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Abstract—Even though the widespread use of social platforms provides convenience to our daily life, it causes some bad results at the
same time. For example, misinformation and personal attack can be spread easily on social networks, which drives us to study how to
block the spread of misinformation effectively. Unlike the classical rumor blocking problem, we study how to protect the targeted users
from being influenced by rumor, called targeted protection maximization (TPM). It aims to block the least edges such that the expected
ratio of nodes in targeted set influenced by rumor is at most β. Under the IC-model, the objective function of TPM is monotone
non-decreasing, but not submodular and not supermodular, which makes it difficult for us to solve it by existing algorithms. In this
paper, we propose two efficient techniques to solve TPM problem, called Greedy and General-TIM. The Greedy uses simple
Hill-Climbing strategy, and get a theoretical bound, but the time complexity is hard to accept. The second algorithm, General-TIM, is
formed by means of randomized sampling by Reverse Shortest Path (Random-RS-Path), which reduces the time consuming
significantly. A precise approximation ratio cannot be promised in General-TIM, but in fact, it can get good results in reality. Considering
the community structure in networks, both Greedy and General-TIM can be improved after removing unrelated communities. Finally,
the effectiveness and efficiency of our algorithms is evaluated on several real datasets.

Index Terms—Targeted Protection Maximization, Rumor Blocking, Social Network, Randomized Algorithm
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1 INTRODUCTION

THE online social media, such as Facebook, Twitter,
Flickr, Google++ and Linkedln, was booming rapidly

in last decades, where billion of people communicated with
each other and produce a lot of information at any time. The
opportunities were provided by the applications of online
social networks (OSNs) for fast information propagation.
Even that, A platform provided by the OSNs to misin-
formation conveniently. Misinformation in OSNs can be a
rumor, a piece of fake news, or information generated due to
misunderstanding, which causes severe consequences and
even panics. For example, the rumor ”Barack Obama is
injured” spread in Twitter in 2013 made US stock market
crash immediately and the fake news about Hillary Clinton
selling weapons to ISIS spread very fast in Facebook in 2016
[1], which damaged her election. A very recent example
occurred on October 28, 2018. A bus crashed into a car and
then fell down into deep water, which costed 15 lives. In
OSNs, all comments blamed the car driver because from
photos on the news someone analyzed that it was car’s
fault, which got the car driver arrested. However, through
the police’s investigation, the car driver was found innocent
and the accident was actually caused due to a fight between
the bus driver and a passenger.

In social networks, information or influence spread from
node to node via cascades, which are activated by a set
of seeds. The formal study of information propagation in
social networks was begun from Kempe et al. [2] where
the influence maximization (IM) problem was formulated.
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Besides, two classical diffusion models, accepted by most
researchers, was proposed: independent cascade model (IC-
model) and linear threshold model (LT-model). In this pa-
per, we use IC-model as our fundamental model, the details
will be described in Sec. 3. In most existing methods, the
monotonicity and submodularity of objective function need
to be used. If the objective function is not submodular, it is a
challenge how to solve it with a theoretical bound and low
time complexity.

Rumor Blocking: The problem of rumor blocking is
studied intensively before. Budak et al. [3] proposed the
problem of rumor blocking firstly, which is formulated as
a combinatorial optimization problem. In addition, the NP-
hardness was proved and based on its submodularity, the
approximation ratio for a greedy method is provided in [3].
Existing works on rumor blocking in social networks can be
classified into three categories roughly:

1) Removing or protecting nodes which are the most
influential so that the spread of misinformation is
minimized. [4] [5] [6]

2) Removing a certain number of edges that play an
important role in networks to limit spread of mis-
information, such as these bridge edges connecting
different community. [7] [8] [9]

3) Spreading positive information to compete with
misinformation, such that most nodes are influ-
enced by positive information. [3] [10] [11] [12]

Unlike the above works, we propose a new problem,
called Targeted Protection Maximization (TPM). The main
difference between TPM and classical rumor blocking is that
we only consider targeted set. The TPM can be described
roughly as to block (remove) an edge set of least edges such
that the nodes in targeted set are protected from influenced
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by rumor cascading. This problem can be applied to a lot
of real circumstances. For example, cyberbullying, it aims to
attack, humiliate or disparage some targeted persons over
network, via broadcasting, posting, or sending negative,
harmful information of the targets through cyber-media,
such as social networks or web forums; or the Internet
administration of a government want to protect the ado-
lescents in their country from toughing pornographic and
violent information on the Internet; or a company do not
want their customers and related groups to be influenced
by its adverse companies.

In this paper, we show that if there are a small number
of relationships (edges) removed from social networks, the
misinformation to the targeted victims can be minimized.
Based on this idea, the objective function hG(·) of TPM
problem will be formulated, and we prove that it is a mono-
tone non-decreasing, but not submodular and supermodu-
lar function. However, the standard Greedy algorithm often
obtains good results on a large number of non-submodular
applications, which will be described detailedly in Sec.
3. Even if Greedy algorithm is simple and effective, the
objective function is hard to compute due to computing the
expected influence is #P-hard [13]. Monte Carlo simulation
is a common method to estimate expected value, but the
computational cost is too expensive. In order to overcome
this shortcoming, randomized algorithm based on sampling
popped up gradually [14] [15] [16]. The idea of reserve
influence sampling (RIS) for the IM problem was proposed
firstly by Brogs et al. [14]. Inspired by this idea, we proposed
a novel and effective sampling method, which based on
the concept of random Reverse shortest path (Random-RS-
Path). The Random-RS-Path is a random shortest path from
a node in rumor set to targeted set. Based on the concept
of Random-RS-Path, we propose a randomized algorithm,
called General-TIM. As we known, it is impossible to speed
up an algorithm significantly without lowering the per-
formance bound in the most application. Despite that this
sampling method, Random-RS-Path, cannot be promised to
give an unbiased estimation, it can give us an acceptable
result which is very close to Greedy algorithm, which will
be evaluated in real dataset later. Besides, we propose a
Greedy algorithm based on community structure of real-
world networks where some unnecessary communities will
not be considered. After removing unrelated community,
both Greedy and General-TIM algorithm can be improved
significantly. Our contribution in this paper are summarized
as follows:

• This is the first attempt to study rumor blocking
problem for targeted set under the IC-model in social
networks. Then, the problem of Targeted Protection
Maximization (TPM) is formulated.

• We prove that TPM problem under the IC-model is
monotone non-decreasing, but not submodular and
not supermodular.

• We propose Greedy algorithm to solve TPM problem,
and prove an upper bound for optimal solution.
Besides, we develop a new sampling method based
on Reverse Shortest Path (Random-RS-Path), which
is a valid estimation for the objective function of TPM
problem. Then, we propose General-TIM algorithm.

• Our algorithms are evaluated on two real-world
datasets. The results show both Greedy and General-
TIM are better than heuristics, and General-TIM is a
good estimation for TPM problem.

• We propose a speedup method for Greedy algorithm
based on community structure in social networks.

Related Works: Budak et al. [3] was the first to study
the problem of rumor blocking, and showed that rumor
blocking problem is a submodular maximization problem
under the competitive model. He et al. [17] showed a
(1−1/e)-approximation algorithm for the competitive linear
threshold for the problem of rumor influence minimization.
Fan et al. proposed the problem of least cost rumor blocking,
and proved a (1 − 1/e)-approximation algorithm under
the opportunistic one-active-one model. Later, Nguyen et
al. [18] presented the IT-Node Protector problem, which
removed the nodes with high influence to block the spread
of rumor. If you want to learn more about the problem of
misinformation, please read a survey [19] about false infor-
mation, which is written by Srijan et al. However, we have
to require Monte Carlo (MC) simulation to compute the
expected influence given a seed set, and its computational
cost is too high to apply to large real-world networks, even
if there exists some effective methods to improve the utility
of MC simulation. Leskovec et al. proposed an improved
method called CELF [20], which estimate the upper bounds
of influence function because of its submodularity. Most
nodes with few influences will not be considered in the later
iteration. CELF++, proposed by [21], improves CELF to get
better time complexity. Although there are ways to improve
MC, it is difficult to achieve the desired effect. TIM/TIM+
[15] and IMM [16] occurred, which makes the IM being
scalable under the premise of guaranteeing the approximate
ratio. These methods are based on a RIS, proposed by Borgs
et al. [14], and determine the number of RR-sets needed to
ensure approximation ratio. It required OPT, the optimal
expected influence of valid seed set, to estimate the number
of reverse reachable set (RR-sets). However, OPT is difficult
to determine, [15] [22] proposed a bunch of parameter esti-
mation technique to estimate OPT. Then, IMM appeared,
which uses a martingale analysis to estimate OPT more
efficiently [16]. This better parameter estimation improves
TIM/TIM+.

Organiztion: Sec. 2 descirbes background knowledges
and problem formulation. Sec. 3 presents the algorithms for
TPM problem. Sec. 4 discusses experimental setup and ex-
perimental results. Sec. 5 introduces the improved algorithm
based on community structure and Sec. 6 is conclusion.

2 PROBLEM FORMULATION

In this section, we give the preliminaries, including influ-
ence model and notation to this paper, then the problem is
formulated.

2.1 Influence Model
A social network can be expressed as a directed graph G =
(V,E), usually the users are denoted as V and edge e =
(u, v) ∈ E denotes the relationship between user u and user
v. The number of nodes and edges in graph G are n and
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m respectively. For a directed edge e = (u, v), u (resp. v) is
the incoming (resp. outgoing) neighbor of v (resp. u). The
set of incoming neighbors and outgoing neighbors of node
v are denoted as N−(v) and N+(v) respectively. Let node
set and edge set in the directed graph G be denoted as V (G)
and E(G) respectively. In order to represent the spreading
of new information or technology, Kempe et al. [2] proposed
two classical diffusion model, IC-model and LT-model. The
process of influence diffusion stops when no new nodes can
be activated in this round.

Definition 1 (IC-model). It assumes that each node v is at-
tempted to be activated independently by its incoming neighbors
N−(v) with activation probability is puv, u ∈ N−(v). Given
an activation probability puv for each pair of edges (u, v), the
propagation process can be described in discrete rounds: In round
t, each node u activated in round t − 1 will attempt to activate
the nodes in its outgoing neighbors N+(u), which is inactive
in round t, with activation probability puv . It is worth noting
that each node has only one opportunity to make their inactive
outgoing neighbors active.

Definition 2 (LT-model). It assumes that for each edge e =
(u, v) ∈ E(G), a weight buv is correlated with it. Each node
v ∈ V (G) satisfies that Σu∈N−(v)buv ≤ 1. Besides, Each node
v ∈ V (G) is correlated with a threshold λv , which is uniformly
distributed in interval [0, 1]. Given that, the propagation process
can be described in discrete rounds: In round t, the nodes that
have been activated in round t − 1 are still active. Any inactive
node v will become active if the total weight associated with active
nodes in its incoming neighbors N−(v) are greater than λv .

Then, we need to define a monotone and submodular
function. A set function f : 2V → R is monotone iff f(S) ≤
f(T ) for any S ⊆ T ⊆ V . A set function is submodular
iff f(S ∪ {u}) − f(S) ≥ f(T ∪ {u}) − f(T ) for any S ⊆
T ⊆ V and u /∈ V \ T . If we can know that a function has
the property of monotonicity and submodularity, we can
optimize it easily with the help of existing theory, such as a
(1− 1/e)-approximation obtained by classical hill-climbing
algorithm [23].

In this paper, the IC-model will be adopted by us as
fundamental influence model to solve our problem, but we
will compare the difference of this problem under IC-model
and LT-model.

2.2 Realization
Given a directed graph G = (V,E), a realization g is a sub-
graph of G where V (g) = V (G) and E(g) ⊆ E(G). Under
the IC-model, the diffusion probability of a realization g is
equal to 1. For each edge e = (u, v) ∈ E(G), it appears
in realization g with probability puv . These edges appear in
realization g are referred as to ”live” edges. Let G be the
set of all realizations generated from G and Pr[g] be the
probability of realization g, we have

Pr[g] =
∏

e∈E(g)

pe
∏

e∈E(G)\E(g)

(1− pe) (1)

Obviously, there are 2m possible realization altogether. The
propagation in a realization g is a deterministic process.
Thus, we can think about the propagation process from two
different perspectives. Given a seed set S, the propagation

can be considered as a stochastic propagation process on
graph G with a probability distribution, or a deterministic
propagation process on a realization g generated from G
with a probability distribution.

Under the LT-model, a realization g of G is generated
differently. Given a graph G = (V,E), for each node v ∈
E(G), at most one of its incoming edges can be selected
as edge in E(g). For each node u ∈ N−(v), edge (u, v)
is selected with probability buv and no edge from N−(v)
is selected with probablity 1 − Σu∈N−(v)buv . These edges
appear in realization g are referred as to ”live” edges. It is
worth noting that for any node u and v, there is at most one
possible path connecting them in a realization g of G, which
will be useful later.

2.3 Probem Definition

Given the negative (rumor) node set S and targeted node set
T , we can define fG(S, T ) as the expected number of nodes
in T that are influenced by negative information from S.
The influence from S to T in graph G under the IC-model
can be defined as follows:

fG(S, T ) =
∑
g∈G

Pr[g] · fg(S, T ) (2)

where fg(S, T ) is the number of nodes in T can be reached
from any node in S in the realization g of graph G. From
above, the Targeted Protection Maximization (TPM) prob-
lem can be defined as follows:

Definition 3 (Targeted Protection Maximization). Given a
social network G = (V,E), a set of negative (rumor) nodes S ⊆
V (G), a set of targeted nodes T ⊆ V (G)\S, and a threshold
β ∈ [0, 1], the TPM problem aims to block (remove) a edge set
I ⊆ E(G) of least edges such that the expected ratio of nodes in
T influenced by rumor on the network G(I), is at most β of that
on the network G.

Formally, TPM can be express as min{|I| : I ⊆ E(G)} such
that fG(I)(S, T ) ≤ β · fG(S, T ). Here, |I| is the cardinality
of a set I . For an edge e ∈ E(G), we define G(e) as the
graph (V,E\e), so G(D) is the graph (V,E\D) for D ⊆
E(G). Here, we define hG(I) = fG(S, T )−fG(I)(S, T ). This
problem is equivalent to select an edge set of least edges
such that

hG(I) ≥ (1− β) · fG(S, T ) (3)

given two sets S and T . The TPM problem is NP-hard under
the IC-model and LT-model. As in following theorem, we
prove that the objective function hG(·) is monotone non-
decreasing, but not submodular and supermodular under
the IC-model.

Theorem 1. The objective function hG(·) is monotone non-
decreasing under the IC-model.

Proof. Given directed graph G = (V,E), and edge set I and
an edge e = (u, v) ∈ E\I , we need to prove that fG(I)(S, T )
is monotone non-increasing, which can be expressed as the
form fG(I)(S, T ) − fG(I∪{e}) ≥ 0. In other words, we have
fG(I)(S, T )−fG(I∪{e}) =

∑
g∈G(I) Pr[g|g ∈ G(I)]·fg(S, T )−∑

g∈G(I∪{e}) Pr[g|g ∈ G(I ∪ {e})] · fg(S, T ), where Pr[g|g ∈
G(I)] stand for the probability of realization g in graphG(I).
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For any realization g = (V,Eg) in G(I ∪ {e}), there is a one-
to-two mapping from G(I ∪ {e}) to G(I). In other words,
given g ∈ G(I ∪ {e}), there are only two corresponding
realization g′ and g′′ in G(I), where g′ = g = (V,Eg) and
g′′ = (V,Eg ∪ {e}) respectively. Thus, the probability of
realization g′ ∪ g′′ in graph G(I) is

Pr[g′ ∪ g′′|g′, g′′ ∈ G(I)]

= Pr[g′|g′ ∈ G(I)] + Pr[g′′|g′′ ∈ G(I)]

= Pr[g′|g′ ∈ G(I ∪ {e})](1− pe) + Pr[g′|g′ ∈ G(I ∪ {e})]pe
= Pr[g′|g′ ∈ G(I ∪ {e})]

Then, the expectation influence fg′∪g′′(S, T ) in g′ and g′′ is
fg′∪g′′(S, T ) = (1−pe) ·fg′(S, T )+pe ·fg′′(S, T ) ≥ fg(S, T )
because of fg′′(S, T ) ≥ fg(S, T ). Therefore, fG(I)(S, T ) −
fG(I∪{e}) ≥ 0, which completes the proof.

Fig. 1. A realization g of G to show hG(·) is not submodular under the
IC-model

Theorem 2. The objective function hG(·) is not submodular
under the IC-model.

Proof. We prove by a counterexample. Shown as Fig. 1, we
consider a realization g = (V,E), V = {v1, v2, v3, v4, v5}
and E = {(v1, v2), (v1, v3), (v2, v4), (v3, v4), (v4, v5)}, then
let S = {v1} and T = {v2, v3, v4, v5}, I1 = ∅ and
I2 = {(v1, v2)}. Here, we have hg(I1) = 0 and hg(I2) = 1.
Putting edge e = (v1, v3) into I1 and I2, we have hg(I1 ∪
{e}) = 1 and hg(I2∪{e}) = 4. Then, hg(I1∪{e})−hg(I1) =
1 < hg(I2 ∪ {e})− hg(I2) = 3 when I1 ⊆ I2. Thus, hg(·) is
not a submodular function.

Fig. 2. A realization g of G to show hG(·) is not supermodular under the
IC-model

Theorem 3. The objective function hG(·) is not supermodular
under the IC-model.

Proof. We prove by a counterexample. Shown as Fig. 2, we
consider a realization g = (V,E), V = {v1, v2, v3, v4, v5}
and E = {(v1, v2), (v1, v3), (v2, v4), (v4, v5)}, then let S =
{v1} and T = {v2, v3, v4, v5}, I1 = ∅ and I2 = {(v4, v5)}.
Here, we have hg(I1) = 0 and hg(I2) = 1. Putting edge e =
(v1, v2) into I1 and I2, we have hg(I1∪{e}) = 3 and hg(I2∪
{e}) = 3. Then, hg(I1 ∪ {e})− hg(I1) = 3 > hg(I2 ∪ {e})−
hg(I2) = 2 when I1 ⊆ I2. Thus, hg(·) is not a supermodular
function.

Consider the influence maximization (IM) problem:
Given a graphG = (V,E) and a positive integer k, IM select
a seed set S of k nodes to maximize the expected spread
of influence σ(·). In general, a set function f(·) over k-
cardinality constraint can obtain a (1− 1/e)-approximation
ratio, i.e. f(S) ≥ (1 − 1/e) · f(S∗), if f(·) is a monotone
non-decreasing submodular function. However, our objec-
tive hG(·) is not submodular and supermodular and thus,
the (1 − 1/e)-approximation ratio cannot be hold with k-
cardinality constraint. However, under the LT-model, the
situation is different from that under the IC-model:

Theorem 4. The objective function hG(·) is monotone non-
decreasing, submodular under the LT-model.

Proof. The proof of monitonicity of hG(·) can be extended
from [24]. Next, in order to prove hG(·) is submodualr, we
need to prove each realization hg(·) is submodular. From
above, we have known that there is at most one possible
path connecting each node in S to each node in T . To see
this, let I1 and I2 be two edge set such that I1 ⊆ I2 and
g is a realization G under the IT-model, then we consider
the value of fg(I1)(S, T ) − fg(I1∪{e})(S, T ), which is equal
to hg(I1 ∪ {e})− hg(I1). For any node v ∈ T , because there
is at most one path from node u ∈ S to v, it cannot be
influence by S if and only if all the paths from each u ∈
S to v have been blocked or such a path does not exist.
When adding a new edge e to I1, the number of nodes in
T cannot be influenced by S, but influenced before, which
is at least as large as the number of new immune nodes
in T when adding this new e to I2. Obviously, we can get
that hg(I1 ∪ {e}) − hg(I1) ≥ hg(I2 ∪ {e}) − hg(I2) when
I1 ⊆ I2. Besides, from equation (2), hG(·) is submodular,
which completes the proof.

The methods suitable to a monotone non-decreasing, sub-
modular function can be applied to solve hG(·) under the
LT-model. There is an (1− 1/e)-approximation by standard
Greedy algorithm since hG(·) is monotone non-decreasing
and submodular. Under the LT-model, the problem similar
to TPM problem has been solve before [25]. Despite this,
we want to know what will happen when standard Greedy
algorithm is applied to solve hG(·) under the IC-model.

In practice, as a matter of experience, the standard
Greedy algorithm often obtains good results on a large
number of non-submodular applications. In order to theo-
rize for the empirical success of standard Greedy algorithm
on non-submodular function, [26], [27], [28] used curvature
α to quantify the closeness between submodular function
and modular function. Later, Das et al. [29] proposed the
modularity ratio γ to quantify the closeness between a set
function and submodular function. Bian et al. [30] prove
that given curvature α ∈ [0, 1] and submodularity ratio γ ∈
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[0, 1], the Greedy algorithm can obtain a (1/α)(1 − e−γα)-
approximation for maximizing non-decreasing set function
with cardinality constraint.

3 SOLUTION FOR TPM
From above, we know that the standard Greedy algo-
rithm often obtains good results on some non-submodular
problem, which means that some methods suitable to the
submodular problem can be applied to non-submodular
problem as well. Therefore, we propose following methods
to solve TPM problem.

3.1 Greedy Algorithm
Now, we introduce the first technique, call Greedy, to solve
the TPM problem. The main idea is to use Hill-Climbing
algorithm to block the edge that has a maximum marginal
gain. At each step, it selects an edge e from E\I such that
adding e to I maximizes hG(I ∪ {e}) − hG(I). We repeat
this until the fraction of nodes influenced by rumor S is less
than threshold β. The pseudo-code of Greedy algorithm is
shown as follows:

Algorithm 1 Greedy (G,S, T, β)

Input: G = (V,E), S, T and β ∈ [0, 1]
Output: I ∈ E satisfies fG(I)(S, T ) ≤ β · fG(S, T )

1: Initial I ← ∅
2: Compute fG(S, T ), and K ← fG(S, T )
3: while fG(I)(S, T ) > βK do
4: Select an edge e from E\I such that maximizing

hG(I ∪ {e})− hG(I)
5: I ← I ∪ {e}
6: end while
7: return edge set I

Here, I is the set of blocked edges, and stand for the
approximate solution returned by Algorithm 1. From last
section, hG(I) is a (1/α)(1− e−γα)-approximation solution
with cardinality |I| constraint, provided that curvature α
and modularity ratio γ exist. In other words, hG(I) ≥
(1/α)(1 − e−γα) · hG(I∗), where I∗ is the edge set with
cardinality |I| that maximize the value of hG(·). Because of
this, we can prove that the solution return by Algorithm 1
will not be far from the optimal solution.

Theorem 5. The edge set I , |I| = d, returned by Algorithm 1
for the TPM problem, here n satisfies the following inequality,

d ≤ |OPT |+ max

{
0,
hG(Id−1)

λ
− µK

λ
+ 1

}
(4)

where Ii is the edge set generated at the ith iteration, K =
fG(S, T ), λ = mini=1,2,...,d−1{hG(Ii+1) − hG(Ii)}, µ =
(1/α)(1 − e−γα) · (1 − β) and |OPT | is the size of optimal
solution.

Proof. First, we need to show the notation used later. Let
Ii ∈ {I1, I2, ..., In} be the edge sets generated at the ith

iteration of Algorithm 1. For any iteration i, let max(i) be the
maximum value of hG(I) where I ⊆ E and |I| = i, in other
words, max(i) = maxI⊆E,|I|=i hG(I). We assume that d is
not the value of optimal solution. Because if not, d = |OPT |.

In this case, the value of optimal solution |OPT | ≤ d − 1,
means that max(|OPT |) ≤ max(d − 1) at the same time.
From above, hG(I) is a (1/α)(1−e−γα)-approximation solu-
tion with cardinality |I| constraint, provided that curvature
α and modularity ratio γ exist [30]. In order to obtain the
guarantee for the bound of d − 1 − |OPT |, we need to
get the bound for hG(Id−1) − hG(I|OPT |) firstly. We have
known that (1/α)(1− e−γα) ·max(|OPT |) ≤ hG(I|OPT |) ≤
hG(Id−1). Then, we have

hG(Id−1)− hG(I|OPT |)

≤ hG(Id−1)− (1/α)(1− e−γα) ·max(|OPT |)
≤ hG(Id−1)− (1/α)(1− e−γα) · (1− β) · fG(S, T )

because of max(|OPT |) ≥ (1−β) · fG(S, T ). Here, we have
found the upper bound of hG(Id−1)− hG(I|OPT |).

Next, we need to find the lower bound of hG(Id−1) −
hG(I|OPT |). Obviously, hG(Id−1)−hG(I|OPT |) ≥ λ·(d−1−
|OPT |) because of λ = mini=1,2,...,d−1{hG(Ii+1)−hG(Ii)}.
Thus, we have

λ · (d− 1− |OPT |)
≤ hG(Id−1)− hG(I|OPT |)

≤ hG(Id−1)− (1/α)(1− e−γα) · (1− β) · fG(S, T )

according to the upper bound and lower bound of
hG(Id−1) − hG(I|OPT |). Then, we have d − |OPT | ≤
hG(Id−1)/λ − µ · fG(S, T )/λ + 1. Besides, it is possible
that hG(Id−1)/λ − µ · fG(S, T )/λ + 1 < 0 under certain
circumstance. Therefore, d ≤ |OPT |+max{0, hG(Id−1)/λ−
µ · fG(S, T )/λ+ 1}, which completes the proof.

However, we need to calculate fG(I∪{e})(S, T ), the ex-
pected number of nodes influenced by rumor in T in graph
G(I ∪ {e}), for each edge e in each iteration. The time
complexity of Greedy algorithm is O(|I|mnr), here r is
simulation times using Monte Carlo method. However, this
method is difficult to extend to large real networks, because
the computational cost is extremely high, even if some
improved algorithm, such as CELF and CELF++, exist. This
drives us to design a more desirable approach which can
obtain a similar solution set in a timely manner.

3.2 General-TIM Algorithm

For influence maximization, Tang et al. [15] proposed the
Two-phase Influence Maximization (TIM) algorithm that
produces a (1−1/e−ε)-approximation with at least (1−n−`)
probability in O((k + `)(m+ n) log n · ε−2). It is based on a
technique called reverse influence sampling (RIS). First, we
need to introduce two important concepts, reverse reachable
set (RR-set) and random RR-set, proposed by Borgs et al.
[14]. Given a realization g of graph G and a node v in g,
the RR-set is a set in which all the nodes in g can reach v.
The random RR-set is a RR-set generated on a realization g
sampled from the distribution of realization, like equation
(1), and a node which is selected from V randomly. In TIM
algorithm, we need to obtain a certain number of random
RR-sets. Then, in the problem of influence maximization, for
a given node, if it appears more times in these random RR-
sets, this node has larger influence than others with high
probability. Thus, a maximum coverage problem has been
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Algorithm 2 RR-Tree (G, v, g, S, T )

Input: G = (V,E), v, g S, T
Output: tg(v) and rumor

1: Initialize V ′ ← ∅ and E′ ← ∅
2: Initialize rumor← ∅
3: Initialize an empty queue Q
4: Q← Q ∪ {v}
5: while Q 6= ∅ do
6: u← Q.pop()
7: children← A list of incoming neighbors of u in g, but

the order is shuffled
8: for w in children do
9: if w /∈ V ′ then

10: Q← Q ∪ {w}
11: E′ ← E′ ∪ {(w, u)}
12: if w ∈ S then
13: flag← false
14: rumor← {w}
15: break
16: end if
17: end if
18: end for
19: end while
20: tg(v)← (V ′, E′)
21: return RR-Tree tg(v) and rumor

formed of selecting at most k nodes such that the most
random RR-sets are covered. The TIM algorithm returns
a (1 − 1/e − ε)-approximation with at least (1 − n−`)
probability when the θ, the number of random RR-sets,
satisfies [15]

θ ≥ (8 + 2ε)n ·
` log n+ log

(n
k

)
+ log 2

OPT · ε2
(5)

However, our protection maximization problem is different
from influence maximization, we need to select edge instead
of node to cover random RR-sets.

The random RR-set is a node set that is reachable to a
random node v. However, in our TPM problem, we need to
find an edge such that we can make the nodes in this RR-
set unreachable to v by blocking it. It seems very difficult
to achieve this goal by means of blocking only one edge,
because there are plenty of different paths from any node in
RR-set to node v, especially in IC-model. In IC-model, the
edge set E(g) of realization g is an arbitrary subset of edge
set E(G). Thus, We cannot prevent node v from influenced
by its random RR-set by removing an edge. But in LT-model,
it is feasible because each node has at most one incoming
edge, so there is at most one possible path connecting any
node to v in a realization. Fortunately, in our problem, we
only need to consider the reachability from nodes in S to
nodes in T , which give us some idea to solve this problem
approximately.

Considering two nodes u and v, if v can be reached from
u in a realization g of G under the IC-model, it is possible
that there exist many different paths from u to v and the
paths are cyclic. It is not promised that v can be protected
by removing only one edge, shown as above. We need to
find an effective method to approximate that the node v

Algorithm 3 Random-RS-Path (G,S, T )

Input: G = (V,E), S, T
Output: A RS-Path

1: Initialize rumor← ∅
2: Initialize v ← ∅
3: while rumor = ∅ do
4: v ← Select a node from T
5: Generate a realization g of G
6: tg(v), rumor← RR-Tree (G, v, g, S, T )
7: end while
8: RS-Path← Path from rumor to v in RR-Tree tg(v)
9: return RS-Path

is protected with high probability by removing one edge.
Thus, we propose a new model, shortest path model. Here,
we only consider the shortest path from u to v. In other
words, we need to select an edge in the shortest path from
u to v to be blocked. However, there may be more than one
shortest path from u to v, which causes great inconvenience
to our handling. Therefore, we can design a new sampling
method that can solve it effectively. The definition of Re-
verse Reachable Tree (RR-Tree) of node v ∈ T is shown as
follows:

Definition 4 (RR-Tree). Given v be a node in T , and g be a
realization of G under the IC-model. The RR-tree for v in g is a
reverse breath-first spanning tree of v in g. Here, the spanning
tree is random, which means that if a node has multiple outgoing
neighbors, we select one from them randomly. The tree stops when
the first rumor node appears.

Given a realization g ofG under the IC-model, here node
v ∈ T and RR-tree for v in g, denoted as tg(v), we can
notice that the nodes in tg(v) is the same as the nodes in
RR-set for v in g except root node v. The pseudo-code of
RR-Tree algorithm is shown as Algorithm 2. For each node
in tg(v), there is only one path to root node v and the path
is acyclic. Thus, if removing an edge in the path from u to v,
the influence from u to v in this RR-tree tg(v) is blocked. In
the TPM problem, only paths from u ∈ S to v ∈ T needed
to be considered. If v ∈ T cannot be reached from u ∈ S in
a realization g of G, we do not need to remove any edge.
There are two possibilities for this to happen. First, there is
no path from u to v in graph G. Second, there is no path
from u to v in this realization g of G. If there is no path
from u to v in many realizations of G, it means that the
influence from u to v appears with low probability even
though it is not impossible. In addition, if there are more
than one shortest path from u to v in g, we need to select
one of them uniformly and randomly. Why? For example,
there are two shortest path from node u ∈ S to v ∈ T in
g, {(u,w1), (w1, v)} and {(u,w2), (w2, v)} respectively, we
connot promise v is protected from u if we only block path
{(u,w1), (w1, v)} whenever it happens. We need these two
shortest path to appear as representative for the shortest
path with the same probability. Therefore, the shortest path
should be selected uniformly and randomly.

From above we have a problem that how to ensure
that the shortest path we select is random and uniform
when there are more than one shortest path between two
nodes? In Algorithm 2, it checks whether a node has been
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Fig. 3. A sketch to show that we select the shortest path randomly when
mutiple shortest path exist

discovered before enqueueing the node rather than delaying
this check until the node is dequeued from the queue. When
we dequeue a node u from the queue, we need to add all its
unvisited child nodes into the queue. In this step, it can be
guaranteed that the shortest path we select is random if and
only if for each node, the order of adding its unvisited child
nodes into the queue is random. Therefore, given v ∈ T , we
can find a shortest path randomly from a node in S to v in
g by two steps:

1) Generating a RR-Tree tg(v) and a rumor node.
2) Obtaining the path from this rumor node to v in

tg(v), which is unique and shortest.

Fig. 3 is an example to show the shortest path is arbitrary
when there are more than one shortest path. In Fig. 3,
rumor node is red and targeted node is green. First, we
generated a RR-tree for green node, then obtains a shortest
path from red node to green node in this RR-Tree. According
to Definition 4, the RR-tree is a random spanning tree, so
the two shortest path appear in this RR-tree with the same
probability. Until now, the definiton of Random Reverse
Shortest Path (Random-RS-Path) can be formulated formally
as follows:

Definition 5 (Random-RS-Path). Let g be a random realization
of G sampling under the IC-model, v is a node selected randomly
from T . The Random-RS-Path is the path from a node u ∈ S to v
in RR-Tree tg(v), which is unique and shortest.

Given G = (V,E), rumor set S and targeted set T ,
the pseudo-code of Random-RS-Path algorithm is shown as
Algorithm 3. The RS-path returned by Algorithm 3 is one of
path with the fewest edges from a node u in S to another
node v in T . The while loop in line 5 exists because it is
possible that v cannot encounter a node in S eventually, if
it happans, we need to sample again. Back to Algorithm 2,
in line 7, the order of adding u′s children into the queue is
arbitrary as we said before. We need to record the visited
edge in line 11, so that want can find the shortest path from
first visited rumor to node v in Algorithm 3. Therefore, we
can protect v from influenced by u with the high probability
by removing an edge in this shortest path. When there are

Algorithm 4 General-TIM (G,S, T, θ, β)

Input: G = (V,E), S, T , θ and β ∈ [0, 1]
Output: I ∈ E satisfies fG(I)(S, T ) ≤ β · fG(S, T )

1: Initialize a set R← ∅
2: Initilize I ← ∅
3: Generate θ Random-RS-Paths and insert them into R
4: Compute fG(S, T ), and K ← fG(S, T )
5: while fG(I)(S, T ) > βK do
6: Select an edge e ∈ E\I that cover the most number of

Random-RS-Paths in R
7: I ← I ∪ {e}
8: R← R\{Random-RS-Paths covered by e}
9: end while

10: return edge set I

more than one shortest path from u to v, each path in the
shortest paths is selected with the same probability. We
cannot promise to block all the influence from S, but the
estimation is accurate when β is not very small, we can see
it in later experiment.

If the edge, that covers more Random-RS-Paths, is re-
moved, it is possible that more nodes in T are protected.
Thus, this problem is transformed to maximum coverage
problem of selecting least edges to cover the Random-RS-
Paths as many as possible until fG(I)(S, T ) ≤ β · fG(S, T ).
The pseudo-code of the randomized algorithm based on
Random-RS-Path sampling, General-TIM, is shown in Al-
gorithm 4. First, θ Random-RS-Paths needed to be sam-
pled. The maximum coverage problem is solved by greedy
method. Here, we assume that the value of θ is large enough
to make sure this estimation is valid.

4 EXPERIMENT

In this section, we show the effectiveness and efficiency of
our proposed algorithms on several real social networks.
Our goal is to evaluate Algorithm 1 and Algorithm 4 with
some common used baseline algorithms.

TABLE 1
The statistics of three datasets

Dataset n m Type Average degree

Dataset-1 0.4K 1.01K directed 4

Dataset-2 1.0K 3.15K directed 6

Dataset-3 6.0K 9.00K directed 3

4.1 Dataset description and Statistics
Our experiments are based on the dataset from net-
workrepository.com [31], which is an online network reposi-
tory. There are three datasets in this experiment. The dataset-
1 is a co-authorship network, which is a co-authorship of
scientists in network theory and experiments. The dataset-
2 is a wiki-vote network, wikipedia who-votes-on-whom
network. The dataset-3 is Erdos992’s link structure and
discover valuable insights using the interactive network
data visualization and analytics platform. The statistics in-
formation of the two datasets is represented in table 1.
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(a) Dataset-1: |S| = 100 and |T | = 50

(b) Dataset-2: |S| = 100 and |T | = 50

(c) Dataset-3: |S| = 400 and |T | = 200

Fig. 4. The performance changes over β under the Case-1. Here, the
left column is achieved by General-TIM with different θ, and the right
column is achieved by different algorithm.

4.2 Experimental Setup
Two experiments are performed for each dataset. The first
experiment is performed to test whether θ is large enough
to get a valid solution. The second experiment is compar-
ing our Greedy and General-TIM algorithm against some
common heuristic algorithm to assess the effectiveness of
the solution obtained by removing edges. The common
heuristic algorithm mainly includes the following:

1) Random: Select the edges randomly until satisfying
the ratio of β.

2) Weight: Select the edges from the high to low diffu-
sion probability until satisfying the ratio of β.

3) Degree: Select the edges whose destination nodes
with the largest number of outgoing neighbors until
satisfying the ratio of β.

In the second experiment, the marginal gain for each
edge is calculated by the Monte Carlo simulation, and
we estimate the fG(I)(S, T ) by simulating 1000 runs. The
activation probability of each edge is uniformly distributed
in [0, 1]. The previous experiment indicates that the quality
of the approximation is no significant improvement after
1000 runs. Since the computational cost of Greedy algorithm
is very high, the dataset we selected cannot be too large to
get solutions in a short time. Then, the value of β ranges

(a) Dataset-1: |S| = 100 and |T | = 50

(b) Dataset-2: |S| = 100 and |T | = 50

(c) Dataset-3: |S| = 400 and |T | = 200

Fig. 5. The performance changes over β under the Case-2. Here, the
left column is achieved by General-TIM with different θ, and the right
column is achieved by different algorithm.

from 0.1 to 1. Next, we need to predefine the nodes in
rumor set S and targeted set T . For dataset-1 and dataset-2,
we set |S| = 100 and |T | = 50, and dataset-3, |S| = 400
and |T | = 200. Then, this experiment can be divided into
two cases: (1) Case-1: the nodes in S abd T are selected
randamly; (2) Case-2: the nodes in S is selected with the
highest outgoing degree in graph G, but nodes in T is
selected randomly.

4.3 Experimental Results
Fig. 4 and Fig. 5 draw the performance achieved by dif-
ferent θ under General-TIM and performance comparison
with other baseline algorithms under two cases and three
datasets. Obviously, from the left column of Fig. 4 and Fig.
5, θ = 10K is large enough to make sure the solution is a
good estimation, because the difference with θ = 20K and
θ = 50K is extremely small in these three datasets. The
General-TIM of right column, we assumes θ = 10K.

According to what we said before, the goal of TPM
problem is to select least edges to be blocked so that at most
β ratio of nodes in T are influenced by rumor compared
to no blocked edge. Thus, the smaller number of edges we
block, the better the performance is. The right column of Fig.
4 and 5 shows the performance of the different algorithms.
As depicted of that, the number of edges to be blocked
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returned by Greedy algorithm is the smallest among these
five algorithms, so its performance is best. Besides, the edge
size of Greedy and General-TIM algorithm is almost the
same, very small deviation, in two networks, which prove
the effectiveness of the randomized sampling by Random-
RS-Path. Comparing with Weight algorithm, which is the
best heuristic algorithm, its size of blocking edges is at least
20 times than Greedy and General-TIM algorithm when
β = 0.1.

Fig. 6. The time consuming of different algorthm when β = 0.1 in the
first two datasets under Case-1

Even if Greedy algorithm win with a weak gap, General-
TIM is much faster than Greedy algorithm, which is shown
as Fig. 6, so it is more suitable in large networks. If there
is no parallel acceleration, the time consuming of Greedy
algorithm is much worse than it is displayed. However, the
error of edge size for General-TIM will become large when
β approaching to 0. This is because, in General-TIM, we
approximate that the node v is protected by blocking the
shortest path from S to v, which is not unbiased estimation
to protect v from influenced by rumor. For example, under
Dataset-1 and Case-1, when β ≤ 0.01, the relative effort
between Greedy Algorithm and General-TIM will become
very large, edge size in Greedy algorithm is 47, but in
General-TIM is 237. Therefore, General-TIM algorithm can-
not be applied to solve TPM problem when β is too small.

TABLE 2
The relative error between Greedy and General-TIM

Dataset-1 Dataset-2 Dataset-3

Case-1 14.91% 31.22% n/a

Case-2 17.68% 28.40% n/a

The average relative error, threshold β from 0.1 to 1,
between Greedy and General-TIM is shown as table 2. Given
β, let I1 be the edge set returned by Greedy, and I2 returned
by General-TIM, the relative error is equal to ||I1|−|I2||/|I1|.
Because General-TIM is an estimation of Greedy algorithm,
from table 2, we can know this estimation is valid.

5 SPEEDUP ON COMMUNITY STRUCTURE

From last section, we know that General-TIM algorithm
made a good result. Even if that, at line 4 of Algorithm 1

and line 6 of Algorithm 4, we need to check each edge so as
to get the edge with maximum marginal gain.

5.1 Speedup Strategy
An apparent method to reduce the computational cost of
selecting edge with maximum marginal gain is to reduce
the size of candidate edges. In order to achieve this goal,
we notice that a phenomenon that is common in the social
network: community structure. Communities are groups of
vertices which have the same attributes and play a similar
role in the networks. For example, in online social network
(OSN), which is established from friendship relation, such as
Facebook or Linkedln, all people with the same interests, or
hobbies, in activities, who tend to communicate each other
frequently may form a community. In a community, the
influence can be spread faster than outside. Therefore, if we
know the community structure of network, we have a deep
understanding about the organization of relation structures.
In graph G = (V,E), a community structure C, where
C = {C1, C2, ..., Cn}, is a partition of V , which means that
for any i, j ∈ {1, 2, ..., n}, Ci ∩ Cj = ∅. In order to reduce
the size of candidate edges, we consider an instance of TPM
problem. Here, the nodes in rumor set S and targeted set T
do not appear in some communities, then we do not need to
consider the edges in these communities when selecting an
edge to be blocked in General-TIM or Greedy Algorithm.

Fig. 7. An example to show how speedup strategy based on community
structure works

For example, from Fig. 7, there are four communities
C = {C1, C2, C3, C4}. We know that, in community C4,
there is no node in rumor set S and targeted set T , thus,
we do not need to consider edge (black dotted line edges)
in community C4 when selecting edge with maximum
marginal gain into the solution, thereby reduce the size
of candidate edges. The above example shows the huge
benefit of exploit community structure, we propose such
a speedup strategy based on community structure, which
can reduce the computational cost when some communities
with no node in rumor set S and targeted set T exist. Given
G = (V,E), S, T and β, the process of speedup strategy can
be described as follows:

1) Use some existing algorithm to obtain the commu-
nity structure of G
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Fig. 8. The performance changes over β under the Case-1 with speedup
strategy. Here, the left column is under the Dataset-1, and the right
column is under the Dataset-2.

2) Remove the edges in community with no node in S
and T from E, we can get a new candidate edge set
E′. Obviously, |E′| ≤ |E|.

3) Select an edge e ∈ E′\I to obtain maximum
marginal gain under the Algorithm 1 or Algorithm
4 iteratively under satisfying β.

4) Return edge set I that should be blocked.

It is worth noting that we cannot delete the bridge edges
(yellow edges in Fig. 7), because rumor node in C3 may
influences targeted node in C2 through the edges in C4.
Given community structure, the influence spread within the
same community is of high probabilities, and the influence
spread across communities is of low probabilities. However,
it cannot be avoided the influence spread across communi-
ties. Thus, the bridge must be considered even if they may
be not the optimal solution. As we are known, network com-
munities are sets of nodes with lots of internal connections
and few external ones to the rest of the network. In above
process, we need to find the community structure for the
given network, and there are many different methods to find
the community structure. In this paper, we use the classical
Clauset-Newman-Moore greedy modularity maximization.
Greedy modularity maximization begins with each node in
its own community and joins the pair of communities that
most increases modularity until no such pair exists.

5.2 Experimental Results

The experimental setup is the same as the former ex-
periment. The number of communities found by Clauset-
Newman-Moore greedy modularity maximization are 19 in
Dataset-1 and 13 in Dataset-2 respectively. In Dataset-1, the
nodes in rumor set and targeted set are distributed in half
of the communities, and in Dataset-2, the nodes in that are
distributed in one-third of the communities. The edges in
those communities with no rumor and targeted nodes will
be removed from candidate edge setE′. In order to show the
difference clearly, other baseline algorithms will be removed
in the following Fig. 8.

Fig. 8 draws the performance comparison achieved by
Greedy and Greedy based on community structure with
different threshold β. We see that the edge size selected
from Greedy Algorithm based on community structure is
very close to that from Greedy Algorithm, but the com-
putational cost is reduced significantly. The reduced time
is proportional to the edge size that is removed. Similarly,

General-TIM can achieve the same results with the help of
speedup strategy.

6 CONCLUSION

In this paper, we modeled the problem of rumor block-
ing to targeted set in social networks. Targeted Protection
Maximization (TPM) was formulated and we proved that
it is monotone non-decreasing, but not submodular and
supermodular. We proved an upper bound to the Greedy
solution. Then, we proposed the General-TIM algorithm
with the help of Random-RS-Path. Then, we represented a
speedup strategy based on community structure to speed
up both Greedy and General-TIM algorithm. Finally, we
tested our algorithms on three real-world datasets. The
experimental result verified the effectiveness and efficiency
of General-TIM algorithm and speedup strategy.
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