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Short-term heritable variation overwhelms two hundred generations of mutational variance for

metabolic traits in Caenorhabditis elegans

Keywords: Epigenetic; Metabolic enzyme; Mutation accumulation; Mutational variance;

transgenerational inheritance

ABSTRACT
Metabolic disorders have a large heritable component, and have increased over the past few
generations. Genome-wide association studies of metabolic traits typically find a substantial
unexplained fraction of total heritability, suggesting an important role of spontaneous mutation.
An alternative explanation is that epigenetic effects contribute significantly to the heritable
variation. Here we report a study designed to quantify the cumulative effects of spontaneous
mutation on adenosine metabolism in the nematode Caenorhabditis elegans, including both the
activity and concentration of two metabolic enzymes and the standing pools of their associated
metabolites. The only prior studies on the effects of mutation on metabolic enzyme activity, in
Drosophila melanogaster, found that total enzyme activity presents a mutational target similar to
that of morphological and life-history traits. However, those studies were not designed to
account for short-term heritable effects. We find that the short-term heritable variance for most
traits is of similar magnitude as the variance among MA lines. This result suggests that the
potential heritable effects of epigenetic variation in metabolic disease warrant additional

scrutiny.
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INTRODUCTION

Human metabolic diseases have increased markedly in frequency over the past few generations
(Saklayen 2018). Large genome-wide association studies (GWAS) conducted on the human
metabolome have shown that metabolic traits are highly heritable, but that a substantial fraction
of the heritability of metabolic traits remains unexplained by the cumulative effects of mQTL
(Rhee et al. 2013; Shin et al. 2014; Mahajan et al. 2018). This discrepancy indicates that the
remainder of the heritable variation is the result of some combination of (1) rare, highly
deleterious variants recently arisen in the population; (2) many variants with effects too small to
be detected by the typical GWAS (Manolio et al. 2009; Eichler et al. 2010; Boyle et al. 2017);
(3) epistasis (Zuk et al. 2012; Sackton and Hartl 2016), and/or (4) cross-generational epigenetic
effects that are heritable over the short term but leave no genetic signature (Furrow et al. 2011;
Richard et al. 2017). Scenarios (1) and (2) (and maybe 3) imply a significant role of spontaneous
mutations at mutation-selection balance in the risk of metabolic disease, although the rapid
increase in frequency further implies some sort of genotype-environment interaction. A recent
onslaught of epigenetic effects is considered less likely as a general explanation for the "missing
heritability" of human complex traits (Wainschtein et al. 2019), but specific examples of cross-
generational effects are known in humans (Pembrey et al. 2006; Curley et al. 2011; Veenendaal
et al. 2013; Rando and Simmons 2015), and are well-documented in other organisms (e.g.,
plants; Munir et al. 2001; Luna et al. 2012; Rasmann et al. 2012) and C. elegans; (Greer et al.
2011; Rechavi et al. 2011; Ashe et al. 2012; Jobson et al. 2015; Marr¢ et al. 2016).

To our knowledge, the cumulative effects of spontaneous mutation on metabolic traits
have been investigated in only three experiments. Mukai et al. (1984) measured the cumulative

effects of 300 generations of spontaneous mutations on the activity of alcohol dehydrogenase



46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

(Adh) in Drosophila melanogaster. In a groundbreaking study, also in Drosophila
melanogaster, Clark et al. (1995) quantified the input of mutational (co)variance in the activity
of a set of 12 metabolic enzymes and two metabolites. In both studies, mutational heritability
(hZ,, the per-generation increase in genetic variation (Vm) scaled as a fraction of the residual
variance, Vi) of enzyme activity was on the order of that of life-history and morphological traits
(h%,=107/generation; Houle et al. (1996)). In several of the mutation accumulation (MA) lines
studied by Clark and his colleagues, there were large changes in enzymatic activity relative to the
population mean over the course of 44 generations of evolution under minimal selection. Results
for the two metabolites studied were analogous, but there was no attempt to assess the
relationship between enzyme activity and metabolite concentration in the context of metabolic
pathways.

More recently, Davies et al. (2016) examined the changes in metabolite concentration for
29 metabolites in a set of C. elegans MA lines that had undergone ~250 generations of evolution
under minimal selection and found that metabolites vary considerably in their response to
spontaneous mutation, as quantified by the change in mean metabolite concentration (AM) and
by the mutational (co)variance. Associations between mutational correlations between pairs of
metabolites (ru, presumably the result of pleiotropy) and proximity of the metabolites in the
global metabolic network were, on average, positive but weak (Johnson et al. 2018). The
weakness of the association between mutational pleiotropy and network proximity suggests that
pleiotropic effects propagate throughout the metabolic network and are not confined to local
modules. However, there was no attempt to link changes in metabolite concentration to the

properties of associated metabolic enzymes.
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Here we report results of a study designed to investigate the cumulative effects of
mutation on the concentration and activity of the enzymes in the adenosine metabolism pathway
and their associated metabolites (Figure 1), using (nearly) the same set of C. elegans MA lines as
in Davies et al. (2016). We chose this particular metabolic pathway for investigation because
adenosine was one of the metabolites with the largest mutational variance, indicative of a large
mutational target. In addition, adenosine levels are assumed to be tightly regulated due to its role
as a critical signaling molecule for energetic homeostasis as a metabolite involved in ATP: AMP,
as well has having other critical functions (Park and Gupta 2008; Boison 2013). Lastly, the
adenosine pathway has well-defined network topology and is highly conserved.

Our study has one additional important feature relative to the aforementioned ones (Clark
et al. 1995; Davies et al. 2016; Johnson et al. 2018). All of those studies estimate cumulative
mutational parameters from the among-line components of (co)variance of a set of MA lines.
Ideally, the among-line (co)variance is due solely to the contribution of new mutations, but other
technical and biological factors can contribute to the among-line (co)variance (Lynch and Walsh
1998). Our experimental design allows us to infer the relative contributions of both mutation and
short-term heritable effects on the total heritable variance of metabolic traits.

MATERIALS AND METHODS
Mutation Accumulation:
A detailed description of the construction and propagation of the mutation accumulation (MA)
lines is given in Baer et al. (2005). Briefly, 100 replicate MA lines were initiated from a nearly
isogenic population of N2-strain C. elegans and propagated by single-hermaphrodite descent at
four-day (one generation) intervals for approximately 250 generations. The common ancestor of

the MA lines ("G0") was cryopreserved at the outset of the experiment; MA lines were
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cryopreserved upon completion of the MA phase of the experiment (Figure 2). Based on
extensive whole-genome sequencing (Denver et al. 2012; Saxena et al. 2019), we estimate that
the average MA line carries at least 60-100 mutant alleles in the homozygous state. In this study
we included 39 of the 43 N2-strain MA lines assayed by Davies et al. (2016). One of the lines
included in that study (line 507) was revealed by genome sequencing to be a contaminant from a
different strain, and was removed from the analysis. Two other lines (517, 598) were revealed to
have been cross-contaminated subsequent to the MA phase of the experiment, i.e., they appear to
be genetically identical. Due to the structure of the experiment, we cannot simply pool the
replicates of the two lines without introducing a potential bias, so those lines were omitted as
well. All replicates of line 571 reproduced so slowly that we were unable to obtain sufficient
material to be used in downstream assays.

The ideal design of a phenotypic assay of a MA experiment includes replicates of the
(putatively) unmutated common ancestor, which we call "pseudolines" and which are treated
identically to MA lines in analyses (Lynch 1985; Lynch and Walsh 1998; Teotonio et al. 2017).
The among-pseudoline component of variance includes the effects of residual segregating
genetic variation in the ancestor, as well as short-term heritable effects that are propagated across
assay generations and purely environmental effects resulting from (sometimes unavoidable)
imperfections of experimental design, such as a temporal correlation between line and assay
time. In the absence of a pseudoline control, some fraction of the among-MA line (co)variance
will potentially be the result of non-mutational factors, and resulting estimates of Vm and COVwm
will be upwardly biased.

Here, a set of 15 pseudolines (PS) of the GO ancestor were included along with the MA

lines (Figure 3A). PS lines were generated by thawing a sample of the N2 ancestor and allowing



114 it 24 hours to recover from freezing, at which time 15 hermaphrodites were plated individually
115  onto 60 mm NGM plates seeded with 100 ul of an overnight culture of E. coli OP50 (PO

116  generation in Figure 3A). PO worms were allowed to reproduce until the bacterial food on the
117  plate was consumed (two generations; F1 and F2), at which time worms were cryopreserved (F2)
118  (Hope 1999). The demographic features of this protocol mimic those of our standard protocol for
119  cryopreserving MA lines. From this point forward, MA lines and ancestral PS lines are

120  experimentally identical.

121

122 Protein Extraction:

123 This study includes six independent experimental tests: concentration and activity of two
124  metabolic enzymes (ADA and ADK), total protein concentration, and mass spectrometry of

125  pooled metabolites. We were unable to measure the activity of the third enzyme in the pathway,
126  adenosine phosphoribosyltransferase (APRT), because commercially available assay kits require
127  too much material to be practical for application to C. elegans. Accordingly, six aliquots of

128  protein (plus metabolites) were extracted and cryopreserved from the same individual sample of
129  each experimental replicate. Protein extraction was performed in five blocks of 10-12 lines per
130  block, to ensure that all samples were handled at the appropriate stage of development (see

131 below). In each protein extraction block, the lines selected were a random mix of MA and PS
132 lines; the experimental design is outlined in Figure 3B. Each line was thawed and transferred
133  onto a 60mm agar plate. The following day, five L4-stage hermaphrodites from each line were
134  transferred individually onto 35mm agar plates (parental generation, P1 in Figure 3B), resulting
135  in a total of 290 samples (five replicates of each of 15 PS lines and 43 MA lines). Four days

136 later, a single offspring (F1 generation) L4 hermaphrodite was transferred from each P1 plate
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onto a 100mm plate (F1.1 in Figure 3B). The F1 worms were grown for ten days (two
generations, F2.1 and F3.1 in Figure 3B) of self-replication to ensure that F3 worms were gravid
and there were abundant eggs on the plate (F4.1 in Figure 3B). Worms were washed from the
plate and "bleached" in an NaOH and sodium hypochlorite solution (Sulston and Hodgkin 1988)
.This process kills all hatched worms by breaking down their cuticle and leaves only eggs (F4.1
in Figure 3B), resulting in a population that is closely synchronized in developmental timing.
Once F4 worms had been bleached, hatched, and reached the L4 stage, they were washed five
times in ion-free NGM buffer, mixed with protease inhibitor cocktail, and homogenized via
sonication (Tang and Choe 2015). Homogenized samples were centrifuged, and the protein-rich
supernatant was distributed equally into six cryovials and stored at -80 C°. All lines, both MA
and PS, were labeled with their true line number until cryopreservation, at which time each

replicate was assigned a random number to obscure sample identity.

Estimating Total Soluble Protein via Bicinchoninic Acid Assay (BCA)

We used total soluble protein as a proxy for the number of individual worms in a sample. To
quantify the total soluble protein in each sample we used a bicinchoninic acid assay (BCA)
following the protocol from Thermo Scientific (Pierce BCA Protein Assay Kit #23225). Briefly,
a set of known concentrations of bovine serum albumin is used to generate a standard curve
against which one can estimate the concentrations of unknown protein samples. A total of 13 BC

assays were performed, each with its own set of standards.

Enzyme activity assays:

(i) Adenosine kinase (ADK)
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Adenosine kinase (ADK) activity was measured using the Novocib PRECISE ADK assay kit
(Novocib, Ref #K0507-01). This assay measures ADK activity based on the production on
NADH2, which is generated by the dephosphorylation of ATP by ADK. To ensure that ADK
activity is not limited by available ATP, an excess of human ATP was added to each sample.
Absorbance at 340nm was measured at one-minute intervals for 40 minutes. The slope of the line
over the linear phase quantifies the activity of each sample in units of absorption per minute. A
set of positive (human ADK, provided in the kit) and negative (no enzyme) controls were
included with the unknown samples in each assay plate and used to quantify assay quality, per
the manufacturer's instructions. ADK activity was assayed in five blocks. Thirty of the 290
samples were not included in the ADK activity assay because of erratic activity slopes. All
samples that were run included at least two technical replicates, in which extracts from a sample
were split and assayed independently.

(ii) Adenosine deaminase (ADA):
ADA activity was measured using Abcam’s Adenosine Deaminase (ADA) Activity Assay Kit
(Abcam, ab21193). This kit utilizes an ADA developer and converter which react with inosine
formed from the breakdown of adenosine by ADA to produce uric acid. Uric acid concentration
is then measured via absorbance at 293nm once a minute for 45 minutes. Each kit is run with a
set of known concentration standards that are used to generate a standard curve. The quantity of
uric acid was then measured and used to calculate the activity of the ADA in a given sample in
units of nmol/min/pg, following the manufacturer's instructions.

ADA activity was assayed in four 96-well plates, each including a positive (manufacturer
supplied ADA) and negative (no sample) control. For one assay plate (= assay block), the highest

concentration standard had an unusually low reading; we therefore omitted this point from the
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standard curve for this assay. Omission of that point had no effect on the interpretation of the
data because all unknown samples had absorbance values greater than the second lowest
standard. All of the 290 samples had maximum measured activity well below the highest
concentration standard. Four samples with erratic absorption readings were omitted from further

analyses.

Enzyme concentration:
Enzyme concentrations were estimated by Western blot (WB) (Supplemental Figure S1).
Extracted samples were denatured in 2X Laemmli buffer (with f-mercaptoethanol) and boiled at
70° for 10 minutes. Each gel lane was loaded with 7ug of total soluble protein calculated from
the BCA data (Bio-Rad 10% polyacrylamide gel, product #4561033). Each blot included eight
samples, a DNA-ladder and an internal control standard consisting of a homogenate of C.
elegans. We used the Trans-Blot Turbo Transfer System (Bio-Rad, #1704156) to transfer
proteins separated by gel electrophoresis onto blotting paper. After the primary (enzyme-
specific) and secondary (visualization) antibodies were bound (antibodies described below),
antibody binding was visualized using the Pierce ECL Western Blotting Substrate (Thermo
Fischer Product # 32106). Brightness of each band relative to the internal control was estimated
using ImageJ image-analysis software and used as a proxy for enzyme concentration. 246 of the
284 samples contained sufficient protein to be visualized by Western Blot.

The concentration of tubulin in a sample is commonly used as a loading control, and we
quantified tubulin in each sample for both enzymes (Tubulin antibody DSHB, E7). However,
tubulin concentration was not independent of treatment (MA vs. PS), so we treat it as an

experimental trait rather than a control (see Results).
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(i) ADK concentration
The antibody used was Abcam’s Anti-ADK antibody — C-terminal (Abcam, ab226187), which
was designed and tested in mouse and humans and which is homologous with the C. elegans
ADK protein, RO7H5.8. The assay resulted in multiple binding sites, with distinct bands at
~100kd, ~37kd, ~25kd, and ~18kd (Supplemental Figure S2). To determine which of these
binding sites represented the C. elegans ADK, samples of each band were extracted from the gel
and analyzed using protein mass spectroscopy. Results were then analyzed using Scaffold 4; only
the sample at ~37kd contained the worm ADK homolog (RO7HS5.8, molecular weight = 37.5 kd;
Wormbase). 112 of the 246 samples did not contain sufficient ADK to be measured by Western
blot. These lines were tested in duplicate and failed to produce ADK bands both times, therefore
the low concentration of ADK is presumably a true property of the sample and not an
experimental artifact.

(ii) Adenosine deaminase (ADA) concentration:
The primary antibody used was Abcam’s Anti-ADAT?2 antibody (Abcam, ab122280). This
antibody is homologous with the C. elegans ADA protein ADR-1 which is known to code for
ADA in worms (Wormbase). The assay resulted in multiple binding sites, with distinct bands at
~100kd, ~60kd, and ~22kd (Supplemental Figure S3). Samples of each band were extracted from
the gel and analyzed using protein mass spectroscopy as for ADK. The band at ~100kd
contained the worm ADA homolog ADR-1, isoform D (101.8kd). 202 of the 246 samples

contained ADA in sufficient concentration to be quantified by Western blotting.

Metabolomics:

10
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To assess the relationship between enzyme concentration and activity and the concentration of
their associated metabolites, we targeted four metabolites in the adenosine metabolic pathway:
adenosine, inosine, AMP, and adenine. Several other metabolites not in the adenosine pathway
were also measured, including GMP, guanine, guanosine, hypoxanthine, xanthine, and uric acid
because they were part of a routine panel that included the metabolites of interest. Metabolite
quantification was performed using liquid chromatography/mass spectroscopy (LC-MS),
calibrated with known standards at the Southeast Center for Integrated Metabolomics at UF.

Internal standards were prepared as follows: Adenine-!SN> (Cat #A2880477), guanine-
4,5-13C 7-15N (Cat #G836003), hypoxanthine-'3C2 SN (Cat #H998504) and xanthine-

BC Nz (Cat #X499954) were purchased from Toronto Research Chemicals (Toronto, ON).
Adenosine-!"Ns 5’-monophosphate (Cat #662658), adenosine-'"Ns 5'-triphosphate (Cat
#707783), guanosine-'>Ns 5’-monophosphate (Cat #900380) and guanosine-'3C1o 5'-triphosphate
(Cat #710687) were purchased from Sigma-Adrich (St. Louis, MO). The labeled adenosine and
guanosine triphosphates were dephosphorylated with alkaline phosphatase (Promega, Madison,
WI; Cat #M1821) according to the manufacturer’s directions to produce the corresponding
labelled nucleosides. Uric acid-13C 80 was synthesized from urea-'3C 80 (Cambridge Isotopes,
Andover, MA; Cat #COLM-4861) and 5,6-diaminouracil sulfate (Sigma-Aldrich; Cat #D15103)
according to methods of Cavalieri et al (Cavalieri et al. 1948).

For the purine assay, internal standard (10ul) was added to 50ul worm homogenate and
acetonitrile (100ul) was added to precipitate proteins for LC-MS/MS analysis. Samples were
chromatographed on a Waters Cortecs UPLC HILIC column (2.1 x 150 mm, 1.6pm) eluted with
an acetonitrile-water gradient: Buffer A) 5 mmol/L ammonium acetate and 0.1% acetic acid in

acetonitrile: water (:: 98: 2); Buffer B) 10 mmol/L ammonium formate and 0.5% formic acid in

11
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water. Mass spectrometric detection was on a Bruker EvoQ Elite MS/MS in positive ion mode,
using heated electrospray ionization.

Stock solutions of the purines analyzed were prepared from authentic standards, and their
concentrations determined by absorbance (Umbreit et al. 1960). The stock solutions were then
mixed to give an appropriate working standard, which was then serially diluted to produce
standard curves. Peak area ratios were calculated by dividing the metabolite peak area by the
peak area of its isotopically labeled internal standard. Metabolite concentrations were calculated

by comparing these peak area ratios to the standard curves.

Data Analysis:

(i) Estimation of mutational parameters
To quantify the cumulative effects of mutation on individual traits, we calculated the per-
generation change in the average trait value (AM, the "mutational bias") and the per-generation
rate of increase in genetic variance (Vw, the "mutational variance"). Mutational bias is calculated
as:

Zya — Z
AM = MA_ 0
tz,

where Z,;4and Z, 4 are the means of the MA lines and the GO pseudolines, respectively, and ¢ is
the number of generations of MA (=250) (Lynch and Walsh 1998).

The mutational variance (V) is calculated as:

VL,MA - VL,O
Ym=—""%;

where V14 1s the among-line variance of the MA lines, V70 is the among-line variance of the PS

lines, and ¢ is the number of generations of MA. The among-line variance of the PS lines

12
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includes the effects of any residual segregating genetic variance, but also heritable epigenetic
effects and the heritable effects of genotype-environment correlation (Lynch 1985). We report
Vi scaled by the residual variance (mutational heritability; hZ = Va/VEe, where VE is the residual
component of variance). The mutational covariance between traits (COVy) is estimated
analogously to Vs, with the among-line components of variance (V1) replaced with the among-
line components of covariance (i.e., the off-diagonal elements in the variance-covariance
matrix).

(ii) Statistical analyses

All traits except ADA and ADK concentrations and ADA activity depend on the total
biomass in the sample, for which the concentration of total soluble protein is a proxy. Those
three traits are expressed relative to a known amount of loaded protein and thus do not depend on
the total protein in the sample. The first step in the analysis was to regress log(trait value)
against log(total protein) for each trait except the three mentioned above, including the random
effect of extraction block (all traits) and assay block (ADA and ADA activity); the linear model
is yij = + pi + by +(cx) + €, where u is the overall mean, p; is the total protein concentration in
sample i, b; is the random effect of extraction block j, ck is the random effect of assay block & (for
ADA and ADK activity), and ¢ is the residual. Residuals were checked for normality against a
Q-Q plot and a few obvious outliers removed (three low, four high, » =3514). The residuals are
the dependent variables in downstream analyses.

Next, we used a multivariate GLM (i.e,, MANOVA) to address the hypotheses that,
averaged over all 16 traits, (i) the vector of trait means differs between the GO ancestor and the
MA lines (i.e., ]AM[>0), and (i1) the mutational variance (V) is >0. The full GLM can be

written as: yijk = u + akx + Lij + €ijk,, where yiu is the vector of dependent variables measured in
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sample i estimated as described above, u is the overall mean, ax is the fixed effect of treatment
(GO or MA), Ly is the random effect of line / given treatment group £, and & is the residual
effect given treatment group k. This model assumes a common variance component across all
traits for each random effect. Random effects (block, line, replicate) were estimated by restricted
maximum likelihood (REML) with degrees of freedom determined by the Kenward-Roger
method (Kenward and Roger 1997). Models were tested hierarchically, by sequential
comparison of the full model, in which variance components are estimated separately for each
treatment group, against a model with a single variance component for that effect, which was
tested in turn against a model with the effect absent (i.e., no among-block or among-line
variance). Hierarchical tests of nuisance parameters (block, replicate) were compared by the
Bayesian Information Criterion (BIC); the model with the smallest BIC was judged the best
model. The random effect of line, which is a parameter of interest, was compared by likelihood-
ratio test (LRT), with degrees of freedom equal to the difference in the number of parameters
estimated in the two (nested) models. The fixed effect of treatment group (GO vs. MA) was
tested by F-test on type III sums of squares. These analyses were implemented in the MIXED
procedure of SAS v. 9.4.

The preceding model estimates a single variance component for each random effect,
averaged across all traits, and there is no reason to expect the mutational variance will be the
same for every trait. We next attempted to fit a model with the among-line variance estimated
jointly for each trait (i.e., a banded main diagonal covariance structure), but the analysis failed to
converge. Instead, we fit the preceding GLM for each trait y;x individually, with the relevant
covariates for each trait. Statistical significance of among-line components of variance was

assessed for each treatment group by LRT of models with and without the among-line

14



319  component of variance constrained to zero, with the criterion of significance equal to the

320 experiment-wide a=5%= 0.05/16.

321

322 RESULTS

323  Per-generation change in trait means (AM):

324 Total soluble protein is a proxy for the total biomass in the sample. On average, after
325  accounting for the random effects of extraction block and line, mean total protein concentration
326  of the GO pseudolines and the MA lines was very similar (~2% lower in the GO pseudolines;
327  F1,108=0.10, P>0.75). From that result we conclude that there were no systematic differences in
328  input biomass between the two treatment groups.

329 Averaging over all 16 traits, MANOVA reveals a highly significant reduction in

330 normalized trait mean in the MA lines (-0.81 x 10-*/generation; F1.428=24.64, P<0.0001), and the
331  point estimate of AM is negative for every trait except ADK concentration (Table 1). The

332 overall change in these metabolic traits (~ -0.1%/generation) is very similar to a wide variety of
333  other traits quantified in these MA lines (see Supplemental Table S2 in Davies et al. 2016).

334 It is curious that lines with the same average biomass differ significantly in the mean of
335 this set of metabolic traits. One possibility is that MA lines experience a general metabolic

336  slowdown, leading to lower concentrations of these reactants, but we have no concrete evidence
337  for that. Another possibility is that even though samples were synchronized by bleaching and
338  were cultured to the same semi-quantitative stage of development ("a few" eggs were present on
339 the plate), subtle differences in the distributions of developmental stages may exist at any

340  hierarchical level in the experiment (GO vs. MA; among lines; among replicates within a line). It

341  is known that there are consistent changes in the genome-wide transcriptional profile over the
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course of a few hours of development (Francesconi and Lehner 2014; Zalts and Yanai 2017), and
there is reason to expect that changes in metabolite levels would change at least as fast.
Determining whether a given difference in trait value between two groups is due to a true
difference in the trait at the exact same stage of development, or due to a subtle (perhaps non-
linear) difference in rate of development is a nearly insoluble problem once worms have
developed past a few embryonic cell divisions.

As quantified in our enzyme activity assays, the output variable ("activity") is a function
of both enzyme kinetics (i.e., activity per se) and the amount of enzyme in the sample.
Interestingly, for both enzymes, the correlation of the measured activity was either negatively or
not correlated with the concentration of the enzyme. In the case of ADA, the negative
correlation was moderately negative and highly significant (phenotypic correlation » =-0.27,
df=176, P<0.001). The correlation for ADK was near zero and not statistically significant,
albeit with a smaller sample size (» = -0.07, df=113, P>0.48). An obvious post hoc explanation
is that the flux through the pathway is tightly regulated, and a change in activity per se is
compensated for by a change in concentration of the enzyme in the appropriate direction, or
possibly vice versa. That argument further implies, however, that the measured output of the
reaction depends on factors other than the inherent activity of the enzyme itself, because at least
in the PS lines the protein sequence is presumably identical in all samples (transcriptional and

translational errors notwithstanding).

Mutational variance (or the Lack Thereof):
As mutations accumulate over time, MA lines are expected to diverge in trait values, leading to a

consistent, long-term increase in the among-line component of variance (VL). Scaled per-
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generation, this increase is the "mutational variance", Vm (Lynch and Walsh 1998, p. 330). For
various reasons, however, some fraction of the among-line variance may be due to factors other
than the accumulation of new mutations. Possible reasons include residual segregating variation
in the ancestor of the MA lines, genotype-environment correlations (sometimes unknown or
unknowable), and heritable epigenetic effects (Rechavi and Lev 2017; Perez and Lehner 2019).
To account for potential non-genetic contributions to the among-line variance, it is necessary to
include a set of "pseudolines" (PS) of the ancestor, which are treated both experimentally and
statistically as if they were MA lines (Lynch 1985; Teotonio et al. 2017).

As noted in the preceding section, the mean concentration of total soluble protein did not
differ between treatment groups. However, there was significant variance among MA lines after
accounting for the random effect of extraction block, whereas the REML estimate of the variance
among PS lines was zero, resulting in a mutational heritability h%= 0.76 x 10-3/generation (LRT,
chi-square=4.5, P<0.04). The variance in total protein concentration among MA lines
presumably reflects consistent differences in biomass among MA lines, which may in turn reflect
differences in fecundity, growth rate, body size, or some combination thereof.

Averaging over traits and treatment groups, the multivariate GLM reveals a highly
significant among-line component of variance (LRT, chi-square=135.2, df=1, P<<0.0001).
However, a model in which the among-line variance is estimated separately for MA lines and PS
lines is not significantly better than the model with only a single among-line component of
variance (LRT, chi-square=2.7, df=1, P>0.1). When treatment groups are analyzed individually,
models with an among-line component of variance are significantly better than models with no
among-line variance for both MA lines (LRT, chi-square=113.8, df=1, P<<0.0001) and GO

pseudolines (LRT, chi-square=19.3, df=1, P<0.0001). Measured on the relevant scale (see
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Methods) and averaged over all traits, the point estimate of the among-line variance of the PS
lines (0.100 + 0.027) is about 60% of that of the MA lines (0.166 + 0.021).

Conceivably, technical variance associated with enzyme or metabolite assays could
swamp biological variation and lead to a spurious partitioning of variance. However, several
lines of evidence suggest this is not the cause of the substantial variance among PS lines. First,
and most importantly, the technical variation would have to contribute in such a way as to inflate
the among-line variance of the GO pseudolines (i.e., a rather pathological Type 1 error), rather
than inflating the among-biological replicate (within-line) variance and thereby simply reducing
the power to detect among-line variance. Second, we ran technical replicates (i.e., samples of
extracted material were split and assayed independently) for ADK activity. The among-technical
replicate component of variance was about 1/3 that of the among-biological replicate variance,
and pooling the technical replicates within a biological replicate or including them separately had
no effect on the among-line variance. Based on previous experience with our metabolomics
screen, technical replicate variance for the metabolic pools is expected to be less than 5% of the
total variance for all metabolites except for GMP and uric acid, which are expected to be less
than 10% (Eoin Quinlivan, Southeast Center for Integrative Metabolomics, personal
communication).

It is also very unlikely that residual segregating genetic variance could explain the similar
magnitudes of the among-line variance in the PS and MA lines. First, any residual genetic
variation would be equivalently partitioned among PS lines and MA lines, and would contribute
equally to the among-line variance (on average, sampling variance notwithstanding). The MA
lines were initiated in March, 2001, at which time the G0 ancestor was expanded to large

population size (three generations) and cryopreserved. Over the intervening 16 years prior to the
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start of this project, the ancestor has been thawed, re-expanded, and re-frozen several times. We
do not know exactly how many times the ancestor has been thawed/expanded/re-frozen, but five
is a reasonable guess. If we assume that each expansion takes three generations and there have
been five such expansions, then any two PS lines will have diverged for 2x5x3=30 generations.
In contrast, any two MA lines have diverged for 2x(250+3)=500 generations. This is a
conservative estimate because MA lines used for this experiment were also thawed and refrozen
more than once, again we do not know how many times this has happened but it would inflate
the number of generations of divergence between MA lines regardless of how many rounds of
freeze-thaw occurred.

If technical and/or residual genetic variation cannot explain the among-line variance of
PS lines, two possibilities remain. Individuals in different replicates from which data were
collected ("Plate 6" in Fig. 2B) last shared a common environment four generations previous
(Plate 3 in Fig. 2B) and last shared a common ancestor six generations previous (Plate 2 in Fig.
2A). The first possibility is that some feature of the environment shared by individuals on Plate
3 carried over for four generations, to be shared by all the replicates of that PS line. For
example, suppose that the cryopreservation microenvironment was differently stressful for two
PS lines (e.g., perhaps one sample sat in the glycerol freezing solution longer at room
temperature before freezing than another), such that one sample ("tube 2" in Fig. 2) took longer
to recover from the freeze/thaw than another. That could mean that the parents of the eggs
harvested for extraction (Plate 6) were of different average ages due to their grandparents having
initiated reproduction at different times and the timing differential having propagated across the
intervening three generations. In that case, the proximate cause of the difference between the PS

lines would be a parental effect, albeit one with origins four generations in the past.
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Alternatively, it is possible that the different environmental effects shared by individuals
on Plate 3 induced an epigenetic response that carried over for four generations, even though the
environmental effect did not last past Plate 3. Such effects are exceptionally well-documented in
C. elegans and can have a variety of causes, among them parental age (Perez et al. 2017),
nutritional status (Miersch and Doring 2012; Tauffenberger and Parker 2014; Jobson et al. 2015),
and pathogen exposure (Rechavi et al. 2011). Recently, Sarkies and his colleagues reported that
small RNA (specifically, piRNA/22G RNA) epimutations accumulate spontaneously at a rate
~25X that of DNA sequence mutations, with a half-life on the order of 2-3 generations, but with
significant fraction maintained for ten generations or more (Beltran et al. 2019). That time-scale
is entirely consistent with the findings reported here.

Rechavi and Lev (2017) defined "transgenerational" epigenetic effects as those that are
passed down to at least the F3 generation, in the absence of the environmental (or endogenous)
trigger. It is important to note that we cannot distinguish between microenvironmental effects
that are propagated across generations and thus result in conventional parental effects and "true"
transgenerational epigenetic effects. In fact, unambiguously discriminating between the two
possibilities in a context in which the experimenter does not control the environmental cue is
extremely difficult. However, from the perspective of "things that will cause estimates of
mutational variance to be misleading", the distinction is immaterial. We return to the topic of

epigenetic inheritance in the Discussion.

Correlations among traits
The absence of significant mutational variance precludes estimation of mutational correlations,

which was one of the underlying motivations of this study. However, because there is significant
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among-line variance in both the PS and MA lines, it is meaningful to investigate the among-line
correlations. Note that these are not phenotypic correlations in the usual sense. Presumably, the
among-line correlations reflect what might be thought of as epi-pleiotropy — the effects of an
epigenetic variant (whatever it may be) on multiple traits — as well as the cumulative pleiotropic
effects of new mutations.

Because there are not enough lines to jointly estimate the full among-line covariance
matrix, and because our primary interest is in adenosine metabolism, we restricted the analysis to
the eight traits in the adenosine metabolism network. We first addressed the hypothesis that all
traits are uncorrelated at the (epi)genetic level by testing the fit of a model with the full
covariance matrix estimated (unrestricted covariance structure) at the level of line and replicate
against a model with the off-diagonal elements of the among-line covariance matrix constrained
to zero (banded main diagonal covariance structure), with the residual covariance matrix
unconstrained. The model with the off-diagonal elements of the among-line covariance matrix
constrained equal to zero provided a better fit than the model with unconstrained among-line
covariances (ABIC = 76.3 units). We next tested the better model against a model with both
among-line and residual covariances constrained equal to zero. The model with unstructured
residual covariances fit better (ABIC = 15.4 units). The average absolute within-line (residual)
correlation was only about 0.12 (max = 0.56; Supplemental Table S2), which shows that our
total sample size (n<290) provides substantial power to detect weak correlations. However, 54
lines provide little power to jointly estimate 28 among-line covariances, given that they are not
predominantly large. About the most we can conclude is, first, that phenotypic correlations are
weak, and second, that (ep1)pleiotropy seems unlikely to be both strong and ubiquitous in the

adenosine metabolism pathway.
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DISCUSSION

We find ourselves confronted with an inconvenient truth: taken at face value, the results
we report here are starkly contradictory to the findings reported by Davies et al. (2016). We
chose the adenosine metabolism pathway for further scrutiny based on two findings of Davies et
al. In that study, mean adenosine concentration increased by over 4% per generation — one of
the largest values of AM reported for any trait in any organism — whereas in this study we found
a decline in adenosine concentration of about 0.2%/generation in (nearly) the same set of MA
lines (Table 1). Similarly, Davies et al. reported a highly significant mutational heritability
(Vm/VE) for adenosine concentration of about 0.004/generation — toward the high end of
mutational heritabilities (Houle et al. 1996) — whereas, we found a not significant point estimate
of 0.0016/generation. The discrepancy is not restricted to a handful of traits: Davies et al.
reported significant mutational variance for 22 of the 29 metabolites included in their study.
Clearly, the two studies are at odds: they can't both be right, although they may both be wrong in
different ways. The discrepancy is not due to the exclusion of four lines from this study, which
had little effect on the results for most traits in our data (Supplementary Figure S4). The
methods of quantifying metabolite concentration were different in the two studies; we used LC-
MS in this study, whereas Davies et al. used GC-MS. The different separation platforms (GC vs.
LC) have distinct sources of variability (Gowda and Djukovic 2014), and we included total
protein as a covariate whereas Davies et al. did not. Either of these methodological differences
could in principle explain lower mutational heritabilities in our study, although neither

methodological difference can adequately explain a consistent mutational bias.
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Critically, the lack of mutational variance is not because there is no variation between
MA lines. For six of the 16 traits, the variance among MA lines is significantly greater than zero
at the experiment-wide 5% level (0.05/16 = P<0.003), and four more traits are significant at the
individual 5% level (Table 2). Moreover, whether or not the among-line variance is significantly
greater than zero is not random with respect to the type of trait. Of the ten metabolites, for only
one (Adenine) is the among-line variance not significantly greater than zero at the individual 5%
level, whereas of the six protein traits, only one (ADA concentration) has significant among-line
variance at the individual 5% level. When judged by the criteria of Davies et al., the results of
the two studies are in fact quite compatible.

Thus, the cumulative effects of mutation are not swamped by technical or
microenvironmental noise (i.e., residual variance; Ve in the parlance of quantitative genetics).
Rather, it is that the variance among pseudolines of the ancestral control is of similar magnitude
to the variance among MA lines. For economic reasons (metabolomics is expensive), Davies et
al. did not include pseudolines of the GO ancestor in their study. Returning to adenosine as an
exemplar, all but three of the 43 MA lines included in the Davies et al. study had mean adenosine
concentrations greater than that of the GO ancestor, which was an order of magnitude less than
the mean of the MA lines in normalized units (Z,4 = 22.6+3.4, n=3.9; z,= 2.1+0.7,n=9; see
Figure 1 of Davies et al. (2016)). Because AM is measured relative to the ancestor, if the mean
value of the ancestor is atypically small, AM will be atypically large. We have no reason to
doubt the accuracy of the estimate of mean adenosine concentration of the GO ancestor in the
Davies et al. study. 3/43 MA lines had mean concentrations lower than the ancestor, and another
seven MA lines had means less than the largest of the nine replicates of the ancestor. Moreover,

the average metabolite concentration of the ancestor was not low relative to the MA lines when
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all 29 metabolites are considered: the median rank of the ancestor is 34/44 (data from Davies et

al. (2016) are archived in Dryad, at https://datadryad.org/stash/dataset/doi:10.5061/dryad.2dn09).

It is important to carefully consider the differences between the ways the ancestral
controls were treated in the two studies. At the outset of the Davies et al. study, in 2009, a single
cryopreserved sample of the ancestor was thawed in the Baer lab (Florida) and plated. From that
plate, a "chunk" containing hundreds of worms was transferred onto another plate and sent to the
Leroi lab in England, at which time worms were washed from the plate and cryopreserved at -
80° C. Later, one tube of the ancestor was thawed and plated onto a 100 mm plate. When the
population on that plate reached high density (2-3 generations), worms were washed from the
plate and "bleached" (Sulston and Hodgkin 1988), and surviving L1 larvae were chunked onto a
new plate. From that plate, nine replicate plates were initiated from a single individual, and the
populations grown to high density (2-3 generations) and synchronized by bleaching. Surviving
L1s were plated and grown until worms reached young adulthood, at which time worms were
collected for extraction of metabolites. In this design, the nine replicate plates are conceptually
identical to the five replicates of each MA line, and the among-replicate (=within-line) variance
is the residual variance, VE.

In this study (depicted in Figure 3A), 15 replicate plates were initiated from a single
individual, grown to high density (two generations), and cryopreserved. These are the 15
ancestral pseudolines (PS). Subsequent to thawing (depicted in Figure 3B), the PS lines were
treated identically to MA lines, with five replicate plates per PS line initiated from a single
individual worm taken from the thawed plate. The replicates were then propagated to the F3
descendants of the original founder of the replicate, and their offspring (F4) collected for

analysis. The variation among replicates is the residual variance, Ve. Any effects that are
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common to a PS line (i.e., which contribute to VL) must necessarily have been maintained at
least since the replicates shared a common environment four generations previously, and
potentially for as many as the six generations subsequent to the founder of the PS line.

We believe the source of the discrepancy in AM between the two studies is likely the
same as the source of the discrepancy in Vwm: short-term heritable (possibly epigenetic) variation.
For example, there is a ~120X difference between the mean adenosine concentrations between
the two most extreme of the 43 MA lines in the Davies et al. study. The conventional
interpretation is (and was) that spontaneous mutations accumulated over a couple of hundred
generations can lead to huge differences in metabolite concentrations (and presumably in the
concentrations of other biological molecules). However, there is a ~100X difference in the mean
adenosine concentration between the two most extreme of the PS lines in this study, lines that
have diverged for only a few generations. If the one aliquot of the ancestor sampled in the
Davies et al. study just happened by chance to fall in the lower tail of the distribution, AM
becomes "among the largest reported for any trait" (quoting Davies et al. 2016, p. 2243).

As we noted in the Results, we cannot formally distinguish between a
microenvironmental effect that is propagated across generations, in which case the short-term
heritability would be due to a parental effect, and a "true" transgenerational epigenetic effect. If
the cause is in fact epigenetic rather than parental, what might be the cause(s), both proximate
(i.e., mechanistic) and ultimate (e.g., environmental)? There is a burgeoning literature on
heritable epigenetic effects in C. elegans, which can have a number of mechanistic causes,
including several varieties of small RNA (Rechavi and Lev 2017), histone modifications
(Furuhashi et al. 2010; Rechtsteiner et al. 2010; Tabuchi et al. 2018), and possibly 6-methyl

adenine in DNA (Greer et al. 2015). Heritable epigenetic effects have been shown to affect a
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wide variety of traits (Schott et al. 2014; Demoinet et al. 2017; Han et al. 2017; Kishimoto et al.
2017), and in some cases have been shown to last for tens of generations (Ashe et al. 2012;
Rechavi and Lev 2017). Parental age (Perez et al. 2017) and nutrition status (Miersch and
Doring 2012; Tauffenberger and Parker 2014; Jobson et al. 2015) are especially well-
documented drivers of epigenetic variation and are obvious potential sources of variation in the
experiments reported here.

Nailing down the mechanistic cause(s) responsible for the short-term heritable effects
inferred here would be both very interesting and very challenging, but it is beyond the scope of
this study. The most promising avenue of investigation would seem to be an experiment in
which samples consisting of a small and uniform number of individuals at carefully documented
developmental stages were split for combined metabolomics/transcriptomics, with a focus on
piRNA/22G RNA variation (Beltran et al. 2019). However, while we do not know the
mechanistic underpinning(s) of the short-term heritable variation among the ancestral
pseudolines, the fact that we detected so much variation suggests that it is an important
consideration in mutation accumulation studies, and more generally, in any quantitative genetic
study in which phenotypic variance is partitioned within and among genotypes. Whether the
high short-term heritability applies to taxa other than worms is unknown. However, a study of
DNA-methylation in a set of Arabidopsis thaliana M A lines revealed that 5-methyl-cytosine
epimutations occurred at a frequency several orders of magnitude greater than base substitution
mutations (Becker et al. 2011). The dominant modes of epigenetic control differ between plants
and nematodes (C. elegans apparently does not methylate cytosine in DNA), but the general
conclusion that epimutations can introduce potentially important heritable effects in the short

term is unavoidable.
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In the only study comparable to this one, Clark et al. (1995, Table 3) found significant
mutational heritability for the activity of 8/12 metabolic enzymes in a set of ~50 Drosophila
melanogaster MA lines that had evolved under MA conditions for 44 generations. However,
their assay conflates variation in enzyme activity per se and variation in enzyme concentration
into the composite category "enzyme activity" (normalized by body weight and total protein
concentration), without correcting for enzyme concentration. The Drosophila melanogaster
genomic mutation rate is perhaps 3X greater than that of C. elegans (Sharp and Agrawal 2012;
Schrider et al. 2013), which suggests that after 44 generations of MA, a Drosophila MA line
would have accumulated approximately half as many mutations as one of our C. elegans MA
lines. Contrary to our expectation based on the preceding evidence, neither of the two metabolic
enzymes we assayed (ADA and ADK) exhibited among-line variance for activity per se in either
the MA lines or the PS lines. Thus, for those traits, we cannot attribute the absence of Vm to the
confounding effects of among-line variance in the ancestor. It is interesting that the activity of
these two enzymes is similarly unperturbed by both mutation and short-term heritable factors.
However, neither ADA nor ADK was included in the Clark et al. study; it is certainly possible
that had those enzymes been included in that study, they would have fallen in the group of
enzymes without significant Vm.

We conclude with two thoughts. First, and more parochially, for this set of metabolic
traits (enzyme activity notwithstanding), a few generations of short-term heritable effects swamp
the signal of ~250 generations of accumulated mutations. Perhaps that should not be surprising:
it is simply phenotypic plasticity, albeit of a different sort than evolutionary biologists are used to
thinking about (Dey et al. 2016). It does strongly suggest, however, that investigators doing MA

experiments need to be especially mindful of how the ancestor is treated, or employ designs in
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which direct comparison to an ancestor is not needed, such as regression of the among-line
variance on generations of MA over multiple assays at different time points. In fact, that was the
design employed in the Clark et al. study, but they constrained the intercept to equal zero, on the
assumption that the among-line variance of the ancestor was zero. But also, second, and more
broadly: these findings cast the recent increase in human metabolic complex disease in a
different light. Although we remain skeptical of epigenetic variation as a general cause of
"missing heritability" in humans, it may be that metabolic traits are particularly susceptible to

epigenetic regulation and are worthy of closer scrutiny in that regard.
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635  Figure 1. Adenosine metabolism pathway. Activity and concentration of enzymes Adenosine deaminase (ADA, red) and Adenosine
636  kinase (ADK, red) were measured. We were unable to measure the concentration of APRT (pink). Metabolites in orange had

637  concentrations quantified, those in gray were not measured.
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D Cryopreserved
GO ancestor

Figure 2. Propagation of mutation accumulation (MA) lines. The GO ancestor was thawed from
a cryopreserved sample and a single hermaphrodite picked onto each of 100 agar plates. MA
lines were propagated via single worm descent for ~250 generations. 43 MA lines and the GO

ancestor were included in this experiment.
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Figure 3. A) Generation of GO pseudolines (PS lines). The GO ancestor was thawed from a
cryopreserved sample ("Tube 1", "Plate 1") and 15 individuals were picked onto individual agar
plates ("Plate 2"; PS1-PS15) and allowed to reproduce for two generations prior to
cryopreservation ("Tube 2"). B) Replication of lines for protein/metabolite extraction. Lines (P1,
"Tube 2" from [A]) were thawed (plate 3) and five individuals were picked onto individual agar
plates ("Plate 4", Rep1-Rep5) and propagated by single-worm descent for another generation
(F1.1, "Plate 5"). F1.1 worms were allowed to reproduce for two generations (F2.1, F3.1), and
when the plates contained gravid worms (F3.1) and eggs (F4.1) they were bleached. The
resulting eggs (F4.1) were transferred to a new plate ("Plate 6") and allowed to hatch and grow to
the young adult stage, at which time protein and metabolites were extracted. The timeline at the
top represents the number of generations of reproduction of PS lines subsequent to divergence of
the lines from the common ancestor. Population sizes at each generation are summarized in

tabular form in Supplementary Table S1.

32



Trait Mo Mu Ry (x 103) AM (x 10°)

ADA activity 0.0051/0.0037 | 0.0048/0.0035 | -0.15 (0.40) -0.24
(0.00042) (0.00035)

ADK activity 0.012/0.012 0.012/0.012 -0.001 (0.0037) | -0.003
(0.000128) (0.000061)

ADA conc 0.39/0.29 0.25/0.16 -1.66 (0.88) -1.40
(0.10) (0.084)

ADK conc 0.62/0.33 3.30/0.71 2.67 (1.16) 17.18
(0.37) (1.11)

Tubulin (ADA) | 0.17/0.17 0.13/0.17 -0.95 (0.56) -0.81
(0.02) (0.0086)

Tubulin (ADK) | 0.18/0.18 0.13/0.18 20.90 (0.673) | -0.96
(0.021) (0.014)

Total protein 0.70/0.69 0.68/0.66 0.005 (0.19) -0.11
(0.046) (0.051)

AMP 11.00/9.75 8.53/7.91 -0.79 (0.50) -0.90
(1.62) (1.34)

Adenine 0.27/0.20 0.28/0.20 0.13 (0.70) -0.026
(0.073) (0.063)

Adenosine 4.67/0.46 2.19/0.35 -0.19 (0.71) -2.12
(2.40) (1.79)

GMP 4.26/3.76 2.90/2.16 -1.82 (0.57) -1.28
(0.58) (0.43)

33




659

Guanine 2.07/2.10 1.51/1.31 -0.89 (0.62) -1.08
(0.35) (0.24)

Guanosine 3.45/1.04 2.08/0.49 -1.25 (0.62) -1.59
(1.78) (1.63)

Hypoxanthine 5.32/5.20 4.19 /3.06 -1.69 (0.820) -0.85
(0.91) (0.56)

Inosine 2.25/1.04 1.64/0.52 -1.38 (0.85) -1.09
(1.15) (0.95)

Uric Acid 16.40/12.05 14.12/11.14 -0.72 (0.44) -0.55
(2.97) (2.68)

Xanthine 5.03/4.37 3.11/2.34 -2.06 (0.64) -1.53
(0.66) (0.39)

Mean/Median 0.19/-0.90

660 Table 1. Means. Column headings are: Mo, GO pseudoline mean/median (SEM); Mum4, MA
661  mean/median (SEM); Ry, per-generation change in trait mean conditioned on extraction block
662  (all traits) and total protein concentration (all traits except ADA activity and ADA and ADK
663  concentration, (SEM); AM, per-generation change in trait mean scaled as a fraction of the GO

664 mean.
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Trait VL,Go ViMmA Vi h3, (no PS,x 103) | h%,(— PS,x 10%)
ADA Activity 0 0.037 (0.028) | 0.29 (0.038) 0.26 0.26
ADK Activity 0 0 0.0035 (0.00039) |0 0
ADA Conc. 0.16 (0.17) 0.40 (0.19)** | 1.01(0.15) 0.80 0.47
ADK Conc. 0.17 (0.29) 0 2.62(0.41) 0 0
Tubulin Conc. (ADA) | 0.030 (0.087) | 0.079 (0.067) | 0.45 (0.07) 0.35 0.22
Tubulin Conc. (ADK) | 0 0.096 (0.088) | 0.57 (0.099) 0.34 0.34
Total Protein 0 0.022 (0.008) | 0.059 (0.0065) 0.75 0.75
AMP 0.029 (0.063) | 0.12(0.047)** | 0.36 (0.042) 0.67 0.51
Adenine 0.13 (0.14) 0.042 (0.055) | 0.69 (0.089) 0.12 0
Adenosine 0.076 (0.14) 0.30 (0.090) ** | 0.33 (0.039) 1.86 1.39
GMP 0.059 (0.074) | 0.15(0.074)* | 0.80 (0.092) 0.37 0.22
Guanine 0.19 (0.11)** | 0.081 (0.045)* | 0.38 (0.050) 0.49 0
Guanosine 0.21 (0.14)* 0.14 (0.066)** | 0.63 (0.074) 0.46 0
Hypoxanthine 0.12 (0.14) 0.36 (0.16)** | 1.24(0.15) 0.59 0.39
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Inosine 0.27 (0.18)* 0.38 (0.14)** 0.82 (0.10) 0.92 0.25

Uric Acid 0.063 (0.048) 0.074 (0.038)* | 0.37 (0.045) 0.40 0.063
Xanthine 0.058 (0.088) 0.19 (0.092)* 0.67 (0.090) 0.56 0.38
Mean / Median 0.50/0.42 0.27/0.22

666

667  Table 2. Variances. Column headings are: VL o, among-line variance of the G0 pseudolines (SEM); VL ma, among-line variance of
668  the MA lines (SEM); VE,, the residual (within-line) variance of the MA lines (SEM); h% (no PS), mutational heritability calculated as
669  VLMA/2tVE; h% (— PS), mutational heritability calculated as (Vima-VLGo)/2fVE. See Methods for details of the estimation of

670  variance components.

671  * Likelihood ratio test, P<0.05

672  ** Likelihood ratio test, P<0.003 (experiment-wide 0<0.05)
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