
Robotics: Science and Systems 2020
Corvalis, Oregon, USA, July 12-16, 2020

Automated Synthesis of Modular Manipulators’

Structure and Control for Continuous Tasks around

Obstacles

Thais Campos

Cornell University

Email: tcd58@cornell.edu

Samhita Marri

Cornell University

Email: sm2733@cornell.edu

Hadas Kress-Gazit

Cornell University

Email: hadaskg@cornell.edu

Abstract—In this work, we describe an end-to-end system for
automatically synthesizing correct-by-construction structure and
controls for modular manipulators from high-level task speci-
fications. We define specifications that include both continuous
trajectories the end-effector must follow and constraints on the
physical space (obstacles and possible locations of the base of
the manipulator). In our formulation, trajectories are composed
of basic shape primitives (lines, arcs, and circles) and we avoid
discretizing the desired trajectory, as other approaches in the
literature do. We encode the task as a set of constraints on the
manipulator’s kinematics and return the manipulator’s structure
and associated control to the user, if a solution is found. By
solving for the continuous trajectory, as opposed to a discretized
one, we ensure that the original task is satisfied. We demonstrate
our approach on three different specifications, and present the
resulting physical robots tracing complex trajectories in the
presence of obstacles.

I. INTRODUCTION

For a given off-the-shelf robot, many of its capabilities, such

as its reachable space and maximum payload, are defined a

priori by its structure and actuators. Modular robots [1], on

the other hand, allow flexibility in the robot’s structure as their

components can be rearranged or replaced, thus composing a

new machine with new capabilities that can perform a new

set of tasks. Modular robots can be specifically designed for a

task, thereby guaranteeing its feasibility. However, deciding on

a modular robot’s structure and controls can be challenging.

Such a design process requires knowledge of kinematics,

dynamics and controls, and designing these robots manually

is a tedious and error prone process.

Serial chain robots are used in domains ranging from

maneuvering payloads in space [2] to assisting physicians in

surgeries [3]. With such different functions, their structure

can vary greatly; however, it follows a general template: a

sequence of rigid links connected by joints beginning at a base

and ending with an end-effector. The manipulator components,

their sizes, capacities and quantities, as well as its location

and the surrounding environment will govern its performance.

Thus, choosing the correct pieces and their arrangement is

crucial for the feasibility of a specific task, but this choice can

be difficult to reason about.

We propose an end-to-end system for automatically synthe-

sizing correct-by-construction modular manipulator structure

and controls from a high-level task specification. Here, tasks

are continuous trajectories in a 2D plane, constructed from

parameterized curves. These curves, which we refer to as

shape primitives, can be of three types: line segments, arcs and

circles. Furthermore, the workspace may include obstacles the

robot must avoid and there may be constraints on the position

of the manipulator’s base. In our approach, we define a set of

constraints representing the manipulator’s kinematics, which

guarantees that, if a design is found, the task is feasible. Users

specify a high-level task, such as the “rose” trajectory between

obstacles in Fig. 1, and our tool provides instructions for how

to construct a robot (link lengths, number of joints, etc.) as

well as the control inputs to perform the task.

The automated design of mechanisms based on a task

description has been studied in the past [5–25]. In [6–15], the

authors use optimization techniques to create a manipulator’s

structure able to reach a set of points in 3D. For works that

considered obstacles in the environment [6–9], a collision-

free path that drives the robot through all the task points was

computed. Other works [16–19] focus on designing a planar

linkage to trace a path that includes selected target points.

Other types of high-level tasks were also considered; in [25],

the optimization goal is to find a serial chain structure that

satisfies industrial requirements, such as level of accuracy.

For common robotic manipulator tasks, such as pick-and-

place, if the robot can visit the required points while avoiding

obstacles in the environment, then the trajectory performed

while executing the task is typically of lesser importance.

However, some tasks (e.g. painting, welding, or opening a

door) require the end-effector to follow a specified continuous

trajectory. If the robot has a fixed structure, motion planners

can be used to search for a path such that the end-effector

traces the required trajectory while avoiding obstacles. If no

path is found, fixed robots cannot accomplish the task. Here,

we leverage the configurability of modular robots to jointly

synthesize the structure of the robot and the required control

thereby enabling the system to achieve a variety of tasks.

Other works consider continuous trajectories as tasks; in

[20–22], given an input motion, a time varying rotation and/or

translation with respect to a reference point, the authors

present techniques for synthesizing mechanisms that display

desired output motion. These approaches accept a description

of the motion, for example, a rotation, and create a mechanism

(Fig. 2(C)): line segment (l), characterized by initial (l.pi) and

final (l.pf) points; circle (c), characterized by its center (c.cc),

radius (c.rc), and initial and final point (c.pc); and arc (a),

characterized by initial (a.pi) and final (a.pf) points, direction

(a.dir, clockwise or counterclockwise) and its center (a.ca).

All points are in a global reference frame. A task includes q

shape primitives, such that q = ql + qc + qa, where ql is the

number of lines, qc circles, and qa arcs.

The workspace of the manipulator may include a set of

nobs obstacles, O. An obstacle o ∈ O is modeled as a circle

described by its center’s position in the global reference frame

(o.co) and its radius (o.ro). Other obstacle shapes can be over

approximated by a circle. We assume that no obstacles are

inside the circles or circles defined by the arcs that compose

the desired trajectory. Constraints B on the location of the base

of the manipulator, if any, are defined as a set of rectangles

whose sides are parallel to the global reference frame axes.

A task T = (SPq, O,B) includes an ordered list of q

shape primitives, SPq , constituting a continuous trajectory

to be executed by the manipulator’s end-effector, the set of

obstacles O the manipulator must not collide with and the

constraints B on the location of the base. The shape primitives

are connected: the final point of the current shape primitive

coincides with the initial point of the next one. We refer to

the connection points as transition points.

B. Robot structure and control

A module mk, where k ∈ {1, . . . , nDOF } and nDOF is the

number of modules, is a unit of the manipulator that provides

one rotational degree-of-freedom (DOF) (actuator). We define

θk according to the Denavit-Hartenberg convention [26]. The

angle of the first module, θ1 is defined with respect to the

global z-axis.

A link is a rigid body with a fixed length r and diameter ∆

that connects two consecutive modules or a module and the

manipulator’s end-effector (EE).

A point sk ∈ R
2 denotes the position of the center of

rotation of module mk in the task plane. We define the state

of the manipulator as S = {s1, . . . , snDOF
, snDOF+1}, where

snDOF+1 denotes the end-effector position. For example, in

Fig. 2(C), S = {s1, s2, s3, s4}. A manipulator state uniquely

defines the set of joint angles Θ, where Θ = {θ1, . . . , θnDOF
}.

Module m1 is fixed on the plane at point s1, the origin (base)

of the manipulator. The farthest point of a shape primitive from

snDOF−1 is referred to as pfarthest; and the closest, pclosest.

For nDOF = 2, snDOF−1 is the origin of the manipulator. The

state of the manipulator that places the EE at a certain point

pm of SPj is referred to as Sj,m.

For a 2 DOF planar arm, the shoulder joint is located at

the origin of the manipulator (s1), while the elbow joint, at

the end of the first link (s2). We refer to the angle between

the two links as β or the elbow angle, where β ∈ [0, π]. For

points in the reachable space that are not on its boundaries,

there are two solutions that place the EE at the point: upwards

and downwards elbow configurations. In the upwards config-

uration, the joint is located to the left of the line connecting

snDOF−1 and the EE (see Fig. 4(A-i)); in the downwards, to

the right (see Fig. 4(A-ii)). For points on the boundary, there

is only one solution where β is either 0 or π.

A structure D is a list of nDOF modules mk connected by

links with length rk such that m1 is fixed on the plane at point

s1. Here, we consider nDOF ∈ {2, 3}. The reachable space

(RS) is the set of points that the EE can reach.

III. APPROACH

We formulate the problem of finding both the structure D

and controls θt (joint angles over time) as an optimization

problem where the constraints are the manipulator’s kinemat-

ics, and the cost is the sum of the link lengths, thus minimizing

the size of the manipulator. We are solving for feasibility, i.e.

all constraints are met, but the solution may not be globally

optimal. We prioritize solutions with less DOF so that the

design is less complex. Since the possible number of actuators

is small, nDOF ∈ {2, 3}, we explicitly enumerate over the

options: we first attempt solutions with nDOF = 2, and then

with nDOF = 3. In our optimization formulation, the decision

variables are the manipulator’s states Sj,u of specific points

on each shape primitive, and the link lengths rk. Given Sj,u,

we uniquely calculate θt necessary to achieve the desired

manipulator state and create the control. The optimization

problem we solve is:

min

nDOF∑

k=1

rk, Subject to

∀j ∈ {1, ..., q}, ∀u ∈ {i, f, closest, farthest}, eqs. (2) to (11)

(1)

The solution to the optimization problem is a candidate

structure and the configurations of the manipulator for the

specified points on the shape primitives. We add verification

steps, when necessary, to ensure the existence of collision-free

motion as discussed in Sections III-E and III-F.

In the following sections, we define the equations we use

to encode the synthesis problem and the methods we use to

verify the solution. We first address the main challenges of our

problem: how we ensure that the trajectory is collision-free and

continuous, which, in our context, means that the end-effector

does not deviate from the trajectory. Then, we introduce

self-collision avoidance constraints. Finally, we define the

constraints due to consistency of the structure.

A. Collision avoidance constraints

We address collision avoidance in two parts: during the ex-

ecution of shape primitives and during the transition between

them. For the first part, we use a method commonly employed

in continuous collision detection, which consists of calculating

the swept volume (SV) of the manipulator, the space the

manipulator moves through as it is executing a motion, and

checking for intersections with any obstacles [27–30]. As the

SV can be a complex shape, over approximations are used

to simplify its calculation. Bounding boxes [29] and convex

hulls and their variations [27, 28, 30, 31] are commonly used.

For a 2 DOF planar manipulator, for all points on a

shape primitive, there are at most two inverse kinematics (IK)

−−−−−−−−−−−−→snDOF−1snDOF+1 and −−−−−−−−−−→snDOF−1snDOF
is positive; if it is to

the right, negative. Thus, for any two critical points of a shape

primitive, the product between these cross products should be

positive so that the elbow maintains its relative position. This

constraint is encoded in Eq. 5.

∀j ∈ {1, ..., q}, ∀u1, u2 ∈ {i, f, closest, farthest},
−−−−−−−−−−−−−−−−−−−→
Sj,u1

.snDOF
Sj,u1

.snDOF−1 ×
−−−−−−−−−−−−−−−−−−−−−→
Sj,u1

.snDOF+1Sj,u1
.snDOF−1·

−−−−−−−−−−−−−−−−−−−→
Sj,u2

.snDOF
Sj,u2

.snDOF−1 ×
−−−−−−−−−−−−−−−−−−−−−→
Sj,u2

.snDOF+1Sj,u2
.snDOF−1 ≥ 0

(5)

2) During transition between SP: When at a transition

point, the manipulator must move from the final state of

SPj (the state for reaching pf), Sj,f into the initial state

of SPj+1 (the state for reaching pi), Sj+1,i. Since the EE

remains fixed at the transition point, the manipulator forms a

closed kinematic chain with nDOF +1 links: the manipulator

links in addition to a “ground” link which connects s1 to the

EE. This constraint reduces the total number of DOF of the

system. For example, for a 3 DOF manipulator, we need to

specify its three joint angles for its state to be fully known.

However, for a 4-link closed loop chain, the state is determined

by one joint angle. To determine how many DOF a closed

loop linkage has, we use the Mobility Formula [32], which

determines the number of independent parameters (here, joint

angles) that need to be specified for the state to be fully known.

The mobility formula for a single loop planar linkage [32] is

F = n − 3, where F is the number of DOF of the single

loop planar linkage and n the number of links. The transition

motion must ensure that the loop stays closed. We present

constraints for this motion separately for each nDOF .

a) 2 links: Since n = 3 (2 links from the manipulator

plus the ground link), the mobility F is zero. This means that

this linkage has no DOF, thus Sj,f and Sj+1,i must coincide,

as no motion can be created.

b) 3 links: Since F = 1, given an input joint angle,

the remaining ones can be determined, if they exist. For the

transition motion to exist, we calculate the limits of the range

of motion for θ1 and θ3, the first and third joint angles,

respectively, as explained in [32], and replicated in Eqs. 6 and

7. We calculate the angles at the beginning of the transition

from SPj to SPj+1, referred to as θ1,trj ,i and θ3,trj ,i, and

at the end of the transition, θ1,trj ,f and θ3,trj ,f . The range of

motion depends, exclusively, on the dimensions of the linkage,

in which rg,j is the ground link length or the distance between

s1 and the respective transition point.
∀j ∈ {1, ..., q − 1}, ∀u ∈ {i, f},

r2g,j + r21 − (r2 − r3)
2

2r1rg,j
≤ cosθ1,trj ,u ≤

r2g,j + r21 − (r2 + r3)
2

2r1rg,j
(6)

(rg,j + r3)
2 − (r2 − r1)

2

2r3rg,j
≤ cosθ3,trj ,u ≤

(rg,j + r3)
2 − (r2 + r1)

2

2r3rg,j
(7)

This constraint is necessary but not sufficient for motion

to exist, as during the transition motion, θ1 may reach a

value that yields no solution for θ3. Thus, when synthesizing

a 3 DOF solution to the task, we first obtain a candidate

solution and then verify that the transition motions exist and

are collision-free. The verification step is performed in two

steps. First, we generate a linearly spaced set of θ1, in which

the limits are θ1,trj ,i and θ1,trj ,f . For each θ1 in the set, we

attempt to calculate the resultant joint angles by using the IK

equations. If the joint angles exist such that the closeness of

the linkage is satisfied, we generate a set of transition states for

the manipulator. Second, for each state, we certify that there

are no collisions with obstacles by calculating the distance of

each link to each obstacle and checking that it is larger than

the obstacle’s radius plus the link radius. If the verification

step fails, we restart the optimization with a new initial guess.

G. Self-collision Constraint

Due to the geometry of the components and the constraints

we are imposing on the structure, all links are parallel to

each other along the z-axis and are stacked, such that the

links closer to the origin are closer to the plane of the task.

Therefore, the only possible self-collision is if the EE, which

is connected to the end of the last link and extends to the task

plane, collides with one of the other links. If the links had no

thickness, the EE would collide with the first link of the distal

arm only if β = 0 and rnDOF−1 > rnDOF
. Since β ∈ [0, π],

if β is equal to zero for a point on the shape primitive, then

this point is pclosest. Thus, the minimum distance between

the EE and the link should be larger than zero when the EE

reaches pclosest. However, since the links have thickness, the

minimum distance should be larger than the diameter of the

links (∆), if rnDOF−1 > rnDOF
. Eq. 8 guarantees that this

minimum distance is satisfied.

∀j ∈ {1, ..., q}, u = closest,

||Sj,u.snDOF−1Sj,u.snDOF
, Sj,u.snDOF+1|| > ∆ (8)

Now, we need to consider the possible collision of the EE and

the first link for a 3 DOF arm. Since during the execution of

the SP , the first link is static, the collision will happen only if

the distance between it and the shape primitive itself is smaller

than ∆. This constraint is represented in Eq. 9.

∀j ∈ {1, ..., q}, ||SPj , Sj .s1Sj .s2|| > ∆ (9)

H. Constraints on the structure

We require the structure, i.e. the link lengths and origin, to

be identical for all states of the manipulator.

1) Origin: The origin of the manipulator, s1, must be inside

B. If B is not specified, s1 can be anywhere on the plane.

∀j1, j2 ∈ {1, ..., q}, ∀u1, u2 ∈ {i, f, closest, farthest},

Sj1,u1
.s1 ≡ Sj2,u2

.s1, s1 ∈ B (10)

2) Consistent link lengths: The distance between two con-

secutive points in S is equal to the corresponding link length.

∀j ∈ {1, ..., q}, ∀u ∈ {i, f, closest, farthest}, ∀k ∈
{1, ..., nDOF },

||Sj,u.sk, Sj,u.sk+1|| = rk (11)

I. Implementation

We solve the constrained optimization problem for the

design and control of a manipulator using Sequential Quadratic

Programming (SQP) where we solve for a feasible solution.

We use the fmincon function in MATLAB R2019a. In this

method, an initial guess is required, and the final result can

change drastically depending on it. To identify an initial guess

that will more likely yield a solution, we first solve a simpler

version of the problem and use that as our initial guess.

Initial guess: To initialize the optimization, we choose points

along the trajectory and solve for a manipulator that can reach

these points while avoiding obstacles, similar to [6, 7]. For

computational efficiency, we do not solve for a collision-free

trajectory connecting these points, and the number of points

selected is small (2 to 5 for each shape primitive). To increase

the likelihood of finding a solution to the full optimization,

we require for all consecutive EE positions, if an elbow up

solution is chosen for a certain point, then it is also selected

for the next one (or a solution where the arm is fully extended),

and the same for elbow down.

IV. DEMONSTRATIONS

The results provided by our framework are general enough

to be implemented by any kind of module that provides one

rotational DOF. In our demonstrations, we used the HEBI

Robotics X8-Series Actuators with 110 mm x 73 mm x 45

mm dimensions [4]. They are equipped with sensors that allow

position, velocity and torque control. Each module provides

one DOF and can rotate continuously. We controlled each

separately, via Ethernet, using a 64 bit desktop computer

running Ubuntu 14.04 with 8 GB RAM and 3.6 GHz processor.

We used aluminum tubes with 31.75 mm diameter as links

and cut them to the required length based on the synthesis

results. To connect a link and an actuator, we used tube

adapters manufactured by HEBI Robotics to provide zero

degrees link twist and result in a planar manipulator. Fig.

2(A) shows each component. We drilled the tube connected

to the end-effector to accommodate a 9.5 mm diameter rod

that ends with the EE, responsible for interacting with the

task plane. The type of the end-effector used depended on the

task: sponges for wiping the table and a brush to paint a rose.

Our approach outputs a design and the associated joint an-

gles required for the task. We used an open-loop proportional

controller based on the actuator position. The actuators used

have position sensors, so no external sensors are needed.

A. Physical Demonstrations

In this section we demonstrate our approach to manipulator

synthesis from high-level specifications. We implemented a

Graphical User Interface (GUI) to facilitate the specification

of high-level tasks. We show the task as defined by the user in

our GUI, the resulting synthesized solution and the physical

implementation of the task using Hebi robotics modules and

a variety of end effectors.

Table 2 presents the task name, the shape primitive types

used to create the task, the resultant manipulator and the total

computational time to find a solution. Fig. 1 and Fig. 5 show

the task definitions in the GUI, the solutions obtained and the

physical implementations. All the solutions we fabricated were

obtained using the SV app approximation of the SV . Using

SV over, we only found a solution for the rose task (Fig. 1

(D)). For the tasks in Fig. 5, the manipulator is required to go

around obstacles and therefore it is not surprising that an over

approximation of the swept area is too restrictive.

A video depicting the simulations and the physical demon-

strations is available at https://youtu.be/9Uvyu2FJtVM.

B. Comparison to discretized solutions

In previous works (e.g. [23, 24]) the desired trajectory is

discretized by choosing a set of points that are then used

to find a robot design. Similarly, in [6, 9], the manipulator’s

structure is synthesized based on a task composed of a set

of points and a trajectory connecting them is computed using

sampling-based techniques. To illustrate the benefit of solving

for a continuous trajectory, as opposed to a discretized one, we

revisit our “paint a rose” task, and compare the synthesized

solutions and their resulting trajectories.

We discretize the required curve using 25 equidistant points

and calculate a solution in MATLAB using a modification

of the formulation presented in [6]. Specifically, since the

manipulator is planar, we enforce α to be zero. Furthermore,

it is important to find the configurations to reach each selected

point that are more likely to yield a continuous and smooth

trajectory as similar as possible to the original. For that, we

added the elbow consistency constraint, used also for the initial

guess for the continuous solution, and we implemented a cost

function to minimize the distance between the states of two

consecutive poses. We used RRT [33] with bias towards the

next point as the motion planner.

The computation time for our approach is 0.5min, using

SV over, and for the discretized approach, it is 6.8min. Both

approaches result in a 2 DOF solution. Fig. 6(A) presents

the RS of the synthesized manipulator using the discretized

approach. Although all discretized points are reachable, the re-

quired curve is not. Fig. 6(B) shows a region of the task curve

located outside the RS (black curve identifying the boundary).

Fig. 6(C) shows the collision-free trajectory performed by both

synthesized manipulators. Although the path obtained with

the sampling-based motion planner is close to the required

curve, they are not identical. Thus, an additional step needs to

be included to recalculate the path after the selection of the

structure, so it is closer to the original, or more points need

to be added. Such steps are not necessary in our approach.

V. CONCLUSIONS

Summary. In this work, we defined a novel, high-level,

manipulator task formulation, and created a framework to

automatically synthesize a manipulator’s structure and controls

from the task, presenting an end-to-end system from user task

definition to hardware implementation. We demonstrated the

versatility of our approach by synthesizing and implementing

manipulators for three different tasks and we compared our

REFERENCES

[1] Mark Yim, Ying Zhang, and David Duff. Modular robots.

IEEE Spectrum, 39(2):30–34, 2002.

[2] Dan King. Space servicing: past, present and future.

In Proceedings of the 6th International Symposium on

Artificial Intelligence and Robotics & Automation in

Space: i-SAIRAS, pages 18–22, 2001.

[3] Simon DiMaio, Mike Hanuschik, and Usha Kreaden. The

da vinci surgical system. In Surgical Robotics, pages

199–217. Springer, 2011.

[4] HebiRobotics. URL https://www.hebirobotics.com/

x-series-smart-actuators.

[5] Chris Leger and John Bares. Automated task-based

synthesis and optimization of field robots. 1999.

[6] Thais Campos, Jeevana Priya Inala, Armando Solar-

Lezama, and Hadas Kress-Gazit. Task-based design of

ad-hoc modular manipulators. In 2019 International

Conference on Robotics and Automation (ICRA), pages

6058–6064. IEEE, 2019.

[7] Julian Whitman and Howie Choset. Task-specific ma-

nipulator design and trajectory synthesis. IEEE Robotics

and Automation Letters, 4(2):301–308, 2018.

[8] EJ Van Henten, DA Van’t Slot, CWJ Hol, and

LG Van Willigenburg. Optimal manipulator design for a

cucumber harvesting robot. Computers and electronics

in agriculture, 65(2):247–257, 2009.

[9] Cenk Baykal and Ron Alterovitz. Asymptotically opti-

mal design of piecewise cylindrical robots using motion

planning. In Robotics: Science and Systems, 2017.

[10] Sarosh Patel and Tarek Sobh. Task based synthesis of

serial manipulators. Journal of advanced research, 6(3):

479–492, 2015.

[11] Wan Kyun Chung, Jeongheon Han, Youngil Youm, and

SH Kim. Task based design of modular robot manipula-

tor using efficient genetic algorithm. In Proceedings of

International Conference on Robotics and Automation,

volume 1, pages 507–512. IEEE, 1997.

[12] J-O Kim and Pradeep K Khosla. A formulation for task

based design of robot manipulators. In Proceedings of

1993 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS’93), volume 3, pages 2310–

2317. IEEE, 1993.

[13] I-Ming Chen and Joel W Burdick. Determining task

optimal modular robot assembly configurations. In

proceedings of 1995 IEEE International Conference on

Robotics and Automation, volume 1, pages 132–137.

IEEE, 1995.

[14] Saleh Tabandeh, William Melek, Mohammad Biglar-

begian, Seong-hoon Peter Won, and Chris Clark. A

memetic algorithm approach for solving the task-based

configuration optimization problem in serial modular and

reconfigurable robots. Robotica, 34(9):1979–2008, 2016.

[15] M Althoff, A Giusti, SB Liu, and A Pereira. Effort-

less creation of safe robots from modules through self-

programming and self-verification. Science Robotics, 4

(31):eaaw1924, 2019.

[16] JA Cabrera, A Ortiz, F Nadal, and JJ Castillo. An

evolutionary algorithm for path synthesis of mechanisms.

Mechanism and Machine Theory, 46(2):127–141, 2011.

[17] JA Cabrera, A Simon, and M Prado. Optimal synthesis

of mechanisms with genetic algorithms. Mechanism and

machine theory, 37(10):1165–1177, 2002.

[18] Suwin Sleesongsom and Sujin Bureerat. Four-bar linkage

path generation through self-adaptive population size

teaching-learning based optimization. Knowledge-Based

Systems, 135:180–191, 2017.

[19] M Khorshidi, M Soheilypour, M Peyro, A Atai, and

M Shariat Panahi. Optimal design of four-bar mecha-

nisms using a hybrid multi-objective ga with adaptive

local search. Mechanism and Machine Theory, 46(10):

1453–1465, 2011.

[20] Shean-Juinn Chiou and Kota Sridhar. Automated con-

ceptual design of mechanisms. Mechanism and machine

theory, 34(3):467–495, 1999.

[21] Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping

Wang, and Baining Guo. Motion-guided mechanical toy

modeling. ACM Trans. Graph., 31(6):127–1, 2012.

[22] Devika Subramanian et al. Kinematic synthesis with

configuration spaces. Research in Engineering Design, 7

(3):193–213, 1995.

[23] Stelian Coros, Bernhard Thomaszewski, Gioacchino

Noris, Shinjiro Sueda, Moira Forberg, Robert W Sumner,

Wojciech Matusik, and Bernd Bickel. Computational

design of mechanical characters. ACM Transactions on

Graphics (TOG), 32(4):83, 2013.

[24] Sehoon Ha, Stelian Coros, Alexander Alspach, James M

Bern, Joohyung Kim, and Katsu Yamane. Computational

design of robotic devices from high-level motion spec-

ifications. IEEE Transactions on Robotics, 34(5):1240–

1251, 2018.

[25] Anna Valente. Reconfigurable industrial robots: A

stochastic programming approach for designing and

assembling robotic arms. Robotics and Computer-

Integrated Manufacturing, 41:115–126, 2016.

[26] Peter I Corke. A simple and systematic approach to

assigning denavit–hartenberg parameters. IEEE trans-

actions on robotics, 23(3):590–594, 2007.

[27] Holger Täubig, Berthold Bäuml, and Udo Frese.

Real-time continuous collision detection for mobile

manipulators-a general approach. In 2012 12th IEEE-

RAS International Conference on Humanoid Robots (Hu-

manoids 2012), pages 461–468. IEEE, 2012.

[28] Andre Gaschler, Ronald Petrick, Torsten Kröger, Ous-

sama Khatib, and Alois Knoll. Robot task and motion

planning with sets of convex polyhedra. In Robotics:

Science and Systems (RSS) Workshop on Combined

Robot Motion Planning and AI Planning for Practical

Applications, 2013.

[29] Stephane Redon, Ming C Lin, Dinesh Manocha, and

Young J Kim. Fast continuous collision detection for

articulated models. 2005.

[30] Jing Xia, Zainan Jiang, Hong Liu, Hegao Cai, and

Guangxin Wu. A manipulator’s safety control strat-

egy based on fast continuous collision detection. In

2013 IEEE International Conference on Robotics and

Biomimetics (ROBIO), pages 2380–2385. IEEE, 2013.

[31] Holger Täubig, Berthold Bäuml, and Udo Frese. Real-

time swept volume and distance computation for self

collision detection. In 2011 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages

1585–1592. IEEE, 2011.

[32] J Michael McCarthy and Gim Song Soh. Geometric

design of linkages, volume 11. Springer Science &

Business Media, 2010.

[33] Steven M LaValle. Rapidly-exploring random trees: A

new tool for path planning. 1998.

	Introduction
	Definitions
	Task
	Robot structure and control

	Approach
	Collision avoidance constraints
	Calculation of SVover
	Critical points and reachability
	Calculation of SVapp
	Collision avoidance constraint encoding
	Continuity constraints
	During execution of a SP
	During transition between SP

	Self-collision Constraint
	Constraints on the structure
	Origin
	Consistent link lengths

	Implementation

	Demonstrations
	Physical Demonstrations
	Comparison to discretized solutions

	Conclusions

