
Reduced Density Matrix Cumulants: The

Combinatorics of Size-Consistency and

Generalized Normal Ordering

Jonathon P. Misiewicz, Justin M. Turney, and Henry F. Schaefer III∗

Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia,

30602

E-mail: ccq@uga.edu

Abstract

Reduced density matrix cumulants play key roles in the theory of both reduced

density matrices and multiconfigurational normal ordering. We present a new, simpler

generating function for reduced density matrix cumulants that is formally identical to

equating the coupled cluster and configuration interaction ansätze. This is shown to

be a general mechanism to convert between a multiplicatively separable quantity and

an additively separable quantity, as defined by a set of axioms. It is shown that both

the cumulants of probability theory and reduced density matrices are entirely combi-

natorial constructions, where the differences can be associated to changes in the notion

of “multiplicative separability” for expectation values of random variables compared

to reduced density matrices. We compare our generating function to that of previous

works and criticize previous claims of probabilistic significance of the reduced density

matrix cumulants. Finally, we present a simple proof of the Generalized Normal Order-

ing formalism to explore the role of reduced density matrix cumulants therein. While
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the formalism can be used without cumulants, the combinatorial structure of express-

ing RDMs in terms of cumulants is the same combinatorial structure on cumulants

that allows for a simple extended generalized Wick’s Theorem.

1 Introduction

Reduced density matrix cumulants are fundamental in both reduced density matrix (RDM)

theories and multireference theories that use the generalized normal ordering formalism

(GNO) of Kutzelnigg and Mukherjee.1–5 To RDM theories, RDM cumulants are the addi-

tively separable, size-extensive parts of the RDMs. This is one of the primary reasons why

cumulants are either parameterized or varied directly in many RDM-based theories. 6–11 Ad-

ditive separability of cumulants is a crucial consideration in the derivations of References 12,

13, and Section IIC of 14. In GNO, second quantized operators are decomposed into linear

combinations of operators “normal ordered” with respect to an arbitrary reference, Ψ, via

the Generalized Wick’s Theorem. This theorem gives the expansion coefficients of the linear

combination in terms of contractions. This is analogous to the normal ordering procedure

and contractions familiar from correlated single-reference wavefunction theory. 15,16 However,

in the single-reference theory, the contractions are Kronecker deltas. In GNO, the contrac-

tions are no longer just Kronecker deltas but now include the RDM cumulants of Ψ. The

GNO formalism has also been used in many studies.17–20

Broadly speaking, there have been four approaches to defining reduced density matrix

cumulants in the literature. One definition is an explicit formula for them in terms of re-

duced density matrices.21–23 Apart from one presentation of the two-body cumulant,13 this

presentation is ad hoc, and the connection to additive separability is not established. Alter-

natively, Mukherjee defined the cumulants as an intermediate in a proof of the Generalized

Wick’s Theorem, which involved several unitary coupled cluster similarity transformations. 2

While this definition is natural within that proof, it is not known in other contexts. Another

definition begins by identifying the connected components of the perturbation expansion
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of the n-particle propagators.24 The terms can then be related to terms of a perturbation

expansion of the reduced density matrices,25 and the connected terms isolated. These latter

two definitions were nearly immediately replaced with the remaining definition. This defi-

nition is based on Kubo’s presentation of cumulants in probability theory26 and is now the

exclusive formalism used to discuss additive separability of the RDM cumulants.13,27–31

Given random variables X1, ..., Xn, Kubo began by defining the moment generating func-

tion

M(t1, ..., tn) = 〈exp(
N∑
i=0

tiXi)〉 (1)

and the cumulant generating function

K(t1, ..., tn) = logM(t1, ..., tn) . (2)

Any moment, or expectation value, of a product of the variables can be written in the

form 〈
N∏
n=0

X in
n 〉. That moment is the coefficient of

N∏
n=0

(in!)−1tinn in (1). Kubo defined the

cumulant of random variables, which we call the probabilistic cumulant, as the coefficient of
N∏
n=0

(in!)−1tinn in (2). Kubo showed that the probabilistic cumulants so defined are “additively

separable” with respect to variables that are “multiplicatively separable.” Specifically, Kubo

defined sets of random variables as being statistically independent if any moment of variables

factors into a product of moments, one for each set. For example, if the sets {X} and {Y, Z}

are statistically independent, then 〈X2Y Z〉 = 〈X2〉〈Y Z〉. Then the value of any cumulant of

variables from multiple independent sets is its original value if the variables are from the same

subset, and zero otherwise. This is the probabilistic analogue of the additive separability

of coupled cluster amplitudes for non-interacting subsystems producing a “high-spin”, i.e.,

antisymmetrized product, combined wavefunction.

To adapt Kubo’s definition of probabilistic cumulants to define RDM cumulants, we must

change expectation values of random variables to expectation values of second quantized

operators. However, Kubo’s proof of additive separability assumed that the random variables
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commute, but our second quantized operators do not. To define cumulants of non-commuting

objects while keeping additive separability, Kubo proposed that the multiplication appearing

in the power series of exp and log from (1) and (2) be replaced with a “multiplication” which

does make the objects commute. This idea has been key in the fourth approach to defining

RDM cumulants, via a generalization of Kubo’s generating functions.

We are convinced that the current definitions of RDM cumulants from generating func-

tions, while perfectly legitimate, have left important points open to clarification, and that

these points have hindered broader use of cumulants among electronic structure theorists:

1. It is not clear why a problem in quantum chemistry should need to borrow a tool

from probability theory. This has led to speculation that RDM cumulants of arbitrary

rank have some further probabilistic interpretation. Kutzelnigg and Mukherjee tried to

offer such an interpretation28 but later said it did not apply to the “exclusion-principle

violating” cumulants.32 Kong and Valeev interpreted some RDM cumulant elements as

probabilistic correlations of electron occupation, within some restrictive assumptions. 23

Hanauer and Köhn gave the same interpretation with looser assumptions, but could still

not provide a definitive probabilistic interpretation for all RDM cumulant elements.27

The latter paper was explicitly motivated by trying to understand the analogy between

probabilistic cumulants and RDM cumulants. The formal results of those papers do

not depend on the probabilistic interpretation. What is at stake instead is a compelling

physical picture of cumulants, to make them more digestible to new users of cumulant

formalisms.

2. Adapting cumulants from probability theory to RDMs requires modifying the definition

of multiplication in the exp and log series, but it is not a priori obvious what the

“correct” definition is. This has led to two distinct schemes to adapt Kubo’s cumulants

to RDM cumulants.

(a) The approach dominant in generalized normal ordering literature was pioneered
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by Kutzelnigg and Mukherjee,28 and a variant was later made by Hanauer and

Köhn.27 Accordingly, we call it the KMHK approach. In this formalism, the

analogue of random variables are the particle-conserving operators apq , and exp

and log must be redefined. The two variants redefine them differently. In the

original version of Kutzelnigg and Mukherjee, the exp in the analogue of (1) is

modified to use a normal ordered product, while the log in the analogue of (2)

uses an unrelated antisymmetrized product operation. The two functions are

no longer inverses, as in the probabilistic case. In the variant of Hanauer and

Köhn, the relevant exp and log series are inverses but use a modified normal

ordered product, the significance of which is unclear. Further, the presentation of

Hanauer and Köhn uses six different product operations: the Grassmann product

(∧), the alternative Grassmann product (⊗), the normal order product ({}), the

scalar product of tensors (·), the antisymmetrized tensor product (×A), and the

modified normal order product ({}′).

(b) The approach dominant in reduced density matrix literature was pioneered by

Mazziotti.29 In this formalism, the analogue of random variables are the creation

and annihilation operators a†p and aq, and the exponential is modified by apply-

ing an “ordering” operator. The analogue of the “formal variables”, t1, ..., tn, are

neither real nor complex numbers, but anticommuting numbers. Throughout the

literature, it has been typical13,29,30,33–36 to obtain RDM cumulants by using the

exponentiated analogue of (2), rather than using the log series, and to differentiate

with respect to the formal variables rather than match coefficients of products of

formal variables. (The two actions are equivalent.) The required differentiation

operators also anticommute. Obtaining an n-electron RDM cumulant element

requires 2n differentiations or 2n variables. This is surprising, as both the prob-

abilistic cumulants and the KMHK approach for the n-electron RDM cumulant

require n differentiations or n variables.
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3. Some sources have cautioned that cumulants are not size-extensive in general, but will

be if the wavefunction is full configuration interaction (FCI) in some active space.2,23,37

Mukherjee’s proof of additive separability further depends on the multiplicative separa-

bility of the wavefunction.2 From this, the fact that cumulants from non-multiplicatively

separable wavefunctions, e.g., spin-coupled energy eigenstates, are not additively sep-

arable27,38,39 is expected. However, ensemble averages of such states can still be ad-

ditively separable.40 (Such qualifiers are frequently neglected without comment in the

literature.) But it is not obvious from the generating function definition why a multi-

plicatively separable FCI wavefunction is of such importance to additive separability.

This is so for two reasons. First, the proof that the RDM cumulants are additively

separable using the KMHK definition is more complicated than in Kubo’s case, be-

cause not all “random variables” can be assigned to one subsystem or the other.27,41

(Mazziotti’s approach does not have this drawback.) Second, when the formula for a

cumulant is simplified to a polynomial, it is not clear why one polynomial is additively

separable while another is not. For example, why is γpqrs−γprγqs +γpsγ
q
r additively separa-

ble but not γpqrs + γprγ
q
s − γpsγqr? Neither generalization of Kubo’s approach immediately

offers insight.

4. We are aware of no attempt to explain the fact that the contractions of the GNO

formalism are the cumulants defined via this generating function.

In this research, we address all these points. We begin by considering the question of

additive separability. We propose a new definition of the RDM cumulants that starts not

from the cumulant generating function of Kubo but by a generalization of the relationship

between coupled cluster and configuration interaction amplitudes. This provides a famil-

iar and convenient “generating function” for RDM cumulants that makes the combinatorial

mechanism of their additive separability apparent. That analysis further motivates a more

abstract definition of RDM cumulants using three axioms, inspired by Percus,42 that char-

acterize a solution to the general problem of breaking a multiplicatively separable second
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quantized quantity into additively separable parts. Our “generating function” for the RDM

cumulants can thus be trivially adapted to construct an additively separable quantity from

any multiplicatively separable one. All this will be covered in Section 2. We refer read-

ers interested in a detailed look at the connection between our generating function and the

combinatorial problem of the three axioms to Appendix A.

In Section 3, we compare our generating function with that of the KMHK approach

and the Mazziotti approach to analyze how they generalize the idea of Kubo, and how all

three generating functions can lead to the same answer. Section 3.1 shall review generating

functions in detail. Section 3.2 will analyze the use of generating functions in the definition

of the probabilistic cumulant. We intend to establish that the probabilistic cumulant and

RDM cumulant are similar because they both solve the problem of constructing an additively

separable quantity from a multiplicatively separable one, and differences between the two

can be understood in terms of differences in the notion of multiplicative separability. In

Section 3.3, we discuss how the previous RDM cumulant generating functions of the KMHK

and Mazziotti approaches simplify to ours and lead to the same answer. By this point in our

argument, it will be clear that the analogy between the probabilistic and RDM cumulants

is entirely a matter of combinatorics and the three axioms, and probability theory plays no

role in the analogy. In Section 3.4, we shall criticize claims of a probabilistic interpretation

of RDM cumulants.

Lastly, we return to RDM cumulants from the perspective of generalized normal ordering

in Section 4. We consider why cumulants appear in the formalism of generalized normal

ordering in Section 4 and give a relatively simple proof of the Generalized Wick Theorems.

While cumulants are not strictly necessary (the theory can instead be formulated in terms

of RDMs), choosing to use cumulants offers advantages such as the additive separability of

contractions. Importantly, invoking cumulant decomposition also allows for a simple formula

for normal order products in terms of the generalized normal order product, which in turns

allows for a simple Extended Generalized Wick Theorem. This is best understood in terms
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of the formula to write an RDM in terms of cumulants.

2 Additive Separability from Multiplicative Separabil-

ity

2.1 Cumulant Definition

Let us try to construct additively separable cumulants from the reduced density matrices.

The well-known relation between additively separable coupled cluster (CC) amplitudes and

the configuration interaction (CI) amplitudes is given by

1 + C = exp(T ) (3)

where

C =
∑
i,a

1

(1!)2
ciaa

a
i +

∑
i,j,a,b

1

(2!)2
cijaba

ab
ij + ... (4)

and

T =
∑
i,a

1

(1!)2
tiaa

a
i +

∑
i,j,a,b

1

(2!)2
tijaba

ab
ij + ... (5)

and the operators aai , a
ab
ij , etc. are the usual second quantized excitation operators of many-

fermion theory.15,16,43

The excitation operators in (4) and (5) perform two roles. First, they make the left and

right hand sides of (3) operators that transform the reference Φ into the target state Ψ. 44

The need for an operator to act on a wavefunction is the usual rationale for the appearance of

second quantized operators in (3).15,16,43,44 For our purposes, this role is irrelevant. Second,

equating the coefficients of the operators aai , a
ab
ij , etc. on each side of (3) gives a c amplitude
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as a polynomial in the t amplitudes.44,45 After taking log of (3), matching coefficients on

both sides then solves for a CC amplitude as a polynomial in CI amplitudes. This role is

what we will generalize to define RDM cumulants.

Let us define RDM elements with

γpq···rs··· = 〈Ψ| apq···rs··· |Ψ〉 . (6)

Other normalization conventions are known in the RDM literature. This is known as the

McWeeny normalization46 and is especially convenient for our purposes.

Since we want cumulant elements to be additively separable and expressed in terms of

RDM elements, replace (4) and (5) with

C =
∑
p,q

γqpa
p
q +

∑
p,q,r,s

1

(2!)2
γrspqa

pq
rs + ... (7)

and

T =
∑
p,q

λqpa
p
q +

∑
p,q,r,s

1

(2!)2
λrspqa

pq
rs + ... . (8)

We may attempt to use 1 + C = exp(T ), but our second quantized operators need not

commute, so we lose the property that exp(A + B) = exp(A) exp(B), which plays a central

role in the logic that the cluster operators are additively separable.15,16,43 Modifying an idea

from Lindgren,47 we redefine the multiplication in the exponential to be the vacuum-normal

order product rather than the operator product; so for example, we use the multiplication

{apraqs} = apqrs rather than apra
q
s = apqrs + δqra

p
s. (In notation such as {apraqs}, the braces denote

redefining multiplication, not a function applied to apra
q
s. The latter approach leads to

contradictions of the type discussed in References 48 and 49.) The normal product always

commutes for particle-conserving operators and reduces to the usual exponential when we

only need excitation operators, as in coupled cluster. While normal ordered exponentials
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also appear explicitly in the KMHK approach to cumulants27,28,31,50,51 and in the Mazziotti

approach to cumulants,13,29,30,33–36 in those formalisms, normal ordered exponentials do not

relate the moment and cumulant generating functions, as in this formalism. We discuss this

in detail in Section 3.3.

Therefore, our candidate solution to our additive separability problem is given by

1 + C = {exp(T )} (9)

or equivalently

{log(1 + C)} = T . (10)

We have used the fact that the logarithm and exponential are inverses as long as the product

operation commutes because they must be inverses as formal power series.52–54

Is the quantity additively separable, as desired? To show that (or rather, when) it is, we

follow the standard proof used to show the additive separability of CC amplitudes. Let A

and B be two subsystems of a larger system. Then the proof is simply:

1 + CA+B = {(1 + CA)(1 + CB)} = {{exp(TA)}{exp(TB)}} = {exp(TA + TB)} . (11)

We have used the fact that exp(A) exp(B) = exp(A+ B) whenever the multiplication com-

mutes, which is guaranteed by our use of normal ordered multiplication, but also the impor-

tant relation

1 + CA+B = {(1 + CA)(1 + CB)} . (12)

(12) encodes the requirement that the RDM have multiplicative separability.

We say a tensor is multiplicatively separable if the orbitals can be divided into subsets

(usually but not necessarily corresponding to orbitals localized on noninteracting subsys-

tems) so that any tensor element factors into a product of tensor elements, each containing
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only the indices of one subsystem. For example, γpqrs = γprγ
q
s if p, r are on a different subsys-

tem from q, s, or cpqrstu = −γpt γqrsu if p, t are on one subsystem and q, r, s, u on another. This

property manifestly requires a family of tensors across different ranks and that all orbitals

be assigned to some subsystem. Furthermore, multiplicative separability of a family of ten-

sors with respect to some division into subsystems is not automatic, but must be rigorously

proven. If the tensor elements are determined by applying some function (such as a statis-

tical or quantum mechanical expectation value) to a second quantized operator, then the

multiplicative separability of the tensor depends on the properties of that function. And if

the tensor is not multiplicatively separable, our proof is invalid, and additive separability

does not follow.

It can be shown, after straightforward second quantized algebra on (6), that (12) is satis-

fied if ΨAB is an antisymmetrized product of ΨA and ΨB. So in that case, the cumulants are

additively separable. However, ΨAB need not be multiplicatively separable for two reasons.

First, the exact target ΨAB may not have this property, usually because ΨAB is a “low-spin”

eigenstate, but an antisymmetrized product of ΨA and ΨB will always be a “high-spin”

eigenstate. It has been shown theoretically and numerically that cumulants with orbitals

from multiple subsystems will not vanish in this case,27,38,39 and cumulants have even been

studied as a way to measure the resulting spin-entanglement.38 The second reason is that

the wavefunctions or reduced density matrices may be computed by an approximation that

artificially changes the multiplicative separability structure. Examples of this behavior, even

with size-extensive energies, include the orbital unrelaxed density matrices of coupled clus-

ter,37 the orbital optimized methods studied by Bozkaya and co-workers,55–58 and the RDM

formulation of CEPA given by Mazziotti and related to his parametric RDM method. 59,60

This multiplicative separability structure is preserved in FCI within a complete active space

as well as several approximate RDM methods.6–9

We close this subsection by observing that formulas to convert between RDMs and their
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cumulants can be extracted from (9) and (10). Some explicit examples are

γpq = λpq (13)

γpqrs = λpqrs + λprλ
q
s − λpsλqr (14)

λpqrs = γpqrs − γprγqs + γpsγ
q
r (15)

γpqrstu = λpqrstu + λpsλ
qr
tu − λ

p
tλ

qr
su + λpuλ

qr
st − λqsλ

pr
tu + λqtλ

pr
su − λquλ

pr
st + λrsλ

pq
tu − λrtλpqsu + λruλ

pq
st

+ λpsλ
q
tλ

r
u − λpsλquλrt − λ

p
tλ

q
sλ

r
u + λptλ

q
uλ

r
s + λpuλ

q
sλ

r
t − λpuλ

q
tλ

r
s

(16)

λpqrstu = γpqrstu − γpsγ
qr
tu + γpt γ

qr
su − γpuγ

qr
st + γqsγ

pr
tu − γ

q
t γ

pr
su + γquγ

pr
st − γrsγ

pq
tu + γrt γ

pq
su − γruγ

pq
st

+ 2γpsγ
q
t γ

r
u − 2γpsγ

q
uγ

r
t − 2γpt γ

q
sγ

r
u + 2γpt γ

q
uγ

r
s + 2γpuγ

q
sγ

r
t − 2γpuγ

q
t γ

r
s

(17)

To write the general formula, we need some more notation. Each term corresponds to

a way to partition the upper and lower indices onto RDMs or cumulants. These groupings

are more abstract than a product of terms of a particular tensor, and we call each grouping

a “fermionic partition”. Given a fermionic partition ρ, the associated product of RDM

or cumulant elements (with parity factor) is written as γ(ρ) or λ(ρ), and the number of

tensor elements in the product is written as #ρ. So for the fermionic partition {pt}{qrsu},

λ({pt}{qrsu}) = −λptλqrsu and #{pt}{qrsu} = 2. Then we have

γpq···rs··· =
∑
ρ

λ(ρ) (18)

and

λpq···rs··· =
∑
ρ

(−1)#ρ−1(#ρ− 1)!γ(ρ) (19)

where summation is over all fermionic partitions. Equation 19 is derived in detail in Appendix

B.
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2.2 Combinatorial Nature of Cumulants

Now that we have defined RDM cumulants, we can make some further observations about

the definition.

First, the only fact specific to RDMs and their cumulants that we used is that they obey

(12) for non-interacting subsystems with a high-spin wavefunction. Accordingly, precisely

the same mechanism defines an additively separable “cumulant” from any tensor that is

multiplicatively separable. Our results thus extend to more exotic quantities, such as the

reduced transition matrices of Mazziotti34,35 or the amplitudes of valence universal multiref-

erence coupled cluster.49 Alternately, the familiar coupled cluster expansion can be viewed

as a specific case of the general construction of this paper. (By the argument in Section

4.3.1 of Reference 43, coupled cluster amplitudes have the same factorization property that

we require of RDMs.) While there have been previous attempts to connect reduced density

matrix cumulants and coupled cluster,22,34,35,37,61 we do not believe it has been previously

observed that near identical “generating functions” can be produced for the two, or that

this is a general solution to the problem of converting between multiplicative and additive

separability.

Second, our cumulant formulas can be shown to be additively separable just from their

polynomial form, even without the explicit appearance of the exponential, if there is some

way to separate the orbitals of the RDMs onto noninteracting subsystems. We will follow

the argument of Herbert and Harriman.13 Consider how (15) simplifies if any factorization

of the RDM is assumed. For example, if γpqrs = γprγ
q
s , corresponding to p, r being on one

subsystem and q, s on another non-interacting subsystem, (15) becomes γprγ
q
s −γprγqs +0 = 0.

Or if γpqrs = −γpsγqr , corresponding to p, s and q, r being on the two subsystems, (15) simplifies

to −γpsγqr − 0 + γpsγ
q
r = 0. Exactly the same logic, but with many more cases to consider,

can be used to show the additive separability of (17) if the RDMs are multiplicatively

separable. This shows the explicit mechanism by which the additive separability of cumulants

is achieved: the coefficients of the terms in the cumulants are exactly such that if any RDM
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factorization occurs, the cumulant vanishes.

This requirement that a cumulant turns a multiplicatively separable quantity into an

additively separable quantity can be used to provide an alternate characterization of cumu-

lants. Rather than using our “generating functions” to define cumulants, we can define them

by providing a list of conditions they must satisfy and showing that only one definition is

acceptable. In this viewpoint, the generating functions emerge as a clever solution to the

problem, but not as the definition themselves.

Our alternate definition mirrors the definition of probabilistic cumulants given by Per-

cus42 and latter refined by Simon,62 and can also be adapted to define an additively separable

counterpart of any quantity which may have multiplicative separability:

1. Functional Form

λ(pq···rs···) =
∑
ρ

µργ(ρ) (20)

This axiom uses notation introduced at the end of Section 2.1. It says that the cumulants

are some linear combination of products of RDMs with parity factors, one for each way to

split the orbitals in (pq···rs···) across multiple RDM elements (the fermionic partitions). To fully

define cumulants, the expansion coefficients µ need to be specified. Because each orbital

appears in exactly one RDM, orbital invariance is guaranteed.

2. Normalization µpq···
rs···

= 1

This axiom gives the normalization for the cumulants. Without it, we could multiply cumu-

lants by an arbitrary scalar and still get something additively separable.

3. Additive Separability If γ(pq···rs···) is multiplicatively separable with respect to some

separation of the orbitals (other orbitals not being relevant), λ(pq···rs···) is identically zero,

for any choice of the unspecified γ.

This axiom specifies the key property that multiplicative separability of the RDMs implies

additively separable cumulants, discussed in the previous subsection. This axiom can be
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used to determine all remaining coefficients from (20) by recursing over the number of RDM

elements in each term. For a given ρ, factorize all RDM elements according to that partition,

and set the coefficient of γ(ρ) to 0. You can then solve for the desired coefficient as a sum of

the coefficients from partitions with fewer RDM elements, which have already been solved

for.

From these axioms, it is possible to define cumulants without any generating functions,

but just sophisticated counting. We take this approach in Appendix A, although recognizing

that (10) leads to the desired form is far more convenient.

What should be abundantly clear at this point is that cumulants are a combinatorial

construction to convert multiplicative separability to additive separability. RDM cumulants

are just a very important special case. Whatever uses for them RDM theory may have, their

definition conveys nothing special about either RDMs or probability theory.

3 Generating Functions

Equations (9) and (10) provide a way to construct a multiplicatively separable quantity

from an additively separable one and vice versa. However, we have not yet established why

a function should be so useful in solving what is an essence a combinatorial problem, how the

differences between RDM cumulants and the probabilistic cumulants should be understood,

how the difference between our generating functions and those of the KMHK and Mazziotti

approaches should be understood, or what this means for earlier attempts to interpret RDM

cumulants probabilistically. We address each of these questions in turn in the following

subsections.

3.1 Mathematicians’ Generating Functions

While RDM cumulant generating functions have been defined numerous times,13,27–31,33,36,50,51

as have generating functions for the more general reduced transition matrix cumulants, 34,35

15



we are aware of no general discussion of generating functions in the chemistry literature. As

this is crucial for this research, we provide one, emphasizing the underlying ideas in language

accessible to quantum chemists rather than mathematical rigor. We refer readers interested

in detailed mathematical treatments of generating functions to References 53, 54, 63, 64,

and 65.

Combinatorialists frequently study arrays of numbers. For example, av may be the num-

ber of connected graphs with v vertices. This sequence can be encoded into a formal power

series. A formal power series is a power series in a variable that is associative and commuta-

tive, but indeterminate. This variable is called a formal variable. Formal variables cannot be

evaluated at specific numbers, and accordingly, questions of convergence do not exist. The

formal power series that a sequence is converted into is called a generating function. For

example, one can imagine the sequence
∞∑
n=0

avx
v.

Although generating functions have multiple uses, the one most relevant to the present

work is that they convert combinatorial problems into algebraic ones. It is possible to define

algebraic operations on formal power series that replicate familiar operations on functions

and that also automate some combinatorially significant operation on the sequence. We can

thus solve a problem algebraically and only afterwards rephrase the result in terms of the

original combinatorial problem.

Let us illustrate the combinatorial significance of the familiar algebraic operation of

multiplying functions. Suppose that there are an ways to put a structure of type A on

n objects and bn ways to put a structure of type B on n objects. Given n objects, how

many ways are there to divide them into a structure of type A and structure of type B? If

different ways to partition the objects into A and B produce different objects, the answer

is
n∑

m=0

(
n
m

)
ambn−m. Now, from the sequences {an} and {bn}, construct the functions a(x) =

∞∑
n=0

an
xn

n!
and b(x) =

∞∑
n=0

bn
xn

n!
. (The 1

n!
denominator is optional, and using it means we have

exponential generating functions.) If we compute a(x) ∗ b(x), we find the coefficient of xn

n!
is

n∑
m=0

(
n
m

)
ambn−m. Multiplying exponential generating functions corresponds precisely to our
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problem of counting labeled structures.

Alternately, if different ways to partition the objects into A and B produce the same

object, the answer to our counting problem is
n∑

m=0

ambn−m. If we now form the functions

a(x) =
∞∑
n=0

anx
n and b(x) =

∞∑
n=0

bnx
n, we find the coefficient of xn in a(x) ∗ b(x) is the

desired
n∑

m=0

ambn−m. These generating functions without the 1
n!

are called ordinary generating

functions.

This example illustrates an important principle: the nature of the counting that is of

interest determines which kind of generating function is best.

These ideas can be extended to sequences indexed by n natural numbers rather than just

one, requiring multivariable functions. The generating functions then use n formal variables

x1 through xn, and the generating functions are written as a(x1, ..., xn) =
∑
d

ad
∞∏
i=1

x
di
i

di!
for an

exponential generating function and a(x1, ..., xn) =
∑
d

ad
∞∏
i=1

xdii for an ordinary generating

function. The counting principles are the same, although the details are more complex.

3.2 Probabilistic Cumulants

We are now prepared to address the probabilistic cumulants. We noted in the introduction

that multiplicative separable moments turn into additively separable probabilistic cumulants.

We may turn this into an abstract definition of probabilistic cumulants, independent of any

generating functions, much as we did for RDM cumulants. This will reveal why mirroring

probabilistic cumulants leads to useful RDM cumulants.

First, let us write some explicit formulas for probabilistic cumulants, κ, in terms of

moments, m.
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κ(X) = m(X) (21)

m(XY ) = κ(XY ) + κ(X)κ(Y ) (22)

κ(XY ) = m(XY )−m(X)m(Y ) (23)

m(XY Z) = κ(XY Z) + κ(X)κ(Y Z) + κ(Y )κ(XZ) + κ(Z)κ(XY ) + κ(X)κ(Y )κ(Z) (24)

κ(XY Z) = m(XY Z)−m(X)m(Y Z)−m(Y )m(XZ)−m(Z)m(XY )

+ 2m(X)m(Y )m(Z)

(25)

These closely parallel the RDM cumulant formulas from (13) to (17). It is apparent from

these examples that we will need to put all of our variables into groups and take products

of the moments or cumulants of each group. If one of these groupings is ρ, we will write the

corresponding product as m(ρ) or κ(ρ) for moments and cumulants, respectively.

We can now write our abstract definition, following Percus42 and Simon,62 as

1. Functional Form

κ(XY · · · ) =
∑
ρ

µρm(ρ) (26)

This axiom uses the notation introduced immediately above. It says that the cumulants

are some linear combination of products of moments, one for each way to split the variables

across different moments (a partition). To fully define cumulants, the expansion coefficients

µ need to be specified.

2. Normalization µXY ··· = 1

This axiom gives the normalization for the cumulants. Without it, we could multiply cumu-

lants by an arbitrary scalar and still get something additively separable.

3. Additive Separability If m(XY · · · ) is multiplicatively separable with respect to

some separation of the variables, κ(XY · · · ) is identically zero, for any choice of the

unspecified m.
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This axiom specifies the key property that multiplicative separability of the moments implies

additively separable of the cumulants. This axiom can be used to determine all remaining

coefficients from (26) by recursing over the number of moments in each term. For a given ρ,

factorize all moments according to that partition, and set the coefficient of m(ρ) to 0. You

can then solve for the desired coefficient as a sum of the coefficients from partitions with

fewer moments, which have already been solved for.

As before, we may check that the cumulant generating function given by (2) satisfies

the axioms, confirming that the more familiar generating function and the more abstract

axiomatic approach give the same result.

More importantly for our purposes, this definition is nearly identical to that of RDM

cumulants earlier. All differences arise from only two sources. First, probabilistic cumulants

are polynomials in moments where RDM cumulants are polynomials in RDM elements. Sec-

ond, the multiplicative separability that matters for probabilistic cumulants is separation of

variables, where the multiplicative separability that matters for RDM cumulants is simul-

taneous separation of creation and annihilation operators, giving rise to different notions of

“partitions.” This leads us to the reason why cumulants should be so useful both in proba-

bility theory and in RDMs: in both cases, we want to construct a polynomial in something

that may be multiplicatively separable that will be additively separable if it is multiplicatively

separable. It is precisely the same combinatorial problem, just arising in different contexts.

This insight was present as early as Reference 28, but it has new significance when

rationalizing the different forms of the generating functions. First, the fact that we want

to convert multiplicative separability into additive separability is a strong indicator that log

should appear in both cases.

Second, why does the multiplication differ? As discussed in Section 3.1, different kinds

of generating functions are suited to different counting problems. In both cases, to read off

relations of form (20) and (26) from our generating functions, we want to count how many

times each variable or creation/annihilation operator appears in our cumulant of interest,
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find the corresponding terms, and match the coefficient of that term in those equations.

The left-hand side gives a cumulant element, while the right-hand side gives it in terms of

products of moments using our multiplication. The multiplication thus governs how the

simple starting “counts” of moments can be combined to give “counts” that will add to the

final desired term.

For probabilistic cumulants, the standard multiplication of Section 3.1 counts this per-

fectly well. Just correlate the degree of each formal variable tn with the number of times the

random variable Xn appears in the moment.

For RDM cumulants, we must keep separate counts of creation and annihilation operators,

and must also count the overall phase factor. For efficiency, we should assume the same

number of creation as annihilation operators. It is possible to adapt the formal variable

approach to this, and as we shall discuss in Section 3.3, this is exactly what the KMHK and

Mazziotti approaches to RDM cumulants do. However, quantum chemists already have a

multiplication to count this: the normal ordered product of particle-conserving operators.

This is the fundamental reason why the normal ordered product must be used rather than

the operator product in equations (9) and (10).

The final difference between the two functions is that an exponential appears in the

creation of the moment-generating function (1) for probabilistic cumulants, but not in our

RDM analogue, (7). In brief, this is a simplification that emerges because RDMs do not have

to consider repeated orbitals, by antisymmetry. The argument is discussed in Appendix C.

3.3 Comparison with Previous Generating Functions

While both the KMHK and Mazziotti approaches provide perfectly legitimate definitions

of cumulants, they acquire added complexity by sticking too closely to formal variables.

Products of formal variables reflect the factorizations of probabilistic cumulants but not

RDM cumulants, so products of formal variables are not an optimal tool for defining RDM

cumulants. We now describe how the concepts of our approach in Section 2.1 emerge from
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those previous. The comparison is summarized in Table 1.

Table 1: A comparison of different generating functions of reduced density matrix cumu-
lants.

Descriptor KMHK Approacha Mazziotti Approachb This Workc

Moment Generating Function 〈ψ| {exp(kpqa
q
p)} |ψ〉 〈ψ| {exp(Jka

†
p + J∗kap)} |ψ〉 1 +

∑
Cq...p...a

p...
q...

Formal Variable kpq Jk, J
∗
k apq

Product of Formal Variables kpq ∗ krs = kpqk
r
s 6= −kpskrq Jk ∗ Jl = JkJl = −JlJk {apqars} = aprqs = −aprsq

Particle-conserving variables only? Yes No Yes
Role of apq Construct RDMs Construct RDMs Formal variables

Multiplication in exp/log ×A Standard {}
Match coefficients of... Antisym. products of variables Products of variables Products of variables
Rank n cumulant needs n variables 2n variables n variables

a Kutzelnigg, Mukherjee, Hanauer, and Köhn;27,28,31,50,51 b Mazziotti29,33–36 and other
reduced density matrix investigators;13,30 c Section 2.1 of the present research

Both the KMHK and Mazziotti approaches obtain their RDM generating functions by

taking the normal ordered exponential of a sum of “minimal” second quantized operators

multiplied by formal variables indexed by the “minimal” operator. An expectation value is

then taken. This constructs the moment-generating function. For probabilistic moments,

where repeated variables exist, this is a very useful device to construct the moment-generating

function and much easier to remember than the explicit factorials. However, for our fermionic

quantities, we can instead use (7), which is an easy generalization of the familiar configuration

interaction form (4). This is exactly as discussed in Appendix C.

We now consider the two approaches separately.

First is the KMHK approach. As Hanauer and Köhn’s presentation uses six different

product operations,27 we comment only on the variant of Kutzelnigg and Mukherjee.28,31,50,51

In the KMHK approach, each formal variable is indexed by both a creation operator and

an annihilation operator. This ensures that each term contains the same number of cre-

ation operators as annihilation operators. However, different products may be related by

antisymmetry. Namely, kprk
q
s and −kpskqr both count the same thing. To resolve this, when

extracting terms from the generating functions, the KMHK approach matches coefficients of

antisymmetrized products of their formal variables, such as kprk
q
s − kpskqr , instead of simply
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matching coefficients of the formal variables. Our formalism avoids this entirely because

{apraqs} = −{apsaqr}. Instead of the normal ordered logarithm that appears in our formalism,

the KMHK approach uses an “antisymmetrized logarithm” to enforce that each product

of their formal variables appearing in the Taylor series of log(1 + X) is antisymmetric. In

our formalism, this is unnecessary because the formal variables have been replaced with the

fermionic second-quantized operators, which are already antisymmetric.

In the Mazziotti approach, each formal variable is indexed by a single operator, creation or

annihilation. In that case, the formal variables are ordered in the same way as the creation

and annihilation operators used to produce the reduced density matrix. In Mazziotti’s

moment-generating function, every string of “probe variables” can be replaced with a second-

quantized operator to convert to our notation. The anticommutation of the probe variables

so JpJqJ
†
sJ
†
r = −JqJpJ†sJ†r is just the familiar equation in our formalism, apqrs = −aqprs. That

the probe variables are ordered so that the ones associated with creation operators are on

the left of those with annihilation operators again is more naturally stated in our formalism

as {apraqs} = apqrs. In Mazziotti’s approach, a traditional exponential is used rather than a

normal ordered one. However, the multiplication used by Mazziotti’s approach is not that

of a second-quantized operator product, but multiplication of formal variables. Further,

different orderings of the operator are not treated as distinct, so JpJqJ
†
sJ
†
r and JpJ

†
rJqJ

†
s are

treated as the same. This is again the behavior of the familiar normal ordering our formalism

uses, apqrs = {apraqs}. However, we reiterate that Mazziotti’s formalism generates terms with

different numbers of creation and annihilation operators that must eventually vanish. This

does not occur in our formalism, which is particle-conserving from the start.

So we see that both previous formalisms can be understood in terms of our cumulants.

3.4 Probabilities and the RDM Cumulant

The arguments of the preceding sections establish that the cumulants are a fundamentally

combinatorially entity that construct an additively separable quantity from a multiplicative
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separable one. This has different forms for probabilities compared to RDM cumulants and

related quantities because they have different notions of multiplicative separability. Prob-

abilistic cumulants have probabilistic significance only because they are polynomials in ex-

pectation values, which themselves have probabilistic significance. Accordingly, we revisit

and correct the claims of Hanauer and Köhn27 that there is a probabilistic interpretation of

the RDM cumulant.

Hanauer and Köhn concluded that “in a natural orbital basis, the diagonal elements of

λn are in fact the covariances of the occupation numbers of n spin orbitals” and stated that a

paper by Kong and Valeev23 made the same conclusion. The actual conclusion of Kong and

Valeev was limited to the special cases of λ2 and λ3, but conspicuously made no statement

for λn of higher ranks. For ranks higher than 3, the statement is false.

Hanauer and Köhn correctly claimed that a diagonal RDM element, where the creation

and annihilation operators are the same, can be interpreted as the probability that the

relevant orbitals are simultaneously occupied. We can thus say γpp = m(p), γpqpq = m(pq), and

so forth. Let us then take the RDM cumulant, λ, and see if it agrees with the probabilistic

cumulant we obtain by regarding RDMs as probabilistic quantities, κ.

For the two-electron case, we have λpqpq = γpqpq−γppγqq+γpqγ
q
p and κ(pq) = m(pq)−m(p)m(q).

The two cumulants λ and κ disagree by the non-diagonal terms. If we choose our orbitals to

be the natural spin orbitals, γ1 is diagonal by definition, so γpq and γqp vanish, and the two

formulas then agree. The same argument shows equality for the λ3 case. However, for λ4,

the argument fails because the RDM cumulant will contain terms such as −γpqrsγrspq , which

cannot be assumed to vanish. The RDM cumulant then disagrees with the probabilistic

cumulant of the probabilistic interpretation of the RDM.

This disagreement is unsurprising from the framework of this article. The functional

forms for the RDM cumulant, (20), and the probabilistic cumulant, (26), differ precisely

by such terms. These represent valid multiplicative separations for RDMs, which have n

creation and n annihilation indices, but not for expectation values of variables, which simply
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have n variables.

Hanauer and Köhn further attempted to give a probabilistic interpretation for off-diagonal

RDMs but struggled to make sense of negative RDM elements. The situation is in fact worse.

The second quantized operators of off-diagonal RDMs are non-Hermitian. These quantities

may be complex numbers, which cannot be a probability. For example, consider the hydrogen

atom RDM element, 〈p+1| apxpy |p+1〉 = i
2
.

While RDM cumulants give some information about orbital occupation, we must reject

claims that this information is the same statistical information of probabilistic cumulants.

The similarities between RDM cumulants and probabilistic cumulants should be understood

on the basis that they solve very similar problems of constructing an additively separable

quantity from a multiplicatively separable one using very similar techniques.

4 Generalized Normal Ordering

We now shift our perspective entirely to view cumulants from the GNO formalism.1–5 We

shall primarily consider why RDM cumulants appear here. In brief, RDM elements appear

so that the expectation values of normal ordered second-quantized operators (which will

themselves be RDM elements) vanish. It is then a choice whether to invoke cumulant de-

composition or not. The decomposition has several advantages: it makes the contractions

additively separable for RDMs corresponding to an antisymmetrized product of wavefunc-

tions, it is a certain generalization of the contraction patterns of single-reference normal

ordering, and it crucially simplifies the formula to write a product of GNO operators as

a sum of other GNO operators. The latter property has little to do with cumulants in

particular but follows from the contraction pattern.

There are many uses of GNO concepts, and we cannot describe all of them here. We

refer interested readers to the papers describing the methods that use GNO for the use of

many-body residual expressions,66–68 construction of GNO excitation operators,5,17,20,69–71
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neglect of high-rank cumulants,18,67,68,72 neglect of high-rank generalized normal order oper-

ators,18,20,66–68,70–72 use of state-averaged reduced density matrices,67,68,71 forming the zeroth-

order Hamiltonian in perturbation theory,5,20,32,70,71 and elimination of disconnected terms.12,69

4.1 Wick Expansion

We seek to generalize the familiar single-reference Wick Theorem,15,16 which says that an

arbitrary string of creation and annihilation operators can be expanded into a scalar and a

linear combination of operator strings “normal ordered” with respect to Φ, meaning their

expectation value for wavefunction Φ is zero. We do so in two steps: we generalize this for

vacuum-normal operator strings, and then extend this result to arbitrary operator strings.

Our presentation shall follow that of Reference 1. There is an alternate presentation 2 which

requires a detour through unitary coupled cluster theory but does have the GNO operators

appear naturally as intermediates. We discuss this proof in relation to cumulants in Appendix

D.

First, let us assume a vacuum-normal operator string, where all creation operators are to

the left of annihilation operators. In any such expansion, the scalar must be the expectation

value of the string because all other terms in the expansion have zero expectation value. If

the operator is particle-conserving, this expectation value is an RDM element; otherwise, it

is zero.

Now, in the single-reference formalism, we write the scalar term as the sum of all possible

“contractions.” Contractions take a creation operator and an annihilator operator into

an additively separable tensor element, and multiple contractions are allowed. If we want

additively separable contractions in GNO, we must perform a cumulant expansion of the

RDM, per (18), and say that each contraction is a cumulant. Accordingly, the rules for

which contractions are allowed are dictated by the possible cumulant patterns in Equation

(18). Multiple contractions are still allowed, but contractions now may take n creation

and n annihilation operators for any n. As usual, there is a sign factor associated with
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anticommuting operators to bring operators together for a contraction.

Alternatively, we could have started by generalizing the rule that the scalar term is the

sum of all possible complete contractions, which takes us to (27). If we take the expectation

value of both sides and insist that normal-ordered operators have zero expectation value,

we conclude that the RDM is the sum of all possible complete contractions. The equation

for a rank n operator has exactly the same structure as the rank n case of (18), but with

contractions instead of cumulants. This is why the contraction structure of Reference 1 must

have the contractions be cumulants. It follows immediately that contractions are cumulants,

multiple contractions remain allowed, and contractions must be able to take n creation

and n annihilation operators. Generalizing this contraction structure was the heart of the

approach with convolutions and Hopf algebras by Brouder and coworkers,73 although they

did not recognize the importance of the cumulants.

We could just as easily have not bothered with cumulant decomposition at all but kept

contractions as RDMs. We can then no longer have multiple contractions, and the proper

way to generalize n repeated contractions from the single-reference Wick theorem is as a

single contraction involving n creation and n annihilation operators, yielding an n-RDM

element. The same property holds true in the alternate proof discussed in Appendix D.

Writing a creation or annihilation operator as q̂, we can write the Wick expansion of a

vacuum normal operator as

q̂pq̂q q̂rq̂q q̂sq̂tq̂u... = {q̂pq̂q q̂rq̂q q̂sq̂tq̂u...}+
∑
{q̂pq̂q q̂rq̂sq̂tq̂u...}+

∑
{q̂pq̂q q̂rq̂sq̂tq̂u...}

+
∑
{q̂pq̂q q̂rq̂sq̂tq̂u...}+

∑
{q̂pq̂q q̂rq̂sq̂tq̂u...}+

∑
{q̂pq̂q q̂rq̂sq̂tq̂u...}+

∑
{q̂pq̂q q̂rq̂sq̂tq̂u...}+ ...

(27)

where the sums range over all possible contractions, and there can be any number of con-

tractions, and contractions can connect n creation and n annihilation operators for any n.

At this point in the argument, contractions are defined by apaq = λpq , a
paqasar = λpqrs, and so

forth. As usual, there is a permutational sign factor to bring non-adjacent operators in the
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string together. It is also possible to define a “quasi-normal order” where (27) holds, but the

contractions are not RDM cumulants. Then it will not be true that the normal-ordered op-

erators have zero expectation value with respect to Ψ, as only cumulants have this property.

For now, we shall note that (27) alone is needed for all the remaining proofs.

Before proceeding to the general case, let us confirm that our procedure defined on

operator strings is well-defined on operators. There are two ways by which different strings

can refer to the same operator: the use of anticommutation relations and expanding one

orbital as a linear combination of others. The only way to use anticommutation relations on

a vacuum-normal order string to get another vacuum-normal order string is to anticommute

creation and annihilation operators, so we need to check orbital invariance and antisymmetry.

Both of these properties can be shown by a straightforward recursion on the minimum

of the number of creation operators and the number of annihilation operators, assuming

contractions are antisymmetric and orbital invariant. For RDM cumulants, they are.

Now let us define the Ψ-normal Wick expansion of an arbitrary operator by first bringing

it into vacuum-normal order and then bringing the resulting operators into Ψ-normal order

using (27). We are composing two maps that obey the anticommutation relations and

are orbital invariant, so our final result obeys the anticommutation relations and is orbital

invariant.

Our expansion still has the form of (27), but more contractions are possible. First, it is

possible to have a contraction if creation operators are not all left of annihilation operators,

by reordering them in the transformation to vacuum-normal ordering and then contracting

them. This introduces contractions such as apasa
qar = −λpqrs. Second, the contractions of

vacuum-normal ordering must also be accounted for. We do this by adding the Kronecker

delta from the vacuum normal contraction to the contraction from applying (27) after the

vacuum normal ordering step, so we have aqa
p = −λpq + δpq .

We also note that a Ψ-normal ordered operator is antisymmetric with respect to any

permutation of the operators in the operator string inside the normal ordering. This property
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is inherited from the vacuum-normal ordering. This antisymmetry was also emphasized in

the context of generalized ordered products by Mukherjee and coworkers.4

4.2 Extended Generalized Wick Theorem

There is one more reason “why” we choose to use cumulants in GNO, which is that it greatly

simplifies the rule for taking products of GNO operators. While it can be expressed with

RDMs,73 the cumulant presentation simplifies the final result and the combinatorics of the

proof. Although this is the analogue of what is often called the generalized Wick Theorem,

because we are already in Generalized Normal Ordering, we follow Mukherjee,4 Evangelista,5

and their coworkers in instead calling it the extended generalized Wick Theorem. The

theorem is

{A}{B} = {AB}+
∑
{AB} (28)

where the sum is over all repeated contractions, provided each contraction contains at least

one operator from both A and B.

The bulk of the work is in deriving a lemma, the formula for a Ψ-normal ordered operator

in terms of operator strings. This lemma may be regarded as an inverse to (27). The lemma

on its own will demonstrate the formal advantages of cumulants in GNO. For pedagogical

purposes, we complete the proof of the extended generalized Wick’s Theorem from the lemma

in Appendix E.

The lemma is

{...q̂pq̂q q̂rq̂sq̂tq̂u...} = ...q̂pq̂q q̂rq̂sq̂tq̂u...−
∑

...q̂q q̂q q̂rq̂sq̂tq̂u...−
∑

...q̂rq̂q q̂rq̂sq̂tq̂u...

−
∑

...q̂pq̂q q̂rq̂sq̂tq̂u...+
∑

...q̂pq̂q q̂rq̂sq̂tq̂u...+
∑

...q̂pq̂q q̂rq̂sq̂tq̂u...−
∑

...q̂pq̂q q̂rq̂sq̂tq̂u...+ ...

(29)

where a term with c contractions has phase (−1)c, and all contraction patterns appear in
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the sums. We prove this by induction on the minimum of the number of creation operators

and annihilation operators, n. In the base case n = 0, no contractions are possible, and (29)

reduces to (27).

We proceed to prove the case of n = k+ 1 if (29) holds for all cases from 0 to k. We can

solve for the completely normal ordered term in (27) to give:

{...q̂pq̂q q̂rq̂sq̂tq̂u...} = ...q̂pq̂q q̂rq̂sq̂tq̂u...−
∑
{...q̂pq̂q q̂rq̂sq̂tq̂u...} −

∑
{...q̂pq̂q q̂rq̂sq̂tq̂u...}

−
∑
{...q̂pq̂q q̂rq̂sq̂tq̂u...} −

∑
{...q̂pq̂q q̂rq̂sq̂tq̂u...} −

∑
{...q̂pq̂q q̂rq̂sq̂tq̂u...} −

∑
{...q̂pq̂q q̂rq̂sq̂tq̂u...} − ...

(30)

All the normal ordered terms on the right-hand side are previous cases in the induction, so

we substitute in (29) and collect the terms with t contractions. Given a particular set of t

contractions, it can be produced by any term in the right-hand side of (30) whose explicit

contractions are among those t. The remaining contractions will be supplied by substituting

(29). Let the number of explicit contractions be denoted o. There are
(
t
o

)
ways to choose

which of the t contractions come from the substitution, giving a sign factor of (−1)t−o. Thus,

the overall coefficient of our set of t contractions is

−
t∑

o=1

(1)o(−1)t−o
(
t

o

)
= −

(
(1− 1)t − (−1)t

)
= (−1)t (31)

by binomial expansion. All terms with a product of t contractions appear with coefficient

(−1)t. This proves (29).

As first observed by Kong, Nooijen, and Mukherjee,3 the fact that the contractions

are cumulants plays little role in the proof. All that we require is (27), from which (29)

follows and then (28). Contractions can be defined in a largely arbitrary manner and still

maintain these properties, although care should be taken to ensure that orbital invariance

and antisymmetry are preserved. (29) and (28) are just rearrangements of the contraction

pattern of (27), however the contractions in (27) are defined.
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This freedom to change contractions has been used by Evangelista and coworkers71,74 to

define a variant of GNO where the contractions are the “cumulants” of a density matrix

for a statistical ensemble of electronic states, for multistate chemistry, and also by Kutzel-

nigg, Mukherjee, and coworkers to formulate a spinfree GNO by taking contractions as the

“cumulants” of a spin-averaged ensemble density matrix.1,75

However, let us suppose that contractions are chosen by the rule that the sum of all

contractions equals some tensor. Then between postulating that and postulating the con-

traction structure of (27), we are back to the second way to arrive at “contractions are

cumulants” outlined in the previous subsection, but now with stronger motivation. By the

logic of Section 2.1, if the tensor is an RDM or even something else, the contractions will have

the property that if the tensor is multiplicatively separable, the contractions are additively

separable. This requires no further effort.

5 Conclusions

Despite the importance of reduced density matrix cumulants, we believe that cumulant

formalisms can be made more accessible by further simplifying conceptual issues surrounding

cumulants. This research has striven to do so. In particular:

1. We have provided a simplified definition of reduced density matrix cumulants and a

generating function to provide explicit formulas for them, beginning with the familiar

exponential relation between configuration interaction amplitudes and coupled cluster

amplitudes. Previous approaches27–29 are shown to reduce to our solution. Of special

importance is the fact that this our solution is a general prescription to convert be-

tween multiplicative and additive separability, which can be of use to novel electronic

structure methods.

2. Interpretive issues of cumulants have been resolved. The analogy between RDM cu-

mulants and the probabilistic cumulants is based on the fact that they are both com-
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binatorial objects to solve the problem of converting from multiplicative to additive

separability. No further probabilistic meaning of the reduced density matrix cumu-

lants is expected, and arguments to the contrary27 have been refuted. In addition, our

definition of cumulants provides a way to confirm the additive separability of cumu-

lants from their polynomial form and understand why, for some approximate theories,

the cumulants are not additive separability. This gives an elementary way to confirm

additive separability.

3. We have also presented a brief proof of the Generalized Normal Ordering formalism

to explain why cumulants appear as contractions there and make it more accessible

for multireference theories, one of the most pressing problems in electronic structure

theory. The key theorems are shown to follow from combinatorics applied to the form

of allowed contractions in the formalism. In the original Generalized Normal Ordering

formalism where normal ordered operators are required to have zero expectation value

against some wavefunction, this leads to contractions being cumulants. More general

formulations are possible and have even been shown to be quite useful,1,71,74,75 and we

have shown that the contractions will remain additively separable if the expectation

value and RDMs is replaced with some other multiplicatively separable tensor.

A Cumulants by Low-Level Combinatorics

To illustrate how the exp and log functions solve the combinatorial problem given in our

axiomatic definition of the RDM cumulant (or any other additively separable quantity), we

solve it without generating functions by combining the axioms of Percus42 and Simon62 with

the Möbius inversion of Speed.76 In brief, suppose a set where some elements are said to

be greater than others, or more precisely, a partially ordered set. We denote this abstract

“greater than” relation with ⊇. Mathematicians prefer to use ≥, but the symbol ⊇ suggests

the specific relation we will use. Then given an equation of form
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∑
x:y⊇x

f(x) = g(y) , (32)

Möbius inversion solves for f as a linear combination of the g by

∑
x:y⊇x

g(x)µ(x, y) = f(y) (33)

where the function µ is determined by the recursion relations

∑
x:z⊇x⊇y

µ(y, x) = δy,z (34)

and

∑
x:z⊇x⊇y

µ(x, z) = δy,z (35)

Equations (34) and (35) show that the values of µ depend on the set and the rules governing

which elements are greater than others.

Readers interested in a detailed mathematical treatment of Möbius inversion are directed

to Chapter 16 of reference 77, Chapter 8 of reference 54, Chapter 3 of reference 65, Chapter

3 of reference 78, and reference 79. We especially recommend reference 77.

We require the idea of fermionic partitions. A fermionic partition is, given n creation

indices and n annihilation indices, a way to split them into “blocks” such that each “block”

contains as many creation as annihilation indices, and each index appears in exactly one

group. For the case of a rank-two quantity, these are shown in Figure 1.

We shall use the following facts about the set of fermionic partitions:

1. Given any two fermionic partitions ρ, σ, ρ ⊇ σ means that each block of σ is contained

in a block of ρ. This ⊇ is a partial order, which means that we may use Möbius

inversion. Given n creation and annihilation operators, we call the set of all possible

fermionic partitions the fermionic partition lattice. Figure 1 demonstrates this for a
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{pqrs}

{pr} {qs}{ps} {qr}

Figure 1: The fermionic partitions for a rank-two tensor. A vertical path between two
elements ρ and π, where ρ is higher than π, means that ρ ⊇ π.

{pqrstu}

{ps}{
qr
tu} {qt}{prsu} {ru}{

pq
st }

{ps}{
q
t}{ru}

{XYZ}

{X}{YZ} {Y}{XZ} {Z}{XY}

{X}{Y}{Z}

Figure 2: The fermionic partitions greater than or equal to {ps}{
q
t}{ru}, and the set of

partitions of three objects. A vertical path between two elements ρ and π, where ρ
is higher than π, means that ρ ⊇ π. The two subsets and their order relations are
isomorphic.
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rank-two tensor.

2. Given any fermionic partition of n creation and annihilation operators, arbitrarily

pair up creation and annihilation operators, and assign each pair to one of n distinct

symbols. Then any fermionic partitions where each operator in the pair is in the same

block can be mapped to a partition of n sets. Furthermore, if all pairs are in the same

block for σ, all pairs will also be in the same block for any ρ where ρ ⊇ σ. By this

map between fermionic partitions and set partitions, the set of π where ρ ⊇ π ⊇ σ has

exactly the same ⊇ (partial order) structure as some subset of the set of partitions of n

objects, which is known as the partition lattice. An example of this is shown in Figure

2. By this trick, if we show a statement is true on some subset of the partition lattice,

we can show it is true for any “counterpart” of that subset in the fermionic lattice.

3. Suppose ρ ⊇ σ and block i of ρ is split into bi blocks in σ, then

µ(σ, ρ) =
∏
i

(−1)bi−1(bi − 1)! . (36)

The same property holds on the set of fermionic partitions, because the recursions that

determine µ, (34) and (35), depend only on the structure of the partially ordered set,

which is the same between the two sets by Point 2.

This property of the partition lattice is shown in Example 16.17 combined with Theo-

rem 16.4 of Reference 77, proved in two ways in Example 3.10.4 of Reference 64 and

Examples 3.3.4 and 3.5.5 of Reference 78, then proved in two more ways in Sections

16 and 18 of Reference 79.

4. Let ρ ∧ π denote the partition in the partition lattice whose blocks are obtained by

intersecting the blocks of ρ and π. For any σ and for any π other than {XY · · · }:

∑
ρ:ρ∧π=σ

µ(ρ, {XY · · · }) = 0 . (37)
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This is proven in the course of Theorem 16.5 of reference 77 and by more sophisticated

arguments in Proposition 3.5.4 of reference 78 and Corollary 3.9.3 of reference 64.

By the trick of Point 2, a very similar property holds for the fermionic partitions:

∑
ρ:ρ,π⊇σ,ρ∧π=σ

µ(ρ, {pq···rs···}) = 0 . (38)

Now, suppose a polynomial satisfying the fermionic axioms. It must have the form of

(20). Consider an arbitrary fermionic partition, π.

For most fermionic partitions, π has multiple blocks. Factorize every γ(ρ) in (20) so each

tensor contains only indices of a single block of π. Given a partition, σ, the new coefficient

of γ(σ) after this factorization by π is

µσ,π =
∑

ρ:ρ,π⊇σ,ρ∧π=σ

µρ . (39)

By the third axiom, for any such π, our polynomial is identically zero. Therefore, each

coefficient must equal zero.

µσ,π = 0 (40)

Choosing the coefficients c so that (40) is satisfied is necessary and sufficient to define our

cumulant.

The above discussion has assumed π consists of multiple blocks, so we may apply the

connectedness axiom. If π consists of only one block, π = {pq···rs···}, and the connectedness

axiom does not apply, but
∑
ρ⊇π

µρ = µπ = µ{pq···rs···} = 1 by the normalization axiom.

In either case, we require

∑
ρ⊇π

µρ = δπ,{pq···rs···} . (41)
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But this equation is just (35) when z = {pq···rs···}, which is precisely the recursion that determines

µ(ρ, {pq···rs···}). Using (36), we may immediately conclude

µσ = µ(ρ, {pq···rs···}) = (−1)#ρ−1(#ρ− 1)! (42)

where #ρ is the number of blocks of ρ. This is precisely in agreement with (18).

While (42) is necessary, the connectedness axiom still requires that (40) holds. With a

formula for the coefficients just derived, (40) reduces to

∑
ρ:ρ,π⊇σ,ρ∧π=σ

µ(ρ, {pq···rs···}) = 0 . (43)

This equation is merely (38) and is thus guaranteed to hold. We have therefore shown a

polynomial satisfying the fermionic additively separability axioms exists and is unique, and

we have determined its coefficients by (42). This polynomial is the probabilistic cumulant.

With Möbius inversion, we can straightforwardly invert our formula to convert multi-

plicative separability to additive separability and obtain a formula for a multiplicatively

separable quantity as a polynomial in additively separable ones. Given fermionic partition

π, we may substitute the cumulant formula just found for the cumulants appearing in the

product λ(π). We find

λ(π) =
∑
π⊇ρ

γ(ρ)µ(ρ, π) (44)

but this is just (33) with f(y) = λ(y) and g(x) = γ(x). Because (33) is equivalent to (32),

we have

γ(π) =
∑
π⊇ρ

λ(ρ) (45)

which is equivalent to relation (19). We have now derived the relations between probabilistic

moments and cumulants entirely from combinatorics and the axiomatic definition.
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The reader may wonder what any of this has to do with the exp and log functions of

Section 2.1. The answer is that taking log of an exponential generating function precisely

corresponds to performing Möbius inversion of the partition lattice, and taking exp of an

exponential generating function undoes the Möbius inversion on the partition lattice, or

sums over all partitions. (This is made precise by Theorem 5.1.11 and Example 5.1.13 of

Reference 65.) As evidence of this, observe that the Taylor-series expansion coefficients of

the log-series are precisely (42) when #ρ is replaced with the degree of the coefficient. We

expect a similar relation holds for the set of fermionic patterns and “generating functions”

based on the normal ordered exponential.

The use of generating functions entirely avoids this otherwise tedious and non-obvious

problem of Möbius inversion.

B Explicit Formulas from Generating Functions

For pedagogical purposes, we explicitly derive Equation 19 from Equation (10).

First, order the orbital indices and restrict the summations in Equations (7) and (8) so

the indices occur in order. This exactly cancels the factorial denominators. Now, choose the

cumulant element of interest. This is associated with a second quantized operator. Match

the coefficients of this operator on both sides. On the right side, the possible ways to produce

this operator using the normal ordered multiplication are given by every way to decompose

the second quantized operator, i.e., the fermionic partitions, with an explicit order imposed.

If the operator is decomposed into n operators, there are n! possible orders of these operators,

so the term will occur n! times. (There will be less than n! orders in the case of repeated

operators, but then the original operator would have been zero by antisymmetry.) This

term has a coefficient given by the degree n term of the Maclaurin series of log(1 + x),

(−1)n−1

n
. Multiplying this by the n! multiplicity factor gives a final weight of this partition of

(−1)n−1(n− 1)!. Upon summing over all fermionic partitions, this produces Equation 19.
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Equation 18 may be derived from Equation (9) by the same reasoning, but instead using

the fact that the degree n term of the Maclaurin series of exp(x) is 1
n!

.

C Exponentials in the Moment-Generating Function

Another obvious difference between the generating functions for the additively separable

probabilistic (2) and fermionic (10) quantities is that the probabilistic multiplicatively sepa-

rable generating function (1) uses an exponential that has no counterpart in the “generating

function” for the fermionic multiplicatively separable quantity, (7). This is due to fermionic

antisymmetry eliminating a technicality in the probabilistic cumulants.

For probabilities, it is perfectly legitimate to have a moment with a repeated variable, such

as the cumulant κ(XX). This cannot occur for fermionic quantities, because any “moments”

with a repeated creation index or annihilation index must be zero by antisymmetry. We point

out that (18) and (19) preserve antisymmetry because there is a sign-factor built into the

definitions of γ(ρ) and λ(ρ).

The possibility of repeated variables in a probabilistic cumulant introduces an ambiguity

in how we define the probabilistic cumulant. Do we define it by taking the formula for the

cumulant given distinct variables and substitute in the repeated variables, or do we extract

the term from the functions (1) and (2) with the repeated variables? Ideally, both approaches

should produce the same polynomial.

Direct computation shows that when all variables are distinct, encoding the moments m

as an ordinary generating function or an exponential generating function produces the same

polynomial. However, for repeated variables, the two definitions differ using the ordinary

generating function. For example, the ordinary generating function produces κ(XX) =

m(XX)− 1
2
m(X)m(X) and κ(XY ) = m(XY )−m(X)m(Y ).

The remedy for the case of repeated variables is to choose an exponential generating

function for the moment and cumulant generating functions. Taking the logarithm of our
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moment-generating function is then the composition of exponential generating functions. It

is a well-known combinatorial fact that this encodes a sum over all set partitions for a single

variable. (See Theorem 5.1.4 of Reference 65.) This interpretation hinges on repeated appli-

cation of the multiplication of exponential generating functions we discussed in Section 3.1.

The multivariable generalization of the same argument shows that the use of an exponential

generating function maintains the desired sum over partitions structure, whether variables

are repeated or not. Thus, we see that the exponential in the moment generating function

is only necessary to treat repeated variables, which we do not have in the fermionic case.

D Cumulants in Mukherjee’s Proof of GNO

The original paper of Mukherjee2 offered an alternate proof of the GNO formalism in which

contractions naturally appear as different connectivity patterns of operators after a similarity

transformation by a unitary coupled cluster operator. These connectivity patterns can be

shown to be cumulants by summing all possible connectivity patterns together and equating

them to an RDM. (The connection between unitary coupled cluster connectivity and cumu-

lants has been further explored in Reference 14.) Products of cumulants arise as products of

operators not connected by a contraction, and sign phases arise from permutational phases

of operators.

While this provides another motivation to consider cumulants in the context of GNO,

the proof works just as well if the distinction between connectivity patterns of similarity-

transformed operators is not made, so cumulants do not appear. Separating out connectivity

patterns, or equivalently cumulants from the RDMs, is an arbitrary choice in this proof,

although one that clearly yields the advantage of additively separable contractions. Not

separating contractions based on connectivity patterns leads to a GNO where contractions

are RDMs instead of cumulants, but pairs of contractions are not valid, as in Section 4.1.
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E Extended Generalized Wick’s Theorem: Remaining

Steps

To prove the extended generalized Wick Theorem, we expand the GNO operators on the left

side of (28) into vacuum normal operators with (29), multiply them, and then convert the

result back into GNO operators with (27). This is similar in concept to the proof of Kong,

Nooijen, and Mukherjee,3 but (29) simplifies the proof.

Take two Ψ-normal operators, A and B. The expansion via (29) sums over all contractions

on only one term, with a sign factor. We call these internal contractions. When we multiply

and convert the result back using a Wick expansion, we sum over all possible contractions.

This includes contractions of operators from both A and B, called cross-contractions. So the

result is a sum over all possible contraction patterns with some coefficient. Let us choose a

particular contraction pattern and find its coefficient.

Suppose our contraction pattern has i internal contractions and c cross-contractions. The

cross-contractions must occur during the Wick expansion (27), but the internal contractions

may originate from (27) or (29). (27) always contributes a sign factor of 1, but the terms

with n contractions from (29) contribute a sign factor of (−1)n. Further, there are
(
i
f

)
ways

to choose which f internal contractions come from (27). So our total coefficient is

i∑
f=0

(−1)f (1)

(
i

f

)
(46)

We can change the exponent of 1 arbitrarily to i−f to apply a binomial expansion again

and get

i∑
f=0

(−1)f (1)i−f
(
i

f

)
= (1− 1)i =


1 i = 0

0 else

(47)

In other words, all contraction patterns happen exactly once, which contain no internal
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contractions. This is precisely the Extended Generalized Wick Theorem, (28).
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Graphical TOC Entry
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