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ABSTRACT 
There has been a growing interest in the use of computer-
based models of scientific phenomena as part of classroom 
curricula, especially models that learners create for 
themselves. However, while studies show that constructing 
computational models of phenomena can serve as a powerful 
foundation for learning science, this approach has struggled 
to gain widespread adoption in classrooms because it not 
only requires teachers to learn sophisticated technological 
tools (such as computer programming), but it also requires 
precious instructional time to introduce these tools to 
students. Moreover, many core scientific topics such as the 
kinetic molecular theory, natural selection, and electricity are 
difficult to model even with novice-friendly environments. 
To address these limitations, we present a novel design 
approach called phenomenological programming that builds 
on students’ intuitive understanding of real-world objects, 
patterns, and events to support the construction of agent-
based computational models. We present preliminary case 
studies and discuss their implications for STEM content 
learning and the learnability and expressive power of 
phenomenological programming. 
Author Keywords 
computational thinking; constructionism; novice-friendly 
programming environments; chemistry education; agent-
based modeling 
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INTRODUCTION 
Both the 2012 National Research Council’s framework for 
K-12 Science Education [25] and the Next Generation 
Science Standards [26] emphasize the importance of 
incorporating scientific modeling practices beginning with 
the earliest grades and with increasing sophistication at each 
grade. Research shows that computer-based modeling 
approaches (e.g., as agent-based modeling [42], system 
dynamics modeling [4]) provide some of the most powerful 
means to engage with scientific modeling especially when 
students are programming their own models [e.g., 36, 37, 43, 
44]. Thanks to renewed interest in computational thinking as 
a fundamental skill set for every child to develop [38, 45], 
educators and stakeholders are more willing to invest in 
integrating computer programming activities into curricular 
activities [9, 38]. However, the adoption rate remains low 
because many science teachers either lack the programming 
skills associated with computer-based modeling or lack the 
classroom time to introduce the necessary skills to students 
(or both). In addition, even the most novice friendly general-
purpose programming environments become too 
complicated when it comes to modeling high-school topics 
such as magnetism, evolution, or chemical reactions.  

Domain-specific programming environments offer more 
limited capabilities than general purpose programming 
languages, but they make up for this drawback with custom-
designed primitives (e.g., commands, branching statements, 
events) that are closely matched to specific curricular topics 
[10, 12, 17, 36, 37, 44]. A small number of primitives that 
act as self-contained micro-behaviors enable students to 
construct sophisticated models of scientific phenomena with 
very little programming instruction [17, 37]. For instance, 
the Frog Pond learning environment for natural selection has 
primitives such as hop, hunt, spin, and chirp to model the 
behavior of colorful virtual frogs living in a pond with lily 
pads [10, 12]. Each of these primitives translate to 
corresponding NetLogo [39] code in the runtime. Early 
results from empirical studies with domain-specific 
programming environments are encouraging [e.g., 10, 37], 
but some of the more challenging science topics do not 
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readily lend themselves to this approach. For example, 
modeling macro-level phenomenon such as gas pressure 
require calculating the momentum exchange for each 
particle-to-particle collision using two-dimensional vectors, 
which require the use of programming constructs like state 
variables and trigonometric functions. It is not possible to 
design self-contained micro-behaviors for such complex 
programming logic using the conventional procedural 
programming paradigm.  

We propose phenomenological programming as a novel 
approach to designing domain-specific programming 
environments for science learning. In phenomenological 
programming, high-level primitives are designed based on 
students’ intuitive understanding of the real-world objects, 
patterns, and events. Each primitive is made up of two 
components: a procedural component that indicates function 
and a phenomenological statement that indicates behavior. 
Each phenomenological statement embeds assumptions 
about the modeled objects that students may be intuitively 
aware of but (1) may not have coherent knowledge, and more 
importantly (2) may not have competence in formal notations 
or domain-specific vocabulary to express their thoughts 
explicitly and unambiguously. It is easy to recognize the 
behavior of a phenomenological command and predict the 
outcome through a sort of quick mental simulation. It is also 
possible to include small doses of ambiguity that can be 
beneficial for novice learners. For example, students can 
easily recognize a “move” command with a 
phenomenological component called “zig-zagging” and 
predict its behavior even if figuring out its exact nature 
would require some tinkering. Achieving the same outcome 
in general-purpose procedural programming languages 
would require mastering the use of sophisticated constructs 
such as loops, state variables, and angles. 

In this paper, we present the theoretical underpinnings and a 
preliminary definition of phenomenological programming. 
We also present a design intervention in which we created a 
phenomenological programming environment for a high-
school ideal gas laws unit. We call this environment the 
phenomenological gas particle sandbox. Its primitives 
include commands such as “move” and “bounce” that can be 
modified with phenomenological statements such as “zig-
zagging” or “erratically” and “like a balloon” or “like a 
football” respectively. We present our preliminary findings 
from an implementation in which two teachers taught the 
kinetic molecular theory to a total of 121 high-school general 
chemistry students with curricular activities designed around 
the phenomenological gas particle sandbox. We discuss the 
implications of our findings for future research. 
THEORETICAL FRAMEWORK 
Constructionism 
Phenomenological programming is situated within the 
greater Constructionist learning paradigm, which maintains 
that learners construct robust mental models when they 
actively construct personally meaningful public entities [28, 

29, 30]. Computer programming has historically been the 
focus of many Constructionist studies because it allows the 
construction of microworlds: self-contained virtual worlds 
with limited number of objects and operations to explore 
concepts, theories, and phenomena [29]. Empirical findings 
show that Constructionist science learning environments 
facilitate powerful conceptual and formal learning through 
constructing dynamic virtual models of real-world 
phenomena that can be built bottom-up, scrutinized, 
manipulated, experimented with, iterated over, repurposed, 
and shared with others to receive feedback [e.g., 37, 43]. Our 
studies on phenomenological programming attempt to make 
this modality more accessible to students and teachers who 
have little-to-no prior exposure to computer programming. 

Constructionist literature is rich with many branches of 
study. Phenomenological programming is particularly 
inspired by four Constructionist design ideas: syntonic 
learning [29], embodied modeling [43], domain-specific 
programming environments [12, 37], and non-textual 
programming paradigms [1, 16, 17, 27]. 

Syntonic learning refers to Seymour Papert’s design of the 
original Logo programming language and its object-to-think-
with, the turtle [29]. In Logo, a screen turtle is controlled by 
body-syntonic programming primitives such as forward, 
right, and pen-down that relate to children’s sense of 
interacting with the physical world around them. The turtle 
is also ego syntonic. It is designed to be coherent with 
children’s sense of themselves as conscious agents with 
intentions, goals, and desires. Topics that are counterintuitive 
when taught formally, such as the definition of a circle, can 
be expressed in Logo in a way that is more natural for 
children and grounded in their embodied schema thanks to 
the turtle’s syntonicity. Syntonic learning provides a 
foundational theoretical explanation on how to design 
programming environments that can accommodate 
children’s intuitive ways of thinking. 

Our goal in phenomenological programming is to make the 
construction of computer-based models more prevalent in 
science education. Embodied modeling provides us a 
theoretical framing on how to design constructionist learning 
environments towards this goal. Initially formulated by 
Wilensky and Reisman [43] for biology learning, the 
embodied modeling approach argues that when learners’ 
knowledge of individual organisms that make up greater 
ecosystems is aligned with their embodied ways of thinking, 
they can start to take the perspective of those organisms they 
are modeling. This would lead to better understanding of 
how interactions at the micro-level may lead to patterns that 
we observe at the macro-level in phenomena such as 
evolution, homeostasis, and epidemics [41, 42]. The 
concepts of complex systems theory play a significant role in 
embodied modeling environments. For example, when 
learning about the behavior of gas particles inside a 
container, students do not only solve aggregate-level 
algebraic equations that are disassociated with the actual 



underlying micro-level events. Instead, they define how each 
particle behaves autonomously. For example, they take the 
perspective of a particle and reason that “I would move 
forward on a straight path,” “If I hit a wall, I would bounce 
back with a straight angle,” and so on. Converting such 
embodied agent-rules to dynamic models using a 
constructionist agent-based modeling environment such as 
NetLogo [39] allows learners to observe what happens at the 
aggregate level when the same rules are followed by many 
agents simultaneously. Moreover, the resulting models 
afford testing various alternative scenarios, deepening their 
understanding of scientific phenomena along the way. 
Studies show that embodied modeling does not only 
contribute to better conceptual understanding, but also helps 
students understand the relationship between scientific 
phenomena and their symbolic representations (e.g., 
equations, diagrams) [e.g., 19, 20, 43, 46].  

However, general purpose agent-based modeling 
environments such as NetLogo require preliminary 
programming instruction for students to start constructing 
their own models. Thus, we adopt the domain specific 
approach in phenomenological programming. In domain-
specific programming environments, students are provided 
with higher-level, domain-oriented primitives that abstract 
away the underlying complex programming logic [17, 38]. 
This limits the capabilities of the programming environment 
but makes it easier to start programming for novice learners 
because the primitives are more familiar and more aligned 
with the studied subject matter. For example, the Frog Pond 
environment for learning natural selection has code-blocks 
such as "chirp", "hop", "hunt" and "hatch" to construct 
embodied models of colorful virtual frogs on a virtual lily 
pad [12]. Students quickly learn how to program in the Frog 
Pond and construct short programs that result in population-
level evolutionary outcomes [10, 12]. Research shows that 
domain-specific programming environments can offer 
unique affordances for science learning by exposing 
underlying mechanisms of scientific phenomena better than 
interacting with pre-existing models or simulations [37].  

Lastly, our initial implementation of phenomenological 
programming is influenced by prior research on visual 
programming paradigms such as blocks-based programming 
[1], programming by demonstration [16], and visual 
scripting [27] because they offer significant affordances for 
novice programmers. For example, most visual 
programming environments do not require learners to 
memorize specific words or statements because there is an 
always-present library. Programs are assembled not by 
typing, but by visually arranging these primitives such as 
dragging code blocks and attaching them to each other. There 
are also visual cues such as shapes and colors that 
communicate features and functionality like category (e.g., 
motion, control) and function (e.g., reporter, command) [1]. 
Such features help ease the cognitive load and the anxiety 
related to formal expressions, leaving more room for learners 
to focus on their algorithms. In our current implementations 

of phenomenological programming, we use the NetTango 
builder environment [11, 40], which provides a domain-
specific, blocks-based layer over the NetLogo agent-based 
modeling environment [39].  
The Role of Intuitive Knowledge in Science Learning 
Phenomenological programming is also informed by the 
theoretical perspectives on the relationship between 
students’ intuitive knowledge and their science learning. 
More often than not, the primary challenge in science 
education research is to resolve the conflict between 
learners’ intuitive understanding of real-world phenomena 
and the formal scientific explanations [6, 34]. Topics such as 
electric current or diffusion are difficult for students to learn 
because the underlying formal scientific explanations 
contradict novice learners’ expectations about how real-
world objects behave. For example, many students see the 
diffusion of a drop of ink in water as a deliberate process, 
hypothesizing that ink molecules are moving towards less 
concentrated areas, while the actual underlying events are 
completely random [2]. In addition, even when students learn 
to answer formal questions using formulas and symbolic 
representations competently, they often revert back to their 
prior, faulty intuitive understandings when they are asked 
conceptual questions [5,21,22].  

Phenomenological programming inherits the constructivist 
principle that students construct more sophisticated 
knowledge from already-existing knowledge elements [6, 7, 
29, 30, 32]. Hence, our goal is to find ways to help students 
learn science by bridging their prior understanding of real-
world phenomena with formal scientific explanations. 
diSessa and Minstrell argue that students’ initial ideas about 
a topic should be used as scaffolds and reference markers for 
learning formal scientific explanations [6]. On the other 
hand, there is great diversity in theoretical characterizations 
of students’ intuitive thinking. Although we cannot attribute 
our theoretical framing to one specific theory, we are 
informed by the theories on mental models [14, 15, 35] and 
the piecemeal nature of knowledge [5, 23, 34]. The mental 
models theory argues that when humans perceive the world, 
they construct a similar but less sophisticated dynamic 
mental representation; a “simulation of the world fleshed out 
with our knowledge” [15, p. 18243]. The implication of the 
mental models theory for phenomenological programming is 
that students should be able to mentally simulate their 
programming actions based on their existing knowledge. On 
the other hand, the theories on piecemeal nature of 
knowledge, such as diSessa’s Knowledge-in-pieces theory 
[5] and Minsky’s Society of Mind theory [23], are concerned 
with the composition of mental structures. They characterize 
human thinking as composed of numerous smaller 
knowledge elements that are organized in various 
arrangements. The implication for phenomenological 
programming is that students’ intuitive understanding of 
scientific phenomena should not be considered as 
monolithic, disconnected mental entities, but as rich and 
interconnected conceptual ecologies. Expertise in a scientific 



topic does not mean acquiring new knowledge completely 
disconnected to prior intuition but constructing new 
knowledge as part of this conceptual ecology; acquiring new 
knowledge elements, while also reorganizing or repurposing 
the old pieces of intuitive knowledge [6, 7, 33]. 
A PRELIMINARY DEFINITION OF PHENOMENOLOGICAL 
PROGRAMMING 
We envision phenomenological programming as both a new 
approach to integrating programming activities into science 
lessons and a greater design framework on how to achieve 
this goal. In principle, phenomenological programming 
environments leverage target group students’ familiarity 
with the physical world, including objects, patterns, and 
dynamic events, in creating custom-designed, domain-
specific programming activities. However, this is a rather 
broad definition. Our focus in this paper is narrower; we 
concentrate on domain-specific, block-based 
implementations of agent-based modeling activities.  

Our phenomenological code blocks are procedural as in 
traditional domain-specific programming environments. 
They perform a specific task. Yet they are also modifiable 
with sub-statements that embed assumptions about the nature 
of the performed task. For example, let’s consider a move 
command that makes an object change its position. In a 
traditional domain-specific programming environment, the 
move command would always make the object move the 
same amount regardless of the object’s location on the screen 
or its direction. In a phenomenological programming 
environment, the move command would behave differently 
depending on its context and its phenomenological modifier 
(e.g., zigzag, spinning). For example, many students would 
easily recognize that zig-zagging objects should go straight 
for a short distance, then suddenly change their direction, go 
straight for a short distance again, and repeat this process 
back and forth while maintaining a linear trajectory. 
Moreover, the zig-zag command would behave differently 
based on each object’s speed. If an object is moving fast, the 
zigzags would be larger, and vice versa.  

Our research on phenomenological programming is on its 
early stages. We have not yet reached a definitive set of 
design principles or guidelines. However, we compiled a 
retrospective summary of the steps we followed to design 
phenomenological code blocks once we hypothesized about 
the plausibility of phenomenological programming: 

1. Analyze the target scientific phenomenon and documented 
student thinking patterns such as: 
a. Prevalent misconceptions and learning difficulties 
b. Challenging aspects of the formal science and mathematics 

concepts 
c. Challenges in thinking across micro-to-macro levels 
 

2. Create a map of the relevant phenomenological constructs: 
a. Explore the examples, metaphors, and analogies used in 

teaching materials (e.g., textbooks, worksheets, videos). 
b. Interview teachers  

i. Which kinds of examples, metaphors and analogies do 
they use in their teaching? 

ii. Which experiments do they conduct? 
iii. What is the familiarity of their students with the 

phenomenological constructs? Which terms or idioms 
are they more familiar with? 
 

3. Create a base agent-based model of the target phenomenon. 
Then divide the model into small sub-procedures that 
correspond to phenomenological constructs from step 2. 
 

4. Create a small set of the phenomenological blocks and iterate 
on it based on teachers’ and subject-matter experts’ feedback. 

We argue that phenomenological programming can offer 
significant advantages beyond easy recognition for novice 
learners. It can decrease the burden of converting one’s 
thoughts to computer code, thus requiring much less 
programming instruction. For example, implementing the 
zig-zagging behavior in a procedural programming 
environment (including the traditional domain-specific 
environments) would require students to write looping 
algorithms with variables that preserve the state of the zig-
zagging object. Each of these programming constructs are 
alien to most middle-high school students and even found 
counterintuitive by most novice college students. 

We assum that each phenomenological statement will 
inevitably embed ambiguities. If we consider students’ lack 
of coherent knowledge to express their intuitive thinking in 
an explicit, unambiguous manner [5, 6], we argue that a 
healthy dose of ambiguity in code-blocks can actually be 
beneficial in accommodating diverse ways of thinking. For 
example, a bounce block designed with phenomenological 
options such as like a basketball and like a billiard ball can 
stimulate rich classroom discussions on how these objects 
behave and help uncover students’ intuitive understandings. 
Some students may expect the two objects to behave 
similarly, while others may expect basketballs to bounce 
back faster. The phenomenological bounce block would 
initially accommodate both students’ ways of thinking, but 
they can later discover the exact nature of each object 
through tinkering.  

Phenomenological programming environments can be 
customized and localized according for target group students 
including expected misconceptions they bring to the class, 
their day-to-day vocabulary, and terms relevant to target 
subject matter. For example, some students may be familiar 
with billiard balls, yet for others it may be more suitable to 
use pool ball, hockey puck, or another object that behaves 
similarly. Similarly, if we expect from prior research that 
students may come to the classroom with misconceptions, 
we can modify our code-blocks with relevant 
phenomenological statements. For instance, a bounce like a 
football statement would accommodate misconceptions 
about objects bouncing back in random directions at each 
physical collision. 



We argue that when designed well, phenomenological 
programming environments can allow students to start 
constructing computational models of scientific phenomena 
with minimal instruction. They can express their intuitive 
understanding through code and the resulting computational 
models would be much more sophisticated compared to 
those that can be realistically achieved with general purpose 
environments. Each time students run their models they 
would get a chance to catch the “bugs” in their thinking. 
Teachers can leverage the incompatibilities between the 
students’ models and the formal scientific explanations to 
conduct rich classroom discussions and facilitate more 
constructivist learning environments. 

We believe the best way to explain phenomenological 
programming is to demonstrate a real-world implementation 
and provide evidence on how it may impact students’ 
learning of subject matter. In the next section, we present a 
phenomenological gas particle sandbox that we designed for 
teaching the basic assumptions of the kinetic molecular 
theory. Then, we present preliminary findings from a 
research implementation with 2 teachers and 121 high-
school students. 
A DESIGN INTERVENTION: THE PHENOMENOLOGICAL 
GAS PARTICLE SANDBOX 
The idea of phenomenological programming emerged while 
we were designing hands-on programming activities for the 
kinetic molecular theory (KMT) within a larger ideal gas 
laws unit. The KMT defines simple and idealized 
assumptions about the behavior of gas particles at the 
macroscopic level. It is universally taught and represents a 
conceptual understanding of the behaviors of gaseous matter 
as well as other chemistry topics such as chemical reactions 
and phase transitions [21,31]. However, prior research 
documents a myriad of student misconceptions related to the 
KMT that remain intact after school instruction [18, 21, 22]. 
We hypothesized that if students could develop their own 
simple, agent-based models of gas particles, they would be 
able to connect their intuitive thinking about micro-level gas 
particle interactions with the gas properties that they observe 
at the macro-level (e.g., pressure, temperature). After 
multiple prototypes and feedback sessions with teachers, we 
realized that it was not plausible to design a domain-specific 
environment with conventional procedural blocks because 
modeling particle-to-particle collisions on a 2d plane 
required solving complex quadratic equations to calculate 
the momentum exchange. This led us to reconsider the 
design of our primitives and culminated in a multi-step gas 
particle sandbox activity with a phenomenological 
programming component. In this section, we share the design 
of this phenomenological gas particle sandbox and our 
findings from the first research implementation of the CC’19 
unit with 121 high school general chemistry students. 
Design Overview 
We developed our phenomenological gas particle sandbox 
using the NetTango builder authoring environment [11, 40]. 
NetTango allows the creation of custom, domain-specific 

blocks-based programming layers for the construction of 
NetLogo models. Being a domain-specific programming 
environment, our sandbox inherits many features from its 
predecessors such as the Frog Pond [10, 12] and the 
EvoBuild [37]: a small vocabulary of programming 
primitives, high-level code-blocks that abstract away formal 
logic, and a custom design for the target curricular material.  

Our phenomenological code blocks are procedural 
templates, such as moves and bounces, that can be modified 
with phenomenologically transparent statements, such as 
spinning or “straight” for the former and like a balloon or 
like a basketball for the latter. An explanation of each code-
block in the phenomenological gas particle sandbox is 
presented in Table 1. Each phenomenological statement 
embeds simple assumptions about gas particles. Some of 
them are compatible with the formal assumptions of the 
KMT (e.g., moving straight until a collision, bouncing 
elastically like a billiard ball), while others correspond to 
potential student misconceptions (e.g., moving randomly, 
losing momentum) [18, 21, 22, 31]. We hypothesized that 
students could start modeling gas particles with minimal 
introduction to programming and without the challenging 
task of converting their intuitive understanding of the 
behaviors of bodies in motion into unambiguous, procedural 
computer-code. The phenomenological blocks would be 
instantly recognizable. Students could predict and reason 
about the outcome of their code because it would be easy to 
mentally simulate gas particles’ behavior. 

We embedded our phenomenological gas particle sandbox in 
a lesson plan with a multi-step, scaffolded activity (Figure 
1). We adopted the lesson plan from Levy & Wilensky’s 
Connected Chemistry 1 unit [19,20,46]. The students were 
asked to hypothesize about how an air duster canister works. 
We chose the air duster as the real-world object of study 
because it was a fixed-volume gas container with nothing but 
gas molecules inside. Moreover, it was very easy to observe 
the existence of gas pressure: the air coming out of a full air 
duster could move small physical objects like dust and small 
pieces of paper. In the beginning of the lesson, the students 
hypothesized about how an air duster works by providing 
textual answers. Then, they used a freehand drawing tool to 
explain their answers. We designed these two activities to 
stimulate students’ expression of their intuitive thinking.  

The teachers conducted whole-class discussions after the 
freehand sketching activity. They showed some of the 
students’ drawings and asked them to share their hypotheses.  

In the second step, the students used a static sandbox tool that 
resembled the freehand sketching activity. They constructed 
the initial state of a computer model within NetLogo by 
adding stationary walls, removable walls, green particles, 
and orange particles (see Figure 2b). We designed the static 
modeling activity to reduce the complexity of creating a 
computational model from scratch. It also served as a 
transition layer from the open-ended sketching activity to 
computational sketching with limited options.  



In the third step, the students used a simplified version of the 
phenomenological gas particle sandbox to develop a small-
scale model of gas particles (n ≤ 4). We designed the micro-
level modeling activity to both reduce the complexity of the 
programming activity and to encourage the students to attend 
to the relationship between individual gas particles’ behavior 
and the aggregate-level outcomes.  

Finally, the students uploaded their static air duster models 
from the third step into the gas particle sandbox and tested 
their blocks-based algorithms with many more particles. We 
designed this last activity so that students could observe 
whether their air-duster models behaved as they anticipated. 

 
(a) Freehand sketching 

 
(b) Static modeling 

 
(c) Programming with only a few 

particles 
 

(d) Programming with many 
particles 

Figure 1. The four stages of the air-duster modeling activity 
with phenomenological programming.  

Overall, the four steps of our lesson plan guided the students 
through the process of creating a computational model of a 
real-world phenomenon bottom-up but decreased the 
complexity of this process by breaking down each step for 
them and providing necessary scaffolds. At each step, we 
provided them short video demonstrations on how to use the 
embedded computational tools such as how to draw particles, 
how to drag and attach code-blocks to each other, how to run 
the models, and how to save the models. We also placed 
reflection questions such as “What were the differences 
between the freehand sketching activity and the 
computational sketching activity?” or “Did your air duster 
model behave as expected? Did you need to change any of 
your code from the prior activity?” 

There were only 7 code-blocks in this iteration of the 
phenomenological gas particle sandbox (see Table 1). 
However, combined with the static freehand modeling 
activities and the phenomenological sub-statements, these 
blocks were enough to develop sophisticated two-
dimensional models of an air duster.  

 

Code block Explanation 
 

 

At GO: Event block. Code that is attached to 
this block is executed in a continuous loop 
when the GO button of the model is clicked. 

 

 

The particle <n>: Control flow block. 
The code encapsulated by this block is 
executed only by the selected particle (e.g., 
particle 1, particle 10, particle 87) at each 
simulation step. 

 

 

Each particle: Control flow block. The 
code encapsulated by this block is executed by 
all particles autonomously and simultaneously 
at each simulation step.  

 

 

If touches a wall: Control flow block. 
The code encapsulated by this block is only 
executed when a particle is touching one of the 
container walls. 

 

 

If touches another particle: 
Control flow block. The code encapsulated by 
this block is only executed when a particle is 
touching another particle. 

 

 

Moves: Phenomenological block. If a particle 
is executing this code, it moves 1 unit forward 
based on the chosen phenomenological 
statement: 
Straight: Moves forward 1 unit without 

changing direction. 
Spinning: Moves forward 1 unit, changes 

direction to follow a circular path. 
Zig-zag: Moves forward 1 unit, changes 

direction to follow a zig-zag path. 
Erratic: Moves forward 1 unit, changes 

direction at each step to follow a path that 
resembles the Brownian motion. 

 

 

Bounces back: Phenomenological block. If 
a particle is executing this code, it changes its 
momentum based on the chosen 
phenomenological statement: 
Like a balloon: Changes direction as if it is an 

elastic collision. If collides with another 
particle, exchanges momentum as if it is an 
elastic collision but total kinetic energy is 
decreased significantly.  

Like a football: Changes direction randomly. If 
collides with another particle, exchanges 
momentum as if it is an elastic collision but 
total kinetic energy is decreased slightly.  

Like a billiard ball: Changes direction as if it is 
an elastic collision. If collides with another 
particle, exchanges momentum as if it is an 
elastic collision. Total kinetic energy is 
preserved. Recalculates its speed based on its 
kinetic energy. 

Like a basketball: Changes direction as if it is 
an elastic collision. If collides with another 
particle, exchanges momentum as if it is an 
elastic collision. Total kinetic energy is 
decreased slightly. Recalculates its speed 
based on its kinetic energy. 

Table 1. The function of the code-blocks of the 
phenomenological gas particle sandbox and the assumptions 
embedded in the phenomenological blocks. 



Research Implementation 
The first research implementation of our lesson plan with the 
phenomenological gas particle sandbox took place in Spring 
2019. Two teachers and a total of 121 high-school regular 
chemistry students at an ethnically diverse U.S. Midwest 
public high school participated (Table 2). Neither teacher 
had prior experience in computer programming and this was 
their first experience teaching with the phenomenological 
gas particle sandbox. Most of the students did not have prior 
experience with programming, either. The intervention 
lasted a total of 3 class periods over the course of 2 days. The 
students used Chromebooks to access the lesson over an 
online portal. Both teachers decided to teach the lesson as a 
lab. They asked students to form groups and follow the 
lesson activities autonomously except the whole-class 
discussions. Each student worked on the activities 
individually but they were encouraged to share ideas and 
help each other when necessary. The demographics of the 
participating students are presented in Table 2 below. 

Our research questions in this implementation were: 

1. How successful is the phenomenological gas 
particle sandbox in accommodating the students’ 
intuitive ways of thinking about gas particles?  

2. To what extent did the students use the 
phenomenological code blocks in expressing their 
intuitive ways of thinking about gas particles?  

3. Does engaging with the phenomenological gas 
particle sandbox help students learn the main 
assumptions of the kinetic molecular theory? 

 n Male Female Non-binary 

White 41 27 13 1 

African American 34 14 20 - 

Latinx 17 9 8 - 

Asian 4 3 1 - 

Middle Eastern 2 1 1 - 

Multiple 23 14 9 - 

Total 121 68 52 1 

Table 2. Demographics of the study participants (self reported). 

We collected all the open-ended written responses and 
sketches students posted on the portal. In addition, we asked 
students to upload screenshots of their static container 
models and their blocks-based code. In order to gain further 
insight on the students’ thought processes and the 
interactions between them, we video recorded four focus 
groups (2-4 students each). We also sometimes walked 
around the classroom and asked some non-focus group 
students to do quick demonstrations of their work. We 
present a preliminary qualitative analysis of this data through 
vignettes from our video data and student-generated artifacts 
from the online portal. 

Preliminary Findings 
Students Expressed Their Intuitive Thinking through 
Phenomenological Programming 
K & Y are two 10th grade African American female students. 
From the interactions among them, we learned that K 
attended an out-of-school blocks-based programming 
workshop at the fifth grade, but Y did not have any prior 
programming experience. We selected them as one of our 
focus group students because they have been in the same lab 
group since the beginning of the year and they both 
consented to video data collection.  

In the beginning of the lesson, the students were shown a 
short video about how pressing the valve of an empty air 
duster had no effect on small pieces of paper, while doing so 
with a full one moved the pieces. Then, they were asked to 
explain the difference between a full and an empty air duster 
can. K answered the question as follows: “There was no air 
pressure in the before video, but by pumping air into it, it 
increased the air pressure allowing the air when released to 
reach top speed and blow the paper.” Y answered the 
question similarly: “There was no air pressure in the first 
part but by pumping air into it, it made a high pressure of air 
come out of it.”  

Neither of the students mentioned gas particles inside the air 
duster container. On the other hand, both of their freehand 
sketches were richer than their textual explanations (Figure 
2). First of all, each sketch included particle-like 
representations. K’s sketch showed that she envisioned 
particles coming out of the air duster, but the particles inside 
were much larger than the particles outside. In addition, there 
were arrows representing the direction of the particles 
outside, while there were semi-rings around the particles 
inside which may represent either vibration or direction. Y’s 
sketch showed large circle-like particles densely packed at 
the bottom of the air duster but they moved up when the 
valve was pressed. She drew blue lines to represent the air 
coming out of the air duster. Overall, both sketches involved 
ambiguities and multiple contradictory representations of gas 
particles. This finding is consistent with diSessa's [5, 7] 
theory that novice understanding of science is a fragmented 
and incoherent ecology of smaller knowledge elements. 

 
(a) K’s sketch 

 
(b) Y’s sketch 

Figure 2. K & Y’s freehand sketch models of the air duster can. 

The interaction we present in Excerpt 1 below happened 
during the micro-level phenomenological programming 
activity (Figure 1c) when Y expressed her frustration with 
the way her particles behaved.  



 Dialogue Non-verbal indicators 
Y Yeah, but I wanna make them as 

slow as possible. Talks to her peers loudly. 

K Why do you wanna make them 
slower?  

Enters the frame, sits next 
to Y. 

Y Because like, I feel like they are 
more tight. So, I don’t want them 
to move like psychopaths. 

Gestures fast random 
movement with her hands 
when saying “like 
psychopaths” and laughs. 

  

Excerpt 1. K & Y’s initial interaction. 

We hypothesize that Y wanted to make her particles move 
slowly and eventually concentrate at the bottom as she drew 
in her sketch (Figure 2b). Her sketch also implies that she 
expected gas particles to only move upwards when the valve 
is pressed. This might be a misconception due to the 
similarity between the air duster can and other aerosol cans, 
which have liquid sitting at the bottom at room temperature. 
This initial interaction was followed by K’ inquiry about Y’s 
code, which provided us with more insight on Y’s thinking: 

 Dialogue Non-verbal indicators 
K Are yours in a pattern or is it 

erratic?  

Y Erratic. And they’re going, but 
it’s bouncing like a balloon.  

Scrolls down to her code and 
points at the blocks. Makes a 
bouncing gesture with her fists 
(similar to 

🤜🤛
) 

  
K Oh!  
Y I feel like they shouldn’t be 

like... 
Makes fast random movements 
with her hands. 

 
K ... Laughs. 
Y Why does setup always make 

it? … Wait! But I want them 
to… No! They are not ... Like, 
yours are fine. 

Leans over to her computer. 
The particles start fast but 
eventually slow down again.  

K Mine are.  
Y Mine aren’t. Like he should be 

going over here! Look at it! 
He’s not doing anything! 

Points at a stationary particle 
and then points at the opposite 
corner of the container, 
indicating where she expects 
the particle go. 

  
Excerpt 2. K & Y’s second interaction. 

We observe that both K and Y made their particles move 
“erratically.” It is a documented misconception that many 
students think gas particles change direction at random [18], 

while KMT assumes that gas particles move in straight 
trajectories until they collide with other particles or container 
walls.  

Y told K that her particles “bounce like balloons,” which 
explains why Y’s particles initially acted the way she wanted 
them to, but eventually came to a stop. This contradiction 
between her understanding of how gas particles should 
behave and the output of her model frustrated her. Her 
demonstrations with her hand-gestures and her final remarks 
showed that Y was continuously trying to mentally simulate 
the outcome of her model. Unfortunately, this interaction 
was cut short because their teacher announced the class to 
wrap up the programming activity. 

This is just one case study and therefore not generalizable, 
but these short excerpts from K & Y’s interaction provide 
preliminary evidence for some of our main design 
arguments.  

K & Y were able to express their intuitive ways of thinking 
about gas particle behavior using the phenomenological code 
blocks. There was a direct correspondence between their 
freehand sketches and their blocks-based code. They made 
their particles move the way they “felt like” the particles 
should move (Excerpt 2). They expressed these thoughts by 
using the embedded phenomenological statements as part of 
their vocabulary, using bodily movements, and even other 
analogies such as Y’s remark “I don’t want them to move like 
psychopaths” (Excerpt 1).  

Their prior knowledge played an important part in their 
programming choices. Y expected the “bounce like a 
balloon” block to behave differently than it actually did. She 
expected her balloon like particles to eventually sit at the 
bottom of the container but keep moving slowly (there is no 
gravity in the sandbox). When she noticed the contradiction, 
we were able to observe the role of dynamic mental 
simulation in her thinking processes once again. She showed 
K with her fingers which trajectory a particle should have 
followed.  

Finally, we observed some of their misconceptions surfacing 
during the process. Both K & Y believed that the particles 
should be moving “erratically.” Y believed that the particles 
should slow down. K’s surprised reaction indicated that she 
found this an unusual idea. She programmed her particles to 
bounce like billiard balls. Although neither of them 
mentioned any formal scientific concepts during this 
interaction, we belive some of their misconceptions might 
have been informed by their prior exposure to relevant 
concepts (e.g., random motion, aerosol cans). 

This interaction also highlighted some of the limitations of 
our sandbox design. For example, our blocks library did not 
include any phenomenological blocks that corresponded to 
the exact way Y wanted her gas particles to slow down but 
never stop. We plan to address these limitations in the future 
iterations of our phenomenological gas particle sandbox 
design. 



Students’ Diverse Ways of Thinking Were Reflected in Their 
Phenomenological Programming Practices 
We asked the students to upload a screenshot of their blocks-
based code once they finished the micro-level programming 
activity (Figure 1c) and explain their programming decisions 
in writing. Figure 3 below provides a summary of the 
screenshot data for the three main considerations of the 
KMT: particle movement, particle-wall collisions, and 
particle-particle collisions. 

(a) Each particle moves …

 

(b) If touches a wall, each particle bounces

 

(c) If touches another particle, each particle bounces …

 

Figure 3. The frequencies of the code blocks used by the 
students in the first phenomenological programming activity. 

We argue that the diversity in the students’ algorithms 
reflects the greater diversity of intuitive student thinking that 
was documented in prior research [2,5,6,7,13,35]. 
Unfortunately, we do not have any additional data to further 
investigate the student reasoning behind some of the more 
interesting outcomes such as the lack of particle-to-particle 
collisions in half of the students’ blocks or the sharp decrease 
in the popularity of the “bounce like a football” block in 
those that included inter-particle collisions in their algorithm. 

The diversity in the students’ intuitive thinking was also 
present in their written explanations of their algorithms. We 
present example student explanations in Figure 4. In all four 
of them, we observe an underlying pattern: the students did 
not mention any formal explanations or even their 
knowledge from prior lessons. They were rather 
hypothesizing. As in K & Y’s interaction, all four students in 
Figure 4 created their models based on how they feel, not on 
what they learned in prior classes. For example, the student 
in Figure 4a created an algorithm that is compatible with the 
basic assumptions of the KMT. However, she simply did so 
because she based her model “off the pool game.” She even 
mentioned that she did not know the “material of the 
particles.” Similarly, the student in Figure 4b simply wanted 
her particles to “bounce off in a calm and controlled 
manner.” The students in Figures 3c and 3d expressed 

uncertainty in particle movement but they chose the zig-zag 
movement instead of the erratic option. 

 Algorithm Student explanation 

(a) 

 

I used [moves straight] because it 
was the most realistic. I wanted 
them to sort of behave like pool 
balls. Since I based it off the pool 
game, I wanted them to react like 
a pool ball although I do not 
know the material of the particles. 

(b) 

 

I used [like a balloon] because I 
did not want the particles to 
bounce too hard and too fast. I 
wanted them to bounce off in a 
calm controlled manner. 

(c) 

 

I used [zig-zag] because the 
particles move randomly. I used 
“like a billiard ball” because they 
kind of bounce around with more 
speed. 

(d) 

 

I used [zig-zag] because there is 
not one way each particle moves 
each time. It bounces like a 
football because it doesn’t always 
have the same directions coming 
back. 

Figure 4. Example student algorithms and explanations 

Unfortunately, our data collection at this stage was 
preliminary. For example, we do not have additional data to 
understand why the students used the moves zig-zag option. 
Perhaps they wished to implement a rather patterned 
randomness rather than unpredictable behavior. However, 
we are cautious about making further claims in this paper 
about student’s engagement with phenomenological 
programming beyond the apparent diversity reflected in their 
code blocks and written explanations. We plan to collect 
more extensive data in the future iterations of our study such 
as saving students’ algorithms after each change and 
interviewing some of the students after the 
phenomenological programming activities. 
Students Learned the Kinetic Molecular Theory by Engaging 
with Phenomenological Programming 
H is a 10th grade Latinx female student. She is one of the 
students who agreed to do on-the-spot demonstrations for our 
research team. In fact, she volunteered to demonstrate her 
model when she saw the first author recording another 
demonstration. She had no prior experience with 
programming. Her initial answer to the empty vs. full air 
duster can question was “The papers don't move because 
there was no air in the can. They moved the second time 
because the experimenter pumped air into the spray can and 
used it to blow away the paper.” Her freehand sketch had 
large particle-like circles inside the can, while the air outside 
was presented as coming out on a straight line and then 
spreading with a cloud-like image (Figure 5).  



 
Figure 5. H’s freehand sketch model of the air duster. 

The interaction in Excerpt 3 happened at the end of the 
macro-level modeling activity (Figure 1d). 

 Dialogue Non-verbal 
R So, this was your original static model, right? 

 
H Yeah. And first I added the red wall. 

 
H And then another change I made was change 

the direction it moved. It was erratic for both 
and then I changed it to straight. 

 
R Why did you change it?  
H Because I wanted to represent, like, the way the 

particles move once it comes out the spray can.  

R They weren’t spraying out as you liked?  
H Oh no. It was just like, spreading out, instead of 

going towards one direction and then spreading 
out. And then, (runs the model with the red wall 
closed) this is how it was. It was all cramped in 
there. And then when I took off the red wall, 
it’s all going in one direction and it spreads out, 
which is what I wanted to show. 

 
 

 
Excerpt 3. H walking the researcher (R) through her 
programming process. 

H’s experience hints at the full potential of 
phenomenological programming when everything goes 
according to design goals. As a student with no prior 
programming experience, H was able to observe a real-world 
object, hypothesize about the underlying micro-level particle 
interactions that lead to the observed macro-level outcome, 
construct a micro-level computational model of her 
hypothesis using a blocks-based programming environment, 
and test her hypothesis at the macro-level. When her initial 
assumption about gas particles moving erratically did not 
result in the desired outcome, H was able to debug her code 
and find the correct solution. Most of what H knew about gas 
particles prior to this lesson was compatible with the 
assumptions of KMT. She only had a few simple 
misconceptions: she expected gas particles to change 
direction at random. Even if some students may not make as 
much progress as H, we believe competent teachers can use 
such opportunities to bootstrap students’ prior learning and 
promote powerful conceptual learning. 
Limitations of our preliminary findings 
Our preliminary findings are limited in terms of 
generalizability due to the lack of additional data. We believe 

the future implementations can be improved by (1) including 
a control condition, (2) conducting clinical interviews with 
students and teachers interviews, and (3) collecting the 
history of students’ programming actions. 
CONCLUSION 
The two case studies and the block-based student algorithms 
we presented in this paper are by no means generalizable. 
More empirical studies are needed to answer the implications 
of phenomenological programming for science education. In 
addition, the phenomenological gas particle sandbox we 
presented is just one such design. We may not be able to 
determine the full reach of this approach before attempting 
to create similar environments for other topics.  

Nonetheless, our preliminary findings indicate that the 
phenomenological gas particle sandbox achieved some 
critical goals of constructionist science education. The 
students started programming with minimal instruction. The 
phenomenological code-blocks accommodated their 
intuitive ways of thinking. They tinkered with the code to test 
alternative ideas, they exchanged ideas with each other, and 
the phenomenological statements became a part of their 
vocabulary. Some of their misconceptions surfaced and we 
even saw a student overcome a misconception by debugging 
her code. Most of the resulting NetLogo models were very 
sophisticated and very similar to the real-world air-duster 
can. The teachers were comfortable teaching with the 
phenomenological gas particle sandbox, too.  

We argue that paper phenomenological programming is a 
compelling new direction. For the short term, we are 
planning to iterate over this design and conduct more design 
interventions to collect more empirical data on the nature of 
student learning. For the long term, we hope to design other 
phenomenological programming environments and explore 
this approach’s implications for computational thinking 
research.  
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assent forms. 121 students agreed to participate with the 
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