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a b s t r a c t

A vertex subset S of a given graph G = (V , E) is called a connected k-path vertex cover
(CVCPk) if every k-path of G contains at least one vertex from S, and the subgraph of G
induced by S is connected. This concept has its background in the field of security and
supervisory and the computation of a minimum CVCPk is NP-hard. In this paper, we give
a (2α + 1/2)-approximation algorithm for MinCVCP3, where α is the performance ratio
of an algorithm for MinVCP3.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, wireless sensor networks (WSNs) have been applied widely, including battlefield monitoring, traffic control,
disaster detection, and home automation, etc. Those applications bring several important research issues into studies, such
as coverage, connectivity, and security. In a WSN, a sensor has limited capabilities and is vulnerable to be captured. Under
such a setting, traditional security techniques such as key establishment and authentication cannot be used directly. As
pointed out in [22] ‘‘design of WSN security protocols has become a challenge in the computer security research field’’.

Security concerns include several important properties, one of which is data integrity, which guarantees accuracy
and consistency of data during the working period of a WSN. There are several protocols and models to ensure data
integrity [29,30], one of which is the Generalized Canvas Scheme proposed by Novotný in [22]. This protocol guarantees
data integrality by requiring that every path on k vertices contains a protected vertex.

In graph theoretical language, the above model is described as follows. Suppose G = (V , E) is a graph on vertex set V
and edge set E. A k-path is a path on k vertices. A vertex subset S is a k-path vertex cover (VCPk) if every k-path of G contains
at least one vertex from S. Since protected vertices cost more, it is desirable that the number of protected vertices is as
small as possible. Thus we have the Minimum VCPk problem (MinVCPk). In particular, MinVCP2 is exactly the well-known
minimum vertex cover problem (MinVC). MinVCPk is also known as the minimum k-path transversal problem in some other
literature [17].

Another application of MinVCPk is to monitor message flows in a WSN. Suppose every message which continuously
passes k vertices should be monitored at least once, then we again have the MinVCPk problem. In an application of
monitoring, connectivity is an important factor to be considered: in order that information collected by monitors can
be shared with each other in a fast way, it is desirable that the monitors form a connected group. Then we have the
minimum connected k-path vertex cover problem (MinCVCPk), the goal of which is to find a minimum vertex subset S of
graph G such that S is VCPk of G and the subgraph of G induced by S, denoted as G[S], is connected.

In this paper, we study approximation algorithm for MinCVC3.
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.1. Related works

The MinVCPk problem is a special case of the minimum vertex deletion problem studied in [10,16,18], the goal of which
is to select a minimum vertex set whose deletion results in a graph satisfying some specific property. If this property is
that there is no k-path in the remaining graph, then it is exactly MinVCPk. Notice that if S is a VCP3 of G, then V (G) \ S
is a dissociation set of G, which is defined to be a set of vertices inducing a subgraph of maximum degree at most 1. The
complement problem of MinVCP3 is the maximum dissociation set problem studied in [5,23,31,32].

The minimum cardinality of a VCPk is denoted as ψk. There are a lot of studies on upper and lower bounds of ψk from
a graph theoretical point of view (see for example [2,12]). Since this paper is on the algorithmic aspect of MinVCPk, we
mainly focus on related algorithmic results in the following.

Brešar et al. [2] proved that MinVCPk is NP-hard for any k ≥ 2. The proof is done by a performance preserving reduction
rom the minimum vertex cover problem. Combining this result with the non-approximability of MinVC in [15], it is highly
ikely that MinVCPk does not admit an approximation factor strictly smaller than

√
2. Boliac et al. [1] proved that it is

P-hard even in bipartite graphs that are C4-free and have maximum degree 3.
For some special graph classes including complete graphs, cycles, and trees, Brešar et al. [4] showed that MinVCPk can

e solved in polynomial-time even for its weighted version (denoted as MinWVCPk), in which every vertex has a weight
and the goal is to choose a VCPk with the minimum weight. Recently, Brešar et al. [3] presented a linear time algorithm
for the MinVCP3 problem on the class of P4-tidy graphs which widely generalizes the class of cographs.

Starting from the O(1.5171n)-time algorithm for MinVCP3 by Kardoš et al. [13], there are a lot of studies on exact
algorithms and FPT algorithms for MinVCP3 [14,25,31]. Currently, the best known running time of an FPT for MinVCP3 is
O∗(1.7964K ) in polynomial space and O∗(1.7485K ) in exponential space [7], where K is the size of an optimal VCP3.

Because of the NP-hardness of MinVCPk, another trend is to design approximation algorithms for the problem. By
noticing that MinVCPk is a special case of the minimum set cover problem (MinSC), it admits k-approximation [35].
mprovement on the ratio needs further exploration of graph structures. Kardoš et al. [13] presented a randomized
lgorithm for MinVCP3 with expected performance ratio 23

11 . Tu et al. gave two 2-approximation algorithms for MinWVCP3
sing local ratio method [27] and primal–dual method [28], respectively. On cubic graphs, the ratio for MinVCP3 can be
mproved to 1.57 [26] and the ratio for MinVCP4 can be improved to 2 [19].

There are very few works on MinVCPk for general k. Considering geometry, Zhang et al. [34] presented a PTAS (that is, a
1+ε)-approximation) for MinVCPk on a ball graph (which is a widely adopted model for a heterogeneous wireless sensor
etwork) under the assumption that the heterogeneity (which is the ratio of the maximum radius over the minimum
adius of balls) has a constant upper bound. A breakthrough was made very recently by Lee in [17], who presented
n O(log k)-approximation algorithm with running time 2O(k3 log k)n2 log n + nO(1). Notice that when k is a constant, the
lgorithm runs in polynomial-time. Recently, Zhang et al. [33] obtained a ⌊

d
2 ⌋(2d−k+2)

(⌊ d2 ⌋+1)(d−k+2)
-approximation for MinVCPk on

d-regular graphs with 1 ≤ k− 2 < d.
Liu et al. [21] were the first to study MinVCPk under a requirement of connectivity. They gave a PTAS for MinCVCPk

on unit disk graphs (a unit disk graph is a 2-dimensional ball graph in which all balls have the same radius). A simplified
approach which also yields a PTAS for MinCVCPk but runs faster was given in [8]. Notice that a basis for Liu’s algorithm
in [21] is a k2-approximation algorithm for MinCVCPk on a general graph. Li et al. [20] improved the ratio to k on a graph
ith girth (the length of a shortest cycle) at least k. Recently, Fujito [11] removed the girth requirement, showing that
he MinCVCPk problem on a general graph admits a k-approximation. The above studies are on the cardinality version.
onsidering weight, Ran et al. [24] presented a greedy algorithm for the minimum weight CVCP3 problem in a general
raph, achieving approximation ratio ln∆ + 4 + ln 2, where ∆ is the maximum degree of the graph. This ratio is tight
nder the assumption that P ̸= NP .

.2. Our contributions

In this paper, we present a (2α + 1
2 )-approximation algorithm for MinCVCP3, where α is the performance ratio of an

lgorithm for MinVCP3.
The main contribution of this paper is on the connecting part. The idea of our algorithm is as follows. Suppose S is a

CP3 of graph G with G[S] having l ≥ 2 connected components. Since S is a VCP3, adding at most two vertices can merge
t least two connected components of G[S]. Hence adding at most 2(l − 1) ≤ 2(|S| − 1) vertices will result in a CVCP3
hose size is at most 3|S| − 2. So, if MinVCP3 has an α-approximation, then a 3α-approximation for MinCVCP3 can be
asily obtained. To obtain a better result, consider the efficiency of mergence per vertex, that is, averagely speaking, how
any connected components can be merged by adding one vertex. In a worst case, adding two vertices can merge two
onnected components, the efficiency of which is 1. The efficiency will be higher if adding two vertices can merge three or
ore connected components. So, our algorithm will execute such more efficient operations as long as possible. When such
ore efficient operations cannot go on, the graph has a special structure, which enables us to find a controllable number
f vertices to connect the remaining connected components. Such an idea is inspired by [9], in which a 5/3-approximation
lgorithm was obtained for the minimum connected vertex cover problem (MinCVC) on those classes of graphs for which
inVC is polynomial-time solvable. Besides such an idea, due to the much more complicated structure of a CVCP3 than
VC, more manipulations and more ideas are needed both for the algorithm and for the analysis.
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Fig. 1. An illustration for the effect of contracting connected components.

The following part is organized as follows. In Section 2, we introduce some basic notations and some preliminary results
hich will be used in our paper. In Section 3, a (2α+ 1/2)-approximation algorithm is presented for MinCVCP3, where α

is the approximation factor of an algorithm for MinVCP3. The paper is concluded in Section 4 with some discussions on
further study.

2. Preliminaries

All graphs considered are undirected, simple and without loops. Our algorithm needs the operation of connected
contraction defined as follows.

Definition 1. For a vertex set A ⊆ V of a graph G = (V , E), the contraction of G with respect to A is the simple graph
GA which is obtained from G by identifying all vertices in A as a new vertex vA and replacing those edges with the form
of uv with u ̸∈ A and v ∈ A by an edge uvA, removing redundant parallel edges. We also say that GA is obtained from
G by contracting vertex set A. Suppose V ′ is a vertex subset of V and G[V ′] has q connected components G1, . . . ,Gq. Let
Ai = V (Gi). The connected contraction of G following V ′ is the graph Gc

V ′ obtained from G by contracting A1, . . . , Aq.

Suppose S is a VCP3 of a connected graph G. Then every connected component of G[V \ S] is either an isolated vertex
or an isolated edge. Let Gc

S,V\S = (Gc
S)

c
V\S be the graph obtained from G by first contracting connected components of G[S]

and then contracting connected components of G[V \S]. Then Gc
S,V\S is a bipartite graph with bipartition (LS, RS), where LS

consists of those contracted vertices of G[S] and RS consists of those contracted vertices of G[V \ S]. For each contracted
vertex s ∈ V (Gc

S,V\S), denote by As the set of vertices of V (G) which are contracted onto s. As to those vertices in G, we
call them normal vertices. For example, starting from graph G in Fig. 1(a), let S be the set of vertices in the upper ellipse,
after identifying {u1, u2, u3} and {u4, u5} which are nontrivial connected components of G[S], and identifying {v1, v2} and
{v6, v7} which are nontrivial connected components of G[V \ S], the resulting graph Gc

S,V\S is depicted in Fig. 1(b). The
dotted lines will be explained later.

In the following, we use dG(u) to denote the degree of vertex u in graph G.

Lemma 2. Suppose S is a VCP3 of G (not necessarily minimum) such that G[S] is not connected and dGcS,V\S (r) ≤ 2 holds for
every vertex r ∈ RS . We can change S into vertex set S ′ in O(n2) time (where n is the number of vertices) such that

(i) S ′ is also a VCP3 of G (feasibility condition),
(ii) |S ′| ≤ |S| (S-monotonicity condition),
(iii) |LS′ | ≤ |LS | (L-monotonicity condition),
(iv) dGc

S′,V\S′
(r) ≤ 2 for every vertex r ∈ RS′ (R-degree condition), and

(v) dGc
S′,V\S′

(l) ≥ 2 holds for any vertex l ∈ LS′ if G[S ′] is not already connected (L-degree condition).

Proof. To prove the lemma, we are to show that as long as LS has a vertex of degree one in Gc
S,V\S , then we can construct

a vertex set S ′ satisfying conditions (i) to (iv) such that

the number of degree one vertices in LS′ is strictly
smaller than the number of degree one vertices in LS .

(1)

Then iteratively using such an operation, we will eventually obtain a vertex set S ′ satisfying all conditions (i) to (v).
Suppose l ∈ LS has degree one in Gc

S,V\S . Let r ∈ RS be the unique neighbor of l in Gc
S,V\S . Recall that G[Ar ] is either an
isolated vertex or an isolated edge in G[V \ S].
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Fig. 2. An illustration for the proof of adjustment in Lemma 2 Case 1. The dashed curve indicates the new connected component G[Al′ ] of G[S ′].

Case 1. G[Ar ] is an edge.
First, assume |Al| ≥ 3. For an illustration of the proof, the readers may refer to Fig. 2.
Let u be a vertex of Al which is adjacent with Ar . Since G[Al] is connected, we can find two vertices u1, u2 ̸= u such that
[Al\{u1, u2}] is connected. In fact, vertices u1 and u2 can be found as the last two vertices visited by a BFS starting from u.
et S ′ = (S \{u1, u2})∪Ar . Then S ′ is a VCP3 of G with |S ′| = |S| (conditions (i) and (ii) hold), subgraph G[(Al \{u1, u2})∪Ar ]

s connected, and {u1, u2} form one connected component (in the case when u1u2 is an edge in G) or two connected
omponents (in the case when u1 and u2 are not adjacent in G) of G[V \ S ′] which are only adjacent with the connected
omponent of G[S ′] containing (Al \ {u1, u2}) ∪ Ar .
Since G[S] is not connected, we have |LS | ≥ 2. By the connectedness of G and the assumption that dGcS,V\S (r) ≤ 2, we see

hat r has degree exactly 2 in Gc
S,V\S . Let l̂ be the other neighbor of r in Gc

S,V\S . Then vertex set Al′ = (Al \ {u1, u2})∪Ar ∪ Âl
nduces a connected component of G[S ′] (denote by l′ the vertex in LS′ corresponding to this connected component). Notice
hat all other connected components of G[S] remain the same. Hence |LS′ | = |LS | − 1, condition (iii) holds.

Notice that except for G[Ar ], all other connected components of G[V \S] are still connected components of G[V \S ′] with
he same adjacency relation, and thus their corresponding vertices have the same degrees in Gc

S,V\S and Gc
S′,V\S′ (which

re not greater than 2). Furthermore, G[V \ S ′] has one or two more connected components (namely those connected
omponents formed by u1, u2). Since such an extra connected component is only adjacent with G[Al′ ], its corresponding
ertex has degree one in Gc

S′,V\S′ . Condition (iv) is proved.
Finally, if G[S ′] is not connected, then Âl is adjacent with some connected component of G[V \ S] different from G[Ar ],

hich is also a connected component of G[V \ S ′]. Adding the one or two connected components formed by u1 and u2,
ertex l′ has degree at least 2 in Gc

S′,V\S′ . As to every other connected component of G[S ′], its corresponding vertex has
he same degree in Gc

S,V\S and Gc
S′,V\S′ . So, condition (1) holds.

The case when |Al| = 2 can be considered similarly by letting S ′ = (S \ Al) ∪ Ar . The case when |Al| = 1 can be
onsidered similarly by letting S ′ = (S \ {u}) ∪ {v}, where the unique vertex in Al is u, Ar = {v, v̂}, and v is adjacent with
ome other vertex in LS (such v exists since G[S] is not connected but G is connected).
ase 2. |Ar | = 1.
Let v be the unique vertex in Ar and let u be a vertex in Al such that G[Al \ {u}] is connected or empty. Let S ′ = S \ {u}.

ince all neighbors of v are in S and all neighbors of u are in S ∪ {v}, vertex set {u, v} induces either two isolated vertices
f G− S ′ (if u and v are not adjacent) or an edge of G− S ′ (if uv is an edge of G), which implies that S ′ is a VCP3 of G with
S ′| = |S| − 1. If vertex set Al \ {u} = ∅, then one connected component of G[S] whose corresponding vertex has degree
ne in Gc

S,V\S (namely the connected component G[Al] = {u}) vanishes. In this case, all conditions (i) to (iv) and property
1) are satisfied. If Al \ {u} ̸= ∅, then by the choice of u, G[Al \ {u}] is a connected component of G[S ′], which corresponds
o a vertex l′ of Gc

S′,V\S′ . In this case, |LS′ | = |LS |. If u and v are not adjacent, then l′ has degree 2 in Gc
S′,V\S′ (since {u} and

v} are the two connected components of G[V \ S ′] adjacent with Al′ ). We also have conditions (i) to (iv) and property (1).
f uv is an edge, then we arrive at Case 1.

Notice that the above switch operations lead to |LS′ | < |LS | in Case 1 and |S ′| < |S| in Case 2. Because |S|+ |LS | = O(n),
n at most O(n) iterations, we could obtain a VCP3 S ′ satisfying all conditions (i) to (v). Each iteration can be done in time
(n). Hence a desired set S ′ can be found in time O(n2). □

Besides those operations in the proof of Lemma 2, we will also need the following operation to change a VCP3 set S
nto another VCP3 set S ′ (see Fig. 3).

peration A. Suppose S is a VCP3 of G. If |LS | ≥ 2 and there exists a vertex u ∈ S which is an isolated vertex in G[S]
ith dG(u) = 2, and there is a neighbor of u, say w, such that S ′ = (S \ {u}) ∪ {w} is still a VCP3 of G and the number of
onnected components of G[S ′] is strictly smaller than the number of connected components of G[S], then replace S by S ′.

emark 3. Notice that if S is a VCP3 of G satisfying the R- and L-degree conditions of Lemma 2, then the set S ′ obtained

hrough Operation A satisfies all those conditions of Lemma 2.
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Fig. 3. An illustration of Operation A.

The next lemma is implied in a result due to Escoffier et al. (Lemma 9 of [9]).

Lemma 4. Suppose G is a connected bipartite graph on at least 3 vertices with bipartition (L, R) in which dG(r) ≤ 2 holds
or any r ∈ R and dG(l) ≥ 2 holds for any l ∈ L. Then the cardinality of a minimum CVC of G is 2|L| − 1 and there exists a
inimum CVC containing L. Furthermore, such a minimum CVC can be found in polynomial time.

emark 5. The following is the method implied in the proof of Lemma 9 of [9] to find a minimum CVC of graph G which
atisfies those conditions of Lemma 4. Construct an auxiliary graph H on vertex set L. Two vertices l1, l2 ∈ L are adjacent
n H if and only if l1 and l2 have a common neighbor in G. Let T be a spanning tree of H . For each edge e ∈ E(T ), let re be
common neighbor of the two ends of e in G (although the two ends of e may have many common neighbors, it suffices
o pick only one of them to serve as re). Then, L ∪ {re: e ∈ E(T )} is a minimum CVC. As a consequence of this method, it
an be seen that no vertex of degree one in G can belong to the minimum CVC.

. Approximation algorithm

Our algorithm for MinCVCP3 is described in Algorithm 1. An optimal CVCP3 with cardinality one is a vertex, and an
ptimal CVCP3 of cardinality two is an edge. After dealing with these two special cases in the first two lines of the
lgorithm, the remaining part is devoted to the case when an optimal CVCP3 has at least three vertices.
Notice that a VCP3 S is a CVCP3 of G if and only if |LS | = 1. After obtaining a VCP3 S by an α-approximation algorithm,

hile |LS | ≥ 2, we add more vertices to connect S. In the while loop, as long as there exists a vertex r ∈ RS with degree at
east 3 in Gc

S,V\S (that is, adding Ar will merge at least three connected components of G[S]), then add Ar into S. When the
lgorithm jumps out of the while loop, if we still have |LS | ≥ 2, then every vertex r ∈ RS has degree at most 2 in Gc

S,V\S .
fter changing S into S ′ satisfying conditions (i) to (v) of Lemma 2, Operation A is applied recursively until it cannot be
pplied any more. By Remark 3, the resulting graph Gc

S′,V\S′ satisfies the conditions of Lemma 4. Hence a minimum CVC
f Gc

S′,V\S′ can be found in polynomial time which contains LS′ . By expanding all those contracted vertices, we obtain a
VCP3 of G.

Algorithm 1 Approximation Algorithm for CVCP3.
Input: A connected graph G = (V , E).
Output: A vertex set SA which is a CVCP3 of G.
1: If there is a vertex u such that G− u is P3-free, then output SA = {u}, stop.
2: If there is an edge uv such that G− {u, v} is P3-free, then output SA = {u, v}, stop.
3: Find a vertex set S which is an α-approximation solution to VCP3 on G.
4: if |LS |= 1 then
5: Output SA ← S and stop.
6: end if
7: while |LS |≥ 2 and there exists r ∈ RS with dGcS,V\S (r) ≥ 3 do
8: S ← S ∪ Ar
9: end while

10: Recursively use the operations in the proof of Lemma 2 to change S into S ′ satisfying the conditions of Lemma 2.
11: Apply Operation A on S ′ until no more Operation A can be applied.
12: if |LS′ |= 1 then
13: Output SA ← S ′ and stop.
14: end if
15: Find a minimum connected vertex cover C of Gc

S′,V\S′ containing LS′ .

6: Output SA ← S ′ ∪
(⋃

r∈C∩RS′
Ar

)
.
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By Lemma 2, step 10 can be executed in time O(n2). By Remark 5, the running time for step 15 is O(n2
+m), where m

is the number of edges. In fact, the construction of H can be done in time O(n2), finding a spanning tree in H can be done
n time O(m), and adding those vertices {re}e∈E(T ) needs time O(n). As to step 1, step 11, and the while loop, it is easy to
ee that their running time is O(n). The running time for step 2 is O(mn). So, if we denote by M the running time for the
-approximation algorithm computing VCP3, the time complexity of Algorithm 1 is O(mn+M).
To analyze the performance ratio of Algorithm 1, we assume that SA is output in line 16 (if SA is output in line 1 or

ine 2, then it is an optimal solution, if SA is output in line 5 or line 13, then its size will be smaller than the one output
n line 16). The next lemma gives a lower bound for the size of an optimal CVCP3.

emma 6. Let S ′ be the vertex set found in line 11 of Algorithm 1. Then optCVCP3 ≥ 2|LS′ | − 1, where optCVCP3 is the size of a
inimum CVCP3.

roof. Let OPT be a minimum CVCP3 of G, and let OPT c
S′,V\S′ = {s ∈ V (Gc

S′,V\S′ ): As ∩ OPT ̸= ∅} (recall that As is the set
f vertices in G corresponding to the vertex s of Gc

S′,V\S′ ). Consider Fig. 1 as an illustration, the dotted circle in Fig. 1(a)
ndicates the vertex set OPT in G, and the dotted circle in Fig. 1(b) indicates the vertex set OPT c

S′,V\S′ in Gc
S′,V\S′ . For simplicity

f notation, denote by H the subgraph of Gc
S′,V\S′ induced by OPT c

S′,V\S′ . Notice that H can be viewed as a graph obtaining
rom G[OPT ] by a set of contractions, that is, collapsing all vertices in a same connected component of G[S] or G[V \ S ′]
hich has nonempty intersection with OPT onto one vertex of H . So, by the connectedness of G[OPT ], the graph H is also
onnected.
Hence if OPT c

S′,V\S′ is a vertex cover of Gc
S′,V\S′ , then it is a CVC of Gc

S′,V\S′ , and thus |OPT | ≥ |OPT c
S′,V\S′ | ≥ optCVC(Gc

S′,V\S′
) =

|LS′ | − 1, where optCVC(Gc
S′,V\S′

) is the size of a minimum CVC of Gc
S′,V\S′ and the equality holds because of Lemma 4.

In the following, assume that OPT c
S′,V\S′ is not a vertex cover of Gc

S′,V\S′ . Then there exists an isolated edge uv in
c
S′,V\S′ − OPT c

S′,V\S′ . Notice that u and v are normal vertices (not contracted vertices) in G belonging to LS′ and RS′ ,
espectively. This is because OPT is a VCP3 of G and thus G − OPT contains only isolated vertices and isolated edges.
enote by E ′ the set of isolated edges in Gc

S′,V\S′ − OPT c
S′,V\S′ . In the following, when we mention an edge uv ∈ E ′, it is

lways assumed that u ∈ LS′ and v ∈ RS′ .
Notice that if LS′ ∩ OPT c

S′,V\S′ = ∅, then OPT ⊆ V \ S ′. Since G[OPT ] is connected and every connected component in
[V \ S ′] is either a vertex or an edge, we have |OPT | ≤ 2. In this case, the algorithm stops at the first line or the second
ine. Since we are now considering the set S ′ found in line 11, hence

LS′ ∩ OPT c
S′,V\S′ ̸= ∅. (2)

Consider an edge uv ∈ E ′. Let the neighbors of u in Gc
S′,V\S′ be v and r (u)1 , . . . , r

(u)
tu . Because dGc

S′,V\S′
(l) ≥ 2 holds for

very vertex l ∈ LS′ , we have tu ≥ 1. Notice that {r (u)1 , . . . , r
(u)
tu } ⊆ RS′ ∩ OPT c

S′,V\S′ (otherwise there will be a P3-path in
[V \ OPT ]). Since every vertex in RS′ has degree at most 2 in Gc

S′,V\S′ , and because graph H (which is Gc
S′,V\S′ [OPT

c
S′,V\S′ ])

s connected with LS′ ∩ V (H) ̸= ∅ (see (2)), so

every r (u)i has degree exactly 2 in Gc
S′,V\S′ and

the other neighbor of r (u)i belongs to LS′ ∩ OPT c
S′,V\S′ .

(3)

uppose that there exists an edge uv ∈ E ′ such that tu = 1 and |Ar(u)1
| = 1. Let w be the unique vertex in Ar(u)1

. Notice that
and v are the only two neighbors of u in G, and all neighbors of v belong to S ′. Hence S ′′ = (S ′ \{u})∪{w} is still a VCP3

f G. Since the other neighbor of vertex w is in S ′ and u is an isolated vertex in G[S ′], hence G[S ′′] has fewer connected
omponents than G[S ′]. These imply that Operation A is still applicable on S ′, contradicting the construction of S ′ in line
1 of Algorithm 1. So,

for any edge uv ∈ E ′, we have |
tu⋃
i=1

Ar(u)i
| ≥ 2. (4)

Call those vertices contained in LS′ and RS′ as L-vertices and R-vertices, respectively. Let G′ := Gc
S′,V\S′ − {u: uv ∈

′
}−{v: uv ∈ E ′ and u is the unique neighbor of v} be the graph obtained from Gc

S′,V\S′ by removing all L-vertices incident
o the edges of E ′ and those R-vertices incident to the edges of E ′ which have degree one in G. Then G′ is connected and
PT c

S′,V\S′ is a CVC of G′. Notice that G′ satisfies the condition of Lemma 4. It should be pointed out that if we remove all
nd vertices incident to the edges of E ′, then G′ is connected (since all isolated vertices and isolated edges are linked to
he connected subgraph Gc

S′,V\S′ [OPT
c
S′,V\S′ ]), but the degree of some vertices in the L-part might become smaller than two.

his is why we only remove those R-vertices of degree one in G. By observation (3), every r (u)i is a leaf vertex of G′ (and
lso a leaf vertex of H), hence OPT c

S′,V\S′ −
⋃

uv∈E′

(⋃tu
i=1{r

(u)
i }

)
is still a CVC of G′. So,⏐⏐⏐⏐⏐OPT c

S′,V\S′ −
⋃ (

tu⋃
{r (u)i }

)⏐⏐⏐⏐⏐ ≥ optCVC(G′) = 2(|LS′ − {u: uv ∈ E ′}|)− 1.

uv∈E′ i=1
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By noticing that the sets {A(u)
ri }u:uv∈E′ are mutually disjoint, we have

|OPT | ≥

⏐⏐⏐⏐⏐OPT c
S′,V\S′ −

⋃
uv∈E′

(
tu⋃
i=1

{r (u)i }

)⏐⏐⏐⏐⏐+∑
uv∈E′

⏐⏐⏐⏐⏐
tu⋃
i=1

Ar(u)i

⏐⏐⏐⏐⏐ .
hen by observation (4),

|OPT | ≥ 2(|LS′ | − |E ′|)− 1+ 2|E ′| = 2|LS′ | − 1.

The lemma is proved. □

Next, we analyze the performance ratio of Algorithm 1.

Theorem 7. Algorithm 1 has performance ratio at most 2α + 1/2.

roof. Let OPT be a minimum CVCP3 of G, and let opt = |OPT |. Denote the vertex set found in line 3 as S1, the vertex set
btained at the end of the while loop as S2. Since S1 is an α-approximation to MinVCP3 and the size of a minimum VCP3
s no larger than the size of a minimum CVCP3, we have

|S1| ≤ α · opt.

uppose the while loop is executed t times. Because every |Ar | ≤ 2 and thus each iteration adds at most two vertices, so

|S2| ≤ |S1| + 2t.

ince each iteration merges at least three connected components into one larger connected component, we have

|LS1 | ≥ |LS2 | + 2t.

fter line 11 of Algorithm 1, the set S ′ satisfies

|S ′| ≤ |S2| and |LS′ | ≤ |LS2 |.

y Lemma 4 and Remark 5,

|SA| ≤ |S ′| + 2(|LS′ | − 1),

here coefficient 2 comes from the fact that each Ar has cardinality at most 2. Combining the above inequalities together,
nd using the fact |LS1 | ≤ |S1|, we have

|SA| ≤ |S1| + |LS1 | − |LS2 | + 2|LS′ | − 2 ≤ 2|S1| + |LS′ | − 2.

y Lemma 6,

opt ≥ 2|LS′ | − 1.

ence

|SA| ≤
(
2α +

1
2

)
opt −

3
2
.

he theorem is proved. □

. Conclusion and discussion

In this paper, we give a polynomial-time (2α + 1/2)-approximation algorithm for MinCVCP3, where α is the perfor-
mance ratio of a polynomial-time algorithm for MinVCP3. From [11,20], it is known that MinCVCP3 can be approximated
ithin factor 3. For those classes of graphs on which MinVCP3 has approximation factor α < 5/4, the algorithm in this

paper is a kind of improvement. It deserves to be further studied whether the coefficient 2 before α can be reduced to
some constant strictly smaller than 2. Designing approximation algorithms for MinVCP3 with small performance ratio α
in some graph classes is another research topic of our future study.

Another question is whether there exists a class of graphs for which MinVCP3 is polynomial-time solvable but
MinCVCP3 is NP-hard. We have explored many typical classes of graphs but have not found one of them having such
a disparate. Finding such a class of graphs might be an interesting research topic. Furthermore, bounds (especially lower
bounds) of approximation ratio for MinVCPk and MinCVCPk in various graph classes are not sufficiently studied yet.

The above question also motivates us to ask the question of price of connectivity for approximation. In [6], Cardinal
and Levy introduced the concept of price of connectivity for the vertex cover problem, which is the worst-case ratio
between the sizes of a minimum connected vertex cover and a minimum vertex cover. Here we are interested in a
similar question from an approximation point of view: if the approximation ratio of a minimization problem is α, and
its connected version has approximation ratio β , what can we say about the ratio β/α, for the considered graph class?
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ere, approximation ratio is the infimum of r such that the problem is r-approximable in polynomial time. We abbreviate
uch a ratio as PoC-APPROX. For example, both the minimum vertex cover problem (MinVC) and the minimum connected
ertex cover problem (MinCVC) have 2-approximations which are widely believed to be tight, so PoC-APPROX(VC) might
e 1. In [9], Escoffier et al. proved that MinCVC is APX-hard on bipartite graphs and presented a 5/3-approximation
lgorithm for those classes of graphs on which MinVC is polynomial-time solvable. Since MinVC is polynomial-time
olvable on bipartite graphs, PoC-APPROX(VC) for bipartite graphs is strictly larger than 1 and upper bounded by 5/3.
y the statement in the second paragraph of Section 1.2, PoF-APPROX(VCP3) has a trivial upper bound 3. Our result
mplies that PoF-APPROX(VCP3) ≤ 2.5, which improves the above trivial bound 3. New techniques are needed for further
mprovement.
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