric and orbital invariant. For RDM cumulants, they are.

Now let us define the W-normal Wick expansion of an arbitrary operator by first bringing
it into vacuum-normal order and then bringing the resulting operators into W-normal order
using (27). We are composing two maps that obey the anticommutation relations and
are orbital invariant, so our final result obeys the anticommutation relations and is orbital
invariant.

Our expansion still has the form of (27), but more contractions are possible. First, it is
possible to have a contraction if creation operators are not all left of annihilation operators,
by reordering them in the transformation to vacuum-normal ordering and then contracting
them. This introduces contractions such as amr = — AP Second, the contractions of
vacuum-normal ordering must also be accounted for. We do this by adding the Kronecker
delta from the vacuum normal contraction to the contraction from applying (27) after the
vacuum normal ordering step, so we have a?ap = =P+ 07

We also note that a W-normal ordered operator is antisymmetric with respect to any

permutation of the operators in the operator string inside the normal ordering. This property
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is inherited from the vacuum-normal ordering. This antisymmetry was also emphasized in

the context of generalized ordered products by Mukherjee and coworkers. *

4.2 Extended Generalized Wick Theorem

There is one more reason “why” we choose to use cumulants in GNO, which is that it greatly
simplifies the rule for taking products of GNO operators. While it can be expressed with
RDMs,™ the cumulant presentation simplifies the final result and the combinatorics of the
proof. Although this is the analogue of what is often called the generalized Wick Theorem,
because we are already in Generalized Normal Ordering, we follow Mukherjee,* Evangelista,®
and their coworkers in instead calling it the extended generalized Wick Theorem. The

theorem is

{AWB} = {AB} + > _{AB} (28)

where the sum is over all repeated contractions, provided each contraction contains at least
one operator from both A and B.

The bulk of the work is in deriving a lemma, the formula for a U-normal ordered operator
in terms of operator strings. This lemma may be regarded as an inverse to (27). The lemma
on its own will demonstrate the formal advantages of cumulants in GNO. For pedagogical
purposes, we complete the proof of the extended generalized Wick’s Theorem from the lemma
in Appendix E.

The lemma is

{+0p090r-45G:Gu---} = ---QpQqGrQsGrQu--- — 09999959t Qu.--- — e 0r49Gr G54t Q.- -
AAAAAAAAAAAAAAAAAAAAAAAA
- "'QP(:quT’qsqth"' + Z "'qPQqQTQSQtQu-” + Z “‘qquQquqth"‘ - -'-QquQTQSthu-“ +
(29)

where a term with ¢ contractions has phase (—1)¢, and all contraction patterns appear in
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the sums. We prove this by induction on the minimum of the number of creation operators
and annihilation operators, n. In the base case n = 0, no contractions are possible, and (29)
reduces to (27).

We proceed to prove the case of n = k+ 1 if (29) holds for all cases from 0 to k. We can

solve for the completely normal ordered term in (27) to give:

AAAAAAAAAAAAAAAAAAAAAAAA

(30)
All the normal ordered terms on the right-hand side are previous cases in the induction, so
we substitute in (29) and collect the terms with ¢ contractions. Given a particular set of ¢
contractions, it can be produced by any term in the right-hand side of (30) whose explicit
contractions are among those . The remaining contractions will be supplied by substituting
(29). Let the number of explicit contractions be denoted o. There are (Z) ways to choose
which of the ¢ contractions come from the substitution, giving a sign factor of (—1)*~°. Thus,

the overall coefficient of our set of ¢ contractions is

t

e (]) === 1= ) = (31)
o=1

by binomial expansion. All terms with a product of ¢ contractions appear with coefficient

(—1)%. This proves (29).

As first observed by Kong, Nooijen, and Mukherjee,® the fact that the contractions
are cumulants plays little role in the proof. All that we require is (27), from which (29)
follows and then (28). Contractions can be defined in a largely arbitrary manner and still
maintain these properties, although care should be taken to ensure that orbital invariance

and antisymmetry are preserved. (29) and (28) are just rearrangements of the contraction

pattern of (27), however the contractions in (27) are defined.
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This freedom to change contractions has been used by Evangelista and coworkers ™™ to

define a variant of GNO where the contractions are the “cumulants” of a density matrix
for a statistical ensemble of electronic states, for multistate chemistry, and also by Kutzel-
nigg, Mukherjee, and coworkers to formulate a spinfree GNO by taking contractions as the
“cumulants” of a spin-averaged ensemble density matrix. 7

However, let us suppose that contractions are chosen by the rule that the sum of all
contractions equals some tensor. Then between postulating that and postulating the con-
traction structure of (27), we are back to the second way to arrive at “contractions are
cumulants” outlined in the previous subsection, but now with stronger motivation. By the
logic of Section 2.1, if the tensor is an RDM or even something else, the contractions will have

the property that if the tensor is multiplicatively separable, the contractions are additively

separable. This requires no further effort.

5 Conclusions

Despite the importance of reduced density matrix cumulants, we believe that cumulant
formalisms can be made more accessible by further simplifying conceptual issues surrounding

cumulants. This research has striven to do so. In particular:

1. We have provided a simplified definition of reduced density matrix cumulants and a
generating function to provide explicit formulas for them, beginning with the familiar
exponential relation between configuration interaction amplitudes and coupled cluster

2729 are shown to reduce to our solution. Of special

amplitudes. Previous approaches
importance is the fact that this our solution is a general prescription to convert be-
tween multiplicative and additive separability, which can be of use to novel electronic

structure methods.

2. Interpretive issues of cumulants have been resolved. The analogy between RDM cu-

mulants and the probabilistic cumulants is based on the fact that they are both com-
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binatorial objects to solve the problem of converting from multiplicative to additive
separability. No further probabilistic meaning of the reduced density matrix cumu-
lants is expected, and arguments to the contrary?’ have been refuted. In addition, our
definition of cumulants provides a way to confirm the additive separability of cumu-
lants from their polynomial form and understand why, for some approximate theories,
the cumulants are not additive separability. This gives an elementary way to confirm

additive separability.

. We have also presented a brief proof of the Generalized Normal Ordering formalism
to explain why cumulants appear as contractions there and make it more accessible
for multireference theories, one of the most pressing problems in electronic structure
theory. The key theorems are shown to follow from combinatorics applied to the form
of allowed contractions in the formalism. In the original Generalized Normal Ordering
formalism where normal ordered operators are required to have zero expectation value
against some wavefunction, this leads to contractions being cumulants. More general

1, L7745 and we

formulations are possible and have even been shown to be quite usefu
have shown that the contractions will remain additively separable if the expectation

value and RDMs is replaced with some other multiplicatively separable tensor.

A Cumulants by Low-Level Combinatorics

To illustrate how the exp and log functions solve the combinatorial problem given in our

axiomatic definition of the RDM cumulant (or any other additively separable quantity), we

solve it without generating functions by combining the axioms of Percus*? and Simon®? with

the Mobius inversion of Speed.™ In brief, suppose a set where some elements are said to

be greater than others, or more precisely, a partially ordered set. We denote this abstract

“oreater than” relation with O. Mathematicians prefer to use >, but the symbol D suggests

the specific relation we will use. Then given an equation of form
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> @) =gly) (32)

YT

Mobius inversion solves for f as a linear combination of the g by

> g@)px,y) = f(y) (33)

YT

where the function p is determined by the recursion relations

Y. wly.x) =0y (34)

T:220T2Y

and

Z (@, z) = by (35)

T:22%2Y
Equations (34) and (35) show that the values of 1 depend on the set and the rules governing
which elements are greater than others.

Readers interested in a detailed mathematical treatment of Mébius inversion are directed
to Chapter 16 of reference 77, Chapter 8 of reference 54, Chapter 3 of reference 65, Chapter
3 of reference 78, and reference 79. We especially recommend reference 77.

We require the idea of fermionic partitions. A fermionic partition is, given n creation
indices and n annihilation indices, a way to split them into “blocks” such that each “block”
contains as many creation as annihilation indices, and each index appears in exactly one
group. For the case of a rank-two quantity, these are shown in Figure 1.

We shall use the following facts about the set of fermionic partitions:

1. Given any two fermionic partitions p, o, p O ¢ means that each block of ¢ is contained
in a block of p. This D is a partial order, which means that we may use Mobius
inversion. Given n creation and annihilation operators, we call the set of all possible

fermionic partitions the fermionic partition lattice. Figure 1 demonstrates this for a
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Figure 1: The fermionic partitions for a rank-two tensor. A vertical path between two
elements p and 7, where p is higher than 7, means that p O .

par (XYZ}
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{tHe  OHEY  GHEY {(XHYZy {YHXZ) {ZH{XY}
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{THEH {(XHYHZ}

Figure 2: The fermionic partitions greater than or equal to {#}{{}{’}, and the set of
partitions of three objects. A vertical path between two elements p and 7, where p
is higher than 7, means that p O 7. The two subsets and their order relations are
isomorphic.
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rank-two tensor.

. Given any fermionic partition of n creation and annihilation operators, arbitrarily
pair up creation and annihilation operators, and assign each pair to one of n distinct
symbols. Then any fermionic partitions where each operator in the pair is in the same
block can be mapped to a partition of n sets. Furthermore, if all pairs are in the same
block for o, all pairs will also be in the same block for any p where p O ¢. By this
map between fermionic partitions and set partitions, the set of # where p O m O ¢ has
exactly the same O (partial order) structure as some subset of the set of partitions of n
objects, which is known as the partition lattice. An example of this is shown in Figure
2. By this trick, if we show a statement is true on some subset of the partition lattice,

we can show it is true for any “counterpart” of that subset in the fermionic lattice.

. Suppose p 2 o and block ¢ of p is split into b; blocks in o, then

wop) =D o= 1) . (36)

i
The same property holds on the set of fermionic partitions, because the recursions that

determine p, (34) and (35), depend only on the structure of the partially ordered set,

which is the same between the two sets by Point 2.

This property of the partition lattice is shown in Example 16.17 combined with Theo-
rem 16.4 of Reference 77, proved in two ways in Example 3.10.4 of Reference 64 and
Examples 3.3.4 and 3.5.5 of Reference 78, then proved in two more ways in Sections

16 and 18 of Reference 79.

. Let p A m denote the partition in the partition lattice whose blocks are obtained by

intersecting the blocks of p and 7. For any ¢ and for any 7 other than {XY ---}:

S ulpAXY - h =0 (37

p:pA\T=0
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This is proven in the course of Theorem 16.5 of reference 77 and by more sophisticated

arguments in Proposition 3.5.4 of reference 78 and Corollary 3.9.3 of reference 64.

By the trick of Point 2, a very similar property holds for the fermionic partitions:

> ulp =0 . (38)
p:p, T D0, pAT=0
Now, suppose a polynomial satisfying the fermionic axioms. It must have the form of
(20). Consider an arbitrary fermionic partition, 7.
For most fermionic partitions, 7 has multiple blocks. Factorize every v(p) in (20) so each
tensor contains only indices of a single block of 7. Given a partition, o, the new coefficient

of v(o) after this factorization by 7 is

Mom = Z Ko - <39)

pip,m20,pAT=0
By the third axiom, for any such 7, our polynomial is identically zero. Therefore, each

coefficient must equal zero.

MHomx = 0 (4())

Choosing the coefficients ¢ so that (40) is satisfied is necessary and sufficient to define our
cumulant.

The above discussion has assumed 7 consists of multiple blocks, so we may apply the
connectedness axiom. If 7 consists of only one block, 7 = {2} and the connectedness
axiom does not apply, but > p, = jir = ppe-y = 1 by the normalization axiom.

p2T
In either case, we require

Z Mo = Op pzy (41)

p2
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But this equation is just (35) when z = {P9"'}, which is precisely the recursion that determines

w(p, {P2}). Using (36), we may immediately conclude

po = nlp, {22}) = (=) (#p — 1)! (42)

where #p is the number of blocks of p. This is precisely in agreement with (18).
While (42) is necessary, the connectedness axiom still requires that (40) holds. With a

formula for the coefficients just derived, (40) reduces to

Y up =0 . (43)

p:p,T20,pAT=0

This equation is merely (38) and is thus guaranteed to hold. We have therefore shown a
polynomial satisfying the fermionic additively separability axioms exists and is unique, and
we have determined its coefficients by (42). This polynomial is the probabilistic cumulant.

With Mobius inversion, we can straightforwardly invert our formula to convert multi-
plicative separability to additive separability and obtain a formula for a multiplicatively
separable quantity as a polynomial in additively separable ones. Given fermionic partition
7, we may substitute the cumulant formula just found for the cumulants appearing in the

product A(7m). We find

Am) = (p)u(p, ™) (44)

T2p
but this is just (33) with f(y) = A(y) and g(z) = y(x). Because (33) is equivalent to (32),

we have

(T =Y Ap) (45)

TP
which is equivalent to relation (19). We have now derived the relations between probabilistic

moments and cumulants entirely from combinatorics and the axiomatic definition.
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The reader may wonder what any of this has to do with the exp and log functions of
Section 2.1. The answer is that taking log of an exponential generating function precisely
corresponds to performing Mobius inversion of the partition lattice, and taking exp of an
exponential generating function undoes the Mobius inversion on the partition lattice, or
sums over all partitions. (This is made precise by Theorem 5.1.11 and Example 5.1.13 of
Reference 65.) As evidence of this, observe that the Taylor-series expansion coefficients of
the log-series are precisely (42) when #p is replaced with the degree of the coefficient. We
expect a similar relation holds for the set of fermionic patterns and “generating functions”
based on the normal ordered exponential.

The use of generating functions entirely avoids this otherwise tedious and non-obvious

problem of Md&bius inversion.

B Explicit Formulas from Generating Functions

For pedagogical purposes, we explicitly derive Equation 19 from Equation (10).

First, order the orbital indices and restrict the summations in Equations (7) and (8) so
the indices occur in order. This exactly cancels the factorial denominators. Now, choose the
cumulant element of interest. This is associated with a second quantized operator. Match
the coefficients of this operator on both sides. On the right side, the possible ways to produce
this operator using the normal ordered multiplication are given by every way to decompose
the second quantized operator, i.e., the fermionic partitions, with an explicit order imposed.
If the operator is decomposed into n operators, there are n! possible orders of these operators,
so the term will occur n! times. (There will be less than n! orders in the case of repeated
operators, but then the original operator would have been zero by antisymmetry.) This
term has a coefficient given by the degree n term of the Maclaurin series of log(1 + x),
(b iy Multiplying this by the n! multiplicity factor gives a final weight of this partition of

n

(—=1)"(n — 1)!. Upon summing over all fermionic partitions, this produces Equation 19.
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Equation 18 may be derived from Equation (9) by the same reasoning, but instead using

the fact that the degree n term of the Maclaurin series of exp(z) is .

C Exponentials in the Moment-Generating Function

Another obvious difference between the generating functions for the additively separable
probabilistic (2) and fermionic (10) quantities is that the probabilistic multiplicatively sepa-
rable generating function (1) uses an exponential that has no counterpart in the “generating
function” for the fermionic multiplicatively separable quantity, (7). This is due to fermionic
antisymmetry eliminating a technicality in the probabilistic cumulants.

For probabilities, it is perfectly legitimate to have a moment with a repeated variable, such
as the cumulant £(X X'). This cannot occur for fermionic quantities, because any “moments”
with a repeated creation index or annihilation index must be zero by antisymmetry. We point
out that (18) and (19) preserve antisymmetry because there is a sign-factor built into the
definitions of v(p) and A(p).

The possibility of repeated variables in a probabilistic cumulant introduces an ambiguity
in how we define the probabilistic cumulant. Do we define it by taking the formula for the
cumulant given distinct variables and substitute in the repeated variables, or do we extract
the term from the functions (1) and (2) with the repeated variables? Ideally, both approaches
should produce the same polynomial.

Direct computation shows that when all variables are distinct, encoding the moments m
as an ordinary generating function or an exponential generating function produces the same
polynomial. However, for repeated variables, the two definitions differ using the ordinary
generating function. For example, the ordinary generating function produces x(XX) =
m(XX) — sm(X)m(X) and £(XY) = m(XY) — m(X)m(Y).

The remedy for the case of repeated variables is to choose an exponential generating

function for the moment and cumulant generating functions. Taking the logarithm of our
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moment-generating function is then the composition of exponential generating functions. It
is a well-known combinatorial fact that this encodes a sum over all set partitions for a single
variable. (See Theorem 5.1.4 of Reference 65.) This interpretation hinges on repeated appli-
cation of the multiplication of exponential generating functions we discussed in Section 3.1.
The multivariable generalization of the same argument shows that the use of an exponential
generating function maintains the desired sum over partitions structure, whether variables
are repeated or not. Thus, we see that the exponential in the moment generating function

is only necessary to treat repeated variables, which we do not have in the fermionic case.

D Cumulants in Mukherjee’s Proof of GNO

The original paper of Mukherjee? offered an alternate proof of the GNO formalism in which
contractions naturally appear as different connectivity patterns of operators after a similarity
transformation by a unitary coupled cluster operator. These connectivity patterns can be
shown to be cumulants by summing all possible connectivity patterns together and equating
them to an RDM. (The connection between unitary coupled cluster connectivity and cumu-
lants has been further explored in Reference 14.) Products of cumulants arise as products of
operators not connected by a contraction, and sign phases arise from permutational phases
of operators.

While this provides another motivation to consider cumulants in the context of GNO,
the proof works just as well if the distinction between connectivity patterns of similarity-
transformed operators is not made, so cumulants do not appear. Separating out connectivity
patterns, or equivalently cumulants from the RDMs, is an arbitrary choice in this proof,
although one that clearly yields the advantage of additively separable contractions. Not
separating contractions based on connectivity patterns leads to a GNO where contractions

are RDMs instead of cumulants, but pairs of contractions are not valid, as in Section 4.1.
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E Extended Generalized Wick’s Theorem: Remaining
Steps

To prove the extended generalized Wick Theorem, we expand the GNO operators on the left
side of (28) into vacuum normal operators with (29), multiply them, and then convert the
result back into GNO operators with (27). This is similar in concept to the proof of Kong,
Nooijen, and Mukherjee,® but (29) simplifies the proof.

Take two W-normal operators, A and B. The expansion via (29) sums over all contractions
on only one term, with a sign factor. We call these internal contractions. When we multiply
and convert the result back using a Wick expansion, we sum over all possible contractions.
This includes contractions of operators from both A and B, called cross-contractions. So the
result is a sum over all possible contraction patterns with some coefficient. Let us choose a
particular contraction pattern and find its coefficient.

Suppose our contraction pattern has ¢ internal contractions and ¢ cross-contractions. The
cross-contractions must occur during the Wick expansion (27), but the internal contractions
may originate from (27) or (29). (27) always contributes a sign factor of 1, but the terms
with n contractions from (29) contribute a sign factor of (—1)". Further, there are (}) ways

to choose which f internal contractions come from (27). So our total coefficient is

Sevm()) (a0

f=0
We can change the exponent of 1 arbitrarily to i — f to apply a binomial expansion again

and get

‘ ; 1 +=0
) = (1) =
Sev(f) =a- o ()

In other words, all contraction patterns happen exactly once, which contain no internal
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contractions. This is precisely the Extended Generalized Wick Theorem, (28).
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