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ABSTRACT: One approach to analyzing the dynamics of a physical system is to
search for long-lived patterns in its motions. This approach has been particularly
successful for molecular dynamics data, where slowly decorrelating patterns can
indicate large-scale conformational changes. Detecting such patterns is the central
objective of the variational approach to conformational dynamics (VAC), as well as
the related methods of time-lagged independent component analysis and Markov
state modeling. In VAC, the search for slowly decorrelating patterns is formalized as a
variational problem solved by the eigenfunctions of the system’s transition operator.
VAC computes solutions to this variational problem by optimizing a linear or
nonlinear model of the eigenfunctions using time series data. Here, we build on VAC’s success by addressing two practical
limitations. First, VAC can give poor eigenfunction estimates when the lag time parameter is chosen poorly. Second, VAC can overfit
when using flexible parametrizations such as artificial neural networks with insufficient regularization. To address these issues, we
propose an extension that we call integrated VAC (IVAC). IVAC integrates over multiple lag times before solving the variational
problem, making its results more robust and reproducible than VAC’s.

■ INTRODUCTION
Many physical systems exhibit motion across fast and slow time
scales.Whereas individual subcomponents may relax rapidly to a
quasi-equilibrium, large collective motions occur over time
scales that are orders of magnitude longer. These slow motions
are often the most scientifically significant. For instance,
observing the large-scale conformational changes that govern
protein function requires microseconds to days, even though
individual atomic vibrations have periods of femtoseconds.
However, when exploring new systems, such slow collective
processes may not be fully understood from the outset. Rather,
they must be detected from time series data.
One approach for automating this process is the “variational

approach to conformational dynamics” (VAC).1−3 In the VAC
framework, slow dynamical processes are identified with
functions that decorrelate slowly. These functions are the
eigenfunctions of a self-adjoint operator associated with the
system’s dynamics known as the transition operator. The
transition operator evolves expectations of functions over the
system’s state forward in time and completely defines the
dynamics on a distributional level. VAC estimates the transition
operator’s eigenfunctions by constructing a linear or nonlinear
model and using data to optimize parameters in the model. VAC
encompasses commonly used approaches such as time-lagged

independent component analysis3−6 and eigenfunction esti-
mates constructed using Markov state models.6−9 In addition,
recent VAC approaches use artificial neural networks to learn
approximations to the eigenfunctions.10,11

While VAC has been successful in some applications, the
approach has limitations. The accuracy of the estimated
eigenfunctions depends strongly on the function space in
which the eigenfunctions are approximated, the amount of data
available, and a hyperparameter known as the lag time. In our
previous work12 we gave a comprehensive error analysis for the
linear VAC algorithm. This error analysis showed that the choice
of lag time can be critical to achieving an accurate VAC scheme.
Choosing a lag time that is too short can cause substantial
systematic bias in estimated eigenfunctions, while choosing a lag
time that is too long can make VAC exponentially sensitive to
sampling error.
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In this paper, we present an extension of the VAC procedure
in which we integrate the correlation functions in VAC over a
time window. We term this approach integrated VAC (IVAC).
Because IVAC is less sensitive to the choice of lag time, it
reduces error compared to VAC. Additionally, when IVAC is
applied using an approximation space parametrized by a neural
network, the approach leads to stable training and mitigates the
overfitting problems associated with VAC.
We organize the rest of the paper as follows. In the Methods

section, we review the role of the transition operator and its
eigenfunctions, and we introduce the VAC approach for
estimating eigenfunctions. We then present the procedure for
IVAC. In the results, we evaluate the performance of IVAC on
two model systems. We conclude with a summary and a
discussion of further ways IVAC can be extended. Software
implementing IVAC is available at https://github.com/
chatipat/ivac.

■ METHODS

Background. In this section, we review the VAC theoretical
framework1,13 that shows how the slowly decorrelating functions
in a physical system can be identified using a linear operator
known as the transition operator.
We assume that the system of interest is a continuous-time

Markov process ∈ Xt
n with a stationary, ergodic distribution

μ (specifically a Feller process14). We use E to denote
expectations of the process Xt started from μ. For example, if
μ is the Boltzmann distribution associated with the Hamiltonian
H and temperature T, then expectations of the process satisfy

∫
∫

[ ] =
−

−f X
f x x

x
E ( )

( )e d

e d
t

H x k T

H x k T

( )/

( )/

B

B
(1)

for all t ≥ 0. However, our results are valid for systems with
other, more general, stationary distributions.
Transition Operator.To begin, we consider the space of real-

valued functions with a finite secondmoment (E [f (X0)
2] <∞).

Equipped with the inner product

⟨ ⟩ = [ ]f g f X g XE, ( ) ( )0 0 (2)

this forms a Hilbert space, which we denote Lμ
2. We define the

transition operator14 at a lag time τ to be the operator

= [ | = ]τ τf x f X X xE( ) ( ) 0 (3)

applied to a function f ∈ Lμ
2. Here, we are interpreting the

conditional expectation as a function of the initial point x.
The transition operator is also called the Markov or

(stochastic) Koopman operator.6,15 We use the term transition
operator as it is well-established in the literature on stochastic
processes, and the terminology emphasizes the connection with
finite-state Markov chains. For a finite-state Markov chain, f is a
column vector and τ is a row-stochastic transition matrix.
The transition operator lets us rewrite correlation functions in

terms of inner products in Lμ
2:

[ ] = ⟨ ⟩τ τf X g X f gE ( ) ( ) ,0 (4)

Moreover, we can express the slow motions of a system’s
dynamics in terms of the transition operator. The slow motions
are identified by functions f for which the normalized correlation
function

[ ]
[ ]

=
⟨ ⟩

⟨ ⟩
τ τf X f X

f X f X
f f

f f
E
E

( ) ( )
( ) ( )

,
,

0

0 0 (5)

is large. We will show in the next subsection that these slowly
decorrelating functions lie in the linear span of the top
eigenfunctions of the transition operator.

Eigenfunctions of the Transition Operator. We can
immediately see that τ has the constant function as an
eigenfunction, because

= [ | = ] =τ X xE1 1 10 (6)

However, there is no guarantee that any other eigenfunctions
exist. We must therefore impose additional assumptions.
We first assume that Xt obeys detailed balance. For any

functions f, g ∈ Lμ
2, we have

[ ] = [ ]τ τf X g X f X g XE E( ) ( ) ( ) ( )0 0 (7)

or equivalently

⟨ ⟩ = ⟨ ⟩τ τf g f g, , (8)

This detailed balance condition ensures that τ is a self-adjoint
operator on Lμ

2.
Next we assume that τ is a compact operator. In our context,

assuming compactness is the same as assuming that the action of
τ can be decomposed as an infinite sum involving

eigenfunctions and eigenvalues:

∑ η η= ⟨ ⟩τ
στ

=

∞
−f x f x x( ) e , ( ) ( )

i
i i

1

i

(9)

Our assumption of compactness is made for the sake of
simplicity; in fact, a weaker assumption of quasi-compactness is
sufficient. We refer the reader to Webber et al.12 for a more
general treatment.
At all lag times τ > 0, the function ηi is an eigenfunction of the

transition operator τ with eigenvalue

λ =τ στ−ei
i (10)

The eigenvalues are indexed so that

σ σ σ= < ≤ ≤ ···0 1 2 3 (11)

and limi→∞ σi = ∞. Because the process is ergodic, it is known
that the largest eigenvalue λ1

τ = 1 is a simple eigenvalue and all
other eigenvalues are bounded away from 1. The particular
dependence of the eigenvalues on τ occurs because the
transition operator can be written as

τ= ∀ ≥τ
τe 0 (12)

where is an operator known as the infinitesimal generator.14

We note that it is also common to consider the implied time scale
(ITS) associated with eigenfunction i, defined as

σ= −ITSi i
1

(13)

We can use the eigenvalues and eigenvectors of the transition
operator to rewrite the normalized correlation function (5).
Observing that =f x f x( ) ( )0 and substituting (9) into the
numerator and denominator of (5) gives

η
η

[ ]
[ ]

=
∑ ⟨ ⟩

∑ ⟨ ⟩
τ

στ
=

∞ −

=
∞

f X f X
f X f X

f

f
E
E

( ) ( )
( ) ( )

e ,

,
i i

i i

0

0 0

1
2

1
2

i

(14)
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We now consider which functions maximize the normalized
correlation function. Applying (11), we find that the normalized
correlation function is maximized when we set f to be the
constant function f(x) = η1(x) = 1, because

η
η

η
η

∑ ⟨ ⟩
∑ ⟨ ⟩

≤
∑ ⟨ ⟩

∑ ⟨ ⟩

=

στ σ τ

σ τ

=
∞ −

=
∞

=
∞ −

=
∞

−

f

f

f

f

e ,

,

e ,

,
(15)

e (16)

i i

i i

i i

i i

1
2

1
2

1
2

1
2

i 1

1

(15)

for all functions f ∈ Lμ
2. If we constrain the search to functions

that are orthogonal to η1, i.e., functions where

η⟨ ⟩ = [ ] =f f xE, ( ) 01 (17)

and assume σ2 > σ3, the normalized correlation function is
maximized when f = η2. If we constrain f to be orthogonal to both
η1 and η2, then the next slowest decorrelating function would be
η3, and so forth. Maximizing the normalized correlation function
at any lag time τ is therefore equivalent to identifying the
eigenfunctions of the transition operator.
Because of the connection to slowly decorrelating functions,

the eigenfunctions provide a natural coordinate system for
dimensionality reduction. The first few eigenfunctions provide a
compact representation of all the slowest motions of the system.
Additionally, clustering data based on the eigenfunction
coordinates makes it possible to identify metastable states.
Variational Approach to Conformational Dynamics. The

“variational approach to conformational dynamics” (VAC) is a
procedure for identifying eigenfunctions by maximizing the
normalized correlation function. The first eigenfunction is
known exactly and is set to the constant function η1(x) = 1. To
identify subsequent eigenfunctions, we parametrize a candidate
solution f using a vector of parameters θ. We then construct an
estimate γi for the ith eigenfunction by tuning the parameters to
maximize (5). We set γi = fθ′, where

θ′ =
[ ]
[ ]θ

θ θ τ

θ θ

f X f X

f X f X

E

E
arg max

( ) ( )

( ) ( )
0

0 0 (18)

subject to ⟨fθ, γj⟩ = 0 for all j < i. In practice, we use empirical
estimates of the correlations constructed from sampled data. For
instance, if our data set consists of a single equilibrium trajectory
x0, xΔ, ..., xT−Δ, we would then construct the estimate

∑
τ

̂ [ ]

= Δ
−

+
τ

τ
τ τ

=

−Δ− Δ
Δ Δ+ Δ+ Δ

f X g X

T
f x g x f x g x

E ( ) ( )

( ) ( ) ( ) ( )
2s

T
s s s s

0

0

( )/

(19)

Here and in the rest of the paper, we use the ^ symbol to indicate
quantities constructed using sampled data.
Once we have obtained an estimated eigenfunction γ̂i using

data, we can estimate the associated eigenvalue and implied time
scale using

λ
γ γ
γ γ

̂ =
̂[ ̂ ̂ ]
̂[ ̂ ̂ ]

τ τX X

X X

E

E

( ) ( )

( ) ( )i
i i

i i

0

0 0 (20)

σ
τ

λ̂ = − ̂ τ1
logi i (21)

If the sampling is perfect, the variational principle ensures that
VAC eigenvalues and VAC implied time scales are bounded

from above by the true eigenvalues e−σiτ and implied time scales
σi

−1, and the upper bound is achieved when the VAC
eigenfunction is the true eigenfunction ηi. However, since the
empirical estimate (20) is used in practice, it is possible to obtain
estimates that exceed the variational upper bound.
The earliest VAC approaches estimated the eigenfunctions of

the transition operator by using linear combinations of basis
functions {ϕi}, a procedure now known as linear VAC. In linear
VAC, the optimization parameters are the unknown linear
coefficients v, which solve the generalized eigenvalue problem

τ λ̂ = ̂ ̂τ
C v C v( ) (0)i i i (22)

where

ϕ ϕ̂ = ̂[ ]C t X XE( ) ( ) ( )jk j k t0 (23)

In approaches known as time-lagged independent component
analysis4 and relaxation mode analysis,13,16 the basis functions
{ϕi} were chosen to be the system’s coordinate axes. This choice
of approximation space is still commonly used to construct
collective variable spaces either for analyzing dynamics or for
streamlining further sampling. Markov state models (MSMs)
provide an alternative approach for estimating eigenfunctions
using linear combinations of basis functions.7−9,17,18 MSMs can
serve as general dynamical models for the estimation of
metastable structures and chemical rates.18−21 When MSMs
are applied to estimate eigenfunctions and eigenvalues, the
approach is equivalent to performing linear VAC using a basis of
indicator functions on disjoint sets.6

Noe ́ and Nuske1 unified the linear VAC approaches and
exploited a general variational principle for identifying
eigenvalues and eigenfunctions of the transition operator.
Subsequent work further developed the methodology and
introducedmore general linear basis functions.2,22−24Moreover,
it was observed that the general variational principle allows one
to model the eigenfunctions using nonlinear approximation
spaces such as the output of a neural network.10,11 This can lead
to very flexible and powerful approximation spaces. However, in
our experience, the greater flexibility can also lead to overfitting
problems that need to be addressed through regularization.
In a common nonlinear VAC approach, a neural network

outputs a set of functions ϕ1, ϕ2, ..., ϕS that serves as a basis set
for linear VAC calculations. The network parameters are then
optimized to maximize the VAMP score,25 which under our
assumption of detailed balance can be calculated using

∑ λ‐ = | ̂ |
τ

=

kVAMP
i

S

i
k

1 (24)

The hyperparameter k is typically set to 1 or 2. In this paper, we
use the VAMP-1 score, since we find that it leads to more robust
training. We note that the score function we use is also called the
generalized matrix Rayleigh quotient.26

Challenges in VAC Calculations. A major challenge in VAC
calculations is selecting the lag time τ. Since the early days of
VAC, it was noted that lag times that are too short or too long
can lead to inaccurate eigenfunction estimates.27,28 Our recent
work12 revealed that the sensitivity to lag time is caused by a
combination of approximation error at short lag times and
estimation error at long lag times. In this section, we describe the
impact of approximation error and estimation error and provide
a schematic (Figure 1) that illustrates the trade-off between
approximation error and estimation error at different lag times.
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Approximation error is the systematic error of VAC that exists
even when VAC is performed with an infinite data set.We expect
approximation error to dominate the calculation when the basis
set is of poor quality and our approximation space cannot
faithfully represent the eigenfunctions of the transition operator.
The approximation error is greatest at short lag times, and it
decreases and eventually stabilizes as the lag time is increased.
Therefore, VAC users can typically reduce approximation error
by avoiding the very shortest lag times.
Estimation error is the random error of VAC that comes from

statistical sampling. As shown in our previous work,12 with
increasing lag time the results of VAC become exponentially
sensitive to small variations in the data set, leading to high
estimation error. At large enough lag times, all the eigenfunction
estimates γ̂2

τ, γ̂3
τ, ... are essentially random noise.

In Webber et al.,12 we proposed measuring VAC’s sensitivity
to estimation error using the condition number κτ. The
condition number measures the largest possible changes that
can occur in the subspace of VAC eigenfunctions {γj

τ, γj+1
τ , ..., γk

τ}
when there are small errors in the entries of C(0) and C(τ). The
condition number is calculated using the expression

κ
λ λ λ λ

=
{ ̂ − ̂ ̂ − ̂ }

τ
τ τ τ τ
− +

1
min ,j j k k1 1 (25)

For a given problem and a given lag time, we can use the
condition number to determine which subspaces of VAC
eigenfunctions are highly sensitive to estimation error and which
subspaces are comparatively less sensitive to estimation error.
Although we rigorously derived the condition number only in

the case of linear VAC, we find that the condition number is also
helpful for measuring estimation error in nonlinear VAC. If κτ ≳
5 at all lag times τ, then identifying eigenfunctions is very difficult
and requires a large data set. We recommend that authors report
the condition number along with their VAC results, helping
readers to assess whether the results are potentially sensitive to
estimation error.
Integrated VAC. To address the difficulty inherent in

choosing a good lag time, we propose an extension of VAC
called “integrated VAC” (IVAC) where we integrate over a
range of different lag times before solving a variational problem.
We find that the new approach is more robust to lag time
selection and it often gives better results overall.

Just as VAC maximizes the correlation function in (5), IVAC
solves a variational problem by identifying a subspace of
functions f that maximize the integrated correlation function

∫ [ ]
[ ]τ

τ f X f X
f X f X

s
E
E

( ) ( )
( ) ( )

ds0

0 0min

max

(26)

As in VAC, the functions solving the variational problem are the
eigenfunctions of the transition operator. When the eigenfunc-
tion ηi is substituted into the integrated correlation function
(26), the resulting expression is related to the implied time scales
by

∫ η η
η η σ

[ ]
[ ]

= −
τ

τ στ στ− −X X

X X
s

E

E

( ) ( )

( ) ( )
d

e ei i s

i i i

0

0 0

i i

min

max min max

(27)

Therefore, like VAC, IVAC is a variational approach for
identifying both eigenfunctions and implied time scales.
IVAC is a natural extension of VAC; in the limit as τmax

approaches τmin, IVAC gives the same eigenfunction and implied
time scale estimates as regular VAC. However, when τmax and
τmin are separated from each other, the results of IVAC and VAC
start to diverge. We find that IVAC with minimal tuning
performs comparably to VACwith optimal tuning. IVAC has the
desirable feature that it is not very sensitive to the values of τmin
and τmax.
Previous approaches for estimating eigenfunctions using

multiple time lags have attempted to reduce approximation
error by accounting for unobserved degrees of freedom.29−32 In
contrast, IVAC uses multiple time lags to reduce estimation
error and improve robustness to parameter choice.

Linear IVAC. Linear IVAC uses linear combinations of basis
functions to maximize the integrated autocorrelation function
(26). However, as simulation data are sampled at discrete time
points, we cannot directly calculate the integral. We therefore
replace (26) with a discrete sum taken over uniformly spaced lag
times. We seek to maximize

∑ [ ]
[ ]τ τ

τ
τ

=

f X f X
f X f X

E
E

( ) ( )
( ) ( )

0

0 0
min

max

(28)

where τ = τmin, τmin +Δ, τmin + 2Δ, ..., τmax andΔ is the sampling
interval. The discrete sum (28) approximates (26) up to a
constant multiple, and its value is maximized when f lies within
the span of the top eigenfunctions of the transition operator.
Setting f to be the eigenfunction ηi, we can sum the resulting
finite geometric series:

∑ η η
η η

[ ]
[ ]

= −
−τ τ

τ
τ

στ σ τ

σ
=

− − +Δ

− Δ

X X

X X

E

E

( ) ( )

( ) ( )
e e

1 e
i i

i i

0

0 0

( )i i

i
min

max min max

(29)

In linear IVAC, we optimize linear combinations of basis
functions {ϕi} to maximize the functional (28). The
optimization parameters are the unknown linear coefficients v,
which solve the generalized eigenvalue problem

τ τ λ̂ = ̂ ̂I v C v( , ) (0)i i imin max (30)

where we have defined

ϕ ϕ̂ = ̂[ ]C t X XE( ) ( ) ( )jk j k t0 (31)

∑τ τ τ̂ = ̂
τ τ

τ

=

I C( , ) ( )min max

min

max

(32)

Figure 1. Schematic illustrating the sources of VAC error at different lag
times. Even without sampling, VAC solutions have approximation
error. Random variation due to sampling contributes additional
estimation error.
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We solve the generalized eigenvalue problem to obtain estimates
γ̂i for the transition operator’s eigenfunctions. Then, we form the
sum

∑ γ γ
γ γ

̂ [ ̂ ̂ ]
̂[ ̂ ̂ ]τ τ

τ
τ

=

X X

X X

E

E

( ) ( )

( ) ( )
i i

i i

0

0 0min

max

(33)

and we estimate implied time scales by solving (29) for σ̂i using a
root-finding algorithm.
Nonlinear IVAC. Nonlinear IVAC maximizes the integrated

correlation function (26) by constructing approximations in a
nonlinear space of functions, for example, those represented by a
neural network. Specifically, the nonlinear model provides a set
of functions ϕ1, ϕ2, ..., ϕS that serves as a basis set for linear
IVAC. The parameters are trained to maximize the VAMP-k
score

∑ λ| ̂ |
=i

S

i
k

1 (34)

where the eigenvalues λ̂i are defined using eq 30. In a linear
approximation space, all values of VAMP-k scores lead to
identical eigenfunction estimates. In a nonlinear approximation
space, it is theoretically possible that minimizing with different
values of k would lead to different estimates. However, in
practice we find there is little difference between estimates at the
minima.We present our results using k = 1 because it leads to the
most stable convergence; we found that higher values of k are
prone to large gradients and, in turn, unstable training. When k =
1, the score function can be computed using

τ τ̂ ̂−C Itr( (0) ( , ))1
min max (35)

The main practical challenge in an application of nonlinear
IVAC is that the basis functions ϕ1, ϕ2, ..., ϕS change at every
iteration, requiring costly re-evaluation of Ĉ(0), I(̂τmin, τmax), and
the gradient of (35) with respect to the parameters. To reduce
this cost, we have developed the batch subsampling approach
described in Algorithm 1, which we apply at the start of each
optimization iteration.

In the subsampling approach, we draw a randomly chosen set
of data points, which allow us to estimate the matrix entries
Ĉij(0) using

∑
ϕ ϕ ϕ ϕ+ τ τ

=

+ +x x x x

N

( ) ( ) ( ) ( )

2n

N
i s j s i s j s

1

n n n n

(36)

and the matrix entries Iîj(τmin, τmax) using

∑
ϕ ϕ ϕ ϕ

τ τ

+

Δ − + Δ
τ τ

=

+ +x x x x

N

( ) ( ) ( ) ( )

2 /( )n

N
i s j s i s j s

1 max min

n n n n n n

(37)

After constructing these random matrices, we calculate the
score function (35). We then use automatic differentiation to
obtain the gradient of the score function with respect to the
parameters, and we perform an optimization step. By randomly
drawing new data points at each optimization step, we ensure a
thorough sampling of the data set and we are able to train the
nonlinear representation at reduced cost. Typically, we find that
103−104 data points per batch is enough for the score function
(35) to be estimated with low bias.

■ RESULTS AND DISCUSSION
In this section, we provide evidence that IVAC is more robust
than VAC and can give more accurate eigenfunction estimates.
First, we show results from applying IVAC and VAC to the
alanine dipeptide. VAC can provide accurate eigenfunction
estimates for this test problem owing to the large spectral gap
and the approximation space that overlaps closely with the
eigenfunctions of the transition operator. However, VAC
requires a careful tuning of the lag time. In contrast, IVAC is
much less sensitive to lag time choice. IVAC gives solutions that
are comparable to VAC with the optimal lag time parameter and
substantially better than VAC with a poorly chosen lag time.
Second, we show results for the villin headpiece protein.

Because the data set has a small number of independent samples
and the neural network approximation space is flexible and
prone to overfitting, VAC and IVAC suffer from estimation error
at long lag times. Despite these challenges, we present a robust
protocol for choosing parameters in IVAC to limit the
estimation error, and we show that IVAC is less sensitive to
overfitting for this problem compared with VAC.

Application to the Alanine Dipeptide. In this section we
compare linear IVAC and VAC applied to Langevin dynamics
simulations of the alanine dipeptide (i.e., N-acetylalanyl-N′-
methylamide) in aqueous solvent; further simulation details are
given in the Supporting Information.
The alanine dipeptide is a well-studied model for conforma-

tional changes in proteins. Like many protein systems, the
alanine dipeptide has dynamics that are dominated by
transitions between metastable states. The top eigenfunctions
are useful for locating barriers between states, as these
eigenfunctions change sharply when passing from one well to
another. We focus on estimating η2 and η3, as large changes in
these eigenfunctions correspond to transitions over the alanine
dipeptide’s two largest barriers. We refer to the span of η1, η2,
and η3 as the 3D subspace.
In our experiments, we consider trajectories of length 10 and

20 ns. The trajectories are long enough to observe approximately
15 or 30 transitions respectively along the dipeptide’s slowest
degree of freedom. Folding simulations of proteins, such as the
villin headpiece considered below, often have a similar number
of transitions between the folded and unfolded states.
There are several features that make it possible for VAC to

perform well on this example. First, the linear approximation
space, which consists of all the dihedral angles in the molecular
backbone, is small (just 9 basis functions), and it is known to
overlap heavily with the top eigenfunctions of the dynamics.
Second, we are estimating a well-conditioned subspace with a
minimum condition number of just

κ λ λ= ̂ − ̂ =
τ

τ

τ

τ τ −min min( ) 1.43 4
1

(38)

and therefore we do not expect a heavy amplification of sampling
error that degrades eigenfunction estimates.
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To evaluate the error in our eigenfunction estimates, we
compare to “ground truth” eigenfunctions computed using a
Markov state model built with a very long time series (1.5 μs)
and a fine discretization of the dihedral angles. Wemeasure error
using the projection distance,33 which evaluates the overlap
between one subspace and the orthogonal complement of
another subspace. For subspaces and with orthonormal
basis functions {ui} and {vi}, the projection distance is given by

∑ δ= − ⟨ ⟩d u v( , ) ( , )
i j

ij i j
,

2

(39)

This measure, which combines the error in the different
eigenfunctions into a single number, is useful because VAC is
typically used to identify subspaces of eigenfunctions rather than
individual eigenfunctions. The maximum possible error when
estimating k eigenfunctions is k .
Our main result from the alanine dipeptide application is that

IVAC is more robust to the selection of lag time parameters than
VAC. In Figure 2, we report the accuracy of IVAC and VAC for

different lag times and trajectory lengths. In the left column, we
show the root-mean-square errors (RMSE) for IVAC (orange)
and VAC (purple), aggregated over 30 independent trajectories.
From the aggregated results, IVAC performs nearly as well as
VACwith the best possible τ and consistently gives results much
better than VAC with a poorly chosen τ. The RMSE of IVAC is
just 0.58 with 10 ns trajectories and 0.45 with 20 ns trajectories.
These low error levels are not far from the minimum error of
0.37 that is possible using our linear approximation space.
In the right column of Figure 2, we show results for a 10 ns

trajectory and a 20 ns trajectory. The trajectories were selected
to help illustrate differences in the error profiles for VAC and
IVAC; similar plots for all other trajectories can be found in the
Supporting Information. We observe two key differences. First,

VAC error can exhibit high-frequency stochastic variability as a
function of lag time, a source of variability that does not affect
integrated VAC results. Second, VAC can have high error levels
at very short and long lag times. The projection distance against
our reference often reaches 1.0, which might indicate that a true
eigenfunction is completely orthogonal to our estimated
subspace. The error of IVAC is unlikely to reach such high
extremes.
We note that the parameter values τmin = 1 ps and τmax = 1 ns

used in IVAC are not hard to tune. The range 1 ps to 1 ns is a
broad window of lag times over which VAC eigenvalues λ̂2

τ and
λ̂3
τ decrease from values near one to values near zero. In contrast,
it is much harder to tune the VAC lag time τ. VAC results are
very sensitive to high or low lag times as seen in Figure 2.
When eigenfunction estimates are accurate, we expect that the

eigenfunction coordinates will help identify the system’s
metastable states. In Figure 3, we compare the results of
clustering configurations in the 20 ns alanine dipeptide
trajectory in Figure 2 using the associated IVAC and VAC
estimates. We plot the predicted metastable states against the
dipeptide’s ϕ and ψ dihedral angles. In the figure, we present
VAC results taken at a short lag time, an intermediate lag time,
and a long lag time. We also present results for the MSM
reference. Comparing against the reference, we find that IVAC
identifies clusters as accurately as VAC at a well-chosen lag time,
and IVAC performs far better than VAC at a poorly chosen lag
time.
Next, we present additional analyses applied to a single 20 ns

alanine dipeptide trajectory that provide insight into why IVAC
is more robust to lag time selection than VAC. To start, we
examine the discrepancy in VAC results at different lag times. In
Figure 4, left, we performed VAC with a range of different lag
times, and we measured the projection distance between the
VAC results obtained at one lag time τ1 (horizontal axis) and the
VAC results obtained at a different lag time τ2 (vertical axis).
The square with low projection distance between 3 and 200 ps
indicates that VAC results with lag times chosen within this
range are similar to one another, but not to those with lag times
taken from outside this range.
The discrepancy between VAC results at both low and high

lag times can be explained by a plot of VAC eigenvalues (Figure
4, center). At 3 ps, there is an eigenvalue crossing between the
eigenvalues λ̂3

τ and λ̂4
τ (shown in purple and magenta). The

eigenvalue crossing causes VAC to misidentify the third VAC
eigenfunction (which is inside the 3D subspace) and the fourth
VAC eigenfunction (which is outside the 3D subspace). At 200
ps, there is a different problem related to insufficient sampling.
The third eigenvalue descends into noise, causing VAC to fit the
first two eigenfunctions at the expense of the 3D subspace.
With integrated VAC, the problem of finding a single good lag

time is replaced with the problem of finding two end points for a
range of lag times. This proves to be an easier task as IVAC is
more tolerant of lag times outside the region where VAC gives
good results. In Figure 4, right, we show the error of IVAC as a
function of τmin and τmax (horizontal and vertical axes,
respectively). This figure, which shows the error of IVAC
estimates computed from comparison with the reference, is
different from the figure on the left which shows only the
discrepancy between VAC results at different lag times. Figure 4,
right, also shows the error of VAC, which appears along the
diagonal of the plot corresponding to the case τmin = τmax.
Figure 4, right, reveals that the range of lag time parameters for

which IVAC exhibits low error levels is much broader than the

Figure 2. Linear IVAC and VAC errors for alanine dipeptide
trajectories. IVAC was applied with τmin = 1 ps and τmax = 1 ns. VAC
was applied with variable lag time τ (horizontal axis). Errors are
computed using the projection distance to the MSM reference for the
span of η2 and η3. (Left) Root mean square errors (RMSE) over 30
independent trajectories. (Right) Errors for a single trajectory.
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range of lag times for which VAC exhibits low error levels. This
supports our basic argument that choosing good parameters in
IVAC is easier than choosing good parameters in VAC. To
achieve low errors, we do not need to identify the optimal VAC
lag times but only integrate over a window that contains the
optimal VAC lag times while ensuring that τmax is not excessively
high.
Application to the Villin Headpiece.Next we apply IVAC

to a difficult spectral estimation problem with limited data. We
seek to estimate the slow dynamics for an engineered 35-residue
subdomain of the villin headpiece protein. Our data consist of a
125 μs molecular dynamics simulation performed by Lindorff-
Larsen et al.34 Villin is a common model system for protein
folding for both experimental and computational studies,34−37

where the top eigenfunctions correlate with the folding and
unfolding of the protein.
On the surface, the villin data set would seem to be much

larger and more useful for spectral estimation compared to the
10−20 ns trajectories we examined for the alanine dipeptide.
However, the villin headpiece relaxes to equilibrium orders of
magnitude more slowly than the alanine dipeptide. The data set
contains just 34 folding/unfolding events with a folding time of
2.8 μs. The limited number of observed events is characteristic of
simulations of larger and more complex biomolecules, since
simulations require massive computational resources and
conformational changes take place slowly over many molecular
dynamics time steps. The fact that the dynamics of villin are not
understood nearly as well as the dynamics of the alanine
dipeptide presents an additional challenge. Compared to the
alanine dipeptide, villin has a more complex free energy surface
and a larger number of degrees of freedom. Since the true

eigenfunctions of the system are unknown, it is appropriate to
apply spectral estimation using a large and diverse feature set.
However, the large size and diversity of the feature set increases
the risk of estimation error.
In contrast to the alanine dipeptide results, where we applied

IVAC using linear combinations of basis functions, here we
apply IVAC using a neural network. The increased flexibility of
the neural network approximation reduces approximation error.
However, the procedure for optimizing the neural network is
more complicated than the procedure for applying linear VAC.
Moreover, the complexity of the neural network representation
(around 5× 104 parameters)makes overfitting a concern for this
example.
We use a slight modification of the neural network

architecture published in Sidky et al.,38 with 2 hidden layers of
50 neurons, tanh nonlinearities, and batch normalization
between layers. The network is built on top of a rich set of
features, consisting of all the Cα pairwise distances as well as
sines and cosines of all dihedral angles. At each optimization
step, we subsample 104 data points using Algorithm 1. We
optimize the neural network parameters using AdamW39 with a
learning rate of 10−4 and a weight decay coefficient of 10−2.
Following standard practice, we use the first half of the data set
for training and the second half for validation. We validate the
neural network against the testing data set every 100
optimization steps, and perform early stopping with a patience
of 10.
We present our results for villin in two parts. First we describe

our procedure for selecting parameters in nonlinear IVAC. Next
we highlight evidence that nonlinear IVAC shows greater
robustness to overfitting compared to nonlinear VAC.

Figure 3.Clusters on the eigenfunctions estimated using VAC and IVAC compared with clusters on an accurate MSM. (Left of the dashed line) VAC
and IVAC results for the 20 ns trajectory from Figure 2. (Right of the dashed line) Clustering on η2 and η3 evaluated using an accurateMSM reference.

Figure 4. Lag time dependence of VAC and IVAC results. All results shown are for the single 20 ns alanine dipeptide trajectory in Figure 2. (Left)
Projection distance between VAC results at the horizontal axis lag time and VAC results at the vertical axis lag time. (Center) First six estimated
eigenvalues of the transition operator. (Right) Error in IVAC results at different values of τmin and τmax, evaluated using the projection distance to the
MSM reference for the span of η2 and η3.
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Selection of Parameters.Here, we describe the protocols we
use for selecting IVAC parameters. By establishing clear
protocols, we help ensure that IVAC performs to the best of
its ability, providing robust eigenfunction estimates even in a
high-dimensional setting with limited data.
Our first protocol is to evaluate the condition number for the

subspace of eigenfunctions that we are estimating. This protocol
is motivated by the theoretical error analysis in Webber et al.,12

where we showed that spectral estimates are less sensitive to
estimation error for a well-conditioned subspace. To ensure that
we are estimating a well-conditioned subspace, we first use IVAC
to estimate eigenvalues for the transition operator. We then
identify a subspace of eigenfunctions η1, η2, ..., ηk that is
separated from all other eigenfunctions by a large spectral gap λ̂k

τ

− λ̂k+1
τ .

For the villin data, we choose the subspace consisting only of
the constant eigenfunction η1 = 1 and the first nontrivial
eigenfunction η2. This is a well-conditioned subspace with a
minimum condition number

κ λ λ= ̂ − ̂ =
τ

τ

τ

τ τ −min min( ) 1.62 3
1

(40)

Our second protocol for ensuring robustness is to check that
eigenfunction estimates remain consistent when the random
seeds used in initialization and subsampling are changed. We
train ten nonlinear IVAC neural networks and quantify the
inconsistency in the results using the root-mean-square
projection distance between eigenspace estimates from different

runs. The results of this calculation are plotted in Figure 5 across
a range of τmin and τmax values. The results for VAC appear along
the diagonal of the plot in Figure 5, corresponding to the case
τmin = τmax.
Figure 5 reveals problems with consistency for both IVAC and

VAC. IVAC is robust to the choice of τmin. However, setting τmax

< 30 ns or τmax > 300 ns leads to poor consistency. If we train the
neural network with these problematic τmax values, then
solutions can look very different depending on the random
seeds that are used for optimizing. With VAC, setting τ < 10 ns
or τ > 300 ns would lead to inconsistent results.
IVAC provides more flexibility to address the consistency

issues compared to VAC, since we can integrate over a range of
lag times. For the villin data, we choose to set τmin = 1 ns and τmax

= 100 ns. For these parameter values, the consistency score is
very good. The typical projection distance between subspaces
with different random seeds is just 0.05. Moreover, 1−100 ns is a
wide range of lag times, helping to ensure that optimal or near-
optimal VAC lag times are included in the integration window.
To help explain why the consistency is so poor for small τmax

values, we present in Figure 6 a set of IVAC solutions obtained
with an integration window of 1−3 ns and three different
random seeds. We see that all three solutions identify clusters in
the data, but the clusters are completely different in the three
cases. We conjecture that IVAC is randomly fitting three
different eigenspaces. This is supported by the eigenvalue plot in
Figure 5, which shows that three nontrivial eigenvalues of the

Figure 5.Nonlinear IVAC results for the 125 μs villin headpiece trajectory. (Left) Estimated eigenvalues of the transition operator. (Right) Root mean
square projection distance between 10 replicates of nonlinear IVAC at the specified values of τmin and τmax.

Figure 6.Nonlinear IVAC results plotted on the first two time-lagged independent component analysis (tICA) coordinates. (top) IVACwith a 1−3 ns
integration window and three different random seeds. (bottom) IVAC with a 1−100 ns integration window and three different random seeds.
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transition operator lie close together over the 1−3 ns time
window, making it possible that eigenspaces are randomly
misidentified by IVAC.
In contrast to the inconsistent results obtained with an

integration window of 1−3 ns, we obtain more reasonable
results with an integration window of 1−100 ns. As shown in
Figure 6, the IVAC solutions are nearly identical regardless of
the random seed.
In summary, we propose a robust procedure for approximat-

ing eigenfunctions of the villin headpiece system. We choose to
approximate a well-conditioned eigenspace that is separated
from other eigenspaces by a wide spectral gap. Moreover, we
ensure that IVAC results are consistent regardless of the random
initialization and randomly drawn data subsets used to train the
neural net. Because of these protocols, the neural network
estimates shown in Figure 6 reliably identify clusters in the
trajectory data indicative of folded/unfolded states.
Robustness to Overfitting. In this section, we present results

suggesting that nonlinear IVAC is more robust to overfitting
than nonlinear VAC. This is crucial if the data set is too small for
cross-validation.
To identify the overfitting issue with small data sets, we

eliminate the early stopping and we train IVAC and VAC until
the training loss stabilizes. We calculate implied time scales by
performing linear VAC on the outputs of the networks trained
using IVAC and VAC, which we present in Figure 7.

We first compare the estimated implied time scales between
the training and validation data sets. For both algorithms, the
implied time scales calculated on the training data are larger than
those calculated on the validation data. This is clear evidence of
overfitting. However, we see that IVAC gives larger implied time
scales on the validation data compared to VAC. In combination
with the variational principle associated with the implied time

scales, this suggests that IVAC is giving an improved estimate for
the slow eigenfunctions.
Examining the implied time scales estimated on training data

shows further signs of overfitting. The VAC implied time scale
estimates for the training data exhibit sharp peaks at the training
lag time that are absent in the implied time scale estimates of the
validation data. This suggests a hypothesis for the mechanism of
overfitting: with a sufficiently flexible approximation space, VAC
is able to find spurious correlations between features that happen
to be separated by τ. This explains the smaller peaks at integral
multiples of the lag time, as features artificially correlated at τwill
be correlated at 2τ as well.
To confirm our hypothesis, we plot the power spectral density

(PSD)40 of the time trace of eigenfunction estimates in Figure 7.
The PSD confirms the existence of a periodic component in
VAC results with a frequency at the inverse training lag time. In
contrast, IVAC does not exhibit such a periodic component. In
Figure 7, we see that the 1−100 ns integration window leads to
implied time scale estimates that depend smoothly on the data
both for the training and the test data set. The PSD shows no
periodic components in the spectra for IVAC, providing further
evidence that IVAC is comparatively robust while VAC results
can be very sensitive to the particular lag time that is used.

■ CONCLUSION

In this paper we have presented integrated VAC (IVAC), a new
extension to the popular variational approach to conformational
dynamics (VAC). By integrating correlation functions over a
window of lag times, IVAC provides robust estimates of the
eigenfunctions of a system’s transition operator.
To test the efficacy of the new approach, we compared IVAC

and VAC results on two molecular systems. First, we applied the
spectral estimation methods to simulation data from the alanine
dipeptide. This is a relatively simple system that permits
generation of extensive reference data for validating our
calculations. As we varied the lag time parameters and the
amount of data available, we observed the improved robustness
of IVAC compared to VAC. IVAC gives low-error eigenfunction
estimates even when the lag times range over multiple orders of
magnitude. In contrast, VAC requires more precise lag-time
tuning to give reasonable results
Next we applied IVAC to analyze a folding/unfolding

trajectory for the villin headpiece. These data contain relatively
few folding/unfolding events despite pushing the limits of
present computing technology. For this application, we used a
flexible neural network representation built on top of a rich
feature set.We presented a procedure for selecting parameters in
IVAC that helps lead to robust performance in the face of
uncertainty. For the application to villin data, we found that
VAC exhibited pronounced artifacts from overfitting when
precautions were not taken to specifically prevent it, while IVAC
did not.
Our work highlights the sensitivity of VAC calculations to

error from insufficient sampling. Examining our results on the
villin headpiece, we see that regularization (here, by early
stopping) and validation are crucial when running VAC with
neural networks or other flexible approximation spaces. With
insufficient regularization or poor validation these schemes
easily overfit. Even for the alanine dipeptide example, where we
employ a simple basis on a statistically well-conditioned
problem, we see that VAC has a high probability of giving
spurious results with insufficient data.

Figure 7. Implied time scales (ITS) and power spectral densities (PSD)
obtained with nonlinear IVAC and VAC with neural network basis
functions applied to the villin headpiece data set. The VAC training lag
time is marked by the dotted line in each panel.
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Integrated VAC addresses this problem by considering
information across multiple time lags. Future extensions of the
work could further leverage this information. For instance,
employing a well-chosen weighting function within the integral
in (5) could further decrease hyperparameter sensitivity.
Additionally, future numerical experiments could point to
improved procedures for selecting τmin and τmax values. Finally,
we could integrate over multiple lag times in other formalisms
using the transition operator, such as schemes that estimate
committors and mean-first-passage times.32 These extensions
would further strengthen the basic message of our work:
combining information from multiple lag times leads to
improved estimates of the transition operator and its properties.
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(7) Schütte, C.; Fischer, A.; Huisinga, W.; Deuflhard, P. A direct
approach to conformational dynamics based on hybrid Monte Carlo. J.
Comput. Phys. 1999, 151, 146−168.
(8) Swope, W. C.; Pitera, J. W.; Suits, F. Describing protein folding
kinetics by molecular dynamics simulations. 1. Theory. J. Phys. Chem. B
2004, 108, 6571−6581.
(9) Swope, W. C.; Pitera, J. W.; Suits, F.; Pitman, M.; Eleftheriou, M.;
Fitch, B. G.; Germain, R. S.; Rayshubski, A.; Ward, T. C.; Zhestkov, Y.;
et al. Describing protein folding kinetics by molecular dynamics
simulations. 2. Example applications to alanine dipeptide and a β-
hairpin peptide. J. Phys. Chem. B 2004, 108, 6582−6594.
(10) Mardt, A.; Pasquali, L.; Wu, H.; Noe,́ F. VAMPnets for deep
learning of molecular kinetics. Nat. Commun. 2018, 9, 5.
(11) Chen, W.; Sidky, H.; Ferguson, A. L. Nonlinear discovery of slow
molecular modes using state-free reversible VAMPnets. J. Chem. Phys.
2019, 150, 214114.
(12) Webber, R. J.; Thiede, E. H.; Dow, D.; Dinner, A. R.; Weare, J.
Error bounds for dynamical spectral estimation. arXiv:2005.02248
2020.
(13) Takano, H.; Miyashita, S. Relaxation modes in random spin
systems. J. Phys. Soc. Jpn. 1995, 64, 3688−3698.
(14) Kallenberg, O. Foundations of Modern Probability; Springer
Science & Business Media, 2006.
(15) Eisner, T.; Farkas, B.; Haase, M.; Nagel, R. Operator Theoretic
Aspects of Ergodic Theory; Springer, 2015; Vol. 272.
(16) Hirao, H.; Koseki, S.; Takano, H. Molecular dynamics study of
relaxation modes of a single polymer chain. J. Phys. Soc. Jpn. 1997, 66,
3399−3405.
(17) Prinz, J. H.; Wu, H.; Sarich, M.; Keller, B.; Senne, M.; Held, M.;
Chodera, J. D.; Schütte, C.; Noe,́ F. Markov models of molecular
kinetics: Generation and validation. J. Chem. Phys. 2011, 134, 174105.
(18) Pande, V. S.; Beauchamp, K.; Bowman, G. R. Everything you
wanted to know about Markov State Models but were afraid to ask.
Methods 2010, 52, 99−105.
(19) Vanden-Eijnden, E. Transition path theory. In An Introduction to
Markov State Models and Their Application to Long Timescale Molecular
Simulation; Bowman, G. R.; Pande, V. S.; Noe,́ F., Eds.; Springer, 2014;
pp 91−100.
(20) Noe,́ F.; Prinz, J.-H. Analysis of Markov models. In An
Introduction to Markov State Models and Their Application to Long
Timescale Molecular Simulation; Bowman, G. R., Pande, V. S., Noe,́ F.,
Eds.; Springer, 2014; pp 75−90.
(21) Keller, B. G.; Aleksic, S.; Donati, L. In Biomolecular Simulations in
Drug Discovery; Gervasio, F. L., Spiwok, V., Eds.; Wiley-VCH, 2019;
Chapter 4.
(22) Vitalini, F.; Noe,́ F.; Keller, B. A basis set for peptides for the
variational approach to conformational kinetics. J. Chem. Theory
Comput. 2015, 11, 3992−4004.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://dx.doi.org/10.1021/acs.jpcb.0c06477
J. Phys. Chem. B 2020, 124, 9354−9364

9363

https://pubs.acs.org/doi/10.1021/acs.jpcb.0c06477?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.0c06477/suppl_file/jp0c06477_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chatipat+Lorpaiboon"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:chatipat@uchicago.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Erik+Henning+Thiede"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:thiede@uchicago.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Robert+J.+Webber"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:rw2515@nyu.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jonathan+Weare"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:weare@cims.nyu.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aaron+R.+Dinner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-8328-6427
mailto:dinner@uchicago.edu
mailto:dinner@uchicago.edu
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c06477?ref=pdf
https://dx.doi.org/10.1137/110858616
https://dx.doi.org/10.1137/110858616
https://dx.doi.org/10.1021/ct4009156
https://dx.doi.org/10.1063/1.4811489
https://dx.doi.org/10.1063/1.4811489
https://dx.doi.org/10.1103/PhysRevLett.72.3634
https://dx.doi.org/10.1103/PhysRevLett.72.3634
https://dx.doi.org/10.1021/ct300878a
https://dx.doi.org/10.1021/ct300878a
https://dx.doi.org/10.1021/ct300878a
https://dx.doi.org/10.1007/s00332-017-9437-7
https://dx.doi.org/10.1007/s00332-017-9437-7
https://dx.doi.org/10.1006/jcph.1999.6231
https://dx.doi.org/10.1006/jcph.1999.6231
https://dx.doi.org/10.1021/jp037421y
https://dx.doi.org/10.1021/jp037421y
https://dx.doi.org/10.1021/jp037422q
https://dx.doi.org/10.1021/jp037422q
https://dx.doi.org/10.1021/jp037422q
https://dx.doi.org/10.1038/s41467-017-02388-1
https://dx.doi.org/10.1038/s41467-017-02388-1
https://dx.doi.org/10.1063/1.5092521
https://dx.doi.org/10.1063/1.5092521
https://dx.doi.org/10.1143/JPSJ.64.3688
https://dx.doi.org/10.1143/JPSJ.64.3688
https://dx.doi.org/10.1143/JPSJ.66.3399
https://dx.doi.org/10.1143/JPSJ.66.3399
https://dx.doi.org/10.1063/1.3565032
https://dx.doi.org/10.1063/1.3565032
https://dx.doi.org/10.1016/j.ymeth.2010.06.002
https://dx.doi.org/10.1016/j.ymeth.2010.06.002
https://dx.doi.org/10.1021/acs.jctc.5b00498
https://dx.doi.org/10.1021/acs.jctc.5b00498
pubs.acs.org/JPCB?ref=pdf
https://dx.doi.org/10.1021/acs.jpcb.0c06477?ref=pdf


(23) Boninsegna, L.; Gobbo, G.; Noe,́ F.; Clementi, C. Investigating
molecular kinetics by variationally optimized diffusion maps. J. Chem.
Theory Comput. 2015, 11, 5947−5960.
(24) Schwantes, C. R.; McGibbon, R. T.; Pande, V. S. Perspective:
Markov models for long-timescale biomolecular dynamics. J. Chem.
Phys. 2014, 141, 090901.
(25) Wu, H.; Nüske, F.; Paul, F.; Klus, S.; Koltai, P.; Noe,́ F.
Variational Koopman models: slow collective variables and molecular
kinetics from short off-equilibrium simulations. J. Chem. Phys. 2017,
146, 154104.
(26) McGibbon, R. T.; Pande, V. S. Variational cross-validation of
slow dynamical modes in molecular kinetics. J. Chem. Phys. 2015, 142,
124105.
(27)Naritomi, Y.; Fuchigami, S. Slow dynamics in protein fluctuations
revealed by time-structure based independent component analysis: the
case of domain motions. J. Chem. Phys. 2011, 134, 065101.
(28) Husic, B. E.; Pande, V. S. Note: MSM lag time cannot be used for
variational model selection. J. Chem. Phys. 2017, 147, 176101.
(29) Wu, H.; Prinz, J.-H.; Noe,́ F. Projected metastable Markov
processes and their estimation with observable operator models. J.
Chem. Phys. 2015, 143, 144101.
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