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Short-term heritable variation overwhelms two hundred generations of mutational variance for 1 

metabolic traits in Caenorhabditis elegans 2 
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ABSTRACT 7 

Metabolic disorders have a large heritable component, and have increased over the past few 8 

generations.  Genome-wide association studies of metabolic traits typically find a substantial 9 

unexplained fraction of total heritability, suggesting an important role of spontaneous mutation.  10 

An alternative explanation is that epigenetic effects contribute significantly to the heritable 11 

variation. Here we report a study designed to quantify the cumulative effects of spontaneous 12 

mutation on adenosine metabolism in the nematode Caenorhabditis elegans, including both the 13 

activity and concentration of two metabolic enzymes and the standing pools of their associated 14 

metabolites.  The only prior studies on the effects of mutation on metabolic enzyme activity, in 15 

Drosophila melanogaster, found that total enzyme activity presents a mutational target similar to 16 

that of morphological and life-history traits.  However, those studies were not designed to 17 

account for short-term heritable effects.  We find that the short-term heritable variance for most 18 

traits is of similar magnitude as the variance among MA lines.  This result suggests that the 19 

potential heritable effects of epigenetic variation in metabolic disease warrant additional 20 

scrutiny. 21 

  22 
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INTRODUCTION 23 

Human metabolic diseases have increased markedly in frequency over the past few generations 24 

(Saklayen 2018). Large genome-wide association studies (GWAS) conducted on the human 25 

metabolome have shown that metabolic traits are highly heritable, but that a substantial fraction 26 

of the heritability of metabolic traits remains unexplained by the cumulative effects of mQTL 27 

(Rhee et al. 2013; Shin et al. 2014; Mahajan et al. 2018). This discrepancy indicates that the 28 

remainder of the heritable variation is the result of some combination of (1) rare, highly 29 

deleterious variants recently arisen in the population; (2) many variants with effects too small to 30 

be detected by the typical GWAS (Manolio et al. 2009; Eichler et al. 2010; Boyle et al. 2017); 31 

(3) epistasis (Zuk et al. 2012; Sackton and Hartl 2016), and/or (4) cross-generational epigenetic 32 

effects that are heritable over the short term but leave no genetic signature (Furrow et al. 2011; 33 

Richard et al. 2017). Scenarios (1) and (2) (and maybe 3) imply a significant role of spontaneous 34 

mutations at mutation-selection balance in the risk of metabolic disease, although the rapid 35 

increase in frequency further implies some sort of genotype-environment interaction.  A recent 36 

onslaught of epigenetic effects is considered less likely as a general explanation for the "missing 37 

heritability" of human complex traits (Wainschtein et al. 2019), but specific examples of cross-38 

generational effects are known in humans (Pembrey et al. 2006; Curley et al. 2011; Veenendaal 39 

et al. 2013; Rando and Simmons 2015), and are well-documented in other organisms (e.g., 40 

plants; Munir et al. 2001; Luna et al. 2012; Rasmann et al. 2012) and C. elegans; (Greer et al. 41 

2011; Rechavi et al. 2011; Ashe et al. 2012; Jobson et al. 2015; Marré et al. 2016).    42 

 To our knowledge, the cumulative effects of spontaneous mutation on metabolic traits 43 

have been investigated in only three experiments.  Mukai et al. (1984) measured the cumulative 44 

effects of 300 generations of spontaneous mutations on the activity of alcohol dehydrogenase 45 
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(Adh) in Drosophila melanogaster.  In a groundbreaking study, also in Drosophila 46 

melanogaster, Clark et al. (1995) quantified the input of mutational (co)variance in the activity 47 

of a set of 12 metabolic enzymes and two metabolites. In both studies, mutational heritability 48 

(ℎ𝑀
2 , the per-generation increase in genetic variation (VM) scaled as a fraction of the residual 49 

variance, VE) of enzyme activity was on the order of that of life-history and morphological traits 50 

(ℎ𝑀
2 ≈10-3/generation; Houle et al. (1996)). In several of the mutation accumulation (MA) lines 51 

studied by Clark and his colleagues, there were large changes in enzymatic activity relative to the 52 

population mean over the course of 44 generations of evolution under minimal selection. Results 53 

for the two metabolites studied were analogous, but there was no attempt to assess the 54 

relationship between enzyme activity and metabolite concentration in the context of metabolic 55 

pathways.  56 

More recently, Davies et al. (2016)  examined the changes in metabolite concentration for 57 

29 metabolites in a set of C. elegans MA lines that had undergone ~250 generations of evolution 58 

under minimal selection and found that metabolites vary considerably in their response to 59 

spontaneous mutation, as quantified by the change in mean metabolite concentration (ΔM) and 60 

by the mutational (co)variance.  Associations between mutational correlations between pairs of 61 

metabolites (rM, presumably the result of pleiotropy) and proximity of the metabolites in the 62 

global metabolic network were, on average, positive but weak (Johnson et al. 2018).  The 63 

weakness of the association between mutational pleiotropy and network proximity suggests that 64 

pleiotropic effects propagate throughout the metabolic network and are not confined to local 65 

modules.  However, there was no attempt to link changes in metabolite concentration to the 66 

properties of associated metabolic enzymes.  67 
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Here we report results of a study designed to investigate the cumulative effects of 68 

mutation on the concentration and activity of the enzymes in the adenosine metabolism pathway 69 

and their associated metabolites (Figure 1), using (nearly) the same set of C. elegans MA lines as 70 

in Davies et al. (2016).  We chose this particular metabolic pathway for investigation because 71 

adenosine was one of the metabolites with the largest mutational variance, indicative of a large 72 

mutational target.  In addition, adenosine levels are assumed to be tightly regulated due to its role 73 

as a critical signaling molecule for energetic homeostasis as a metabolite involved in ATP: AMP, 74 

as well has having other critical functions (Park and Gupta 2008; Boison 2013). Lastly, the 75 

adenosine pathway has well-defined network topology and is highly conserved.    76 

Our study has one additional important feature relative to the aforementioned ones (Clark 77 

et al. 1995; Davies et al. 2016; Johnson et al. 2018).  All of those studies estimate cumulative 78 

mutational parameters from the among-line components of (co)variance of a set of MA lines.  79 

Ideally, the among-line (co)variance is due solely to the contribution of new mutations, but other 80 

technical and biological factors can contribute to the among-line (co)variance (Lynch and Walsh 81 

1998).  Our experimental design allows us to infer the relative contributions of both mutation and 82 

short-term heritable effects on the total heritable variance of metabolic traits.  83 

MATERIALS AND METHODS 84 

Mutation Accumulation: 85 

A detailed description of the construction and propagation of the mutation accumulation (MA) 86 

lines is given in Baer et al. (2005). Briefly, 100 replicate MA lines were initiated from a nearly 87 

isogenic population of N2-strain C. elegans and propagated by single-hermaphrodite descent at 88 

four-day (one generation) intervals for approximately 250 generations. The common ancestor of 89 

the MA lines ("G0") was cryopreserved at the outset of the experiment; MA lines were 90 
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cryopreserved upon completion of the MA phase of the experiment (Figure 2).  Based on 91 

extensive whole-genome sequencing (Denver et al. 2012; Saxena et al. 2019), we estimate that 92 

the average MA line carries at least 60-100 mutant alleles in the homozygous state.  In this study 93 

we included 39 of the 43 N2-strain MA lines assayed by Davies et al. (2016). One of the lines 94 

included in that study (line 507) was revealed by genome sequencing to be a contaminant from a 95 

different strain, and was removed from the analysis.  Two other lines (517, 598) were revealed to 96 

have been cross-contaminated subsequent to the MA phase of the experiment, i.e., they appear to 97 

be genetically identical.  Due to the structure of the experiment, we cannot simply pool the 98 

replicates of the two lines without introducing a potential bias, so those lines were omitted as 99 

well.  All replicates of line 571 reproduced so slowly that we were unable to obtain sufficient 100 

material to be used in downstream assays. 101 

The ideal design of a phenotypic assay of a MA experiment includes replicates of the 102 

(putatively) unmutated common ancestor, which we call "pseudolines" and which are treated 103 

identically to MA lines in analyses (Lynch 1985; Lynch and Walsh 1998; Teotónio et al. 2017). 104 

The among-pseudoline component of variance includes the effects of residual segregating 105 

genetic variation in the ancestor, as well as short-term heritable effects that are propagated across 106 

assay generations and purely environmental effects resulting from (sometimes unavoidable) 107 

imperfections of experimental design, such as a temporal correlation between line and assay 108 

time.  In the absence of a pseudoline control, some fraction of the among-MA line (co)variance 109 

will potentially be the result of non-mutational factors, and resulting estimates of VM and COVM 110 

will be upwardly biased. 111 

Here, a set of 15 pseudolines (PS) of the G0 ancestor were included along with the MA 112 

lines (Figure 3A). PS lines were generated by thawing a sample of the N2 ancestor and allowing 113 
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it 24 hours to recover from freezing, at which time 15 hermaphrodites were plated individually 114 

onto 60 mm NGM plates seeded with 100 μl of an overnight culture of E. coli OP50 (P0 115 

generation in Figure 3A).  P0 worms were allowed to reproduce until the bacterial food on the 116 

plate was consumed (two generations; F1 and F2), at which time worms were cryopreserved (F2) 117 

(Hope 1999). The demographic features of this protocol mimic those of our standard protocol for 118 

cryopreserving MA lines.  From this point forward, MA lines and ancestral PS lines are 119 

experimentally identical.  120 

 121 

Protein Extraction: 122 

This study includes six independent experimental tests: concentration and activity of two 123 

metabolic enzymes (ADA and ADK), total protein concentration, and mass spectrometry of 124 

pooled metabolites.  We were unable to measure the activity of the third enzyme in the pathway, 125 

adenosine phosphoribosyltransferase (APRT), because commercially available assay kits require 126 

too much material to be practical for application to C. elegans.  Accordingly, six aliquots of 127 

protein (plus metabolites) were extracted and cryopreserved from the same individual sample of 128 

each experimental replicate.  Protein extraction was performed in five blocks of 10-12 lines per 129 

block, to ensure that all samples were handled at the appropriate stage of development (see 130 

below).  In each protein extraction block, the lines selected were a random mix of MA and PS 131 

lines; the experimental design is outlined in Figure 3B. Each line was thawed and transferred 132 

onto a 60mm agar plate.  The following day, five L4-stage hermaphrodites from each line were 133 

transferred individually onto 35mm agar plates (parental generation, P1 in Figure 3B), resulting  134 

in a total of 290 samples (five replicates of each of 15 PS lines and 43 MA lines). Four days 135 

later, a single offspring (F1 generation) L4 hermaphrodite was transferred from each P1 plate 136 
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onto a 100mm plate (F1.1 in Figure 3B). The F1 worms were grown for ten days (two 137 

generations, F2.1 and F3.1 in Figure 3B) of self-replication to ensure that F3 worms were gravid 138 

and there were abundant eggs on the plate (F4.1 in Figure 3B). Worms were washed from the 139 

plate and "bleached" in an NaOH and sodium hypochlorite solution (Sulston and Hodgkin 1988) 140 

.This process kills all hatched worms by breaking down their cuticle and leaves only eggs (F4.1 141 

in Figure 3B), resulting in a population that is closely synchronized in developmental timing. 142 

Once F4 worms had been bleached, hatched, and reached the L4 stage, they were washed five 143 

times in ion-free NGM buffer, mixed with protease inhibitor cocktail, and homogenized via 144 

sonication (Tang and Choe 2015). Homogenized samples were centrifuged, and the protein-rich 145 

supernatant was distributed equally into six cryovials and stored at -80 C°.  All lines, both MA 146 

and PS, were labeled with their true line number until cryopreservation, at which time each 147 

replicate was assigned a random number to obscure sample identity.  148 

  149 

Estimating Total Soluble Protein via Bicinchoninic Acid Assay (BCA) 150 

We used total soluble protein as a proxy for the number of individual worms in a sample. To 151 

quantify the total soluble protein in each sample we used a bicinchoninic acid assay (BCA) 152 

following the protocol from Thermo Scientific (Pierce BCA Protein Assay Kit #23225). Briefly, 153 

a set of known concentrations of bovine serum albumin is used to generate a standard curve 154 

against which one can estimate the concentrations of unknown protein samples. A total of 13 BC 155 

assays were performed, each with its own set of standards.  156 

 157 

Enzyme activity assays: 158 

(i) Adenosine kinase (ADK) 159 
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Adenosine kinase (ADK) activity was measured using the Novocib PRECISE ADK assay kit 160 

(Novocib, Ref #K0507-01). This assay measures ADK activity based on the production on 161 

NADH2, which is generated by the dephosphorylation of ATP by ADK. To ensure that ADK 162 

activity is not limited by available ATP, an excess of human ATP was added to each sample. 163 

Absorbance at 340nm was measured at one-minute intervals for 40 minutes. The slope of the line 164 

over the linear phase quantifies the activity of each sample in units of absorption per minute. A 165 

set of positive (human ADK, provided in the kit) and negative (no enzyme) controls were 166 

included with the unknown samples in each assay plate and used to quantify assay quality, per 167 

the manufacturer's instructions.  ADK activity was assayed in five blocks.  Thirty of the 290 168 

samples were not included in the ADK activity assay because of erratic activity slopes. All 169 

samples that were run included at least two technical replicates, in which extracts from a sample 170 

were split and assayed independently.  171 

(ii) Adenosine deaminase (ADA): 172 

ADA activity was measured using Abcam’s Adenosine Deaminase (ADA) Activity Assay Kit 173 

(Abcam, ab21193). This kit utilizes an ADA developer and converter which react with inosine 174 

formed from the breakdown of adenosine by ADA to produce uric acid. Uric acid concentration 175 

is then measured via absorbance at 293nm once a minute for 45 minutes. Each kit is run with a 176 

set of known concentration standards that are used to generate a standard curve. The quantity of 177 

uric acid was then measured and used to calculate the activity of the ADA in a given sample in 178 

units of nmol/min/μg, following the manufacturer's instructions.  179 

ADA activity was assayed in four 96-well plates, each including a positive (manufacturer 180 

supplied ADA) and negative (no sample) control. For one assay plate (= assay block), the highest 181 

concentration standard had an unusually low reading; we therefore omitted this point from the 182 
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standard curve for this assay.  Omission of that point had no effect on the interpretation of the 183 

data because all unknown samples had absorbance values greater than the second lowest 184 

standard.  All of the 290 samples had maximum measured activity well below the highest 185 

concentration standard.  Four samples with erratic absorption readings were omitted from further 186 

analyses.  187 

 188 

Enzyme concentration: 189 

Enzyme concentrations were estimated by Western blot (WB) (Supplemental Figure S1). 190 

Extracted samples were denatured in 2X Laemmli buffer (with β-mercaptoethanol) and boiled at 191 

70° for 10 minutes. Each gel lane was loaded with 7ug of total soluble protein calculated from 192 

the BCA data (Bio-Rad 10% polyacrylamide gel, product #4561033). Each blot included eight 193 

samples, a DNA-ladder and an internal control standard consisting of a homogenate of C. 194 

elegans. We used the Trans-Blot Turbo Transfer System (Bio-Rad, #1704156) to transfer 195 

proteins separated by gel electrophoresis onto blotting paper.  After the primary (enzyme-196 

specific) and secondary (visualization) antibodies were bound (antibodies described below), 197 

antibody binding was visualized using the Pierce ECL Western Blotting Substrate (Thermo 198 

Fischer Product # 32106). Brightness of each band relative to the internal control was estimated 199 

using ImageJ image-analysis software and used as a proxy for enzyme concentration.  246 of the 200 

284 samples contained sufficient protein to be visualized by Western Blot.     201 

The concentration of tubulin in a sample is commonly used as a loading control, and we 202 

quantified tubulin in each sample for both enzymes (Tubulin antibody DSHB, E7).  However, 203 

tubulin concentration was not independent of treatment (MA vs. PS), so we treat it as an 204 

experimental trait rather than a control (see Results). 205 
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(i) ADK concentration 206 

The antibody used was Abcam’s Anti-ADK antibody – C-terminal (Abcam, ab226187), which 207 

was designed and tested in mouse and humans and which is homologous with the C. elegans 208 

ADK protein, R07H5.8. The assay resulted in multiple binding sites, with distinct bands at 209 

~100kd, ~37kd, ~25kd, and ~18kd (Supplemental Figure S2). To determine which of these 210 

binding sites represented the C. elegans ADK, samples of each band were extracted from the gel 211 

and analyzed using protein mass spectroscopy. Results were then analyzed using Scaffold 4; only 212 

the sample at ~37kd contained the worm ADK homolog (R07H5.8, molecular weight = 37.5 kd; 213 

Wormbase).  112 of the 246 samples did not contain sufficient ADK to be measured by Western 214 

blot.  These lines were tested in duplicate and failed to produce ADK bands both times, therefore 215 

the low concentration of ADK is presumably a true property of the sample and not an 216 

experimental artifact.  217 

(ii) Adenosine deaminase (ADA) concentration: 218 

The primary antibody used was Abcam’s Anti-ADAT2 antibody (Abcam, ab122280). This 219 

antibody is homologous with the C. elegans ADA protein ADR-1 which is known to code for 220 

ADA in worms (Wormbase).  The assay resulted in multiple binding sites, with distinct bands at 221 

~100kd, ~60kd, and ~22kd (Supplemental Figure S3). Samples of each band were extracted from 222 

the gel and analyzed using protein mass spectroscopy as for ADK.  The band at ~100kd 223 

contained the worm ADA homolog ADR-1, isoform D (101.8kd). 202 of the 246 samples 224 

contained ADA in sufficient concentration to be quantified by Western blotting. 225 

 226 

Metabolomics: 227 
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To assess the relationship between enzyme concentration and activity and the concentration of 228 

their associated metabolites, we targeted four metabolites in the adenosine metabolic pathway: 229 

adenosine, inosine, AMP, and adenine. Several other metabolites not in the adenosine pathway 230 

were also measured, including GMP, guanine, guanosine, hypoxanthine, xanthine, and uric acid 231 

because they were part of a routine panel that included the metabolites of interest. Metabolite 232 

quantification was performed using liquid chromatography/mass spectroscopy (LC-MS), 233 

calibrated with known standards at the Southeast Center for Integrated Metabolomics at UF. 234 

Internal standards were prepared as follows: Adenine-15N2 (Cat #A2880477), guanine-235 

4,5-13C2 7-15N (Cat #G836003), hypoxanthine-13C2 15N (Cat #H998504) and xanthine-236 

13C 15N2 (Cat #X499954) were purchased from Toronto Research Chemicals (Toronto, ON). 237 

Adenosine-15N5 5′-monophosphate (Cat #662658), adenosine-15N5 5′-triphosphate (Cat 238 

#707783), guanosine-15N5 5′-monophosphate (Cat #900380) and guanosine-13C10 5′-triphosphate 239 

(Cat #710687) were purchased from Sigma-Adrich (St. Louis, MO). The labeled adenosine and 240 

guanosine triphosphates were dephosphorylated with alkaline phosphatase (Promega, Madison, 241 

WI; Cat #M1821) according to the manufacturer’s directions to produce the corresponding 242 

labelled nucleosides. Uric acid-13C 18O was synthesized from urea-13C 18O (Cambridge Isotopes, 243 

Andover, MA; Cat #COLM-4861) and 5,6-diaminouracil sulfate (Sigma-Aldrich; Cat #D15103) 244 

according to methods of Cavalieri et al (Cavalieri et al. 1948). 245 

For the purine assay, internal standard (10µl) was added to 50µl worm homogenate and 246 

acetonitrile (100µl) was added to precipitate proteins for LC-MS/MS analysis.  Samples were 247 

chromatographed on a Waters Cortecs UPLC HILIC column (2.1 x 150 mm, 1.6µm) eluted with 248 

an acetonitrile-water gradient: Buffer A) 5 mmol/L ammonium acetate and 0.1% acetic acid in 249 

acetonitrile: water (:: 98: 2); Buffer B) 10 mmol/L ammonium formate and 0.5% formic acid  in 250 
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water. Mass spectrometric detection was on a Bruker EvoQ Elite MS/MS in positive ion mode, 251 

using heated electrospray ionization. 252 

Stock solutions of the purines analyzed were prepared from authentic standards, and their 253 

concentrations determined by absorbance (Umbreit et al. 1960). The stock solutions were then 254 

mixed to give an appropriate working standard, which was then serially diluted to produce 255 

standard curves. Peak area ratios were calculated by dividing the metabolite peak area by the 256 

peak area of its isotopically labeled internal standard. Metabolite concentrations were calculated 257 

by comparing these peak area ratios to the standard curves. 258 

 259 

Data Analysis: 260 

(i) Estimation of mutational parameters 261 

To quantify the cumulative effects of mutation on individual traits, we calculated the per-262 

generation change in the average trait value (ΔM, the "mutational bias") and the per-generation 263 

rate of increase in genetic variance (VM, the "mutational variance"). Mutational bias is calculated 264 

as: 265 

∆𝑀 =
𝑧̅𝑀𝐴 − 𝑧̅0

𝑡𝑧̅0
 266 

where 𝑧̅𝑀𝐴and 𝑧̅𝑀𝐴 are the means of the MA lines and the G0 pseudolines, respectively, and t is 267 

the number of generations of MA (t=250) (Lynch and Walsh 1998).   268 

The mutational variance (VM) is calculated as: 269 

𝑉𝑀 =
𝑉𝐿,𝑀𝐴 − 𝑉𝐿,0

2𝑡
 270 

where VL,MA is the among-line variance of the MA lines, VL,0 is the among-line variance of the PS 271 

lines, and t is the number of generations of MA.  The among-line variance of the PS lines 272 
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includes the effects of any residual segregating genetic variance, but also heritable epigenetic 273 

effects and the heritable effects of genotype-environment correlation (Lynch 1985).  We report 274 

VM scaled by the residual variance (mutational heritability; ℎ𝑀
2  = VM/VE, where VE is the residual 275 

component of variance).  The mutational covariance between traits (COVM) is estimated 276 

analogously to VM, with the among-line components of variance (VL) replaced with the among-277 

line components of covariance (i.e., the off-diagonal elements in the variance-covariance 278 

matrix).   279 

(ii) Statistical analyses 280 

All traits except ADA and ADK concentrations and ADA activity depend on the total 281 

biomass in the sample, for which the concentration of total soluble protein is a proxy.  Those 282 

three traits are expressed relative to a known amount of loaded protein and thus do not depend on 283 

the total protein in the sample.  The first step in the analysis was to regress log(trait value) 284 

against log(total protein) for each trait except the three mentioned above, including the random 285 

effect of extraction block (all traits) and assay block (ADA and ADA activity); the linear model 286 

is yij = μ + pi + bj +(ck) + εij, where μ is the overall mean, pi is the total protein concentration in 287 

sample i, bj is the random effect of extraction block j, ck is the random effect of assay block k (for 288 

ADA and ADK activity), and εij is the residual.  Residuals were checked for normality against a 289 

Q-Q plot and a few obvious outliers removed (three low, four high, n =3514).  The residuals are 290 

the dependent variables in downstream analyses.     291 

 Next, we used a multivariate GLM (i.e,, MANOVA) to address the hypotheses that, 292 

averaged over all 16 traits, (i) the vector of trait means differs between the G0 ancestor and the 293 

MA lines (i.e., |ΔM|>0), and (ii) the mutational variance (VM) is >0.  The full GLM can be 294 

written as: yijkl = μ + ak + Ll|j + εijkl,, where yijkl is the vector of dependent variables measured in 295 
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sample i estimated as described above, μ is the overall mean, ak is the fixed effect of treatment 296 

(G0 or MA), Ll|j is the random effect of line l given treatment group k, and εijkl is the residual 297 

effect given treatment group k.  This model assumes a common variance component across all 298 

traits for each random effect.  Random effects (block, line, replicate) were estimated by restricted 299 

maximum likelihood (REML) with degrees of freedom determined by the Kenward-Roger 300 

method (Kenward and Roger 1997).  Models were tested hierarchically, by sequential 301 

comparison of the full model, in which variance components are estimated separately for each 302 

treatment group, against a model with a single variance component for that effect, which was 303 

tested in turn against a model with the effect absent (i.e., no among-block or among-line 304 

variance).  Hierarchical tests of nuisance parameters (block, replicate) were compared by the 305 

Bayesian Information Criterion (BIC); the model with the smallest BIC was judged the best 306 

model.  The random effect of line, which is a parameter of interest, was compared by likelihood-307 

ratio test (LRT), with degrees of freedom equal to the difference in the number of parameters 308 

estimated in the two (nested) models.  The fixed effect of treatment group (G0 vs. MA) was 309 

tested by F-test on type III sums of squares.  These analyses were implemented in the MIXED 310 

procedure of SAS v. 9.4.     311 

   The preceding model estimates a single variance component for each random effect, 312 

averaged across all traits, and there is no reason to expect the mutational variance will be the 313 

same for every trait.  We next attempted to fit a model with the among-line variance estimated 314 

jointly for each trait (i.e., a banded main diagonal covariance structure), but the analysis failed to 315 

converge. Instead, we fit the preceding GLM for each trait yijkl individually, with the relevant 316 

covariates for each trait.  Statistical significance of among-line components of variance was 317 

assessed for each treatment group by LRT of models with and without the among-line 318 
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component of variance constrained to zero, with the criterion of significance equal to the 319 

experiment-wide α=5%= 0.05/16. 320 

 321 

RESULTS 322 

Per-generation change in trait means (ΔM): 323 

Total soluble protein is a proxy for the total biomass in the sample.  On average, after 324 

accounting for the random effects of extraction block and line, mean total protein concentration 325 

of the G0 pseudolines and the MA lines was very similar (~2% lower in the G0 pseudolines; 326 

F1,108=0.10, P>0.75).  From that result we conclude that there were no systematic differences in 327 

input biomass between the two treatment groups.  328 

Averaging over all 16 traits, MANOVA reveals a highly significant reduction in 329 

normalized trait mean in the MA lines (-0.81 x 10-3/generation; F1,428=24.64, P<0.0001), and the 330 

point estimate of ΔM is negative for every trait except ADK concentration (Table 1).  The 331 

overall change in these metabolic traits (~ -0.1%/generation) is very similar to a wide variety of 332 

other traits quantified in these MA lines (see Supplemental Table S2 in Davies et al. 2016).     333 

It is curious that lines with the same average biomass differ significantly in the mean of 334 

this set of metabolic traits.  One possibility is that MA lines experience a general metabolic 335 

slowdown, leading to lower concentrations of these reactants, but we have no concrete evidence 336 

for that.  Another possibility is that even though samples were synchronized by bleaching and 337 

were cultured to the same semi-quantitative stage of development ("a few" eggs were present on 338 

the plate), subtle differences in the distributions of developmental stages may exist at any 339 

hierarchical level in the experiment (G0 vs. MA; among lines; among replicates within a line).  It 340 

is known that there are consistent changes in the genome-wide transcriptional profile over the 341 
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course of a few hours of development (Francesconi and Lehner 2014; Zalts and Yanai 2017), and 342 

there is reason to expect that changes in metabolite levels would change at least as fast.  343 

Determining whether a given difference in trait value between two groups is due to a true 344 

difference in the trait at the exact same stage of development, or due to a subtle (perhaps non-345 

linear) difference in rate of development is a nearly insoluble problem once worms have 346 

developed past a few embryonic cell divisions.     347 

 As quantified in our enzyme activity assays, the output variable ("activity") is a function 348 

of both enzyme kinetics (i.e., activity per se) and the amount of enzyme in the sample.  349 

Interestingly, for both enzymes, the correlation of the measured activity was either negatively or 350 

not correlated with the concentration of the enzyme.  In the case of ADA, the negative 351 

correlation was moderately negative and highly significant (phenotypic correlation r = -0.27, 352 

df=176, P<0.001).   The correlation for ADK was near zero and not statistically significant, 353 

albeit with a smaller sample size (r = -0.07, df=113, P>0.48).  An obvious post hoc explanation 354 

is that the flux through the pathway is tightly regulated, and a change in activity per se is 355 

compensated for by a change in concentration of the enzyme in the appropriate direction, or 356 

possibly vice versa.  That argument further implies, however, that the measured output of the 357 

reaction depends on factors other than the inherent activity of the enzyme itself, because at least 358 

in the PS lines the protein sequence is presumably identical in all samples (transcriptional and 359 

translational errors notwithstanding).    360 

   361 

Mutational variance (or the Lack Thereof):  362 

As mutations accumulate over time, MA lines are expected to diverge in trait values, leading to a 363 

consistent, long-term increase in the among-line component of variance (VL).  Scaled per-364 
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generation, this increase is the "mutational variance", VM (Lynch and Walsh 1998, p. 330).  For 365 

various reasons, however, some fraction of the among-line variance may be due to factors other 366 

than the accumulation of new mutations.  Possible reasons include residual segregating variation 367 

in the ancestor of the MA lines, genotype-environment correlations (sometimes unknown or 368 

unknowable), and heritable epigenetic effects (Rechavi and Lev 2017; Perez and Lehner 2019).  369 

To account for potential non-genetic contributions to the among-line variance, it is necessary to 370 

include a set of "pseudolines" (PS) of the ancestor, which are treated both experimentally and 371 

statistically as if they were MA lines (Lynch 1985; Teotónio et al. 2017).   372 

 As noted in the preceding section, the mean concentration of total soluble protein did not 373 

differ between treatment groups.  However, there was significant variance among MA lines after 374 

accounting for the random effect of extraction block, whereas the REML estimate of the variance 375 

among PS lines was zero, resulting in a mutational heritability ℎ𝑀
2 = 0.76 x 10-3/generation (LRT, 376 

chi-square=4.5, P<0.04).  The variance in total protein concentration among MA lines 377 

presumably reflects consistent differences in biomass among MA lines, which may in turn reflect 378 

differences in fecundity, growth rate, body size, or some combination thereof. 379 

 Averaging over traits and treatment groups, the multivariate GLM reveals a highly 380 

significant among-line component of variance (LRT, chi-square=135.2, df=1, P<<0.0001).  381 

However, a model in which the among-line variance is estimated separately for MA lines and PS 382 

lines is not significantly better than the model with only a single among-line component of 383 

variance (LRT, chi-square=2.7, df=1, P>0.1).  When treatment groups are analyzed individually, 384 

models with an among-line component of variance are significantly better than models with no 385 

among-line variance for both MA lines (LRT, chi-square=113.8, df=1, P<<0.0001) and G0 386 

pseudolines (LRT, chi-square=19.3, df=1, P<0.0001).  Measured on the relevant scale (see 387 
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Methods) and averaged over all traits, the point estimate of the among-line variance of the PS 388 

lines (0.100 + 0.027) is about 60% of that of the MA lines (0.166 + 0.021).    389 

 Conceivably, technical variance associated with enzyme or metabolite assays could 390 

swamp biological variation and lead to a spurious partitioning of variance.  However, several 391 

lines of evidence suggest this is not the cause of the substantial variance among PS lines.  First, 392 

and most importantly, the technical variation would have to contribute in such a way as to inflate 393 

the among-line variance of the G0 pseudolines (i.e., a rather pathological Type 1 error), rather 394 

than inflating the among-biological replicate (within-line) variance and thereby simply reducing 395 

the power to detect among-line variance.  Second, we ran technical replicates (i.e., samples of 396 

extracted material were split and assayed independently) for ADK activity.  The among-technical 397 

replicate component of variance was about 1/3 that of the among-biological replicate variance, 398 

and pooling the technical replicates within a biological replicate or including them separately had 399 

no effect on the among-line variance.  Based on previous experience with our metabolomics 400 

screen, technical replicate variance for the metabolic pools is expected to be less than 5% of the 401 

total variance for all metabolites except for GMP and uric acid, which are expected to be less 402 

than 10% (Eoin Quinlivan, Southeast Center for Integrative Metabolomics, personal 403 

communication). 404 

It is also very unlikely that residual segregating genetic variance could explain the similar 405 

magnitudes of the among-line variance in the PS and MA lines.  First, any residual genetic 406 

variation would be equivalently partitioned among PS lines and MA lines, and would contribute 407 

equally to the among-line variance (on average, sampling variance notwithstanding).  The MA 408 

lines were initiated in March, 2001, at which time the G0 ancestor was expanded to large 409 

population size (three generations) and cryopreserved.  Over the intervening 16 years prior to the 410 
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start of this project, the ancestor has been thawed, re-expanded, and re-frozen several times.  We 411 

do not know exactly how many times the ancestor has been thawed/expanded/re-frozen, but five 412 

is a reasonable guess.  If we assume that each expansion takes three generations and there have 413 

been five such expansions, then any two PS lines will have diverged for 2x5x3=30 generations.  414 

In contrast, any two MA lines have diverged for 2x(250+3)≈500 generations. This is a 415 

conservative estimate because MA lines used for this experiment were also thawed and refrozen 416 

more than once, again we do not know how many times this has happened but it would inflate 417 

the number of generations of divergence between MA lines regardless of how many rounds of 418 

freeze-thaw occurred.   419 

If technical and/or residual genetic variation cannot explain the among-line variance of 420 

PS lines, two possibilities remain.  Individuals in different replicates from which data were 421 

collected ("Plate 6" in Fig. 2B) last shared a common environment four generations previous 422 

(Plate 3 in Fig. 2B) and last shared a common ancestor six generations previous (Plate 2 in Fig. 423 

2A).  The first possibility is that some feature of the environment shared by individuals on Plate 424 

3 carried over for four generations, to be shared by all the replicates of that PS line.  For 425 

example, suppose that the cryopreservation microenvironment was differently stressful for two 426 

PS lines (e.g., perhaps one sample sat in the glycerol freezing solution longer at room 427 

temperature before freezing than another), such that one sample ("tube 2" in Fig. 2) took longer 428 

to recover from the freeze/thaw than another.  That could mean that the parents of the eggs 429 

harvested for extraction (Plate 6) were of different average ages due to their grandparents having 430 

initiated reproduction at different times and the timing differential having propagated across the 431 

intervening three generations.  In that case, the proximate cause of the difference between the PS 432 

lines would be a parental effect, albeit one with origins four generations in the past.  433 
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Alternatively, it is possible that the different environmental effects shared by individuals 434 

on Plate 3 induced an epigenetic response that carried over for four generations, even though the 435 

environmental effect did not last past Plate 3.  Such effects are exceptionally well-documented in 436 

C. elegans and can have a variety of causes, among them parental age (Perez et al. 2017), 437 

nutritional status (Miersch and Doring 2012; Tauffenberger and Parker 2014; Jobson et al. 2015), 438 

and pathogen exposure (Rechavi et al. 2011).  Recently, Sarkies and his colleagues reported that 439 

small RNA (specifically, piRNA/22G RNA) epimutations accumulate spontaneously at a rate 440 

~25X that of DNA sequence mutations, with a half-life on the order of 2-3 generations, but with 441 

significant fraction maintained for ten generations or more (Beltran et al. 2019).  That time-scale 442 

is entirely consistent with the findings reported here.   443 

Rechavi and Lev (2017) defined "transgenerational" epigenetic effects as those that are 444 

passed down to at least the F3 generation, in the absence of the environmental (or endogenous) 445 

trigger.  It is important to note that we cannot distinguish between microenvironmental effects 446 

that are propagated across generations and thus result in conventional parental effects and "true" 447 

transgenerational epigenetic effects.  In fact, unambiguously discriminating between the two 448 

possibilities in a context in which the experimenter does not control the environmental cue is 449 

extremely difficult.  However, from the perspective of "things that will cause estimates of 450 

mutational variance to be misleading", the distinction is immaterial.  We return to the topic of 451 

epigenetic inheritance in the Discussion. 452 

 453 

Correlations among traits  454 

The absence of significant mutational variance precludes estimation of mutational correlations, 455 

which was one of the underlying motivations of this study.  However, because there is significant 456 
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among-line variance in both the PS and MA lines, it is meaningful to investigate the among-line 457 

correlations.  Note that these are not phenotypic correlations in the usual sense.  Presumably, the 458 

among-line correlations reflect what might be thought of as epi-pleiotropy – the effects of an 459 

epigenetic variant (whatever it may be) on multiple traits – as well as the cumulative pleiotropic 460 

effects of new mutations. 461 

 Because there are not enough lines to jointly estimate the full among-line covariance 462 

matrix, and because our primary interest is in adenosine metabolism, we restricted the analysis to 463 

the eight traits in the adenosine metabolism network.  We first addressed the hypothesis that all 464 

traits are uncorrelated at the (epi)genetic level by testing the fit of a model with the full 465 

covariance matrix estimated (unrestricted covariance structure) at the level of line and replicate 466 

against a model with the off-diagonal elements of the among-line covariance matrix constrained 467 

to zero (banded main diagonal covariance structure), with the residual covariance matrix 468 

unconstrained.  The model with the off-diagonal elements of the among-line covariance matrix 469 

constrained equal to zero provided a better fit than the model with unconstrained among-line 470 

covariances (ΔBIC = 76.3 units).  We next tested the better model against a model with both 471 

among-line and residual covariances constrained equal to zero.  The model with unstructured 472 

residual covariances fit better (ΔBIC = 15.4 units).  The average absolute within-line (residual) 473 

correlation was only about 0.12 (max = 0.56; Supplemental Table S2), which shows that our 474 

total sample size (n<290) provides substantial power to detect weak correlations.  However, 54 475 

lines provide little power to jointly estimate 28 among-line covariances, given that they are not 476 

predominantly large.  About the most we can conclude is, first, that phenotypic correlations are 477 

weak, and second, that (epi)pleiotropy seems unlikely to be both strong and ubiquitous in the 478 

adenosine metabolism pathway.          479 
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 480 

DISCUSSION 481 

We find ourselves confronted with an inconvenient truth: taken at face value, the results 482 

we report here are starkly contradictory to the findings reported by Davies et al. (2016). We 483 

chose the adenosine metabolism pathway for further scrutiny based on two findings of Davies et 484 

al.  In that study, mean adenosine concentration increased by over 4% per generation – one of 485 

the largest values of ΔM reported for any trait in any organism – whereas in this study we found 486 

a  decline in adenosine concentration of about 0.2%/generation in (nearly) the same set of MA 487 

lines (Table 1).  Similarly, Davies et al. reported a highly significant mutational heritability 488 

(VM/VE) for adenosine concentration of about 0.004/generation – toward the high end of 489 

mutational heritabilities (Houle et al. 1996) – whereas, we found a not significant point estimate 490 

of 0.0016/generation.  The discrepancy is not restricted to a handful of traits: Davies et al. 491 

reported significant mutational variance for 22 of the 29 metabolites included in their study.  492 

Clearly, the two studies are at odds: they can't both be right, although they may both be wrong in 493 

different ways. The discrepancy is not due to the exclusion of four lines from this study, which 494 

had little effect on the results for most traits in our data (Supplementary Figure S4).  The 495 

methods of quantifying metabolite concentration were different in the two studies; we used LC-496 

MS in this study, whereas Davies et al. used GC-MS.  The different separation platforms (GC vs. 497 

LC) have distinct sources of variability (Gowda and Djukovic 2014), and we included total 498 

protein as a covariate whereas Davies et al. did not. Either of these methodological differences 499 

could in principle explain lower mutational heritabilities in our study, although neither 500 

methodological difference can adequately explain a consistent mutational bias.   501 
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 Critically, the lack of mutational variance is not because there is no variation between 502 

MA lines. For six of the 16 traits, the variance among MA lines is significantly greater than zero 503 

at the experiment-wide 5% level (0.05/16 ≈ P<0.003), and four more traits are significant at the 504 

individual 5% level (Table 2).  Moreover, whether or not the among-line variance is significantly 505 

greater than zero is not random with respect to the type of trait.  Of the ten metabolites, for only 506 

one (Adenine) is the among-line variance not significantly greater than zero at the individual 5% 507 

level, whereas of the six protein traits, only one (ADA concentration) has significant among-line 508 

variance at the individual 5% level.  When judged by the criteria of Davies et al., the results of 509 

the two studies are in fact quite compatible.   510 

Thus, the cumulative effects of mutation are not swamped by technical or 511 

microenvironmental noise (i.e., residual variance; VE in the parlance of quantitative genetics).  512 

Rather, it is that the variance among pseudolines of the ancestral control is of similar magnitude 513 

to the variance among MA lines.  For economic reasons (metabolomics is expensive), Davies et 514 

al. did not include pseudolines of the G0 ancestor in their study.  Returning to adenosine as an 515 

exemplar, all but three of the 43 MA lines included in the Davies et al. study had mean adenosine 516 

concentrations greater than that of the G0 ancestor, which was an order of magnitude less than 517 

the mean of the MA lines in normalized units (𝑧̅𝑀𝐴 = 22.6±3.4, 𝑛̅=3.9; 𝑧0= 2.1±0.7,n=9; see 518 

Figure 1 of Davies et al. (2016)).  Because ΔM is measured relative to the ancestor, if the mean 519 

value of the ancestor is atypically small, ΔM will be atypically large.  We have no reason to 520 

doubt the accuracy of the estimate of mean adenosine concentration of the G0 ancestor in the 521 

Davies et al. study.  3/43 MA lines had mean concentrations lower than the ancestor, and another 522 

seven MA lines had means less than the largest of the nine replicates of the ancestor.  Moreover, 523 

the average metabolite concentration of the ancestor was not low relative to the MA lines when 524 
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all 29 metabolites are considered: the median rank of the ancestor is 34/44 (data from Davies et 525 

al. (2016) are archived in Dryad, at https://datadryad.org/stash/dataset/doi:10.5061/dryad.2dn09).   526 

It is important to carefully consider the differences between the ways the ancestral 527 

controls were treated in the two studies.  At the outset of the Davies et al. study, in 2009, a single 528 

cryopreserved sample of the ancestor was thawed in the Baer lab (Florida) and plated.  From that 529 

plate, a "chunk" containing hundreds of worms was transferred onto another plate and sent to the 530 

Leroi lab in England, at which time worms were washed from the plate and cryopreserved at -531 

80° C.  Later, one tube of the ancestor was thawed and plated onto a 100 mm plate.  When the 532 

population on that plate reached high density (2-3 generations), worms were washed from the 533 

plate and "bleached" (Sulston and Hodgkin 1988), and surviving L1 larvae were chunked onto a 534 

new plate.  From that plate, nine replicate plates were initiated from a single individual, and the 535 

populations grown to high density (2-3 generations) and synchronized by bleaching.  Surviving 536 

L1s were plated and grown until worms reached young adulthood, at which time worms were 537 

collected for extraction of metabolites.  In this design, the nine replicate plates are conceptually 538 

identical to the five replicates of each MA line, and the among-replicate (=within-line) variance 539 

is the residual variance, VE.       540 

In this study (depicted in Figure 3A), 15 replicate plates were initiated from a single 541 

individual, grown to high density (two generations), and cryopreserved.  These are the 15 542 

ancestral pseudolines (PS).  Subsequent to thawing (depicted in Figure 3B), the PS lines were 543 

treated identically to MA lines, with five replicate plates per PS line initiated from a single 544 

individual worm taken from the thawed plate.  The replicates were then propagated to the F3 545 

descendants of the original founder of the replicate, and their offspring (F4) collected for 546 

analysis.  The variation among replicates is the residual variance, VE.  Any effects that are 547 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.2dn09
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common to a PS line (i.e., which contribute to VL) must necessarily have been maintained at 548 

least since the replicates shared a common environment four generations previously, and 549 

potentially for as many as the six generations subsequent to the founder of the PS line.  550 

We believe the source of the discrepancy in ΔM between the two studies is likely the 551 

same as the source of the discrepancy in VM: short-term heritable (possibly epigenetic) variation.  552 

For example, there is a ~120X difference between the mean adenosine concentrations between 553 

the two most extreme of the 43 MA lines in the Davies et al. study.  The conventional 554 

interpretation is (and was) that spontaneous mutations accumulated over a couple of hundred 555 

generations can lead to huge differences in metabolite concentrations (and presumably in the 556 

concentrations of other biological molecules).  However, there is a ~100X difference in the mean 557 

adenosine concentration between the two most extreme of the PS lines in this study, lines that 558 

have diverged for only a few generations.  If the one aliquot of the ancestor sampled in the 559 

Davies et al. study just happened by chance to fall in the lower tail of the distribution, ΔM 560 

becomes "among the largest reported for any trait" (quoting Davies et al. 2016, p. 2243).           561 

 As we noted in the Results, we cannot formally distinguish between a 562 

microenvironmental effect that is propagated across generations, in which case the short-term 563 

heritability would be due to a parental effect, and a "true" transgenerational epigenetic effect.  If 564 

the cause is in fact epigenetic rather than parental, what might be the cause(s), both proximate 565 

(i.e., mechanistic) and ultimate (e.g., environmental)?  There is a burgeoning literature on 566 

heritable epigenetic effects in C. elegans, which can have a number of mechanistic causes, 567 

including several varieties of small RNA (Rechavi and Lev 2017), histone modifications 568 

(Furuhashi et al. 2010; Rechtsteiner et al. 2010; Tabuchi et al. 2018), and possibly 6-methyl 569 

adenine in DNA (Greer et al. 2015).  Heritable epigenetic effects have been shown to affect a 570 
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wide variety of traits (Schott et al. 2014; Demoinet et al. 2017; Han et al. 2017; Kishimoto et al. 571 

2017), and in some cases have been shown to last for tens of generations (Ashe et al. 2012; 572 

Rechavi and Lev 2017).  Parental age (Perez et al. 2017)  and nutrition status (Miersch and 573 

Doring 2012; Tauffenberger and Parker 2014; Jobson et al. 2015) are especially well-574 

documented drivers of epigenetic variation and are obvious potential sources of variation in the 575 

experiments reported here.      576 

 Nailing down the mechanistic cause(s) responsible for the short-term heritable effects 577 

inferred here would be both very interesting and very challenging, but it is beyond the scope of 578 

this study.  The most promising avenue of investigation would seem to be an experiment in 579 

which samples consisting of a small and uniform number of individuals at carefully documented 580 

developmental stages were split for combined metabolomics/transcriptomics, with a focus on 581 

piRNA/22G RNA variation (Beltran et al. 2019).  However, while we do not know the 582 

mechanistic underpinning(s) of the short-term heritable variation among the ancestral 583 

pseudolines, the fact that we detected so much variation suggests that it is an important 584 

consideration in mutation accumulation studies, and more generally, in any quantitative genetic 585 

study in which phenotypic variance is partitioned within and among genotypes.  Whether the 586 

high short-term heritability applies to taxa other than worms is unknown.  However, a study of 587 

DNA-methylation in a set of Arabidopsis thaliana MA lines revealed that 5-methyl-cytosine 588 

epimutations occurred at a frequency several orders of magnitude greater than base substitution 589 

mutations (Becker et al. 2011).  The dominant modes of epigenetic control differ between plants 590 

and nematodes (C. elegans apparently does not methylate cytosine in DNA), but the general 591 

conclusion that epimutations can introduce potentially important heritable effects in the short 592 

term is unavoidable.      593 
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 In the only study comparable to this one, Clark et al. (1995, Table 3) found significant 594 

mutational heritability for the activity of 8/12 metabolic enzymes in a set of ~50 Drosophila 595 

melanogaster MA lines that had evolved under MA conditions for 44 generations. However, 596 

their assay conflates variation in enzyme activity per se and variation in enzyme concentration 597 

into the composite category "enzyme activity" (normalized by body weight and total protein 598 

concentration), without correcting for enzyme concentration.  The Drosophila melanogaster 599 

genomic mutation rate is perhaps 3X greater than that of C. elegans (Sharp and Agrawal 2012; 600 

Schrider et al. 2013), which suggests that after 44 generations of MA, a Drosophila MA line 601 

would have accumulated approximately half as many mutations as one of our C. elegans MA 602 

lines.  Contrary to our expectation based on the preceding evidence, neither of the two metabolic 603 

enzymes we assayed (ADA and ADK) exhibited among-line variance for activity per se in either 604 

the MA lines or the PS lines.  Thus, for those traits, we cannot attribute the absence of VM to the 605 

confounding effects of among-line variance in the ancestor.  It is interesting that the activity of 606 

these two enzymes is similarly unperturbed by both mutation and short-term heritable factors.  607 

However, neither ADA nor ADK was included in the Clark et al. study; it is certainly possible 608 

that had those enzymes been included in that study, they would have fallen in the group of 609 

enzymes without significant VM.  610 

 We conclude with two thoughts.  First, and more parochially, for this set of metabolic 611 

traits (enzyme activity notwithstanding), a few generations of short-term heritable effects swamp 612 

the signal of ~250 generations of accumulated mutations.  Perhaps that should not be surprising: 613 

it is simply phenotypic plasticity, albeit of a different sort than evolutionary biologists are used to 614 

thinking about (Dey et al. 2016).  It does strongly suggest, however, that investigators doing MA 615 

experiments need to be especially mindful of how the ancestor is treated, or employ designs in 616 
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which direct comparison to an ancestor is not needed, such as regression of the among-line 617 

variance on generations of MA over multiple assays at different time points.  In fact, that was the 618 

design employed in the Clark et al. study, but they constrained the intercept to equal zero, on the 619 

assumption that the among-line variance of the ancestor was zero.  But also, second, and more 620 

broadly: these findings cast the recent increase in human metabolic complex disease in a 621 

different light.  Although we remain skeptical of epigenetic variation as a general cause of 622 

"missing heritability" in humans, it may be that metabolic traits are particularly susceptible to 623 

epigenetic regulation and are worthy of closer scrutiny in that regard. 624 
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 634 

Figure 1. Adenosine metabolism pathway. Activity and concentration of enzymes Adenosine deaminase (ADA, red) and Adenosine 635 

kinase (ADK, red) were measured. We were unable to measure the concentration of APRT (pink). Metabolites in orange had 636 

concentrations quantified, those in gray were not measured.   637 
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 638 

 639 

Figure 2. Propagation of mutation accumulation (MA) lines. The G0 ancestor was thawed from 640 

a cryopreserved sample and a single hermaphrodite picked onto each of 100 agar plates. MA 641 

lines were propagated via single worm descent for ~250 generations. 43 MA lines and the G0 642 

ancestor were included in this experiment. 643 
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Figure 3. A) Generation of G0 pseudolines (PS lines). The G0 ancestor was thawed from a 646 

cryopreserved sample ("Tube 1", "Plate 1") and 15 individuals were picked onto individual agar 647 

plates ("Plate 2"; PS1-PS15) and allowed to reproduce for two generations prior to 648 

cryopreservation ("Tube 2"). B) Replication of lines for protein/metabolite extraction.  Lines (P1, 649 

"Tube 2" from [A]) were thawed (plate 3) and five individuals were picked onto individual agar 650 

plates ("Plate 4", Rep1-Rep5) and propagated by single-worm descent for another generation 651 

(F1.1, "Plate 5"). F1.1 worms were allowed to reproduce for two generations (F2.1, F3.1), and 652 

when the plates contained gravid worms (F3.1) and eggs (F4.1) they were bleached. The 653 

resulting eggs (F4.1) were transferred to a new plate ("Plate 6") and allowed to hatch and grow to 654 

the young adult stage, at which time protein and metabolites were extracted. The timeline at the 655 

top represents the number of generations of reproduction of PS lines subsequent to divergence of 656 

the lines from the common ancestor.  Population sizes at each generation are summarized in 657 

tabular form in Supplementary Table S1.  658 
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Trait MG0 MMA RM (x 103) ΔM (x 103) 

ADA activity 0.0051 / 0.0037  

(0.00042) 

0.0048 / 0.0035 

(0.00035) 

-0.15  (0.40) -0.24  

ADK activity 0.012 / 0.012 

(0.000128) 

0.012 / 0.012 

(0.000061) 

-0.001  (0.0037) -0.003 

ADA conc 0.39 / 0.29 

(0.10) 

0.25 / 0.16 

(0.084) 

-1.66  (0.88) -1.40 

ADK conc  0.62 / 0.33 

(0.37) 

3.30 / 0.71 

(1.11) 

2.67  (1.16) 17.18 

Tubulin (ADA) 0.17 / 0.17 

(0.02) 

0.13 / 0.17 

(0.0086) 

-0.95  (0.56) -0.81 

Tubulin (ADK) 0.18 / 0.18 

(0.021) 

0.13 / 0.18 

(0.014) 

-0.90  (0.673) -0.96 

Total protein 0.70 / 0.69 

(0.046) 

0.68 / 0.66 

(0.051) 

0.005  (0.19) -0.11 

AMP 11.00 / 9.75 

(1.62) 

8.53 / 7.91 

(1.34) 

-0.79  (0.50) -0.90 

Adenine 0.27 / 0.20 

(0.073) 

0.28 / 0.20 

(0.063) 

0.13  (0.70) -0.026 

Adenosine 4.67 / 0.46 

(2.40) 

2.19 / 0.35 

(1.79) 

-0.19  (0.71) -2.12 

GMP 4.26 / 3.76 

(0.58) 

2.90 / 2.16 

(0.43) 

-1.82 (0.57) -1.28 
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Guanine 2.07 / 2.10 

(0.35) 

1.51/ 1.31 

(0.24) 

-0.89  (0.62) -1.08 

Guanosine 3.45 / 1.04 

(1.78) 

2.08 / 0.49 

(1.63) 

-1.25  (0.62) -1.59 

Hypoxanthine 5.32 / 5.20 

(0.91) 

4.19 /3.06  

(0.56) 

-1.69  (0.820) -0.85 

Inosine 2.25 / 1.04 

(1.15) 

1.64 / 0.52 

(0.95) 

-1.38  (0.85) -1.09 

Uric Acid 16.40 / 12.05 

(2.97) 

14.12 / 11.14 

(2.68) 

-0.72  (0.44) -0.55 

Xanthine 5.03 / 4.37 

(0.66) 

3.11 / 2.34 

(0.39) 

-2.06 (0.64) -1.53 

Mean/Median  0.19 / -0.90 

 659 

Table 1. Means. Column headings are: M0, G0 pseudoline mean/median (SEM); MMA, MA 660 

mean/median (SEM); RM, per-generation change in trait mean conditioned on extraction block 661 

(all traits) and total protein concentration (all traits except ADA activity and ADA and ADK 662 

concentration, (SEM); ΔM, per-generation change in trait mean scaled as a fraction of the G0 663 

mean.     664 
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 665 

Trait VL,G0 VL,MA VE 𝒉𝑴
𝟐  (𝒏𝒐 𝑷𝑺,× 𝟏𝟎𝟑) 𝒉𝑴

𝟐 (− 𝑷𝑺,× 𝟏𝟎𝟑) 

ADA Activity 0 0.037 (0.028) 0.29 (0.038) 0.26 0.26 

ADK Activity 0 0 0.0035 (0.00039) 0 0 

ADA Conc. 0.16 (0.17) 0.40 (0.19)** 1.01 (0.15) 0.80 0.47 

ADK Conc. 0.17 (0.29) 0 2.62 (0.41) 0 0 

Tubulin Conc. (ADA) 0.030 (0.087) 0.079 (0.067) 0.45 (0.07) 0.35 0.22 

Tubulin Conc. (ADK) 0 0.096 (0.088) 0.57 (0.099) 0.34 0.34 

Total Protein 0 0.022 (0.008) 0.059 (0.0065) 0.75 0.75 

AMP 0.029 (0.063) 0.12 (0.047)** 0.36 (0.042) 0.67 0.51 

Adenine 0.13 (0.14) 0.042 (0.055) 0.69 (0.089) 0.12 0 

Adenosine 0.076 (0.14)  0.30 (0.090) ** 0.33 (0.039) 1.86 1.39 

GMP 0.059 (0.074) 0.15 (0.074)* 0.80 (0.092) 0.37 0.22 

Guanine 0.19 (0.11)** 0.081 (0.045)* 0.38 (0.050) 0.49 0 

Guanosine 0.21 (0.14)* 0.14 (0.066)** 0.63 (0.074) 0.46 0 

Hypoxanthine 0.12 (0.14) 0.36 (0.16)** 1.24 (0.15) 0.59 0.39 
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Inosine 0.27 (0.18)* 0.38 (0.14)** 0.82 (0.10) 0.92 0.25 

Uric Acid 0.063 (0.048) 0.074 (0.038)* 0.37 (0.045) 0.40 0.063 

Xanthine 0.058 (0.088) 0.19 (0.092)* 0.67 (0.090) 0.56 0.38 

Mean / Median  0.50 /0.42 0.27 / 0.22 

 666 

Table 2. Variances. Column headings are: VL,G0, among-line variance of the G0 pseudolines (SEM); VL,MA, among-line variance of 667 

the MA lines (SEM); VE,, the residual (within-line) variance of the MA lines (SEM); ℎ𝑀
2  (𝑛𝑜 𝑃𝑆), mutational heritability calculated as 668 

VL,MA/2tVE; ℎ𝑀
2  (− 𝑃𝑆), mutational heritability calculated as (VL,MA-VL,G0)/2tVE.  See Methods for details of the estimation of 669 

variance components. 670 

*     Likelihood ratio test, P<0.05 671 

**  Likelihood ratio test, P<0.003 (experiment-wide α<0.05)672 
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