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Minimizing Influence of Rumors by Blockers
on Social Networks: Algorithms and Analysis

Ruidong Yan, Deying Li, Weili Wu, Ding-Zhu Du and Yongcai Wang

Abstract—Online social networks such as Facebook, Twitter and Wechat have become major social tools. The users can not only
keep in touch with family and friends, but also send and share the instant information. However, in some practical scenarios, we need
to take effective measures to control the negative information spreading, e.g, rumors spread over the networks. In this paper, we first
propose the Minimizing Influence of Rumors (MIR) problem, i.e., selecting a blocker set B with k nodes such that the users’ total
activation probability by rumor source set S is minimized. Then we employ the classical Independent Cascade (IC) model as
information diffusion model. Based on the IC model, we prove the objective function is monotone decreasing and non-submodular. To
address the MIR problem effectively, we propose a two-stages method Generating Candidate Set & Selecting Blockers (GCSSB) for
the general networks. Furthermore, we also study the MIR problem on the tree network and propose a dynamic programming
guaranteeing the optimal solution. Finally, we evaluate proposed algorithms by simulations on synthetic and real-life social networks,
respectively. Experimental results show our algorithms are superior to the comparative heuristic approaches such as Out-Degree (OD),
Betweenness Centrality (BC) and PageRank (PR).

Index Terms—Social network, rumor blocking, submodularity, greedy algorithm, dynamic programming.
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1 INTRODUCTION

W ITH the advance of the internet and computer tech-
nology, some significant social networks have been

widely integrated into our daily life such as Facebook, Twit-
ter, Google+ and Wechat. Social networks can usually be rep-
resented as complex networks of nodes and edges, where n-
odes denote the users (people, organizations, or other social
entities) and edges denote the social relationships between
users (friendship, collaboration, or information interaction).
The users in these online social networks can not only dis-
seminate the positive contents (ideas, opinions, innovations,
interests and so on) but also the negative information such
as rumors. It has been shown that rumors spread very fast
and cause serious consequences [1]. For example, when
the devastating wild-fires happens in California in October
2017, at the time the officers were evacuating residents and
searching through the burned ruins of homes for missing
persons they still had to deal with the fake news. Although
the rumor was shot down by the officers and was debunked
by some government websites afterwards, the original story
was shared 60,000 times and similar stories was shared
75,000 times on Facebook.
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In order to provide quality service and accurate infor-
mation, it is crucial to have an effective strategy to block
or limit the negative effects of such rumors. Limiting the
rumors spreading in social networks is a hot but challenging
research topic [2]. Currently, the literature related to rumor
blocking can be roughly divided into the following three
categories: (1) Block rumors by the influential nodes. This
method usually selects the most influential nodes in the net-
works based on certain criteria and removes these influential
nodes from original network such that the rumors spreading
is limited such as [3], [4], [5], [6], [7]; (2) Block rumors by the
key edges. This method usually removes a set of edges that
play a key role in information dissemination such that the
rumor spreading is as less as possible [8], [9], [10], [11], [12];
(3) Spread the positive information (e.g., truth) to clarify
the rumors. This method is based on the assumption that
users will not adopt the rumors once they have adopted
the positive truth. More specifically, it identifies a subset of
nodes and disseminates the positive information such that
the positive information is adopted by as many users as
possible [13], [14], [15], [16].

In this paper, we study a novel Minimizing Influence of
Rumors (MIR) problem to limit the rumors spreading, i.e.,
we want to identify a set B with k nodes and remove this
set from the original network such that the total activation
probability of nodes by the rumor source set S on modified
network is minimized. We call a node v ∈ B a blocker.
To solve the MIR problem effectively, we propose a two-
stages method GCSSB that includes Generating Candidate Set
(GCS) and Selecting Blockers (SB) stages. Specifically, in the
GCS stage, we sort the nodes on the network to find the
top α · k nodes that have strong ability to disseminate the
rumors, where α is a threshold parameter. And we generate
a candidate set of blockers C by these α · k nodes. In the
SB stage, we design a basic greedy algorithm and select k
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nodes from the previous candidate set C according to the
maximum marginal gain. Different the previous researches,
we have a preprocessing stage before we design the basic
greedy algorithm. The advantage is that it can effectively
reduce the time consumption of the greedy algorithm. In
other words, we identify the blocker set from the subgraph
based on the candidate set C instead of the original network.
In addition, we also explore the MIR problem in a special
structure such as a tree network.

We summarize our main contributions as follows:

• We formalize the Minimizing Influence of Rumors
(MIR) problem and prove the objective function is
not submodular under the Independent Cascade (IC)
model.

• We propose a two-stages strategy named GCSSB to
solve the MIR problem on general social networks
for the first time.

• We also study the MIR problem on a special network
such as a tree, and we provide a dynamic program-
ming algorithm to guarantee the optimal solution.

• In order to evaluate proposed algorithms, we use a
synthetic and three real-life social networks with var-
ious scales in experiments. Furthermore, we compare
proposed method with other heuristic approaches.
Experimental results validate that our methods are
superior to other approaches.

The rest of this paper is organized as follows. We first
begin by recalling some existing related work of the rumor
blocking in Section 2. Then we introduce the information
diffusion model in Section 3. And we show the problem
description and properties in Section 4. Algorithm for the
general networks is presented in Section 5. The dynamic
programming algorithm on the tree network is proposed
in section 6. We analyze and discuss the results of the
experiments in Section 7. Finally, we draw our conclusions
in Section 8.

2 RELATED WORK

Domingos et al. [17] first study the influence between users
for marketing in social networks. Kempe et al. [18] model
the viral marketing as a discrete optimization problem,
which is named Influence Maximization (IM). They propose a
greedy algorithm with (1 − 1/e)-approximation ratio since
the function is submodular under Independent Cascade (IC)
or Linear Threshold (LT) model. Based on Kempe’s contribu-
tions, there have been substantial efforts in modeling the
information propagation in recent years such as [19], [20],
[21].

2.1 Blocking Nodes for Rumors
In [3], Fan et al. study a problem that identifies a minimal
subset of individuals as initial protectors (The nodes are
used to limit the bad influence of rumors.) to minimize
the number of people infected in neighbor communities
at the end of both diffusion processes. Authors propose
algorithms under the Opportunistic One-Activate-One as well
as the Deterministic One-Activate-Many models, and they
show the theoretical analysis in detail. In [4], Wang et al.
address the problem of minimizing the influence of rumors.

They assume a rumor emerges and affects some users in
the social network. And they want to minimize the size of
ultimately contaminated users by discovering k uninfected
users. A simple greedy method is proposed. Unfortunately,
they have no theoretical analysis. In social networks, how to
identify the influential spreaders is crucial for rumors. Ma
et al. in [5] propose a gravity centrality index to identify
the influential spreaders in complex networks, and they
compare with some well-known centralities such as degree,
betweenness, closeness and so forth.

2.2 Blocking Links for Rumors
In [8], Kimura et al. propose a method (by blocking a limited
number of links) for efficiently finding a good approximate
solution to rumor blocking. In [9], Khalil et al. abstract the
flu control problem into an edge deletion problem. They
show this problem is supermodular under the LT model.
Based on this property, they design a scalable algorithm
with approximation guarantees. In [10], Tong et al. propose
effective and scalable algorithms to solve dissemination
problems and answer which edges should be deleted in
order to contain a rumor.

2.3 Spreading Positive Truth for Rumors
In [13], Budak et al. study the two competing campaigns
(rumor and truth) simultaneously spreading in a network.
They address the problem of limiting the rumor propagating.
In other words, they want to identify a subset of individuals
to spread the truth such that as many nodes as possible in
the network adopt the truth rather than the rumor at the end
of both propagation processes. And they show this problem
is NP-hard and provide a greedy algorithm. In [14], Tong et
al. study the rumor blocking problem that asks for k seed
users to trigger the spread of a positive cascade such that the
number of the users who are not influenced by rumor can
be maximized. They present a randomized approximation
algorithm which is provably superior to the state-of-the art
methods with respect to running time.

2.4 Studies in the Tree Network
The social influence problems based on tree networks have
also attracted attention such as [22], [23]. In [22], Lappas
et al. consider the problem of selecting a set of k active
nodes to explain the observed activation state under a given
information-propagation model. And they show that, in
trees, this problem can be solved in polynomial time by
a dynamic programming. Bharathi et al. in [23] study the
game of multiple competing innovation diffusions when
multiple companies market competing products using the
viral marketing. And they give a FPTAS for the problem
of maximizing the influence of a single player when the
underlying graph is a tree.

In this paper, we study MIR problems on general net-
works (non-tree networks) and tree networks, respectively.
We find that the MIR problem is difficult to find the optimal
solution on the general network and proposes a two-stage
algorithm. On the other hand, we show that the MIR prob-
lem can find the optimal solution on the tree network and
propose a dynamic programming algorithm.
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(a) A social network (b) At time step 1
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Fig. 1. An example to illustrate the independent cascade model.

3 INFORMATION DIFFUSION MODEL

In this section, we briefly introduce influence diffusion mod-
el: Independent Cascade (IC) model which is first proposed
by [18]. Given a directed social network that can be denoted
by a graph G = (V,E, p), V represents users (node set),
E ⊆ V ×V represents the relationships between users (edge
set), and puv of the edge (u, v) denotes the probability that
the node u activates v. We call a node active if it adopts the
information (rumor) from other nodes, inactive otherwise.
Influence propagation process unfolds discrete time steps ti,
where i = 0, 1, ..., n and n is number of nodes in G.

More specifically, let St0 be the initial source nodes of
rumor, i.e., seed set. Let Sti denote active nodes in time
step ti, and each node u in Sti has single chance to activate
each inactive neighbor v through its out-edge (u, v) with the
probability puv at time step ti+1. Repeat this process until no
more new nodes can be activated. Note that a node can only
switch from inactive to active, but not in the reverse direction.

In Fig. 1, there is an example to illustrate the independent
cascade model in detail. The nodes in figure have three
states: inactive, active and newly active. The number embed-
ded on each edge (u, v) denotes the propagation probability,
e.g., the 0.1 on the edge (4, 6) denotes the probability that
the node 4 activates the node 6. In particular, only the seed
nodes are active and other nodes are inactive at time step 0.
Fig. 1(a) shows a simple social network with the seed node
1 at time step 0. And the active seed node 1 attempts to
activate its inactive neighbors (node 2 and node 3) at this
time. At time step 1, we can observe that the node 2 and

the node 3 become newly active1 in Fig. 1(b). And at this
time, the newly active node 2 and node 3 activate their own
inactive neighbors, respectively. Then the node 4 becomes
active in Fig. 1(c). Analogously, at time step 2, the newly
active node 4 attempts to activate its inactive neighbor, i.e.,
node 6. Finally, the node 6 becomes active at time step 3. In
addition, the information dissemination process stops since
no more nodes can be activated.

4 PROBLEM DESCRIPTION AND PROPERTIES

4.1 Problem Description
Given a directed social network G = (V,E, p), an informa-
tion diffusion modelM and a rumor source set S, V denotes
user set, E ⊆ V × V denotes the relationships between
users, and puv of edge (u, v) denotes the probability that u
activates v successfully. We define the activation probability
of a node v ∈ V by seed set S under modelM as following
equation.

PrM(v, S) =


1, if v ∈ S

0, if N in(v) = ∅
1−

∏
u∈Nin(v)

(1− PrM(u, S)puv), otherwise.

(1)
Where N in(v) is the set of in-neighbors of v and

PrM(u, S)puv represents the probability u successfully ac-
tivates v under the diffusion model M (Here, M is the IC
model). We can clearly see that the activation probability
of a node v depends on the its in-neighbors u. Here, we
take the node 1 activating the node 4 as an example to
illustrate how to calculate the activation probability in Fig.
1, i.e., PrM(4, {1}).

According to the equation (1), we have

PrM(4, {1}) = 1−
∏

u∈Nin(4)

(1− PrM(u, {1})pu4), (2)

where N in(4) = {2} and the equation (2) can be converted
to the following equation

PrM(4, {1}) = 1− (1− PrM(2, {1})p24). (3)

Similarly,

PrM(2, {1}) = 1− (1− PrM(1, {1})p12),

where PrM(1, {1}) = 1 since the node 1 is the seed
node and p12 = 0.4. Therefore, PrM(2, {1}) = 0.4. Ad-
d PrM(2, {1}) = 0.4 into the equation (3), we have
PrM(4, {1}) = 1− (1− 0.4× 0.5) = 0.2.

Now we give the problem description as follow.
Definition 1. Minimizing Influence of Rumor (MIR). Given

a directed social network G = (V,E, p), a rumor source
set S, a positive integer budget k, and the IC modelM,
MIR aims to find a blocker set B with k nodes such that

B∗ = arg min
B⊆V \S,|B|=k

∑
v∈V \{S∪B}

PrM(v, S). (4)

1. In fact, from the previous description, we can easily find that the
independent cascade model is a random process. That is to say, the
active nodes activating the inactive nodes is random. Here, we only
show one of the possible scenarios.
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Fig. 2. An example shows calculating the value of objective function when k = 1. Fig. 2(a) shows a simple social network where the black solid
node indicates the rumor source S = {7}. Fig. 2(b) shows selecting the node 1 as a blocker. Fig. 2(c) shows selecting the node 3 as a blocker.

Fig. 2 shows how to calculate the objective function value
if we select only one node (k = 1) as a blocker under the in-
dependent cascade model. For ease of exposition, we let the
node 7 be the rumor seed and the propagation probability
of each edge in the network is 12. More specifically, Fig. 2(a)
shows a simple social network. We calculate the following
two cases: (1) Selecting the node 1 as the blocker set B (see
Fig. 2(b)); (2) Selecting the node 3 as the blocker set B (see
Fig. 2(c)).

In the first case, Fig. 2(d)-Fig. 2(f) show the information
dissemination process when we select the node 1 as a
blocker. Note that once a node becomes a blocker it will
not be activated. At time step 0, the node 7 attempts to
activate its inactive neighbor. At time step 1, the node 4
becomes active since the propagation probability is 1. And
the node 4 is ready to activate its inactive neighbor. At
time step 2, the node 6 becomes active and information
dissemination process stops. As a result, we observe that
two nodes (node 4 and node 6) become newly active nodes

2. In this case, the information dissemination process is determined.

except the seed node. Therefore the total activation probabil-
ity

∑
v∈V \{S∪B} PrM(v, S) = 2.

In the second case, Fig. 2(g)-Fig. 2(i) show the infor-
mation dissemination process when we select node 3 as
a blocker. At time step 0, the node 7 attempts to activate
its inactive neighbor. At time step 1, the node 1 and the
node 4 become active since the propagation probabilities
are 1. And the node 1 and node 4 attempt to activate their
inactive neighbors. At time step 2, the node 2 and node 6
become active and information dissemination process stops.
Consequently, there are four nodes becoming active (node
1, node 2, node 4 and node 6). Therefore the total activation
probability

∑
v∈V \{S∪B} PrM(v, S) = 4. In summary, it is

more appropriate to select node 1 as a blocker instead of
node 3 for the MIR problem.

4.2 Properties of Objective Function

Theorem 1. The objective function (4) is monotone decreas-
ing and not submodular under the IC model.
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Proof 1. A set function f is monotone decreasing if f(A) ≥
f(B) whenever A ⊆ B. It is obvious that the objective
function is monotone decreasing in our MIR problem,
because the more blockers we choose, the smaller the
objective function will be. We omit its proof.
Then we show the objective function is not submodular.
If V is a finite set, a submodular function is a set function
f : 2V → ℜ, where 2V denotes the power set of V ,
satisfies the following condition: for every A ⊆ B ⊆ V
and x ∈ V \B, f(A∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).
Going back to the example mentioned in Fig. 2, we
let rumor seed S = {7}, f =

∑
v∈V \{S∪B} PrM(v, S),

A = {4}, B = {3, 4} and x = {1}. The f(A) means that
we select the node 4 as the blocker set B. In this case, we
analyze the information dissemination process. At time
step 0, the node 7 activates the node 1. At time step 1,
the node 1 becomes active and attempts to activate its
inactive neighbors. At time step 2, the node 2 and the
node 3 become active and they attempt to activate their
inactive neighbors. At time step 3, the node 5 becomes
active and attempts to activate its inactive neighbor. At
time step 4, the node 6 becomes active and the infor-
mation dissemination process stops. Finally, we can see
that there are five nodes become active, i.e., f(A) = 5.
Similarly, we compute the f(A ∪ {x}) = 0, f(B) = 2
and f(B ∪ {x}) = 0. Therefore f(A ∪ {x}) − f(A) <
f(B ∪ {x})− f(B), which indicates non-submodularity
of MIR.

5 ALGORITHM FOR THE GENERAL NETWORK

In this section, we propose a two-stages method GCSSB
which includes generating candidate set and selecting block-
ers stages. We introduce them in Section 5.1 and Section 5.2,
respectively.

5.1 Generating Candidate Set

Given a directed social network G = (V,E, p) and a rumor
source set S, we first sort nodes on the network. The pur-
pose of sorting is to determine the candidate set of blockers
and reduce time consuming by the greedy algorithm in
second stage. Intuitively, we will choose the nodes with
strong spreading ability as blockers rather than those nodes
with weak spreading ability. Therefore, how to measure the
spreading ability of nodes becomes a key issue.

Here, we define a vector σ = I + AI + ...ArI , where
A denotes the adjacent matrix of network and I denotes
unit column vector and 1 ≤ r ≤ |V |. As we all know,
Ar

ij denotes the approximation probability that i activates
j through a path of length r. Therefore σ denotes its total
probability. For example, Fig. 3(a) shows the adjacent matrix
of the network in Fig. 2 when the propagation probability
p = 0.5 for each edge in network. Fig. 3(b) shows σ =
I+AI+...ArI = (3.938, 3.531, 2.5, 1.5, 1.5, 1, 3.656)T where
r = 5. And we sort σ in descending order. Then we obtain
permutation Π = (3.938, 3.656, 3.531, 2.5, 1.5, 1.5, 1)T and
choose the top α ∗k nodes as the candidate set of blockers C
where α is a threshold parameter (In the experiment section,
we set the parameter α from 1 to 10). Consistent with the
example mentioned earlier, we should choose node 1 as a

blocker instead of the node 3 because σ1 = 3.938 > σ3 = 2.5
when the budget k = 1.

5.2 Selecting Blockers

In subsection 5.1, we first determine the candidate set of
the blockers C. And in this subsection, we introduce how
to accurately select k blockers based on the maximum
marginal gain from the candidate set C. Specifically, we
propose a greedy algorithm based on maximum marginal
gain. We give the definition of marginal gain as follow.

Definition 2. (Marginal Gain). Given a directed social net-
work G = (V,E, p), a rumor source set S and informa-
tion diffusion modelM, for any node x ∈ V \S, let

∆(x|S) =
∑

v∈V \S

PrM(v, S)−
∑

v∈V \{S∪{x}}

PrM(v, S)

be marginal gain of S with respect to x.

Obviously, our algorithm focuses on the maximum
marginal gain of nodes in candidate C. We define following

Definition 3. (Maximum Marginal Gain). For any node x ∈
C, let

x∗ = argmax
x∈C

∆(x|S) = argmax
x∈C

(
∑

v∈V \S

PrM(v, S)−
∑

v∈V \{S∪{x}}

PrM(v, S))

be the maximum marginal gain of S with respect to x.

Algorithm 1 . Greedy Algorithm (GA)
Input: G = (V,E, p),M, S, C and k.
Output: B.

1: B0 ← ∅, ∆(x|S) = 0 for x ∈ C;
2: for t = 1 to k do
3: for each x ∈ C do
4: ∆(x|S) =

∑
v∈V \{S∪Bt} PrM(v, S) −∑

v∈V \{S∪Bt∪{x}} PrM(v, S);
5: end for
6: x∗ = argmaxx∈C ∆(x|S);
7: Bt ← Bt ∪ {x∗};
8: C ← C\{x∗};
9: end for

10: return B ← Bt.

Based on the above definitions, we propose our greedy
algorithm. We first start with the empty set, i.e., B = ∅.
Then, in the t-th iteration, we add the node xt who has the
maximum marginal gain into the current B. The algorithm
executes k times until k blockers are selected. The greedy
algorithm is shown in Algorithm 1.

Let us analyze the complexity of the Algorithm 1. The
loop from line 2 to 9 at most runs k times. In each iteration,
the inner loop runs at most |C| times and it takes at most
O(|E|) time to calculate ∆(x|S). Therefore, the total time
complexity is O(k|C||E|) in the worst case.
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(b) σ = I +AI + ...A5I

Fig. 3. An example with propagation probability p = 0.5. Fig. 3(a) shows the adjacent matrix where Aij = 0.5 means there is a directed edge from
i to j. Fig. 3(b) shows how to calculate σ.

6 ALGORITHM FOR THE TREE NETWORK

In this section, we consider MIR problem on a special net-
work such as a tree. The reason is as follows: (1) Calculating
the activation probability of a node is very easy in a tree
network; (2) We also show that, in a tree, the MIR problem
can be solved by using an efficient dynamic programming
method. And we believe that finding blockers in a tree
can improve the understanding of information propagation
process.

6.1 Calculating Activation Probability
In this part, we will show how to compute the activation
probability for a node v by the rumor seed set S when
the input graph is a tree. Notice that we have given the
activation probability calculation formula for a node on the
general graph in the previous section, i.e., equation (1). We
modify the formula (1) as follow.
Definition 4. Given a directed tree T = (V,E, p), a rumor

seed set S ⊆ V and the IC model M, for any a node
v ∈ T , let PrM(v, S) be the activation probability that
the node v is activated by the seed set S. Then we have

PrM(v, S) =


1, if v ∈ S

0, if any s ∈ S cannot reach v

1−
∏
s∈S

(1−
∏

(y,z)∈path(s,v)

pyz), otherwise.

(5)
Where path(s, v) denotes the path from the node s to the
node v.

A node v on the tree is activated depending on whether
there is a directed path path(s, v) from the node s in the
seed set to the node v. The term

∏
s∈S

(1 −
∏

(y,z)∈path(s,v)

pyz)

indicates the probability that all nodes in the seed set cannot
activate the node v. Therefore the probability that the node
v can be activated is equal to 1 minus this term.

6.2 Dynamic Programming Algorithm
In this subsection, we explore the MIR problem on a directed
tree T = (V,E, p) when the rumor seed set S is given. The
key issue is the following: How to pick blocker nodes on the
subtrees that the root nodes are the seed nodes. In order to
address this problem, we propose a dynamic programming
algorithm including two steps: (1) Convert a general tree
into a binary tree; (2) Implement dynamic programming.

Convert a general tree into a binary tree. Let Tv be
a subtree. And the root of Tv is the node v and v has θ

v0

0.5

v1

0.6 0.3 0.50.4

v2 v3 v4 v5

0.2 0.5 0.8

v6 v7 v8

0.6

v9

(a) The general tree Tv0

v0

0.5

v1

1

x1 x2

1

0.6

v2

0.3

v3

0.4

v4 v5

0.5

0.2 1

v6 x3

0.6

v9

0.5 0.8

v7 v8

(b) The binary tree BTv0

Fig. 4. The transformation from a general tree to a binary tree. Fig.
4(a) shows the general tree Tv0 and Fig. 4(b) shows the corresponding
binary tree BTv0 after transformation.

children. The optimal way of specifying at most k′ (k′ ≤ k)
blockers on this subtree is to allocate k′ blockers on this
subtree to minimize the total activation probability. Howev-
er, computing the all possible allocations is expensive when
the θ ≫ 2. To solve this problem, we convert original three
Tv rooted at v into a binary tree BTv rooted at v. In addition,
we will show this transformation is beneficial to formulate
the dynamic programming.

In Fig. 4, we give an example to show the transformation
process. Fig. 4(a) shows a general tree Tv0 rooted at v0 and
Fig. 4(b) shows the corresponding binary tree BTv0 rooted
at v0 after transformation where the dashed arrows and the
dashed nodes mean the newly added directed edges and
nodes. We make a simple transformation as follow:

• The root node v0 of the general tree Tv0 is still the
root node v0 on the binary tree BTv0 ;

• Suppose that v is any node of the general tree Tv0

with θ children y1, y2,..., yθ . We replace the node v
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with a binary tree with a height of no more than
log2 θ and the leaf nodes of this binary tree are y1,
y2,..., yθ. Perform the above replacement process on
the general tree for the nodes whose out-degree is
greater than 2.

In Fig. 4(a), the root node v0 of the general tree Tv0 is
still the root node on the binary tree BTv0 in Fig. 4(b). We
observe that the node v1 has four children v2, v3, v4 and
v5.(e.g., θ = 4 is greater than 2). Therefore, we replace the
node v1 with a binary tree with a height of no more than
log2 4 = 2 and the leaf nodes of this binary tree are v2, v3,
v4 and v5

3. In this case, we add two dashed nodes x1 and
x2. And we also add two dashed directed edges (v1, x1) and
(v1, x2). We let the propagation probability from the node v1
to x1 be 1. In addition, the solid directed edges should be
retained, e.g., the directed edge (v1, x1) is replaced by the
directed edge (x1, v2). A similar operation can be applied
to the other edges such as (v1, v3), (v1, v4) and (v1, v5).
Furthermore, we do a similar transformation to the node v3
since it has three children. Finally, the binary tree is shown
in Fig. 4(b).

Lemma 1. Given a general tree T = (V,E, p), for any node
v ∈ V with θ children y1, y2,..., yθ , then the height of the
binary tree BTv replacing the node v does not exceed
log2 θ.

Proof 2. We assume that v is the 0-th layer of the binary tree
BTv , then the 1-th layer is at most two leaf nodes, the 2-
th layer is at most four leaf nodes, and so on. Therefore,
the log2 θ layer has θ leaf nodes.

Lemma 2. Let |V | be the number of nodes on the general tree
T = (V,E, p) and |V ′| be the number of all nodes on cor-
responding binary tree BT = (V ′, E′, p′), respectively.
Then we have |V ′| ≤ 3|V |.

Proof 3. For ease of exposition, we divide the nodes in the
general tree T = (V,E, p) into two categories: (1) The
set D, that is, the nodes whose the number of children is
less or equal to 2; (2) The set V − D, that is, the nodes
whose the number of children is greater than 2. For the
first category, we let |D| denote the size of set D. And
we don’t need a replacement operation, so the number of
such nodes is the same. For the second category, we let
|V −D| denote the size of set V −D. However, we need
replacement operations. Based on the above analysis, we
have

|V ′| = |D|+ (20 + ...+ 2log2θ1) + (20 + ...+ 2log2θ2 + ...

+ (20 + ...+ 2log2θ|V −D|))

≤ |D|+ 2θ1 + 2θ2 + ...+ 2θ|V−D|︸ ︷︷ ︸
|V−D| terms

≤ |V |+ 2(θ1 + θ2 + ...+ θ|V−D|)

≤ |V |+ 2|V | = 3|V |.

We assume that the nodes in the V − D have θ1, θ2,...,
θ|V−D| children, respectively.

3. It is worth mentioning that the result (binary tree) of this transfor-
mation may not be unique, but we will show that all binary trees have
the same optimal solution for the MIR problem.

Implement dynamic programming. Recall that we have
a blocker budget k. The essence of our dynamic program-
ming algorithm is to study how to select the blockers on
the binary tree to minimize the objective function (total
activation probability). Let l(v) or r(v) be the left or right
child of v where v ∈ BT . Let OPT (v,B, k) the probability
in the subtree rooted at node v with k blockers and B
keeping the blockers in the current solution. The optimal
way of selecting k blocker from this subtree must belong
to one of the following two patterns: (1) Selecting the
root node of this subtree and k − 1 nodes in the children
nodes (including root node); (2) Selecting the k nodes in the
child nodes (not including root node). Based on the above
analysis, we propose the following dynamic programming
for a node v ∈ BT when the rumor seed set is S.

OPT (v,B, k) = min{
k

min
k′=0
{OPT (l(v),B, k′)

+OPT (r(v),B, k − k′) + Pr(v, S,B) · I1v},

P r(v3, S,B ∪ {v}) · I2v +
k−1
min
k′=0
{OPT (l(v),B ∪ {v}, k′)

+OPT (r(v),B ∪ {v}, k − k′ − 1)}}. (6)

In equation (6), the term
k

min
k′=0
{·} denotes that we do not

select the root node but select k blockers from the child
nodes of the root node. And the term Pr(v, S,B) denotes
the probability that the node v is activated by the seed set S.
We define the indicator variable I1v as

I1v =

{
1, if v /∈ S and v is not a dashed node.
0, if v ∈ S or v is a dashed node.

The term
k−1
min
k′=0
{·} denotes that we select the root node and

select k−1 blockers from the child nodes. In order to ensure
that the newly added dashed nodes cannot be selected, we
define the indicator variable I2v as

I2v =

{
0, if v /∈ S and v is not a dashed node.
∞, if v ∈ S or v is a dashed node.

From the above dynamic programming, we have the follow-
ing two corollary.
Corollary 1. Dynamic programming can find the optimal

solution of the MIR problem and the optimal solution on
the binary tree is equivalent to the optimal solution on
the general tree.

6.3 Case Study
In this subsection, we provide a case study when the budget
k = 2. In Fig.4, without loss of generality, we let the node v3
be the rumor seed node, i.e., S = {v3}. Let us first analyze
the optimal solution on the original thee, and then use
the dynamic programming method to analyze the optimal
solution on the binary tree.

On the original tree, the seed node v3 is able to activate n-
odes v6, v7, v8 and v9 with probabilities 0.2, 0.5, 0.8 and 0.12.
Therefore we should select the node v7 and node v8 such
that total probability

∑
v∈V \{S∪B} PrC(v, S) = 0.2+0.12 =

0.32 is minimized. In other words, the optimal solution of
MIR problem is B = {v7, v8}.
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According to dynamic programming, our goal is

OPT (v3,B, 2) = min{
2

min
k′=0
{OPT (l(v3),B, k′) +OPT (r(v3),B, 2− k′)

+Pr(v3, S,B) · I1v3
},

1
min
k′=0
{OPT (l(v3),B ∪ {v3}, k′)

+OPT (r(v3),B ∪ {v3}, 2− k′ − 1)

+Pr(v3, S,B ∪ {v3}) · I2v3}}.

The node v3 cannot be selected into the blocker set B
because v3 is the rumor seed node. Thus we have

OPT (v3,B, 2) =
2

min
k′=0
{OPT (l(v3),B, k′)

+OPT (r(v3),B, 2− k′) + Pr(v3, S,B) · I1v3
},

where the Pr(v3, S,B) · I1v3
is 0 since I1v3 = 0 when v3 is the

rumor seed node. Then we have

OPT (v3,B, 2) =
2

min
k′=0
{OPT (l(v3),B, k′) +OPT (r(v3),B, 2− k′)}. (7)

Based on equation (7), we have the following three cases:

• Case 1:OPT (l(v3),B, 0) +OPT (r(v3),B, 2);
• Case 2:OPT (l(v3),B, 1) +OPT (r(v3),B, 1);
• Case 3:OPT (l(v3),B, 2) +OPT (r(v3),B, 0);

In Case 1, on one hand, OPT (l(v3),B, 0) = 0.2+0.12 =
0.32 since we do not select any node as a blocker on the left
subtree. On the other hand,

OPT (r(v3),B, 2) = OPT (x3,B, 2) = min{
2

min
k′′=0
{OPT (l(x3),B, k′′) +OPT (r(x3,B, 2− k′′))

+Pr(x3, S,B) · I1x3
},

1
min
k′′=0
{OPT (l(x3),B ∪ {x3}, k′′)

+OPT (r(x3),B ∪ {x3}, 1− k′′) + Pr(x3, S,B) · I2x3
}}.

(8)

In equation (8), Pr(x3, S,B) · I1x3
= 0 because the node x3 is

dashed node and we do not select this node in our optimal
solution. Therefore we have

OPT (x3,B, 2) =
2

min
k′′=0
{OPT (l(x3),B, k′′) +OPT (r(x3,B, 2− k′′)). (9)

Similarly, we recursively seek the optimal solution of
equation (9) and consider following three subcases:

i. OPT (l(x3),B, 0) +OPT (r(x3,B, 2);
ii. OPT (l(x3),B, 1) +OPT (r(x3,B, 1);

iii. OPT (l(x3),B, 2) +OPT (r(x3,B, 0);

However, the subcases (i) and (iii) do not exist because
the number of nodes available for selecting on right or left
subtree of x3 is less than k. Thus the optimal solution of (9)
is OPT (l(x3),B, 1) + OPT (r(x3,B, 1) = 0 + 0 = 0. And it
indicates that the blocker set B = {v7, v8}. In summary, in
Case 1, {OPT (l(v3),B, 0) +OPT (r(v3),B, 2) = 0.32+ 0 =
0.32 and the blocker set B = {v7, v8}.

Analogously, we analyze the Case 2 and the Case 3,
respectively. Here, we omit the detailed calculation process

and give the results directly. In Case 2, OPT (l(v3),B, 1) +
OPT (r(v3),B, 1) = 0 + 0.5 = 0.5 and the blocker set B =
{v6, v8}. In Case 3, OPT (l(v3),B, 2) + OPT (r(v3),B, 0) =
0 + 0.5 + 0.8 = 1.3 and the blocker set B = {v6, v9}.

Finally, comparing Case 1, Case 2 and Case 3, we
observe that the optimal solution of MIR problem is B =
{v7, v8} since the total activation probability is minimized.
In addition, we also find that the result of the dynamic
programming algorithm in the binary tree is equal to the
optimal solution in general tree.

7 EXPERIMENT

In this section, we evaluate proposed algorithm on syn-
thetic and real-life networks. First, we describe the data
sets and experiment setup. Second, we analyze and discuss
experimental results from different perspectives. Finally, we
compare with other heuristic approaches.

7.1 Data sets
The experimental datasets are divided into two categories:
the synthetic networks and the real-life networks. More
specifically, for the random networks, we generate a general
network SYN and a tree network SYN-T. For the real-life
networks, we collect three datasets with various scale from
Stanford Large Network Dataset Collection (SNAP)4 and the
Koblenz Network Collection (KONECT)5, respectively. Table
1 provides the details of these data sets. In table, “CC”
represents clustering coefficient and “MD” represents the
maximum degree.

• Synthetic (SYN). We randomly generate a graph
using Erdos-Renyi model [24] which assigns equal
probability η to all nodes. The higher assigned proba-
bility is, the more dense the graph is. In experiments,
we let η = 0.5.

• Synthetic Tree (SYN-T). We randomly generate a
tree network containing 1000 nodes and 999 directed
edges. Note that each directed edge is from the
parent node to the child node.

• Wiki Vote (WV). This network contains all the
Wikipedia voting data from the inception of
Wikipedia till January 2008. Nodes in the network
represent wikipedia users and a directed edge from
node u to node v represents that user u voted on user
v.

• Twitter Lists (TL). This directed network contains
Twitter user-user following information. A node rep-
resents a user. An edge (u, v) indicates that the user
u follows the user v.

• Google+ (G+). This directed network contains
Google+ user-user links. A node represents a user,
and a directed edge denotes that one user has the
other user in his circles.

7.2 Experiment Setup
We make the following setup for rumor spreading process:
Given a directed social network G = (V,E, p), 1% of nodes

4. http://snap.stanford.edu/data
5. http://konect.uni-koblenz.de
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TABLE 1
The details of synthetic and real-life social data sets.

Data Sets Relationship #Node #Edge CC MD Diameter
Synthetic Synthetic 2000 10000 - 62 6

Synthetic tree Synthetic 1000 999 - 38 10
Wiki Vote Voting 7,115 103,663 0.14 875 7

Twitter Lists Following 23,370 33,101 0.02 239 15
Google+ Friend sharing 23,628 39,242 0.03 2,771 8

are selected randomly and uniformly from V as rumor
source set S. In our all experiments, we adopt Independent
Cascade (IC) model as information diffusion model. In par-
ticular, we assign p in two ways since the data sets lack
propagation probability p. One assigns a uniform proba-
bility p = 0.5 for each edge on the networks. Another
assigns a trivalency model p = TRI for each edge, i.e., we
uniformly select a value from {0.1,0.01,0.001} at random
that corresponds to high, medium and low propagation
probabilities. Notice that all networks are simple networks6.

7.2.1 Comparison Methods:
To compare with existing methods, other heuristic methods
such as Out-Degree, Betweenness Centrality and PageR-
ank are selected as comparison methods. Our two-stage
approach is abbreviated as GCSSB.

• Out-Degree (OD) [18]. The out-degree of a node
v is the number of outgoing edges from the node
v. Kempe et al. show high degree nodes may out-
perform other centrality-based heuristics in terms of
influential identification.

• Betweenness Centrality (BC) [25]. A node’s between-
ness is equal to the number of shortest paths from
all nodes to all others that pass through that node.
Recently, betweenness centrality has become an im-
portant centrality measure in social networks.

• PageRank (PR) [26]. This is widely known Google
Page-Rank measure. The pagerank score indicates
the importance of a node. There is a damping factor
parameter and we set it to 0.9 in all experiments.

7.2.2 Evaluation Criteria:
The experimental evaluation is carried out from the follow-
ing aspects: (1) parameter α study. In our GCSSB method,
we need to generate candidate set C with α ∗ k nodes. (2)
parameter k study. We study the relationship between the
size of the blocker set and the objective function value. (3)
Compare with other methods. We compare GCSSB with
other heuristic methods such as Out-Degree, Betweenness
Centrality and PageRank. Our evaluation criteria is objec-
tive function value (total activation probability). A smaller
function value indicates that the algorithm is better. (4)
Finally, we evaluate the proposed dynamic programming
algorithm on the synthesized tree dataset.

7.3 Results
Parameter α study: We study the effect of candidate set
size (parameter α) on the objective function value (total

6. Self-loops and multiple edges are not allowed.

activation probability). The experimental results are shown
in Fig. 5. Fig. 5(a) and Fig. 5(b) show the propagation
probability p = 0.5 and p = TRI , respectively. The results
on each network show the same trends in both subgraphs.
Taking Fig. 5(a) as an example, the horizontal axis and the
vertical axis represent the parameter α and the total activa-
tion probability, respectively. The total activation probability
decreases as the parameter α increases. In particular, the
total acceptance probability remains essentially the same
when α ≥ 6. Therefore we let α = 6 in latter experiments.

Parameter k study: We study the relationship between
the size of the blocker set and the total activation proba-
bility. The experimental results are shown in Fig. 6. In the
subfigures, the horizontal and vertical axes represent the
parameter k and the total activation probability, respectively.
Through experiments, we observe that the total activation
probability decreases as k increases. In particular, it is dras-
tically reduced when k > 300 on each network.

Comparing with other methods: We compare our GCSS-
B with other methods (OD, BC and PR). The experimental
results are shown in Fig. 7. The horizontal and vertical axes
represent the parameter k and the total activation proba-
bility, respectively. In both subfigures, The total activation
probability decreases as k increases. We observe that the
proposed method is the best since the total activation proba-
bility is the smallest. Moreover, in comparison methods, the
PR’s performance is the best but the OD is the worst.

Evaluating dynamic programming algorithms in tree.
We evaluate the proposed dynamic programming algorithm
in the tree network SYN-T. We first randomly and uniformly
select 40 nodes as the rumor seed nodes on the tree network
SYN-T. Then we employ the independent cascade model as
information propagation model and select the blocker sets
by the dynamic programming in two propagation proba-
bility ways. The results are shown in Fig. 8. In the figure,
the horizontal axis indicates the parameter k varying from
0 to 100 and the vertical axis indicates the total activation
probability. In the both subfigures, we compare the activa-
tion probability returned by dynamic programming (DP)
with the one without any blockers (Baseline). We have the
following observations: (1) The total activation probability
decreases as the parameter k increases. This phenomenon
once again proves that the goal is monotonously decreasing.
In other words, the more blockers we select, the smaller
the total activation probability should be; (2) When k < 40,
the total activation probability is reduced sharply. However,
when k > 40, the total activation probability is reduced
steadily. Our dynamic programming automatically selects
the optimal nodes as the blockers.
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Fig. 5. Total activation probability Vs. Parameter α under IC model: rumor source |S| = 1%|V | on each network, p = 0.5 or p = TRI, and k = 50.
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Fig. 6. Total activation probability Vs. Parameter k under IC model: rumor source |S| = 1%|V | on each network, p = 0.5 or p = TRI, and α = 6.

8 CONCLUSIONS

In this paper, we study a novel problem called Minimizing
Influence of Rumor (MIR) problem that finds a small size
blocker set such that the activation probability of users
on network is minimized. Based on IC model, we prove
objective function satisfies non-submodularity. We develop
a two-stages method GCSSB to quickly identify blocker
set in the general networks. Furthermore, we propose a
dynamic programming algorithm in the tree networks and
find it can provide the optimal solution. Finally, in order
to evaluate our proposed methods, extensive experiments
have been conducted. The experiment results show that our
method outperforms comparison approaches.
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Fig. 7. Compare with other methods: rumor source |S| = 1%|V |, p = 0.5 on TL network or p = TRI on G+ network, and α = 6.
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