
Phenomenological Programming: A Novel Approach
to Designing Domain Specific Programming

Environments for Science Learning

Umit Aslan1 Nicholas LaGrassa1 Michael Horn1,2 Uri Wilensky1,2
Northwestern University

1Learning Sciences, 2Computer Science
2120 Campus Drive, Evanston, Illinois 60208 USA

{umitaslan, nick.lagrassa}@u.northwestern.edu
{michael-horn, uri}@northwestern.edu

ABSTRACT
There has been a growing interest in the use of computer-
based models of scientific phenomena as part of classroom
curricula, especially models that learners create for
themselves. However, while studies show that constructing
computational models of phenomena can serve as a powerful
foundation for learning science, this approach has struggled
to gain widespread adoption in classrooms because it not
only requires teachers to learn sophisticated technological
tools (such as computer programming), but it also requires
precious instructional time to introduce these tools to
students. Moreover, many core scientific topics such as the
kinetic molecular theory, natural selection, and electricity are
difficult to model even with novice-friendly environments.
To address these limitations, we present a novel design
approach called phenomenological programming that builds
on students’ intuitive understanding of real-world objects,
patterns, and events to support the construction of agent-
based computational models. We present preliminary case
studies and discuss their implications for STEM content
learning and the learnability and expressive power of
phenomenological programming.
Author Keywords
computational thinking; constructionism; novice-friendly
programming environments; chemistry education; agent-
based modeling
CSS CONCEPTS
• Applied computing; Education; Interactive learning
environments;

INTRODUCTION
Both the 2012 National Research Council’s framework for
K-12 Science Education [25] and the Next Generation
Science Standards [26] emphasize the importance of
incorporating scientific modeling practices beginning with
the earliest grades and with increasing sophistication at each
grade. Research shows that computer-based modeling
approaches (e.g., as agent-based modeling [42], system
dynamics modeling [4]) provide some of the most powerful
means to engage with scientific modeling especially when
students are programming their own models [e.g., 36, 37, 43,
44]. Thanks to renewed interest in computational thinking as
a fundamental skill set for every child to develop [38, 45],
educators and stakeholders are more willing to invest in
integrating computer programming activities into curricular
activities [9, 38]. However, the adoption rate remains low
because many science teachers either lack the programming
skills associated with computer-based modeling or lack the
classroom time to introduce the necessary skills to students
(or both). In addition, even the most novice friendly general-
purpose programming environments become too
complicated when it comes to modeling high-school topics
such as magnetism, evolution, or chemical reactions.

Domain-specific programming environments offer more
limited capabilities than general purpose programming
languages, but they make up for this drawback with custom-
designed primitives (e.g., commands, branching statements,
events) that are closely matched to specific curricular topics
[10, 12, 17, 36, 37, 44]. A small number of primitives that
act as self-contained micro-behaviors enable students to
construct sophisticated models of scientific phenomena with
very little programming instruction [17, 37]. For instance,
the Frog Pond learning environment for natural selection has
primitives such as hop, hunt, spin, and chirp to model the
behavior of colorful virtual frogs living in a pond with lily
pads [10, 12]. Each of these primitives translate to
corresponding NetLogo [39] code in the runtime. Early
results from empirical studies with domain-specific
programming environments are encouraging [e.g., 10, 37],
but some of the more challenging science topics do not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
IDC ’20, June 21–24, 2020, London, United Kingdom.
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM ISBN 978-1-4503-7981-6/20/06...$15.00.
DOI: https://doi.org/ 10.1145/3392063.3394428

readily lend themselves to this approach. For example,
modeling macro-level phenomenon such as gas pressure
require calculating the momentum exchange for each
particle-to-particle collision using two-dimensional vectors,
which require the use of programming constructs like state
variables and trigonometric functions. It is not possible to
design self-contained micro-behaviors for such complex
programming logic using the conventional procedural
programming paradigm.

We propose phenomenological programming as a novel
approach to designing domain-specific programming
environments for science learning. In phenomenological
programming, high-level primitives are designed based on
students’ intuitive understanding of the real-world objects,
patterns, and events. Each primitive is made up of two
components: a procedural component that indicates function
and a phenomenological statement that indicates behavior.
Each phenomenological statement embeds assumptions
about the modeled objects that students may be intuitively
aware of but (1) may not have coherent knowledge, and more
importantly (2) may not have competence in formal notations
or domain-specific vocabulary to express their thoughts
explicitly and unambiguously. It is easy to recognize the
behavior of a phenomenological command and predict the
outcome through a sort of quick mental simulation. It is also
possible to include small doses of ambiguity that can be
beneficial for novice learners. For example, students can
easily recognize a “move” command with a
phenomenological component called “zig-zagging” and
predict its behavior even if figuring out its exact nature
would require some tinkering. Achieving the same outcome
in general-purpose procedural programming languages
would require mastering the use of sophisticated constructs
such as loops, state variables, and angles.

In this paper, we present the theoretical underpinnings and a
preliminary definition of phenomenological programming.
We also present a design intervention in which we created a
phenomenological programming environment for a high-
school ideal gas laws unit. We call this environment the
phenomenological gas particle sandbox. Its primitives
include commands such as “move” and “bounce” that can be
modified with phenomenological statements such as “zig-
zagging” or “erratically” and “like a balloon” or “like a
football” respectively. We present our preliminary findings
from an implementation in which two teachers taught the
kinetic molecular theory to a total of 121 high-school general
chemistry students with curricular activities designed around
the phenomenological gas particle sandbox. We discuss the
implications of our findings for future research.
THEORETICAL FRAMEWORK
Constructionism
Phenomenological programming is situated within the
greater Constructionist learning paradigm, which maintains
that learners construct robust mental models when they
actively construct personally meaningful public entities [28,

29, 30]. Computer programming has historically been the
focus of many Constructionist studies because it allows the
construction of microworlds: self-contained virtual worlds
with limited number of objects and operations to explore
concepts, theories, and phenomena [29]. Empirical findings
show that Constructionist science learning environments
facilitate powerful conceptual and formal learning through
constructing dynamic virtual models of real-world
phenomena that can be built bottom-up, scrutinized,
manipulated, experimented with, iterated over, repurposed,
and shared with others to receive feedback [e.g., 37, 43]. Our
studies on phenomenological programming attempt to make
this modality more accessible to students and teachers who
have little-to-no prior exposure to computer programming.

Constructionist literature is rich with many branches of
study. Phenomenological programming is particularly
inspired by four Constructionist design ideas: syntonic
learning [29], embodied modeling [43], domain-specific
programming environments [12, 37], and non-textual
programming paradigms [1, 16, 17, 27].

Syntonic learning refers to Seymour Papert’s design of the
original Logo programming language and its object-to-think-
with, the turtle [29]. In Logo, a screen turtle is controlled by
body-syntonic programming primitives such as forward,
right, and pen-down that relate to children’s sense of
interacting with the physical world around them. The turtle
is also ego syntonic. It is designed to be coherent with
children’s sense of themselves as conscious agents with
intentions, goals, and desires. Topics that are counterintuitive
when taught formally, such as the definition of a circle, can
be expressed in Logo in a way that is more natural for
children and grounded in their embodied schema thanks to
the turtle’s syntonicity. Syntonic learning provides a
foundational theoretical explanation on how to design
programming environments that can accommodate
children’s intuitive ways of thinking.

Our goal in phenomenological programming is to make the
construction of computer-based models more prevalent in
science education. Embodied modeling provides us a
theoretical framing on how to design constructionist learning
environments towards this goal. Initially formulated by
Wilensky and Reisman [43] for biology learning, the
embodied modeling approach argues that when learners’
knowledge of individual organisms that make up greater
ecosystems is aligned with their embodied ways of thinking,
they can start to take the perspective of those organisms they
are modeling. This would lead to better understanding of
how interactions at the micro-level may lead to patterns that
we observe at the macro-level in phenomena such as
evolution, homeostasis, and epidemics [41, 42]. The
concepts of complex systems theory play a significant role in
embodied modeling environments. For example, when
learning about the behavior of gas particles inside a
container, students do not only solve aggregate-level
algebraic equations that are disassociated with the actual

underlying micro-level events. Instead, they define how each
particle behaves autonomously. For example, they take the
perspective of a particle and reason that “I would move
forward on a straight path,” “If I hit a wall, I would bounce
back with a straight angle,” and so on. Converting such
embodied agent-rules to dynamic models using a
constructionist agent-based modeling environment such as
NetLogo [39] allows learners to observe what happens at the
aggregate level when the same rules are followed by many
agents simultaneously. Moreover, the resulting models
afford testing various alternative scenarios, deepening their
understanding of scientific phenomena along the way.
Studies show that embodied modeling does not only
contribute to better conceptual understanding, but also helps
students understand the relationship between scientific
phenomena and their symbolic representations (e.g.,
equations, diagrams) [e.g., 19, 20, 43, 46].

However, general purpose agent-based modeling
environments such as NetLogo require preliminary
programming instruction for students to start constructing
their own models. Thus, we adopt the domain specific
approach in phenomenological programming. In domain-
specific programming environments, students are provided
with higher-level, domain-oriented primitives that abstract
away the underlying complex programming logic [17, 38].
This limits the capabilities of the programming environment
but makes it easier to start programming for novice learners
because the primitives are more familiar and more aligned
with the studied subject matter. For example, the Frog Pond
environment for learning natural selection has code-blocks
such as "chirp", "hop", "hunt" and "hatch" to construct
embodied models of colorful virtual frogs on a virtual lily
pad [12]. Students quickly learn how to program in the Frog
Pond and construct short programs that result in population-
level evolutionary outcomes [10, 12]. Research shows that
domain-specific programming environments can offer
unique affordances for science learning by exposing
underlying mechanisms of scientific phenomena better than
interacting with pre-existing models or simulations [37].

Lastly, our initial implementation of phenomenological
programming is influenced by prior research on visual
programming paradigms such as blocks-based programming
[1], programming by demonstration [16], and visual
scripting [27] because they offer significant affordances for
novice programmers. For example, most visual
programming environments do not require learners to
memorize specific words or statements because there is an
always-present library. Programs are assembled not by
typing, but by visually arranging these primitives such as
dragging code blocks and attaching them to each other. There
are also visual cues such as shapes and colors that
communicate features and functionality like category (e.g.,
motion, control) and function (e.g., reporter, command) [1].
Such features help ease the cognitive load and the anxiety
related to formal expressions, leaving more room for learners
to focus on their algorithms. In our current implementations

of phenomenological programming, we use the NetTango
builder environment [11, 40], which provides a domain-
specific, blocks-based layer over the NetLogo agent-based
modeling environment [39].
The Role of Intuitive Knowledge in Science Learning
Phenomenological programming is also informed by the
theoretical perspectives on the relationship between
students’ intuitive knowledge and their science learning.
More often than not, the primary challenge in science
education research is to resolve the conflict between
learners’ intuitive understanding of real-world phenomena
and the formal scientific explanations [6, 34]. Topics such as
electric current or diffusion are difficult for students to learn
because the underlying formal scientific explanations
contradict novice learners’ expectations about how real-
world objects behave. For example, many students see the
diffusion of a drop of ink in water as a deliberate process,
hypothesizing that ink molecules are moving towards less
concentrated areas, while the actual underlying events are
completely random [2]. In addition, even when students learn
to answer formal questions using formulas and symbolic
representations competently, they often revert back to their
prior, faulty intuitive understandings when they are asked
conceptual questions [5,21,22].

Phenomenological programming inherits the constructivist
principle that students construct more sophisticated
knowledge from already-existing knowledge elements [6, 7,
29, 30, 32]. Hence, our goal is to find ways to help students
learn science by bridging their prior understanding of real-
world phenomena with formal scientific explanations.
diSessa and Minstrell argue that students’ initial ideas about
a topic should be used as scaffolds and reference markers for
learning formal scientific explanations [6]. On the other
hand, there is great diversity in theoretical characterizations
of students’ intuitive thinking. Although we cannot attribute
our theoretical framing to one specific theory, we are
informed by the theories on mental models [14, 15, 35] and
the piecemeal nature of knowledge [5, 23, 34]. The mental
models theory argues that when humans perceive the world,
they construct a similar but less sophisticated dynamic
mental representation; a “simulation of the world fleshed out
with our knowledge” [15, p. 18243]. The implication of the
mental models theory for phenomenological programming is
that students should be able to mentally simulate their
programming actions based on their existing knowledge. On
the other hand, the theories on piecemeal nature of
knowledge, such as diSessa’s Knowledge-in-pieces theory
[5] and Minsky’s Society of Mind theory [23], are concerned
with the composition of mental structures. They characterize
human thinking as composed of numerous smaller
knowledge elements that are organized in various
arrangements. The implication for phenomenological
programming is that students’ intuitive understanding of
scientific phenomena should not be considered as
monolithic, disconnected mental entities, but as rich and
interconnected conceptual ecologies. Expertise in a scientific

topic does not mean acquiring new knowledge completely
disconnected to prior intuition but constructing new
knowledge as part of this conceptual ecology; acquiring new
knowledge elements, while also reorganizing or repurposing
the old pieces of intuitive knowledge [6, 7, 33].
A PRELIMINARY DEFINITION OF PHENOMENOLOGICAL
PROGRAMMING
We envision phenomenological programming as both a new
approach to integrating programming activities into science
lessons and a greater design framework on how to achieve
this goal. In principle, phenomenological programming
environments leverage target group students’ familiarity
with the physical world, including objects, patterns, and
dynamic events, in creating custom-designed, domain-
specific programming activities. However, this is a rather
broad definition. Our focus in this paper is narrower; we
concentrate on domain-specific, block-based
implementations of agent-based modeling activities.

Our phenomenological code blocks are procedural as in
traditional domain-specific programming environments.
They perform a specific task. Yet they are also modifiable
with sub-statements that embed assumptions about the nature
of the performed task. For example, let’s consider a move
command that makes an object change its position. In a
traditional domain-specific programming environment, the
move command would always make the object move the
same amount regardless of the object’s location on the screen
or its direction. In a phenomenological programming
environment, the move command would behave differently
depending on its context and its phenomenological modifier
(e.g., zigzag, spinning). For example, many students would
easily recognize that zig-zagging objects should go straight
for a short distance, then suddenly change their direction, go
straight for a short distance again, and repeat this process
back and forth while maintaining a linear trajectory.
Moreover, the zig-zag command would behave differently
based on each object’s speed. If an object is moving fast, the
zigzags would be larger, and vice versa.

Our research on phenomenological programming is on its
early stages. We have not yet reached a definitive set of
design principles or guidelines. However, we compiled a
retrospective summary of the steps we followed to design
phenomenological code blocks once we hypothesized about
the plausibility of phenomenological programming:

1. Analyze the target scientific phenomenon and documented
student thinking patterns such as:
a. Prevalent misconceptions and learning difficulties
b. Challenging aspects of the formal science and mathematics

concepts
c. Challenges in thinking across micro-to-macro levels

2. Create a map of the relevant phenomenological constructs:
a. Explore the examples, metaphors, and analogies used in

teaching materials (e.g., textbooks, worksheets, videos).
b. Interview teachers

i. Which kinds of examples, metaphors and analogies do
they use in their teaching?

ii. Which experiments do they conduct?
iii. What is the familiarity of their students with the

phenomenological constructs? Which terms or idioms
are they more familiar with?

3. Create a base agent-based model of the target phenomenon.
Then divide the model into small sub-procedures that
correspond to phenomenological constructs from step 2.

4. Create a small set of the phenomenological blocks and iterate
on it based on teachers’ and subject-matter experts’ feedback.

We argue that phenomenological programming can offer
significant advantages beyond easy recognition for novice
learners. It can decrease the burden of converting one’s
thoughts to computer code, thus requiring much less
programming instruction. For example, implementing the
zig-zagging behavior in a procedural programming
environment (including the traditional domain-specific
environments) would require students to write looping
algorithms with variables that preserve the state of the zig-
zagging object. Each of these programming constructs are
alien to most middle-high school students and even found
counterintuitive by most novice college students.

We assum that each phenomenological statement will
inevitably embed ambiguities. If we consider students’ lack
of coherent knowledge to express their intuitive thinking in
an explicit, unambiguous manner [5, 6], we argue that a
healthy dose of ambiguity in code-blocks can actually be
beneficial in accommodating diverse ways of thinking. For
example, a bounce block designed with phenomenological
options such as like a basketball and like a billiard ball can
stimulate rich classroom discussions on how these objects
behave and help uncover students’ intuitive understandings.
Some students may expect the two objects to behave
similarly, while others may expect basketballs to bounce
back faster. The phenomenological bounce block would
initially accommodate both students’ ways of thinking, but
they can later discover the exact nature of each object
through tinkering.

Phenomenological programming environments can be
customized and localized according for target group students
including expected misconceptions they bring to the class,
their day-to-day vocabulary, and terms relevant to target
subject matter. For example, some students may be familiar
with billiard balls, yet for others it may be more suitable to
use pool ball, hockey puck, or another object that behaves
similarly. Similarly, if we expect from prior research that
students may come to the classroom with misconceptions,
we can modify our code-blocks with relevant
phenomenological statements. For instance, a bounce like a
football statement would accommodate misconceptions
about objects bouncing back in random directions at each
physical collision.

We argue that when designed well, phenomenological
programming environments can allow students to start
constructing computational models of scientific phenomena
with minimal instruction. They can express their intuitive
understanding through code and the resulting computational
models would be much more sophisticated compared to
those that can be realistically achieved with general purpose
environments. Each time students run their models they
would get a chance to catch the “bugs” in their thinking.
Teachers can leverage the incompatibilities between the
students’ models and the formal scientific explanations to
conduct rich classroom discussions and facilitate more
constructivist learning environments.

We believe the best way to explain phenomenological
programming is to demonstrate a real-world implementation
and provide evidence on how it may impact students’
learning of subject matter. In the next section, we present a
phenomenological gas particle sandbox that we designed for
teaching the basic assumptions of the kinetic molecular
theory. Then, we present preliminary findings from a
research implementation with 2 teachers and 121 high-
school students.
A DESIGN INTERVENTION: THE PHENOMENOLOGICAL
GAS PARTICLE SANDBOX
The idea of phenomenological programming emerged while
we were designing hands-on programming activities for the
kinetic molecular theory (KMT) within a larger ideal gas
laws unit. The KMT defines simple and idealized
assumptions about the behavior of gas particles at the
macroscopic level. It is universally taught and represents a
conceptual understanding of the behaviors of gaseous matter
as well as other chemistry topics such as chemical reactions
and phase transitions [21,31]. However, prior research
documents a myriad of student misconceptions related to the
KMT that remain intact after school instruction [18, 21, 22].
We hypothesized that if students could develop their own
simple, agent-based models of gas particles, they would be
able to connect their intuitive thinking about micro-level gas
particle interactions with the gas properties that they observe
at the macro-level (e.g., pressure, temperature). After
multiple prototypes and feedback sessions with teachers, we
realized that it was not plausible to design a domain-specific
environment with conventional procedural blocks because
modeling particle-to-particle collisions on a 2d plane
required solving complex quadratic equations to calculate
the momentum exchange. This led us to reconsider the
design of our primitives and culminated in a multi-step gas
particle sandbox activity with a phenomenological
programming component. In this section, we share the design
of this phenomenological gas particle sandbox and our
findings from the first research implementation of the CC’19
unit with 121 high school general chemistry students.
Design Overview
We developed our phenomenological gas particle sandbox
using the NetTango builder authoring environment [11, 40].
NetTango allows the creation of custom, domain-specific

blocks-based programming layers for the construction of
NetLogo models. Being a domain-specific programming
environment, our sandbox inherits many features from its
predecessors such as the Frog Pond [10, 12] and the
EvoBuild [37]: a small vocabulary of programming
primitives, high-level code-blocks that abstract away formal
logic, and a custom design for the target curricular material.

Our phenomenological code blocks are procedural
templates, such as moves and bounces, that can be modified
with phenomenologically transparent statements, such as
spinning or “straight” for the former and like a balloon or
like a basketball for the latter. An explanation of each code-
block in the phenomenological gas particle sandbox is
presented in Table 1. Each phenomenological statement
embeds simple assumptions about gas particles. Some of
them are compatible with the formal assumptions of the
KMT (e.g., moving straight until a collision, bouncing
elastically like a billiard ball), while others correspond to
potential student misconceptions (e.g., moving randomly,
losing momentum) [18, 21, 22, 31]. We hypothesized that
students could start modeling gas particles with minimal
introduction to programming and without the challenging
task of converting their intuitive understanding of the
behaviors of bodies in motion into unambiguous, procedural
computer-code. The phenomenological blocks would be
instantly recognizable. Students could predict and reason
about the outcome of their code because it would be easy to
mentally simulate gas particles’ behavior.

We embedded our phenomenological gas particle sandbox in
a lesson plan with a multi-step, scaffolded activity (Figure
1). We adopted the lesson plan from Levy & Wilensky’s
Connected Chemistry 1 unit [19,20,46]. The students were
asked to hypothesize about how an air duster canister works.
We chose the air duster as the real-world object of study
because it was a fixed-volume gas container with nothing but
gas molecules inside. Moreover, it was very easy to observe
the existence of gas pressure: the air coming out of a full air
duster could move small physical objects like dust and small
pieces of paper. In the beginning of the lesson, the students
hypothesized about how an air duster works by providing
textual answers. Then, they used a freehand drawing tool to
explain their answers. We designed these two activities to
stimulate students’ expression of their intuitive thinking.

The teachers conducted whole-class discussions after the
freehand sketching activity. They showed some of the
students’ drawings and asked them to share their hypotheses.

In the second step, the students used a static sandbox tool that
resembled the freehand sketching activity. They constructed
the initial state of a computer model within NetLogo by
adding stationary walls, removable walls, green particles,
and orange particles (see Figure 2b). We designed the static
modeling activity to reduce the complexity of creating a
computational model from scratch. It also served as a
transition layer from the open-ended sketching activity to
computational sketching with limited options.

In the third step, the students used a simplified version of the
phenomenological gas particle sandbox to develop a small-
scale model of gas particles (n ≤ 4). We designed the micro-
level modeling activity to both reduce the complexity of the
programming activity and to encourage the students to attend
to the relationship between individual gas particles’ behavior
and the aggregate-level outcomes.

Finally, the students uploaded their static air duster models
from the third step into the gas particle sandbox and tested
their blocks-based algorithms with many more particles. We
designed this last activity so that students could observe
whether their air-duster models behaved as they anticipated.

(a) Freehand sketching

(b) Static modeling

(c) Programming with only a few

particles

(d) Programming with many
particles

Figure 1. The four stages of the air-duster modeling activity
with phenomenological programming.

Overall, the four steps of our lesson plan guided the students
through the process of creating a computational model of a
real-world phenomenon bottom-up but decreased the
complexity of this process by breaking down each step for
them and providing necessary scaffolds. At each step, we
provided them short video demonstrations on how to use the
embedded computational tools such as how to draw particles,
how to drag and attach code-blocks to each other, how to run
the models, and how to save the models. We also placed
reflection questions such as “What were the differences
between the freehand sketching activity and the
computational sketching activity?” or “Did your air duster
model behave as expected? Did you need to change any of
your code from the prior activity?”

There were only 7 code-blocks in this iteration of the
phenomenological gas particle sandbox (see Table 1).
However, combined with the static freehand modeling
activities and the phenomenological sub-statements, these
blocks were enough to develop sophisticated two-
dimensional models of an air duster.

Code block Explanation

At GO: Event block. Code that is attached to
this block is executed in a continuous loop
when the GO button of the model is clicked.

The particle <n>: Control flow block.
The code encapsulated by this block is
executed only by the selected particle (e.g.,
particle 1, particle 10, particle 87) at each
simulation step.

Each particle: Control flow block. The
code encapsulated by this block is executed by
all particles autonomously and simultaneously
at each simulation step.

If touches a wall: Control flow block.
The code encapsulated by this block is only
executed when a particle is touching one of the
container walls.

If touches another particle:
Control flow block. The code encapsulated by
this block is only executed when a particle is
touching another particle.

Moves: Phenomenological block. If a particle
is executing this code, it moves 1 unit forward
based on the chosen phenomenological
statement:
Straight: Moves forward 1 unit without

changing direction.
Spinning: Moves forward 1 unit, changes

direction to follow a circular path.
Zig-zag: Moves forward 1 unit, changes

direction to follow a zig-zag path.
Erratic: Moves forward 1 unit, changes

direction at each step to follow a path that
resembles the Brownian motion.

Bounces back: Phenomenological block. If
a particle is executing this code, it changes its
momentum based on the chosen
phenomenological statement:
Like a balloon: Changes direction as if it is an

elastic collision. If collides with another
particle, exchanges momentum as if it is an
elastic collision but total kinetic energy is
decreased significantly.

Like a football: Changes direction randomly. If
collides with another particle, exchanges
momentum as if it is an elastic collision but
total kinetic energy is decreased slightly.

Like a billiard ball: Changes direction as if it is
an elastic collision. If collides with another
particle, exchanges momentum as if it is an
elastic collision. Total kinetic energy is
preserved. Recalculates its speed based on its
kinetic energy.

Like a basketball: Changes direction as if it is
an elastic collision. If collides with another
particle, exchanges momentum as if it is an
elastic collision. Total kinetic energy is
decreased slightly. Recalculates its speed
based on its kinetic energy.

Table 1. The function of the code-blocks of the
phenomenological gas particle sandbox and the assumptions
embedded in the phenomenological blocks.

Research Implementation
The first research implementation of our lesson plan with the
phenomenological gas particle sandbox took place in Spring
2019. Two teachers and a total of 121 high-school regular
chemistry students at an ethnically diverse U.S. Midwest
public high school participated (Table 2). Neither teacher
had prior experience in computer programming and this was
their first experience teaching with the phenomenological
gas particle sandbox. Most of the students did not have prior
experience with programming, either. The intervention
lasted a total of 3 class periods over the course of 2 days. The
students used Chromebooks to access the lesson over an
online portal. Both teachers decided to teach the lesson as a
lab. They asked students to form groups and follow the
lesson activities autonomously except the whole-class
discussions. Each student worked on the activities
individually but they were encouraged to share ideas and
help each other when necessary. The demographics of the
participating students are presented in Table 2 below.

Our research questions in this implementation were:

1. How successful is the phenomenological gas
particle sandbox in accommodating the students’
intuitive ways of thinking about gas particles?

2. To what extent did the students use the
phenomenological code blocks in expressing their
intuitive ways of thinking about gas particles?

3. Does engaging with the phenomenological gas
particle sandbox help students learn the main
assumptions of the kinetic molecular theory?

 n Male Female Non-binary

White 41 27 13 1

African American 34 14 20 -

Latinx 17 9 8 -

Asian 4 3 1 -

Middle Eastern 2 1 1 -

Multiple 23 14 9 -

Total 121 68 52 1

Table 2. Demographics of the study participants (self reported).

We collected all the open-ended written responses and
sketches students posted on the portal. In addition, we asked
students to upload screenshots of their static container
models and their blocks-based code. In order to gain further
insight on the students’ thought processes and the
interactions between them, we video recorded four focus
groups (2-4 students each). We also sometimes walked
around the classroom and asked some non-focus group
students to do quick demonstrations of their work. We
present a preliminary qualitative analysis of this data through
vignettes from our video data and student-generated artifacts
from the online portal.

Preliminary Findings
Students Expressed Their Intuitive Thinking through
Phenomenological Programming
K & Y are two 10th grade African American female students.
From the interactions among them, we learned that K
attended an out-of-school blocks-based programming
workshop at the fifth grade, but Y did not have any prior
programming experience. We selected them as one of our
focus group students because they have been in the same lab
group since the beginning of the year and they both
consented to video data collection.

In the beginning of the lesson, the students were shown a
short video about how pressing the valve of an empty air
duster had no effect on small pieces of paper, while doing so
with a full one moved the pieces. Then, they were asked to
explain the difference between a full and an empty air duster
can. K answered the question as follows: “There was no air
pressure in the before video, but by pumping air into it, it
increased the air pressure allowing the air when released to
reach top speed and blow the paper.” Y answered the
question similarly: “There was no air pressure in the first
part but by pumping air into it, it made a high pressure of air
come out of it.”

Neither of the students mentioned gas particles inside the air
duster container. On the other hand, both of their freehand
sketches were richer than their textual explanations (Figure
2). First of all, each sketch included particle-like
representations. K’s sketch showed that she envisioned
particles coming out of the air duster, but the particles inside
were much larger than the particles outside. In addition, there
were arrows representing the direction of the particles
outside, while there were semi-rings around the particles
inside which may represent either vibration or direction. Y’s
sketch showed large circle-like particles densely packed at
the bottom of the air duster but they moved up when the
valve was pressed. She drew blue lines to represent the air
coming out of the air duster. Overall, both sketches involved
ambiguities and multiple contradictory representations of gas
particles. This finding is consistent with diSessa's [5, 7]
theory that novice understanding of science is a fragmented
and incoherent ecology of smaller knowledge elements.

(a) K’s sketch

(b) Y’s sketch

Figure 2. K & Y’s freehand sketch models of the air duster can.

The interaction we present in Excerpt 1 below happened
during the micro-level phenomenological programming
activity (Figure 1c) when Y expressed her frustration with
the way her particles behaved.

 Dialogue Non-verbal indicators
Y Yeah, but I wanna make them as

slow as possible. Talks to her peers loudly.

K Why do you wanna make them
slower?

Enters the frame, sits next
to Y.

Y Because like, I feel like they are
more tight. So, I don’t want them
to move like psychopaths.

Gestures fast random
movement with her hands
when saying “like
psychopaths” and laughs.

Excerpt 1. K & Y’s initial interaction.

We hypothesize that Y wanted to make her particles move
slowly and eventually concentrate at the bottom as she drew
in her sketch (Figure 2b). Her sketch also implies that she
expected gas particles to only move upwards when the valve
is pressed. This might be a misconception due to the
similarity between the air duster can and other aerosol cans,
which have liquid sitting at the bottom at room temperature.
This initial interaction was followed by K’ inquiry about Y’s
code, which provided us with more insight on Y’s thinking:

 Dialogue Non-verbal indicators
K Are yours in a pattern or is it

erratic?

Y Erratic. And they’re going, but
it’s bouncing like a balloon.

Scrolls down to her code and
points at the blocks. Makes a
bouncing gesture with her fists
(similar to

🤜🤛
)

K Oh!
Y I feel like they shouldn’t be

like...
Makes fast random movements
with her hands.

K ... Laughs.
Y Why does setup always make

it? … Wait! But I want them
to… No! They are not ... Like,
yours are fine.

Leans over to her computer.
The particles start fast but
eventually slow down again.

K Mine are.
Y Mine aren’t. Like he should be

going over here! Look at it!
He’s not doing anything!

Points at a stationary particle
and then points at the opposite
corner of the container,
indicating where she expects
the particle go.

Excerpt 2. K & Y’s second interaction.

We observe that both K and Y made their particles move
“erratically.” It is a documented misconception that many
students think gas particles change direction at random [18],

while KMT assumes that gas particles move in straight
trajectories until they collide with other particles or container
walls.

Y told K that her particles “bounce like balloons,” which
explains why Y’s particles initially acted the way she wanted
them to, but eventually came to a stop. This contradiction
between her understanding of how gas particles should
behave and the output of her model frustrated her. Her
demonstrations with her hand-gestures and her final remarks
showed that Y was continuously trying to mentally simulate
the outcome of her model. Unfortunately, this interaction
was cut short because their teacher announced the class to
wrap up the programming activity.

This is just one case study and therefore not generalizable,
but these short excerpts from K & Y’s interaction provide
preliminary evidence for some of our main design
arguments.

K & Y were able to express their intuitive ways of thinking
about gas particle behavior using the phenomenological code
blocks. There was a direct correspondence between their
freehand sketches and their blocks-based code. They made
their particles move the way they “felt like” the particles
should move (Excerpt 2). They expressed these thoughts by
using the embedded phenomenological statements as part of
their vocabulary, using bodily movements, and even other
analogies such as Y’s remark “I don’t want them to move like
psychopaths” (Excerpt 1).

Their prior knowledge played an important part in their
programming choices. Y expected the “bounce like a
balloon” block to behave differently than it actually did. She
expected her balloon like particles to eventually sit at the
bottom of the container but keep moving slowly (there is no
gravity in the sandbox). When she noticed the contradiction,
we were able to observe the role of dynamic mental
simulation in her thinking processes once again. She showed
K with her fingers which trajectory a particle should have
followed.

Finally, we observed some of their misconceptions surfacing
during the process. Both K & Y believed that the particles
should be moving “erratically.” Y believed that the particles
should slow down. K’s surprised reaction indicated that she
found this an unusual idea. She programmed her particles to
bounce like billiard balls. Although neither of them
mentioned any formal scientific concepts during this
interaction, we belive some of their misconceptions might
have been informed by their prior exposure to relevant
concepts (e.g., random motion, aerosol cans).

This interaction also highlighted some of the limitations of
our sandbox design. For example, our blocks library did not
include any phenomenological blocks that corresponded to
the exact way Y wanted her gas particles to slow down but
never stop. We plan to address these limitations in the future
iterations of our phenomenological gas particle sandbox
design.

Students’ Diverse Ways of Thinking Were Reflected in Their
Phenomenological Programming Practices
We asked the students to upload a screenshot of their blocks-
based code once they finished the micro-level programming
activity (Figure 1c) and explain their programming decisions
in writing. Figure 3 below provides a summary of the
screenshot data for the three main considerations of the
KMT: particle movement, particle-wall collisions, and
particle-particle collisions.

(a) Each particle moves …

(b) If touches a wall, each particle bounces

(c) If touches another particle, each particle bounces …

Figure 3. The frequencies of the code blocks used by the
students in the first phenomenological programming activity.

We argue that the diversity in the students’ algorithms
reflects the greater diversity of intuitive student thinking that
was documented in prior research [2,5,6,7,13,35].
Unfortunately, we do not have any additional data to further
investigate the student reasoning behind some of the more
interesting outcomes such as the lack of particle-to-particle
collisions in half of the students’ blocks or the sharp decrease
in the popularity of the “bounce like a football” block in
those that included inter-particle collisions in their algorithm.

The diversity in the students’ intuitive thinking was also
present in their written explanations of their algorithms. We
present example student explanations in Figure 4. In all four
of them, we observe an underlying pattern: the students did
not mention any formal explanations or even their
knowledge from prior lessons. They were rather
hypothesizing. As in K & Y’s interaction, all four students in
Figure 4 created their models based on how they feel, not on
what they learned in prior classes. For example, the student
in Figure 4a created an algorithm that is compatible with the
basic assumptions of the KMT. However, she simply did so
because she based her model “off the pool game.” She even
mentioned that she did not know the “material of the
particles.” Similarly, the student in Figure 4b simply wanted
her particles to “bounce off in a calm and controlled
manner.” The students in Figures 3c and 3d expressed

uncertainty in particle movement but they chose the zig-zag
movement instead of the erratic option.

 Algorithm Student explanation

(a)

I used [moves straight] because it
was the most realistic. I wanted
them to sort of behave like pool
balls. Since I based it off the pool
game, I wanted them to react like
a pool ball although I do not
know the material of the particles.

(b)

I used [like a balloon] because I
did not want the particles to
bounce too hard and too fast. I
wanted them to bounce off in a
calm controlled manner.

(c)

I used [zig-zag] because the
particles move randomly. I used
“like a billiard ball” because they
kind of bounce around with more
speed.

(d)

I used [zig-zag] because there is
not one way each particle moves
each time. It bounces like a
football because it doesn’t always
have the same directions coming
back.

Figure 4. Example student algorithms and explanations

Unfortunately, our data collection at this stage was
preliminary. For example, we do not have additional data to
understand why the students used the moves zig-zag option.
Perhaps they wished to implement a rather patterned
randomness rather than unpredictable behavior. However,
we are cautious about making further claims in this paper
about student’s engagement with phenomenological
programming beyond the apparent diversity reflected in their
code blocks and written explanations. We plan to collect
more extensive data in the future iterations of our study such
as saving students’ algorithms after each change and
interviewing some of the students after the
phenomenological programming activities.
Students Learned the Kinetic Molecular Theory by Engaging
with Phenomenological Programming
H is a 10th grade Latinx female student. She is one of the
students who agreed to do on-the-spot demonstrations for our
research team. In fact, she volunteered to demonstrate her
model when she saw the first author recording another
demonstration. She had no prior experience with
programming. Her initial answer to the empty vs. full air
duster can question was “The papers don't move because
there was no air in the can. They moved the second time
because the experimenter pumped air into the spray can and
used it to blow away the paper.” Her freehand sketch had
large particle-like circles inside the can, while the air outside
was presented as coming out on a straight line and then
spreading with a cloud-like image (Figure 5).

Figure 5. H’s freehand sketch model of the air duster.

The interaction in Excerpt 3 happened at the end of the
macro-level modeling activity (Figure 1d).

 Dialogue Non-verbal
R So, this was your original static model, right?

H Yeah. And first I added the red wall.

H And then another change I made was change

the direction it moved. It was erratic for both
and then I changed it to straight.

R Why did you change it?
H Because I wanted to represent, like, the way the

particles move once it comes out the spray can.

R They weren’t spraying out as you liked?
H Oh no. It was just like, spreading out, instead of

going towards one direction and then spreading
out. And then, (runs the model with the red wall
closed) this is how it was. It was all cramped in
there. And then when I took off the red wall,
it’s all going in one direction and it spreads out,
which is what I wanted to show.

Excerpt 3. H walking the researcher (R) through her
programming process.

H’s experience hints at the full potential of
phenomenological programming when everything goes
according to design goals. As a student with no prior
programming experience, H was able to observe a real-world
object, hypothesize about the underlying micro-level particle
interactions that lead to the observed macro-level outcome,
construct a micro-level computational model of her
hypothesis using a blocks-based programming environment,
and test her hypothesis at the macro-level. When her initial
assumption about gas particles moving erratically did not
result in the desired outcome, H was able to debug her code
and find the correct solution. Most of what H knew about gas
particles prior to this lesson was compatible with the
assumptions of KMT. She only had a few simple
misconceptions: she expected gas particles to change
direction at random. Even if some students may not make as
much progress as H, we believe competent teachers can use
such opportunities to bootstrap students’ prior learning and
promote powerful conceptual learning.
Limitations of our preliminary findings
Our preliminary findings are limited in terms of
generalizability due to the lack of additional data. We believe

the future implementations can be improved by (1) including
a control condition, (2) conducting clinical interviews with
students and teachers interviews, and (3) collecting the
history of students’ programming actions.
CONCLUSION
The two case studies and the block-based student algorithms
we presented in this paper are by no means generalizable.
More empirical studies are needed to answer the implications
of phenomenological programming for science education. In
addition, the phenomenological gas particle sandbox we
presented is just one such design. We may not be able to
determine the full reach of this approach before attempting
to create similar environments for other topics.

Nonetheless, our preliminary findings indicate that the
phenomenological gas particle sandbox achieved some
critical goals of constructionist science education. The
students started programming with minimal instruction. The
phenomenological code-blocks accommodated their
intuitive ways of thinking. They tinkered with the code to test
alternative ideas, they exchanged ideas with each other, and
the phenomenological statements became a part of their
vocabulary. Some of their misconceptions surfaced and we
even saw a student overcome a misconception by debugging
her code. Most of the resulting NetLogo models were very
sophisticated and very similar to the real-world air-duster
can. The teachers were comfortable teaching with the
phenomenological gas particle sandbox, too.

We argue that paper phenomenological programming is a
compelling new direction. For the short term, we are
planning to iterate over this design and conduct more design
interventions to collect more empirical data on the nature of
student learning. For the long term, we hope to design other
phenomenological programming environments and explore
this approach’s implications for computational thinking
research.
ACKNOWLEDGMENTS
This work was made possible through generous support from
the National Science Foundation (grants CNS-1138461,
CNS-1441041, DRL-1020101, DRL-1640201 and DRL-
1842374) and the Spencer Foundation (Award #201600069).
Any opinions, findings, or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the funding organizations.
SELECTION AND PARTICIPATION OF CHILDREN
We recruited two chemistry teachers from a public high
school in an ethnically diverse U.S. midwestern city. We
provided them with a lesson plan that included embedded
phenomenological programming activities. 146 students
were taught this lesson. We invited all students to participate
in the study. The teachers explained the study before the
intervention began and handed out parent consent student
assent forms. 121 students agreed to participate with the
consent of their parents.

REFERENCES
[1] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon,

and Franklyn Turbak. 2017. Learnable programming:
blocks and beyond. Communications of the
ACM, 60(6), 72-80.

[2] Michelene Chi. 2005. Commonsense conceptions of
emergent processes: Why some misconceptions are
robust. The journal of the learning sciences, 14(2),
161-199.

[3] Melanie Cooper, Mike Stieff, and Dane DeSutter.
2017. Sketching the invisible to predict the visible:
from drawing to modeling in chemistry. Topics in
cognitive science, 9(4), 902-920.

[4] Daniel Damelin, Joseph Krajcik, Cynthia Mcintyre,
and Tom Bielik. 2017. Students making systems
models. Science Scope, 40(5), 78-83.

[5] Andrea diSessa. 1993. Toward an epistemology of
physics. Cognition and instruction, 10(2-3), 105-225.

[6] Andrea diSessa and Jim Minstrell. 1998. Cultivating
conceptual change with benchmark lessons.
In Thinking practices in mathematics and science
learning, James Greeno and Shelley Goldman (eds.),
155-187.

[7] Andrea diSessa. 2002. Why “conceptual ecology” is a
good idea. Reconsidering conceptual change: Issues in
theory and practice, 28-60.

[8] Joshua Epstein. (2008). Why model? Journal of
Artificial Societies and Social Simulation, 11(4), 12.

[9] Shuchi Grover and Roy Pea. 2013. Computational
thinking in K–12: A review of the state of the
field. Educational Researcher, 42(1), 38-43.

[10] Yu Guo, Aditi Wagh, Corey Brady, Sharona Levy,
Michael Horn, and Uri Wilensky 2016. Frogs to Think
with: Improving Students' Computational Thinking and
Understanding of Evolution in A Code-First Learning
Environment. Proceedings of the 15th International
Conference on Interaction Design and Children.

[11] Michael Horn, and Uri Wilensky. 2012. NetTango: A
mash-up of NetLogo and Tern. Paper presented at the
Annual Meeting of the American Educational Research
Association.

[12] Michael Horn, Corey Brady, Arthur Hjorth, Aditi
Wagh, and Uri Wilensky. 2014. Frog pond: a codefirst
learning environment on evolution and natural
selection. Proceedings of the 2014 conference on
Interaction design and children

[13] Cindy Hmelo-Silver, Surabhi Marathe, and Lei Liu.
2007. Fish swim, rocks sit, and lungs breathe: Expert-
novice understanding of complex systems. The Journal
of the Learning Sciences, 16(3), 307-331.

[14] Philip Johnson-Laird. 2005. Mental models and
thought. The Cambridge handbook of thinking and
reasoning, 85-208.

[15] Philip Johnson-Laird. 2010. Mental models and human
reasoning. Proceedings of the National Academy of
Sciences, 107(43), 18243-18250.

[16] Ken Kahn. 1996. ToonTalkTM—an animated
programming environment for children. Journal of
Visual Languages & Computing, 7(2), 197-217.

[17] Ken Kahn. 2007, July. Building computer models from
small pieces. In Proceedings of the 2007 Summer
Computer Simulation Conference.

[18] Vanessa Kind. 2004. Beyond appearances: Students’
misconceptions about basic chemical ideas. Royal
Society of Chemistry.

[19] Sharona Levy and Uri Wilensky. 2009. Crossing levels
and representations: The Connected Chemistry (CC1)
curriculum. Journal of Science Education and
Technology, 18(3), 224-242.

[20] Sharona Levy and Uri Wilensky. 2009. Students’
learning with the Connected Chemistry (CC1)
curriculum: navigating the complexities of the
particulate world. Journal of Science Education and
Technology, 18(3), 243-254.

[21] Huann-shyang Lin, Hsiu-ju Cheng, and Frances
Lawrenz. 2000. The assessment of students and
teachers' understanding of gas laws. Journal of
Chemical Education, 77(2), p.235.

[22] Carlos Mas, Juan Perez, and Harold Harris.1987.
Parallels between adolescents' conception of gases and
the history of chemistry. Journal of Chemical
Education, 64(7), 616-618.

[23] Marvin Minsky. 1988. Society of mind. Simon &
Schuster Paperbacks.

[24] Mary Nakhleh, 1992. Why some students don't learn
chemistry: Chemical misconceptions. Journal of
chemical education, 69(3), 191-196.

[25] National Research Council. 2012. A framework for K-
12 science education: Practices, crosscutting concepts,
and core ideas. National Academies Press.

[26] NGSS Lead States. 2013. Next Generation Science
Standards: For States, By States. Washington, DC: The
National Academies Press.

[27] Oscar Nierstrasz, Laurent Dami, Vicki de Mey, Marc
Stadelmann, Dennis Tsichritzis, and Jan Vitek. 1990.
Visual Scripting: Towards interactive construction of
object-oriented applications. Object Management, 315-
331.

[28] Seymour Papert. 1972. Teaching children
thinking. Programmed Learning and Educational
Technology, 9(5), 245-255.

[29] Seymour Papert. 1980. Mindstorms: Children,
computers, and powerful ideas. Basic books.

[30] Seymour Papert. 1991. Situating constructionism. In
Constructionism, Seymour Papert and Idit Harel (eds.).
Ablex Publishing.

[31] S R Pathare, and H C Pradhan. 2010. Students’
misconceptions about heat transfer mechanisms and
elementary kinetic theory. Physics Education, 45(6),
629-634.

[32] Jean Piaget. 1972. Development and
learning. Readings on the development of children, 25-
33.

[33] Christina Schwarz, Brian Reiser, Elizabeth Davis, Lisa
Kenyon, Andres Achér, David Fortus, Yael Shwartz,
Barbara Hug, and Joe Krajcik. 2009. Developing a
learning progression for scientific modeling: Making
scientific modeling accessible and meaningful for
learners. Journal of Research in Science Teaching: The
Official Journal of the National Association for
Research in Science Teaching, 46(6), 632-654.

[34] Bruce Sherin. 2006. Common sense clarified: The role
of intuitive knowledge in physics problem
solving. Journal of Research in Science
Teaching, 43(6), 535-555.

[35] Stella Vosniadou, and William Brewer. 1992. Mental
models of the earth: A study of conceptual change in
childhood. Cognitive psychology, 24(4), 535-585.

[36] Aditi Wagh and Uri Wilensky. 2012. Evolution in
blocks: Building models of evolution using blocks.
In Proceedings of the Constructionism Conference.

[37] Aditi Wagh and Uri Wilensky. 2018. EvoBuild: A
Quickstart Toolkit for Programming Agent-Based
Models of Evolutionary Processes. Journal of Science
Education and Technology, 27(2), 131-146.

[38] David Weintrop, Elham Beheshti, Michael Horn, Kai
Orton, Kemi Jona, Laura Trouille, and Uri Wilensky.
2016. Defining computational thinking for
mathematics and science classrooms. Journal of
Science Education and Technology, 25(1), 127-147.

[39] Uri Wilensky. 1999. NetLogo.
http://ccl.northwestern.edu/netlogo/. Center for
Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL.

[40] Uri Wilensky and Michael Horn. 2011. NetTango.
Center for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL.

[41] Uri Wilensky and Mitchell Resnick. 1999. Thinking in
levels: A dynamic systems approach to making sense
of the world. Journal of Science Education and
technology, 8(1), 3-19.

[42] Uri Wilensky. 2001. Modeling nature’s emergent
patterns with multi-agent languages. In Proceedings of
EuroLogo (1-6).

[43] Uri Wilensky and Kenneth Reisman. 2006. Thinking
like a wolf, a sheep, or a firefly: Learning biology
through constructing and testing computational
theories—an embodied modeling approach. Cognition
and instruction, 24(2), 171-209.

[44] Michelle Wilkerson-Jerde and Uri Wilensky. 2010.
Restructuring change, interpreting changes: The
DeltaTick modeling and analysis toolkit. Proceedings
of the Constructionism Conference.

[45] Janette Wing, 2006. Computational
thinking. Communications of the ACM, 49(3), 33-35.

[46] Uri Wilensky. 1999. GasLab—An extensible modeling
toolkit for connecting micro-and macro-properties of
gases. In Modeling and simulation in science and
mathematics education (pp. 151-178). Springer, New
York, NY.

