Discrete Applied Mathematics 287 (2020) 77-84

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Approximation algorithm for minimum connected 3-path N

Check for

vertex cover
Pengcheng Liu?, Zhao Zhang **, Xianyue Li®, Weili Wu ¢

2 College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People’s Republic of China
b School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
¢ Department of Computer Science, University of Texas at Dallas, Richardson, TX, 75080, USA

ARTICLE INFO ABSTRACT

Article history: A vertex subset S of a given graph G = (V, E) is called a connected k-path vertex cover
Received 5 February 2019 (CVCPy) if every k-path of G contains at least one vertex from S, and the subgraph of G
Received in revised form 30 July 2020 induced by S is connected. This concept has its background in the field of security and

Accepted 5 August 2020

Available online 22 August 2020 supervisory and the computation of a minimum CVCP; is NP-hard. In this paper, we give

a (2a 4 1/2)-approximation algorithm for MinCVCP3;, where « is the performance ratio
Keywords: of an algorithm for MinVCP;.

Connected k-path vertex cover © 2020 Elsevier B.V. All rights reserved.
Approximation algorithm

1. Introduction

Nowadays, wireless sensor networks (WSNs) have been applied widely, including battlefield monitoring, traffic control,
disaster detection, and home automation, etc. Those applications bring several important research issues into studies, such
as coverage, connectivity, and security. In a WSN, a sensor has limited capabilities and is vulnerable to be captured. Under
such a setting, traditional security techniques such as key establishment and authentication cannot be used directly. As
pointed out in [22] “design of WSN security protocols has become a challenge in the computer security research field”.

Security concerns include several important properties, one of which is data integrity, which guarantees accuracy
and consistency of data during the working period of a WSN. There are several protocols and models to ensure data
integrity [29,30], one of which is the Generalized Canvas Scheme proposed by Novotny in [22]. This protocol guarantees
data integrality by requiring that every path on k vertices contains a protected vertex.

In graph theoretical language, the above model is described as follows. Suppose G = (V, E) is a graph on vertex set V
and edge set E. A k-path is a path on k vertices. A vertex subset S is a k-path vertex cover (VCPy) if every k-path of G contains
at least one vertex from S. Since protected vertices cost more, it is desirable that the number of protected vertices is as
small as possible. Thus we have the Minimum VCP;, problem (MinVCP;). In particular, MinVCP; is exactly the well-known
minimum vertex cover problem (MinVC). MinVCPy is also known as the minimum k-path transversal problem in some other
literature [17].

Another application of MinVCP;, is to monitor message flows in a WSN. Suppose every message which continuously
passes k vertices should be monitored at least once, then we again have the MinVCP, problem. In an application of
monitoring, connectivity is an important factor to be considered: in order that information collected by monitors can
be shared with each other in a fast way, it is desirable that the monitors form a connected group. Then we have the
minimum connected k-path vertex cover problem (MinCVCPy), the goal of which is to find a minimum vertex subset S of
graph G such that S is VCP, of G and the subgraph of G induced by S, denoted as G[S], is connected.

In this paper, we study approximation algorithm for MinCVCs.

* Corresponding author.
E-mail address: hxhzz@sina.com (Z. Zhang).

https://doi.org/10.1016/j.dam.2020.08.008
0166-218X/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.dam.2020.08.008
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2020.08.008&domain=pdf
mailto:hxhzz@sina.com
https://doi.org/10.1016/j.dam.2020.08.008

78 P. Liu, Z. Zhang, X. Li et al. / Discrete Applied Mathematics 287 (2020) 77-84
1.1. Related works

The MinVCP;, problem is a special case of the minimum vertex deletion problem studied in [10,16,18], the goal of which
is to select a minimum vertex set whose deletion results in a graph satisfying some specific property. If this property is
that there is no k-path in the remaining graph, then it is exactly MinVCP,. Notice that if S is a VCP3 of G, then V(G) \ S
is a dissociation set of G, which is defined to be a set of vertices inducing a subgraph of maximum degree at most 1. The
complement problem of MinVCP3 is the maximum dissociation set problem studied in [5,23,31,32].

The minimum cardinality of a VCP, is denoted as . There are a lot of studies on upper and lower bounds of v, from
a graph theoretical point of view (see for example [2,12]). Since this paper is on the algorithmic aspect of MinVCP;, we
mainly focus on related algorithmic results in the following.

Bresar et al. [2] proved that MinVCPy is NP-hard for any k > 2. The proof is done by a performance preserving reduction
from the minimum vertex cover problem. Combining this result with the non-approximability of MinVC in [15], it is highly
likely that MinVCP; does not admit an approximation factor strictly smaller than /2. Boliac et al. [1] proved that it is
NP-hard even in bipartite graphs that are C4-free and have maximum degree 3.

For some special graph classes including complete graphs, cycles, and trees, Bresar et al. [4] showed that MinVCP; can
be solved in polynomial-time even for its weighted version (denoted as MinWVCPy), in which every vertex has a weight
and the goal is to choose a VCP; with the minimum weight. Recently, BreSar et al. [3] presented a linear time algorithm
for the MinVCP3 problem on the class of P4-tidy graphs which widely generalizes the class of cographs.

Starting from the 0(1.5171")-time algorithm for MinVCP; by Kardos$ et al. [13], there are a lot of studies on exact
algorithms and FPT algorithms for MinVCP3 [14,25,31]. Currently, the best known running time of an FPT for MinVCP;3 is
0%(1.7964) in polynomial space and 0*(1.7485X) in exponential space [7], where K is the size of an optimal VCP;.

Because of the NP-hardness of MinVCPy, another trend is to design approximation algorithms for the problem. By
noticing that MinVCPy is a special case of the minimum set cover problem (MinSC), it admits k-approximation [35].
Improvement on the ratio needs further exploration of graph structures. Kardo$ et al. [13] presented a randomized
algorithm for MinVCP3 with expected performance ratio % Tu et al. gave two 2-approximation algorithms for MinWVCP3
using local ratio method [27] and primal-dual method [28], respectively. On cubic graphs, the ratio for MinVCP3 can be
improved to 1.57 [26] and the ratio for MinVCP,4 can be improved to 2 [19].

There are very few works on MinVCP,, for general k. Considering geometry, Zhang et al. [34] presented a PTAS (that is, a
(1+¢)-approximation) for MinVCP,, on a ball graph (which is a widely adopted model for a heterogeneous wireless sensor
network) under the assumption that the heterogeneity (which is the ratio of the maximum radius over the minimum
radius of balls) has a constant upper bound. A breakthrough was made very recently by Lee in [17], who presented
an 0(log k)-approximation algorithm with running time 20%’108Kn2 |ogn + n‘z“). Notice that when k is a constant, the
L4)d—k+2)

algorithm runs in polynomial-time. Recently, Zhang et al. [33] obtained a a2

-approximation for MinVCP, on

d-regular graphs with 1 <k —2 < d.

Liu et al. [21] were the first to study MinVCP, under a requirement of connectivity. They gave a PTAS for MinCVCP;
on unit disk graphs (a unit disk graph is a 2-dimensional ball graph in which all balls have the same radius). A simplified
approach which also yields a PTAS for MinCVCP; but runs faster was given in [8]. Notice that a basis for Liu’s algorithm
in [21] is a k*-approximation algorithm for MinCVCP; on a general graph. Li et al. [20] improved the ratio to k on a graph
with girth (the length of a shortest cycle) at least k. Recently, Fujito [11] removed the girth requirement, showing that
the MinCVCP;, problem on a general graph admits a k-approximation. The above studies are on the cardinality version.
Considering weight, Ran et al. [24] presented a greedy algorithm for the minimum weight CVCP3 problem in a general
graph, achieving approximation ratio In A + 4 4 In2, where A is the maximum degree of the graph. This ratio is tight
under the assumption that P # NP.

1.2. Our contributions

In this paper, we present a (2« + %)—approximation algorithm for MinCVCP3, where « is the performance ratio of an
algorithm for MinVCPs.

The main contribution of this paper is on the connecting part. The idea of our algorithm is as follows. Suppose S is a
VCP; of graph G with G[S] having [> 2 connected components. Since S is a VCP3, adding at most two vertices can merge
at least two connected components of G[S]. Hence adding at most 2(I — 1) < 2(|S| — 1) vertices will result in a CVCP;
whose size is at most 3|S| — 2. So, if MinVCP3 has an «a-approximation, then a 3¢-approximation for MinCVCP3 can be
easily obtained. To obtain a better result, consider the efficiency of mergence per vertex, that is, averagely speaking, how
many connected components can be merged by adding one vertex. In a worst case, adding two vertices can merge two
connected components, the efficiency of which is 1. The efficiency will be higher if adding two vertices can merge three or
more connected components. So, our algorithm will execute such more efficient operations as long as possible. When such
more efficient operations cannot go on, the graph has a special structure, which enables us to find a controllable number
of vertices to connect the remaining connected components. Such an idea is inspired by [9], in which a 5/3-approximation
algorithm was obtained for the minimum connected vertex cover problem (MinCVC) on those classes of graphs for which
MinVC is polynomial-time solvable. Besides such an idea, due to the much more complicated structure of a CVCP; than
CVC, more manipulations and more ideas are needed both for the algorithm and for the analysis.

P. Liu, Z. Zhang, X. Li et al. / Discrete Applied Mathematics 287 (2020) 77-84 79

Fig. 1. An illustration for the effect of contracting connected components.

The following part is organized as follows. In Section 2, we introduce some basic notations and some preliminary results
which will be used in our paper. In Section 3, a (2« + 1/2)-approximation algorithm is presented for MinCVCPs3, where «
is the approximation factor of an algorithm for MinVCP3. The paper is concluded in Section 4 with some discussions on
further study.

2. Preliminaries

All graphs considered are undirected, simple and without loops. Our algorithm needs the operation of connected
contraction defined as follows.

Definition 1. For a vertex set A C V of a graph G = (V, E), the contraction of G with respect to A is the simple graph
G4 which is obtained from G by identifying all vertices in A as a new vertex v4 and replacing those edges with the form
of uv with u ¢ A and v € A by an edge uv,, removing redundant parallel edges. We also say that G, is obtained from
G by contracting vertex set A. Suppose V' is a vertex subset of V and G[V'] has q connected components G, ..., G4. Let
A; = V(G;). The connected contraction of G following V' is the graph G{, obtained from G by contracting Ay, ..., Aq.

Suppose S is a VCP; of a connected graph G. Then every connected component of G[V \ S] is either an isolated vertex
or an isolated edge. Let Gg.v\s = (Gg);\s be the graph obtained from G by first contracting connected components of G[S]
and then contracting connected components of G[V \ S]. Then cg,v\s is a bipartite graph with bipartition (Ls, Rs), where Lg
consists of those contracted vertices of G[S] and Rs consists of those contracted vertices of G[V \ S]. For each contracted
vertex s € V(Gg,v\s), denote by A the set of vertices of V(G) which are contracted onto s. As to those vertices in G, we
call them normal vertices. For example, starting from graph G in Fig. 1(a), let S be the set of vertices in the upper ellipse,
after identifying {u,, u,, us} and {u4, us} which are nontrivial connected components of G[S], and identifying {v{, vo} and
{ve, v7} which are nontrivial connected components of G[V \ S], the resulting graph G§,V\s is depicted in Fig. 1(b). The
dotted lines will be explained later.

In the following, we use dg(u) to denote the degree of vertex u in graph G.

Lemma 2. Suppose S is a VCP3 of G (not necessarily minimum) such that G[S] is not connected and dcg V\S(r) < 2 holds for

every vertex r € Rs. We can change S into vertex set S’ in O(n?) time (where n is the number of vertices) such that
(i) S’ is also a VCP5 of G (feasibility condition),

ii) |S’| < |S| (S-monotonicity condition),

iii) |Ls/| < |Ls| (L-monotonicity condition),

iv) d(;;, y S/(r) < 2 for every vertex r € Ry (R-degree condition), and

v) dcg/ "/\5/(1) > 2 holds for any vertex | € Ly if G[S'] is not already connected (L-degree condition).

—~ o~ —~ —

Proof. To prove the lemma, we are to show that as long as Ls has a vertex of degree one in G st then we can construct
a vertex set S’ satisfying conditions (i) to (iv) such that

the number of degree one vertices in Ly is strictly
smaller than the number of degree one vertices in Ls.

(1)

Then iteratively using such an operation, we will eventually obtain a vertex set S’ satisfying all conditions (i) to (v).
Suppose | € Ls has degree one in Gg . Let 1 € Rs be the unique neighbor of I in G . Recall that G[A,] is either an
isolated vertex or an isolated edge in G[V \ S].

80 P. Liu, Z. Zhang, X. Li et al. / Discrete Applied Mathematics 287 (2020) 77-84

Fig. 2. An illustration for the proof of adjustment in Lemma 2 Case 1. The dashed curve indicates the new connected component G[Ay] of G[S'].

Case 1. G[A,] is an edge.

First, assume |A;| > 3. For an illustration of the proof, the readers may refer to Fig. 2.

Let u be a vertex of A; which is adjacent with A,. Since G[A,] is connected, we can find two vertices uq, u, # u such that
G[A\{u1, uy}] is connected. In fact, vertices u; and u; can be found as the last two vertices visited by a BFS starting from u.
Let S’ = (S\ {uq, up})UA,. Then S’ is a VCP3 of G with |S’| = |S| (conditions (i) and (ii) hold), subgraph G[(A;\ {u1, u;})UA,]
is connected, and {uy, u;} form one connected component (in the case when u;u, is an edge in G) or two connected
components (in the case when u; and u, are not adjacent in G) of G[V \ S’] which are only adjacent with the connected
component of G[S’] containing (A; \ {u1, up}) UA;.

Since G[S] is not connected, we have |Ls| > 2. By the connectedness of G and the assumption that dcg V\S(r) < 2, we see

that r has degree exactly 2 in cg,v\s. Let | be the other neighbor of r in G;V\S. Then vertex set Ay = (Ar\ {u1, u2}) UA, UA;
induces a connected component of G[S'] (denote by I’ the vertex in Ly corresponding to this connected component). Notice
that all other connected components of G[S] remain the same. Hence |Ls/| = |Ls| — 1, condition (iii) holds.

Notice that except for G[A,], all other connected components of G[V \S] are still connected components of G[V \S’] with
the same adjacency relation, and thus their corresponding vertices have the same degrees in Ggqv\s and G;’,V\S’ (which
are not greater than 2). Furthermore, G[V \ S’] has one or two more connected components (namely those connected
components formed by u1, uy). Since such an extra connected component is only adjacent with G[Ay], its corresponding
vertex has degree one in G;’,V\S/' Condition (iv) is proved.

Finally, if G[S’] is not connected, then A; is adjacent with some connected component of G[V \ S] different from G[A,],
which is also a connected component of G[V \ S’]. Adding the one or two connected components formed by u; and uj,
vertex ' has degree at least 2 in GC,’V\S,. As to every other connected component of G[S’], its corresponding vertex has
the same degree in G5 5 and Gy, ;. So, condition (1) holds.

The case when |A;| = 2 can be considered similarly by letting S’ = (S \ A;) U A;. The case when |A] = 1 can be
considered similarly by letting S’ = (S \ {u}) U {v}, where the unique vertex in A; is u, A, = {v, v}, and v is adjacent with
some other vertex in Ls (such v exists since G[S] is not connected but G is connected).

Case 2. |A;| = 1.

Let v be the unique vertex in A, and let u be a vertex in A; such that G[A; \ {u}] is connected or empty. Let S’ = S\ {u}.
Since all neighbors of v are in S and all neighbors of u are in S U {v}, vertex set {u, v} induces either two isolated vertices
of G— S’ (if u and v are not adjacent) or an edge of G— S’ (if uv is an edge of G), which implies that S’ is a VCP3 of G with
IS’ = |S| — 1. If vertex set A; \ {u} = @, then one connected component of G[S] whose corresponding vertex has degree
one in Gg.V\S (namely the connected component G[A;] = {u}) vanishes. In this case, all conditions (i) to (iv) and property
(1) are satisfied. If A; \ {u} # @, then by the choice of u, G[A, \ {u}] is a connected component of G[S’], which corresponds
to a vertex I’ of Gg,’v\s,. In this case, |Ly| = |Ls|. If u and v are not adjacent, then I’ has degree 2 in Gg,’v\s, (since {u} and
{v} are the two connected components of G[V \ S’] adjacent with Ay). We also have conditions (i) to (iv) and property (1).
If uv is an edge, then we arrive at Case 1.

Notice that the above switch operations lead to |Ls/| < |Ls| in Case 1 and |S’| < |S| in Case 2. Because |S|+ |Ls| = O(n),
in at most O(n) iterations, we could obtain a VCP3 S’ satisfying all conditions (i) to (v). Each iteration can be done in time
O(n). Hence a desired set S’ can be found in time O(n?). O

Besides those operations in the proof of Lemma 2, we will also need the following operation to change a VCP3 set S
into another VCP5 set S’ (see Fig. 3).

Operation A. Suppose S is a VCP; of G. If |Ls| > 2 and there exists a vertex u € S which is an isolated vertex in G[S]
with dg(u) = 2, and there is a neighbor of u, say w, such that S’ = (S \ {u}) U {w} is still a VCP3 of G and the number of
connected components of G[S'] is strictly smaller than the number of connected components of G[S], then replace S by S'.

Remark 3. Notice that if S is a VCP3 of G satisfying the R- and L-degree conditions of Lemma 2, then the set S’ obtained
through Operation A satisfies all those conditions of Lemma 2.

P. Liu, Z. Zhang, X. Li et al. / Discrete Applied Mathematics 287 (2020) 77-84 81

Fig. 3. An illustration of Operation A.

The next lemma is implied in a result due to Escoffier et al. (Lemma 9 of [9]).

Lemma 4. Suppose G is a connected bipartite graph on at least 3 vertices with bipartition (L, R) in which dg(r) < 2 holds
for any r € R and dg(l) > 2 holds for any | € L. Then the cardinality of a minimum CVC of G is 2|L| — 1 and there exists a
minimum CVC containing L. Furthermore, such a minimum CVC can be found in polynomial time.

Remark 5. The following is the method implied in the proof of Lemma 9 of [9] to find a minimum CVC of graph G which
satisfies those conditions of Lemma 4. Construct an auxiliary graph H on vertex set L. Two vertices l1, [, € L are adjacent
in H if and only if [; and I, have a common neighbor in G. Let T be a spanning tree of H. For each edge e € E(T), let r, be
a common neighbor of the two ends of e in G (although the two ends of e may have many common neighbors, it suffices
to pick only one of them to serve as r.). Then, LU {r.:e € E(T)} is a minimum CVC. As a consequence of this method, it
can be seen that no vertex of degree one in G can belong to the minimum CVC.

3. Approximation algorithm

Our algorithm for MinCVCP; is described in Algorithm 1. An optimal CVCP; with cardinality one is a vertex, and an
optimal CVCP; of cardinality two is an edge. After dealing with these two special cases in the first two lines of the
algorithm, the remaining part is devoted to the case when an optimal CVCP3 has at least three vertices.

Notice that a VCP5 S is a CVCP; of G if and only if |[Ls| = 1. After obtaining a VCP3 S by an «-approximation algorithm,
while |Ls| > 2, we add more vertices to connect S. In the while loop, as long as there exists a vertex r € Rs with degree at
least 3 in Gg,v\s (that is, adding A, will merge at least three connected components of G[S]), then add A; into S. When the
algorithm jumps out of the while loop, if we still have |Ls| > 2, then every vertex r € Rs has degree at most 2 in Gg y,.
After changing S into S’ satisfying conditions (i) to (v) of Lemma 2, Operation A is applied recursively until it cannot be
applied any more. By Remark 3, the resulting graph GC,_V\S, satisfies the conditions of Lemma 4. Hence a minimum CVC
of Gg’,V\s/ can be found in polynomial time which contains Lg. By expanding all those contracted vertices, we obtain a
CVCP; of G.

Algorithm 1 Approximation Algorithm for CVCPs.
Input: A connected graph G = (V, E).
Output: A vertex set S, which is a CVCP; of G.
: If there is a vertex u such that G — u is Ps-free, then output S4 = {u}, stop.
: If there is an edge uv such that G — {u, v} is Ps3-free, then output Sy = {u, v}, stop.
: Find a vertex set S which is an «¢-approximation solution to VCP; on G.
: if |Ls|= 1 then
Output S5 < S and stop.
end if
: while |Ls|> 2 and there exists r € R with dcg y (ry>3do

S
S« SUA, '
: end while
: Recursively use the operations in the proof of Lemma 2 to change S into S’ satisfying the conditions of Lemma 2.
: Apply Operation A on S’ until no more Operation A can be applied.
. if |[Lg|= 1 then
Output S4 < S’ and stop.
. end if
: Find a minimum connected vertex cover C of Gg’,V\S’ containing Lg.

. Output Sy < §' U (Urems, A).

—_
- O W 0 N U A WN =

— e e e

—_
[*2]

82 P. Liu, Z. Zhang, X. Li et al. / Discrete Applied Mathematics 287 (2020) 77-84

By Lemma 2, step 10 can be executed in time O(n?). By Remark 5, the running time for step 15 is O(n? 4+ m), where m
is the number of edges. In fact, the construction of H can be done in time O(n?), finding a spanning tree in H can be done
in time O(m), and adding those vertices {r.}ecgry Needs time O(n). As to step 1, step 11, and the while loop, it is easy to
see that their running time is O(n). The running time for step 2 is O(mn). So, if we denote by M the running time for the
a-approximation algorithm computing VCP3, the time complexity of Algorithm 1 is O(mn + M).

To analyze the performance ratio of Algorithm 1, we assume that S, is output in line 16 (if S, is output in line 1 or
line 2, then it is an optimal solution, if S, is output in line 5 or line 13, then its size will be smaller than the one output
in line 16). The next lemma gives a lower bound for the size of an optimal CVCPs.

Lemma 6. Let S’ be the vertex set found in line 11 of Algorithm 1. Then optcycp, > 2|Ls/| — 1, where opteycp, is the size of a
minimum CVCPs.
Proof. Let OPT be a minimum CVCP; of G, and let OPT, Sy = ={se V(GS, V\S,) As N OPT # @} (recall that A is the set
of vertices in G corresponding to the vertex s of GS, V\S,) Con51der Fig. 1 as an illustration, the dotted circle in Fig. 1(a)
indicates the vertex set OPT in G, and the dotted circle in Fig. 1(b) indicates the vertex set OPT, " in G, s For simplicity
of notation, denote by H the subgraph of GS, NS induced by OPT, N Notice that H can be v1ewed asa graph obtaining
from G[OPT] by a set of contractions, that is, collapsmg all vertices in a same connected component of G[S] or G[V \ §']
which has nonempty intersection with OPT onto one vertex of H. So, by the connectedness of G[OPT], the graph H is also
connected.
Hence if OPT, then it is a CVC of G

is a vertex cover of G and thus |OPT| > |OPT, 3 V\S’| > opteyeee

S/ V\S S V\S"? S V\S s

2|Ls/| — 1, where opteyc e) is the size of a minimum CVC of GS, s and the equality holds because of Lemma 4.
In the following, assume that OPT;, s Is mot a vertex cover of Gg .. Then there exists an isolated edge uv in
Gy W — OPT, ns Notice that u and v are normal vertices (not contracted vertices) in G belonging to Ly and Ry,

respectively. This is because OPT is a VCP; of G and thus G — OPT contains only isolated vertices and isolated edges.
Denote by E’ the set of isolated edges in GS, NS OPTS, W' In the following, when we mention an edge uv € F/, it is
always assumed that u € Ly and v € Ry.

Notice that if Ly N OPT, Svs = = @, then OPT C V \ S'. Since G[OPT] is connected and every connected component in
G[V \ §’] is either a vertex or an edge, we have |OPT| < 2. In this case, the algorithm stops at the first line or the second
line. Since we are now considering the set S’ found in line 11, hence

Ly N OPT, sws =0 (2)

Consider an edge uv € E'. Let the neighbors of u in G, " be v and rﬁ”), ey rﬁf). Because dec (1) > 2 holds for
NAANY

every vertex | € Ly, we have t, > 1. Notice that {r(”) .. rt(f’ } € Ry N OPT, Vs’ (otherwise there will be a P3- path in

G[V \ OPT]). Since every vertex in Ry has degree at most 2 in G, s and because graph H (which is G, V\S,[OP

1)
S/ V\S
is connected with Ly N V(H) # @ (see (2)), so

every r; ™ has degree exactly 2 in GS, Vs’ and
the other neighbor of r. belongs to Ly N OPTS, Vs
Suppose that there exists an edge uv € E’ such that t, = 1 and A, u)| = 1. Let w be the unique vertex in A - Notice that

(3)

w and v are the only two neighbors of u in G, and all neighbors of v belong to S’. Hence S” = (S"\ {u})U {w} is still a VCP;
of G. Since the other neighbor of vertex w is in S’ and u is an isolated vertex in G[S’], hence G[S”] has fewer connected
components than G[S’]. These imply that Operation A is still applicable on S’, contradicting the construction of S’ in line
11 of Algorithm 1. So,
ty
for any edge uv € E’, we have |UAr_(u)| > 2. (4)
i=1
Call those vertices contained in Ly and Ry as L-vertices and R-vertices, respectively. Let G' := Gg, s~ {furuv €
E'} —{v:uv € E" and u is the unique neighbor of v} be the graph obtained from Gf,.v\s, by removing all L- vertlces incident
to the edges of E’ and those R-vertices incident to the edges of E’ which have degree one in G. Then G’ is connected and
OPTg, , \s' is @ CVC of G'. Notice that G’ satisfies the condition of Lemma 4. It should be pointed out that if we remove all
end vertices incident to the edges of E’, then G’ is connected (since all isolated vertices and isolated edges are linked to
the connected subgraph G s/ NS [OPTC,’V\S,]), but the degree of some vertices in the L-part might become smaller than two.
This is why we only remove those R-vertices of degree one in G. By observation (3), every r(”)

also a leaf vertex of H), hence OPTg, .\, — Uyperr (Ufuzl{ri(")}) is still a CVC of G. So,

oPtS o — (U{r “’})

uveE’

is a leaf vertex of G’ (and

> opteveey = 2(|Ly — {uzuv € E'}) —

P. Liu, Z. Zhang, X. Li et al. / Discrete Applied Mathematics 287 (2020) 77-84 83

By noticing that the sets {A(r:l)}u;ul)eg/ are mutually disjoint, we have

tu ty
Pt o — ({r,.(“)}) +y UAri(u)
1

uveE’ \i= uveE’ li=1

|OPT| >

Then by observation (4),
|OPT| > 2(|Ls'| — [E']) — 1+ 2|E'| = 2|Ly'| — 1.
The lemma is proved. O

Next, we analyze the performance ratio of Algorithm 1.
Theorem 7. Algorithm 1 has performance ratio at most 2« + 1/2.

Proof. Let OPT be a minimum CVCP; of G, and let opt = |OPT|. Denote the vertex set found in line 3 as Sy, the vertex set
obtained at the end of the while loop as S,. Since S; is an a-approximation to MinVCP; and the size of a minimum VCP;
is no larger than the size of a minimum CVCP3, we have

IS1] < « - opt.
Suppose the while loop is executed t times. Because every |A;| < 2 and thus each iteration adds at most two vertices, so
1S2] < [S1] + 2t.
Since each iteration merges at least three connected components into one larger connected component, we have
ILs, | = ILs,| + 2t.
After line 11 of Algorithm 1, the set S’ satisfies
ISl < IS2] and |Ls'| < |Ls,|.
By Lemma 4 and Remark 5,
ISal < I1S'I + 2(ILs'| — 1),

where coefficient 2 comes from the fact that each A, has cardinality at most 2. Combining the above inequalities together,
and using the fact |Ls,| < |S1], we have

1Sal = 1S1] 4 ILs, | = ILs, | 4 2|Ls'| =2 < 2[S1] + |Ls'| — 2.

By Lemma 6,
opt > 2|Lg| — 1.

Hence
1Sal < {2 —i—1 opt 3
Al = | 2a 2 D 7

The theorem is proved. O
4. Conclusion and discussion

In this paper, we give a polynomial-time (2« + 1/2)-approximation algorithm for MinCVCP3, where « is the perfor-
mance ratio of a polynomial-time algorithm for MinVCP5. From [11,20], it is known that MinCVCP5 can be approximated
within factor 3. For those classes of graphs on which MinVCP; has approximation factor « < 5/4, the algorithm in this
paper is a kind of improvement. It deserves to be further studied whether the coefficient 2 before « can be reduced to
some constant strictly smaller than 2. Designing approximation algorithms for MinVCP; with small performance ratio «
in some graph classes is another research topic of our future study.

Another question is whether there exists a class of graphs for which MinVCP; is polynomial-time solvable but
MinCVCP; is NP-hard. We have explored many typical classes of graphs but have not found one of them having such
a disparate. Finding such a class of graphs might be an interesting research topic. Furthermore, bounds (especially lower
bounds) of approximation ratio for MinVCP, and MinCVCP; in various graph classes are not sufficiently studied yet.

The above question also motivates us to ask the question of price of connectivity for approximation. In [6], Cardinal
and Levy introduced the concept of price of connectivity for the vertex cover problem, which is the worst-case ratio
between the sizes of a minimum connected vertex cover and a minimum vertex cover. Here we are interested in a
similar question from an approximation point of view: if the approximation ratio of a minimization problem is «, and
its connected version has approximation ratio 8, what can we say about the ratio §/«, for the considered graph class?

84 P. Liu, Z. Zhang, X. Li et al. / Discrete Applied Mathematics 287 (2020) 77-84

Here, approximation ratio is the infimum of r such that the problem is r-approximable in polynomial time. We abbreviate
such a ratio as PoC-APPROX. For example, both the minimum vertex cover problem (MinVC) and the minimum connected
vertex cover problem (MinCVC) have 2-approximations which are widely believed to be tight, so PoC-APPROX(VC) might
be 1. In [9], Escoffier et al. proved that MinCVC is APX-hard on bipartite graphs and presented a 5/3-approximation
algorithm for those classes of graphs on which MinVC is polynomial-time solvable. Since MinVC is polynomial-time
solvable on bipartite graphs, PoC-APPROX(VC) for bipartite graphs is strictly larger than 1 and upper bounded by 5/3.
By the statement in the second paragraph of Section 1.2, PoF-APPROX(VCP3) has a trivial upper bound 3. Our result
implies that PoF-APPROX(VCP3) < 2.5, which improves the above trivial bound 3. New techniques are needed for further
improvement.

CRediT authorship contribution statement

Pengcheng Liu: Formal analysis, Investigation, Writing - original draft. Zhao Zhang: Conceptualization, Formal analy-
sis, Investigation, Methodology, Project administration, Writing - review & editing. Xianyue Li: Methodology, Validation,
Writing - review & editing. Weili Wu: Conceptualization, Project administration, Validation.

Acknowledgments

This research is supported by NSFC (11771013, 11531011, 61751303) and ZJNSFC, China (LD19A010001), the Funda-
mental Research Funds for the Central Universities, China (No. 1zujbky-2017-163), and NSF, USA (#1747818).

References

[1] R. Boliac, K. Cameron, V. Lozin, On computing the dissociation number and the induced matching number of bipartite graphs, Ars Combin. 72
(2004) 241-253.

[2] B. Bresar, F. Kardos,]. Katreni¢, G. Semanisin, Minimum k-path vertex cover, Discrete Appl. Math. 159 (2011) 1189-1195.

[3] B. Bresar, T. Kos, R. Krivo$-Bellu$, G. Semanisin, Hitting subgraphs in P4-tidy graphs, Appl. Math. Comput. 352 (2019) 211-219.

[4] B. Bresar, R. Krivos-Bellu3, G. Semanisin, P. Sparl, On the weighted k-path vertex cover problem, Discrete Appl. Math. 177 (2014) 14-18.

[5] K. Cameron, P. Hell, Independent packings in structured graphs, Math. Program. 105 (2-3) (2006) 201-213.

[6] J. Cardinal, E. Levy, Connected vertex covers in dense graphs, Theoret. Comput. Sci. 411 (26-28) (2010) 2581-2590.

[7] M.S. Chang, LH. Chen, LJ. Hung, P. Rossmanith, P.C. Su, Fixed-parameter algorithms for vertex cover Ps, Discrete Optim. 19 (2016) 12-22.

[8] L. Chen, X. Huang, Z. Zhang, A simpler PTAS for connected k-path vertex cover in homogeneous wireless sensor network, J. Combin. Optim. 36
(1) (2018) 35-43.

[9] B. Escoffier, L. Gourvés, J. Monnot, Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs,
J. Discrete Algorithms 8 (2010) 36-49, A preliminary version appears in International Workshop on Graph-Theoretic Concepts in Computer
Science 2007, LNCS 4769 (2007) 202-213.

[10] T. Fujito, A unified approximation algorithm for node-deletion problems, Discrete Appl. Math. 86 (1998) 213-231.

[11] T. Fujito, On approximability of connected path vertex cover, in: Workshop on Approximation and Online Algorithms, 2017, pp. 17-25.

[12] M. Jakovac, A. Taranenko, On the k-path vertex cover of some graph products, Discrete Math. 313 (2013) 94-100.

[13] F. Kardos, J. Katreni¢, I. Schiermeyer, On computing the minimum 3-path vertex cover and dissociation number of graphs, Theoret. Comput.
Sci. 412 (2011) 7009-7017.

[14]]. Katreni¢, A faster FPT algorithm for 3-path vertex cover, Inform. Process. Lett. 116 (4) (2016) 273-278.

[15] S. Khot, D. Minzer, M. Safra, Pseudorandom sets in Grassmann graph have near-perfect expansion, in: FOCS2018, pp. 592-601.

[16] M.S. Krishnamoorthy, N. Deo, Node-deletion NP-complete problems, SIAM J. Comput. 8 (4) (1979) 619-625.

[17] E. Lee, Partitioning a graph into small pieces with applications to path transversal, Math. Program. Ser. A (2019) 1546-1558, http://dx.doi.org/
10.1007/s10107-018-1255-7, A preliminary version appears in SODA 2017.

[18] J.M. Lewis, M. Yannakakis, The node-deletion problem for hereditary properties is NP-complete,]. Comput. System Sci. 20 (1980) 219-230.

[19] Y. Li, J. Tu, A 2-approximation algorithm for the vertex cover P, problem in cubic graphs, Int. J. Comput. Math. 91 (10) (2014) 2103-2108.

[20] X. Li, Z. Zhang, X. Huang, Approximation algorithms for minimum (weight) connected k-path vertex cover, Discrete Appl. Math. 205 (2016)
101-108.

[21] X. Liu, H. Lu, W. Wang, W. Wu, PTAS for the minimum k-path connected vertex cover problem in unit disk graphs, J. Global Optim. 56 (2013)
449-458.

[22] M. Novotny, Design and analysis of a generalized canvas protocol, in: Proceedings of WISTP 2010, in: LNCS, vol. 6033, 2010, pp. 106-121.

[23] Y. Orlovich, A. Dolgui, G. Finke, V. Gordon, F. Werner, The complexity of dissociation set problems in graphs, Discrete Appl. Math. 159 (2011)
1352-1366.

[24] Y. Ran, Z. Zhang, X. Huang, X. Li, D. Du, Approximation algorithms for minimum weight connected 3-path vertex cover, Appl. Math. Comput.
(2019) 723-733.

[25]]. Tu, A fixed-parameter algorithm for the vertex cover P; problem, Inform. Process. Lett. 115 (2015) 96-99.

[26]]. Tu, F. Yang, The vertex cover P; problem in cubic graphs, Inform. Process. Lett. 113 (2013) 481-485.

[27] J. Tu, W. Zhou, A factor 2 approximation algorithm for the vertex cover P; problem, Inform. Process. Lett. 111 (2011) 683-686.

[28] J. Tu, W. Zhou, A primal-dual approximation algorithm for the vertex cover P; problem, Theoret. Comput. Sci. 412 (2011) 7044-7048.

[29] H. Vogt, Exploring message authentication in sensor networks, in: ESAS2004, in: LNCS, vol. 3313, 2015, pp. 19-30.

[30] Y. Xiao, X. Du, A survey on sensor network security, in: Y. Li, et al. (Eds.), Wireless Sensor Networks and Applications, in: Signals and
Communication Technology Series, Springer, Heidelberg, 2008, pp. 403-421.

[31] M. Xiao, S. Kou, Exact algorithms for the maximum dissociation set and minimum 3-path vertex cover problems, Theoret. Comput. Sci. 657
(2017) 86-97.

[32] J. You, J.X. Wang, Y.X. Cao, Approximate association via dissociation, Discrete Appl. Math. 219 (2017) 202-209.

[33] A. Zhang, Y. Chen, Z.-Z. Chen, G. Lin, Improved approximation algorithms for path vertex covers in regular graphs, arXiv:1811.01162v1.

[34] Z. Zhang, X. Li, Y. Shi, H. Nie, Y. Zhu, PTAS for minimum k-path vertex cover in ball graph, Inform. Process. Lett. 119 (2017) 9-13.

[35] Y. Zhang, Y. Shi, Z. Zhang, Approximation algorithm for the minimum weight connected k-subgraph cover problem, Theoret. Comput. Sci. 535
(2014) 54-58.

http://refhub.elsevier.com/S0166-218X(20)30374-7/sb1
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb1
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb1
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb2
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb3
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb4
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb5
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb6
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb7
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb8
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb8
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb8
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb9
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb9
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb9
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb9
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb9
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb10
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb12
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb13
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb13
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb13
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb14
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb16
http://dx.doi.org/10.1007/s10107-018-1255-7
http://dx.doi.org/10.1007/s10107-018-1255-7
http://dx.doi.org/10.1007/s10107-018-1255-7
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb18
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb19
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb20
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb20
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb20
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb21
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb21
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb21
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb22
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb23
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb23
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb23
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb24
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb24
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb24
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb25
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb26
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb27
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb28
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb29
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb30
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb30
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb30
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb31
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb31
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb31
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb32
http://arxiv.org/abs/1811.01162v1
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb34
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb35
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb35
http://refhub.elsevier.com/S0166-218X(20)30374-7/sb35

	Approximation algorithm for minimum connected 3-path vertex cover
	Introduction
	Related works
	Our contributions

	Preliminaries
	Approximation algorithm
	Conclusion and discussion
	CRediT authorship contribution statement
	Acknowledgments
	References

