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As language corpora have been playing an increasingly important role in the field of 
Artificial Intelligence (AI) research, lots of extremely large corpora are created. However, 
a larger corpora size not only increases power and accuracy but also brings redundancy. 
Therefore, researchers began to emphasize the study of appropriate subset extraction 
methods. Due to the trade-off between data sufficiency and redundancy, a group of 
interesting and challenging problems are emerged that are studied in this paper: (1) How 
to make the resulting subset include as much data as possible under some necessary 
constraints? (2) How to preserve the potential useful semantic relatedness included in the 
original corpora while reducing the size of the corpora? For these two problems, existing 
work mainly focuses on the methods to construct particular subsets for special usage. 
These methods are limited in their focus. In this paper, we try to address the problems 
listed above. First, considering the cubic and binary semantic relatedness among tokens, 
we construct a general system model and formulate the mix problem as a cubic pseudo-
Boolean optimization problem. Then, by analyzing the characteristics of the objective 
function, we transfer the problem into the maximum flow problem of a corresponding 
graph. Third, we propose a new algorithm by introducing discrete Lagrangian iteration 
method. We prove that the objective function is supermodular, which allows us to use fast 
minimum cut algorithms in each iteration step to propose another fast algorithm. Finally, 
we experimentally validate our new algorithms on several randomly created corpora.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In the research community, attention and energy poured into Artificial Intelligence (AI) have been steadily increasing in 
recent years. Many breakthroughs have been made on AI research. And AI research has made great progress in replicating 
natural language patterns. At the same time, more and more new applications based on AI continue to emerge in various 
industries including banking, recruitment, health-care, agriculture, transit, etc. The content of AI research focuses on how 
to express, acquire, and use knowledge. Knowledge about natural language is of most importance. Therefore, the study of 
language intelligence has a great influence on the development of AI. A review of the developmental history of language 
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intelligence shows that the establishment of language corpora with sufficient data is very important to the research and 
training of new language intelligence algorithms.

A corpus is a collection of linguistic data such as written, spoken, signed, etc. It is always analyzed in various ways to 
establish patterns of grammar and vocabulary usage [1,2]. Based on the analysis, AI algorithm can understand the semantics 
of the human language [3,4] or describe its own thinking like a human [5]. The orthodox view on corpora size is that larger 
size corpora always provide larger coverage of general language uses. Therefore, people hold that the larger the corpora they 
use are, the higher the accuracy of the AI algorithms is. Some experiments also proved this point [6]. Because of this, more 
and more very large corpora have been established. Some corpora have billions of words, such as iWeb corpora (14 billion 
words), NOW corpora (5.9 billion words), etc. Many existing corpora are still expanding. For example, the English-Norwegian 
Parallel Corpus (ENPC) was built 20 years ago. But the builders believed that the small parallel corpora may be questioned, 
and they recently expanded ENPC into the ENPC+ which has three times the size of the fiction part of the original ENPC [7].

However, a larger corpora size not only increases power and accuracy but also brings redundancy and noise [8]. As we 
all know, the complexity of AI algorithms always depends on the size of their search space which is usually proportional 
to the size of the corpora that they use [9]. Obviously, this redundancy and noise will bring some difficulty to the training 
of new algorithms, and will even lower their efficiency [8]. Experiments suggested that more data (individual style, genre, 
co-occurrence, semantic relatedness, etc.) in larger corpora may have a greater impact on the accuracy of the results of AI
algorithms instead of mere corpora size [7].

In fact, we should remember that not even a very big corpus can include all varieties of a language. On the other hand, a 
corpus with appropriate size that only contains the kind of sample you need will be more convenient to use. For example, if 
you want to learn some special modal verbs in detail, a small corpus with restricted samples will be better for you than BNC 
which includes about 250,000 occurrences of the modal ‘will’ alone. For the above reasons, researchers have begun to pay 
attention to the study of large corpus subset extraction methods [10,9,11,12,8]. However, existing works mainly focus on the 
methods to construct particular subsets for special usage. These methods have limited applicability [11,10]. [8] proposed a 
general method to extract subset which has most data under some constraints. However, this method can only work when 
the objective function is modular and the constraint function is submodular. [9] proposed some methods to handle the 
problem when objective and constraint functions are submodular.

To the best of our knowledge, all existing work does not consider semantic relatedness preservation when extracting 
a subset of large corpora. The meaning of words and the semantics of phrases are always included in the context. For 
example, “[stock] in a business” implies the financial sense, but “[stock] in a bodega” is more likely to refer to goods on the 
shelves of a store [13]. It is easy for humans to distinguish the meaning of the words in the text, because we have a lot of 
common sense knowledge about how the world works and how it relates to language. But machines can not do this easily. 
Therefore, we should preserve as much semantic relatedness among tokens as possible.

In this paper, we address the problem of how to extract a subset that includes as much data as possible under some 
necessary constraints from large corpora. The contributions of this paper are as follows:

• We introduce the semantic relatedness preservation into subset extraction process for the first time.
• Considering the ternary and binary semantic relatedness among tokens, we construct a general system model and 

formulate the objective function as a cubic pseudo-boolean optimization problem.
• We show that the problem is NP-hard and the objective pseudo-boolean function is supermodular. We constructed 

an equivalent graph of the system. By analyzing the characteristics of the objective function, we transfer the subset 
extraction problem into the maximum flow problem of the equivalent graph.

• We introduce the discrete Lagrangian iteration method and propose a general algorithm for subset extraction from large 
corpora. By generating the equivalent graph of the objective function and accelerating each iteration step, we propose 
another new fast algorithm based on the minimum cut method.

This paper is organized as follows. In Section 2, we review some theories for solving the objective functions. We construct 
a general system model and formulate the objective function, in Section 3. In Section 4, we analyze the NP-hardness and 
supermodularity of the objective function. The equivalent graph is introduced too. In Section 5, we propose a new algorithm 
by introducing discrete Lagrangian iteration method. We try to accelerate each iteration step and then propose another fast 
algorithm. In Section 6, we conduct experiments to evaluate the accuracy of our new algorithms.

2. Related work

We present in this section challenges and related works that are linked with the problem of semantics relatedness 
preservation in large corpora subset extraction (SRPCSE). We also provide necessary background and definitions that are 
original contributions of this work.

2.1. Challenges for SRPCSE

As we mentioned above, while they can provide more accuracy, very large language corpora also present some serious 
problems for related novel AI algorithm researches. Researchers always want to be able to test the correctness of the 
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new algorithm and its actual effects as quickly as possible. Because a quick test means that they can spend more time 
on handling potential problems of the novel algorithm and more time on improving its performance, instead of spending 
enormous time on optimizing the test project. On the other hand, more noise and redundancy in larger corpora will also 
affect the efficiency and accuracy of the new algorithm.

One way to address those above problems is to produce a special smaller version of the corpus, and the another way to 
do this is to draw a subset uniformly under some constraints. The former method is the most common one. Most current 
large corpora are divided into multiple sub-corpora. For example, at least three sub-corpora are built for the famous GNOME 
corpus: the museum sub-corpus, the pharmaceutical sub-corpus and the tutorial sub-corpus [14]. The I3media corpus has 
6 sub-corpora in [15]. British National Corpus even provides tools for users to define their own sub-corpus [16]. Sub-corpus 
topic modeling (STM) is another sub-corpus building method [17]. [8,9] both modeled corpora subset extraction problem. 
[8] considered the problem to create a corpus of spontaneous conversational speech with limited (small) vocabulary. The 
authors expressed it as an optimization problem over a submodular function and converted their submodular minimization 
problem to the problem of finding minimum s-t cuts in a graph. [9] formulated the problem of selecting a high-quality, 
limited complexity sub-corpus as four different submodular functions optimization problems. Existing works hardly consider 
semantic relatedness preservation which is very important for language intelligence research.

The main purpose of semantic relatedness measurement is to allow computers to reason about written text [18]. It 
is widely used in language intelligence related AI researches. Many different methods are proposed to measure semantic 
relatedness between tokens [19–21]. In a sense, the advantage of large corpus is that it has plenty of semantic relatedness 
among its tokens. However, deletion of the tokens in the process of subset extraction tends to remove semantic relatedness. 
Therefore, how to preserve the potential useful semantic relatedness included in the original corpora while reducing the 
size of the corpora becomes a challenge that we must face to.

2.2. Pseudoboolean function and supermodular

Set function, i.e., the real mapping from subsets of a finite set S = (s1, s2, · · · , sm) to real numbers is a general tool 
to solve SRPCSE problem [8,9]. A set function f : 2|S| → R can be interpreted as a mapping from binary vectors to real 
numbers if we replace the finite set S with its characteristic vector. This mapping is called a pseudoboolean function [22]. 
A pseudoboolean function can be expressed as a function of m binary variables (x1, x2, · · · , xm) [3]:

f (x1, x2, · · · , xm) =
l∑

i=1

ai

∏

j∈Ni

x j + k (1)

where ai(1 ≤ i ≤ l) is a real number and ai �= 0. Ni is the index subset of the variables in the ith monomial, and k is 
a constant. The m-vector x ∈ {0, 1}m is the characteristic vector of the subset Sx = {i|i ∈ E, xi = 1}, E = {1, 2, · · · , m}, and 
l ≤ 2|E| .

A set function f : 2|S| → R is supermodular if f (A ∪ { j}) − f (A) ≤ f (B ∪ { j}) − f (B) for all A ⊆ B ⊆ S . For any A ⊆ S , 
j /∈ A, f A( j) = f (A ∪{ j}) − f (A) is the marginal contribution of element j with respect to set A. Intuitively, supermodularity 
means that the marginal contribution of all j ∈ S does not decrease as the size of the set increases.

The optimization of an arbitrary pseudoboolean function belongs to the class of the so-called NP-complete problems 
[23]. But researchers found that the optimization of a special subclass of a pseudoboolean function can be solved in poly-
nomial time. The special subclass is the so-called negative-positive pseudoboolean function. We rewrite a pseudo-boolean 
function f (x1, x2, · · · , xm) as: f (x1, · · · , xm) = xi x jϕi j(x1, · · · , xi−1, xi+1, · · · , x j−1, x j+1, · · · , xm) + ψi j(x1, · · · , xm) where the 
monomials of ψi j do not contain the product xi x j . f is supermodular if and only if the second derivative ϕi j is nonnegative 
whatever the values assigned to the other variables [23]. The maximization of pseudoboolean functions with nonnegative 
coefficients of higher degree (more than one) terms which is so-called negative-positive pseudo-boolean function can be 
converted into a maximum network flow computation in an associated graph [24]. Therefore, maximizing supermodular 
pseudoboolean functions can be performed polynomially via minimum cut computations.

Obviously, the nonnegative condition above is difficult to be satisfied. [23] found that the whole set of cubic super-
modular pseudoboolean functions can be maximized by the above minimum cut method. A cubic pseudoboolean function 
f (x1, x2, · · · , xm) is supermodular if and only if it can be written as formula (2) and satisfies the condition represented by 
formula (3). Here, J− represents the index set of the linear terms which have negative coefficients. J+ represents the index 
set of the linear terms which have positive coefficients.

f (x1, x2, · · · , xm) = −
∑

j∈ J−
c jx j +

∑

j∈ J+
c jx j

+
∑

i∈I, j∈ J

ci jxi x j +
∑

i∈I, j∈ J ,k∈K +
ci jkxi x jxk

−
∑

−
ci jkxi x jxk + k

(2)
i∈I, j∈ J ,k∈K
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c j ≥ 0, ci j ≥ 0, ci jk ≥ 0

and cij ≥
∑

i∈I, j∈ J ,k∈K −
ci jk (3)

2.3. Discrete Lagrangian method

Traditionally, the Lagrangian method is used to solve continuous constrained optimization problems. When we maximize 
a continuous constrained function, we can find the optimal solution by doing descents in the Lagrange-multiplier space and 
ascents in the original variable space until a equilibrium is reached. [25] extended continuous Lagrangian method so that 
it can be used to solve discrete constrained optimization problems. They defined a new gradient operator that can work in 
discrete space.

Discrete Lagrangian function F is defined as:

F (x, λ) = f (x) +
n∑

i=1

λi gi(x) (4)

where x = (x1, x2, · · · , xm)T ∈ Zm , and λ = (λ1, · · · , λn)T ∈ Rn is the vector of the Lagrange multipliers. For every multi-
variable continuous function, its gradient has a component for each direction which represents the rate of change in this 
direction of this function. To a discrete function, there is a similar symbol which represents the change rate of the function in 
each direction. The difference gradient operator 
x F (x, λ) = (ζ1, ζ2, · · · , ζm)T ∈ {−1, 0, 1}m , 

∑m
i=1 |ζi | = 1, and at most one ζi

is non-zero. For any x′ that differs from x by at most value 1 in one dimension, i.e., 
∑m

i=1 |x′
i − xi | = 1, F (x −
x F (x, λ), λ)) ≥

F (x′, λ). If ∀x′ , F (x, λ) ≥ F (x′, λ), then 
x F (x, λ) = 0.
Based on this definition, Lagrangian methods for continuous problems can be extended to discrete problems:

Theorem 1 (Shang and Wah 1998). A saddle point (x∗, λ∗) of formula (4) can be reached by interatively calculation xk+1 = xk −

x F (xk, λk) and, λk+1 = λk + g(xk).

Here 
x F (xk, λk) is the direction with the maximum gradient, k is the iteration index.

3. Problem formulation

We target for the SRPCSE problem, which requires as much semantic relatedness preservation as possible in the process 
of corpus subset extraction. The SRPCSE takes the original corpus token set as input, performs a sequence of comparing 
operations onto the tokens under some constraints, and then outputs the results. This section presents a general system 
model and formalizes the language and variables used throughout this paper.

In this work, we consider tokens as the basic unit of extraction. For the corpora that are not token-based, all conclusions 
can be easily extended to be used. We use set T = {t1, t2, · · · , tn} to denote the token set of the original corpus. For 
the simplicity of discussion, we use “attribute” to represent the annotated label of each token. For example, in the BEST 
2009 corpus, there are many labels (such as lengths, frequency, pronunciation, category, etc.) annotated to each token [26]. 
Researchers often use these labels/attributes to describe the requirement or the constraints of the objective subsets [8]. 
Some special annotations are especially important for special AI research and must be considered in the process of the 
corresponding extraction, such as the “emotional lexicon classification” for the emotion related AI research. If there are m
unary attributes annotated for each token in the corpus, vector A = (A1, A2, · · · , Am) represents the value sets of these 
m attribute sets where A j ∈ Rn . Any a j

k ∈ A j represents the value of jth unary attribute of tk . Here, the unary attribute 
means its value depends only on the token it belongs to. Accordingly there are binary and multivariate attributes. We use 
unary and binary attributes to describe constraints. We use matrix B = (B1, B2, · · · , Bl) to denote all the value matrices of 
binary attributes where Bi ∈Rn×n . Any bi

kp ∈ Bi represents the value of the ith binary attribute between tk and tp . For the 
semantic relatedness, we do not consider the details of its measurement method. We just use S3 ∈Rn×n×n , S2 ∈Rn×n and 
S1 ∈ Rn to denote the cubic, binary and unary semantic relatedness values among tokens respectively. Assume that vector 
X = (x1, x2, · · · , xn) ∈ {0, 1}n represents the extraction result. xi = 1 denotes the token ti is in the result subset, while xi = 0
denotes ti is not in the result subset. We can define the SRPCSE problem as follows.

Definition 1 (SRPCSE problem). Given corpus C with token set T , unary attribute value vector A, binary attribute value vector 
B , and semantic relatedness value vectors S3, S2, S1. SRPCSE problem is finding the optimal X with:

arg max
X

(

n∑

i=1

n∑

j=1

n∑

k=1

s3
i jkxi x jxk

+
n∑ n∑

s2
i j xi x j +

n∑
s1

i xi)

(5)
i=1 j=1 i=1
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Fig. 1. Example of subset extraction. The weight of node represents the value of unary attribute (A1), the first item of the solid line’s weight denotes the 
value of binary attribute (B1), the second item of the solid line’s weight denotes the value of binary semantic relatedness (S2), and the weight of dotted 
line represents the value of cubic semantic relatedness. a, the original corpus. b, the subset of arg maxX

∑n
i=1, j=1 b1

i j xi x j s.t. ∑n
i=1 a1

i ≤ 15. c, the subset of 
arg maxX (

∑n
i=1, j=1,k=1 s3

i jkxi x j xk + ∑n
i=1, j=1 s2

i j xi x j) s.t. ∑n
i=1, j=1 b1

i j xi x j ≤ 30, ∑n
i=1 a1

i ≤ 15.

s.t.

n∑

k=1

ar
kxk ≤ ur ur > 0

n∑

k=1

n∑

p=1

bl
kp xkxp ≤ vl vl > 0

(6)

Note that there can be multiple constraints in formula (6) which associate to different attributes. For the simplicity 
of discussion, we only consider one unary attribute constraint and one binary attribute constraint in this paper. Our new 
algorithms can be easily extended to multi-constraints situations. We do not consider the maximization of the information 
related to the attributes. We can just add corresponding calculation in formula (5) if we need to do that and all the theorems 
and properties that are discussed in the following part are still applicable. IBM researchers found through experiments that 
in the n-grams models, when n is equal to 3, the generated phrases are almost impossible to appear in the actual language, 
let alone more than 3 [27]. Therefore, it is reasonable to consider the semantic relatedness generated from up to three 
tokens together.

We can also use graph like Fig. 1a to describe the SRPCSE problem. The nodes denote the tokens. The weight vectors of 
nodes represent unary attribute values and the weight vectors of edges denote the values of binary attributes and semantic 
relatedness. The cubic semantic relatedness values can be represented by the values of compound lines among any three 
nodes. Fig. 1b shows the result without considering semantic relatedness preservation and Fig. 1c shows the opposite 
situation.

4. Theoretical analysis

As the definition of the SRPCSE problem, for given attribute sets A, B and semantic relatedness sets Si , we aim to pro-
vide the optimal subset which is denoted by X , such that the semantic relatedness contained is maximized under some 
constraints. The key challenge in solving the above optimization problem SRPCSE of formula (5) and (6) is in supermodular-
ity and NP-hardness. In this section, we first analyze the NP-hardness and supermodularity of the objective function. Then 
the equivalent graph is introduced.

Theorem 2. The optimization SRPCSE problem (Definition 1) is NP-hard.

Proof. Consider an instance of the NP-complete Knapsack problem. Given a set of commodity D = (d1, d2, · · · , dn) with 
weights (w1, w2, · · · , wn) and profits (p1, p2, · · · , pn), finding a subset of commodity whose total profit is as large as 
possible, and the total weight is at most b. We show that this can be viewed as a special case of SRPCSE problem. Given an 
arbitrary instance of the Knapsack problem, we define a corresponding language corpus with n tokens. Assume that there 
are only one unary attribute and one unary semantic relatedness associated to each token. There is a token ti corresponding 
to each commodity di , and the semantic relatedness that it has is equal to pi . In addition, there is an attribute value ai

of each token corresponding to wi . The Knapsack problem is equivalent to finding subset of tokens (corresponding to X) 
that contains maximum semantic relatedness in this corpus with constraints u = b. If any subset can be obtained, then the 
Knapsack problem must be solvable. �
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As described in the proof of Theorem 1, the problem is NP-hard even though we just consider one unary attribute 
constraint. It must be more difficult to solve when more complex binary constraints are added. Furthermore, there are up 
to 

(n
3

)
cubic semantic relatednesses and 

(n
2

)
binary semantic relatednesses among n tokens. Therefore, the search space will 

be very large. Fortunately, the objective function has the other properties described below, which we can use to simplify it.

Theorem 3. The objective function of SRPCSE problem (formula (5)) and its constraint functions (formula (6)) are non-decreasing and 
supermodular.

Proof. The objective function (formula (5)) and its constraint functions (formula (6)) are all sums of terms xi x j xk , xi xk or xi

with positive coefficients. Since they are products of 0 - 1 variables each of which is an indicator for an token to be selected 
into the final set or not, it is clear that this product has monotone nondecreasing property.

To see the supermodularity property, let’s denote f (A) = xi1 xi2 · · · xik . xik = 1 represents the element ik is in the final 
set. Otherwise, xik = 0. Then f (A) = 0 if A � {i1, i2, ..., ik}, and f (A) = 1 if A ⊇ {i1, i2, ..., ik}. Obviously, if function f is 
supermodular, the objective function and its constraint functions are supermodular.

Consider two sets A ⊂ B and an element i /∈ B , if i /∈ {i1, i2, ..., ik}, then f (A) = f (A ∪ {i}) and f (B) = f (B ∪ {i}). Hence 
f (A ∪ {i}) − f (A) = f (B ∪ {i}) − f (B) = 0. Hence, we may assume i = i1 without loss of generality. Now, we have three 
cases.

Case 1. A ⊇ {i2, ..., ik}. We have f (A ∪ {i1}) = f (B ∪ {i1}) = 1 and f (A) = f (B) = 0. Hence f (A ∪ {i1}) − f (A) = f (B ∪
{i1}) − f (B) = 1.

Case 2. A � {i2, ..., ik} and B ⊇ {i2, ..., ik}. We have f (A) = f (A ∪ {i1}) = f (B) = 0 and f (B ∪ {i1}) = 1. Hence f (A ∪
{i1}) − f (A) = 0 < f (B ∪ {i1}) − f (B) = 1.

Case 3. B � {i2, ..., ik}. We have f (A) = F (B) = f (A ∪ {i1}) = f (B ∪ {i1}) = 0. Hence f (A ∪ {i1}) − f (A) = f (B ∪ {i1}) −
f (B) = 0.

Above three cases showed that f have marginal value monotone non-decreasing. Hence f is supermodular. �

Theorem 4. Let f (X) denote the objective function of formula (5), g1(X) and g2(X) denote the unary and binary constraint functions 
in formula (6) respectively. For any fixed λ1 > 0, λ2 > 0, if f (X) − λ1(g1(X) + g2(X)) + λ2(u1 + v1) is maximized at Xi , and there 
exist small enough ε1 and ε2 such that g1(Xi) = u1 − ε1 and g2(Xi) = v1 − ε2 (ε1 ≥ 0 and ε2 ≥ 0), then Xi is an optimal solution 
for the SRPCSE problem.

Proof. Let H(X) = f (X) − λ1(g1(X) + g2(X)) + λ2(u1 + v1). Assume that Xi is not an optimal solution for formula (5)
and (6). There must exist X j , such that f (X j) > f (Xi), g1(X j) ≤ u, and g2(Xi) ≤ v . According to Theorem 3, H(X) is non-
decreasing. Then we can get that H(X j) > H(Xi). This is a contradiction to the pre-set condition that H(X) is maximized at 
Xi . �

Because of the NP-hardness of the SRPCSE problem (Theorem 2), we hardly find a polynomial time algorithm for it. How-
ever, we can define the equivalent Lagrangian function Q (X) (formula (7)) of the objective function according to Theorem 4
and Envelope Theorem.

Q (X) =
n∑

i=1

n∑

j=1

n∑

k=1

s3
i jkxi x jxk +

n∑

i=1

n∑

j=1

s2
i j xi x j +

n∑

i=1

s1
i xi

−λ1(

n∑

k=1

ar
kxk − ur) − λ2(

n∑

k=1

n∑

p=1

bl
kp xkxp − vl) + ε

(7)

We can just delete the positive linear term because the corresponding xi must be 1. Obviously, Q (X) is supermodular if 
s2

i j ≥ λ2bl
i j . We suppose this condition is always valid. Because the semantic relatedness associated to xi and x j is usually 

small compared to their contribution to the binary constraint when s2
i j < λ2bl

i j . At this time, we can just delete the binary 
and cubic terms in Q (X) which contain both xi and x j to reduce the probability that these two tokens are selected. By 
replacing xi by x̄i = 1 − xi in all the negative terms of formula (7), we can get rid of the negative coefficients. Then Q (X)

can be changed as:
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Fig. 2. Graph corresponding to the problem of Fig. 1c. Red lines represent the minimum cut. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Q (X) =
n∑

i=1

n∑

j=1

n∑

k=1

s3
i jkxi x jxk

+
n∑

i=1

n∑

j=1

(s2
i j − λ2bl

i j)xi x j + λ1

n∑

k=1

ar
kx̄k

−λ1

n∑

k=1

ar
k + λ1ur + λ2 vl + ε

(8)

We assume that there are e ≤ 2n linear terms and f ≤ (n3 +2n2) nonlinear terms in formula (8). Using the following process 
we can get the equivalent conflict graph G of Q (X).

• Setting two sets of nodes � = (γ1, γ2, · · · , γe) and ϒ = (υ1, υ2, · · · , υ f ). Each node γi (υ j ) is corresponding to a term 
in formula (8) which includes original (complement) variable. The weight of each node equals to the coefficient of its 
corresponding term.

• Adding edges with upper capacity bound +∞ between nodes in � and nodes in ϒ. There exists an edge between γi
and υ j if and only if the associated term of γi contains a variable and that the associated term of υ j contains the same 
variable complemented.

• Adding a node s and linking it to each node in �. The edge between s and γi has the upper capacity bound the weight 
of γi .

• Adding a node t and linking each node in ϒ to t . The edge between υ j and t has the upper capacity bound the weight 
of υ j .

Billionnet and Minoux proved that maximizing a cubic supermodular pseudoboolean function can be solved polynomially 
by a maximum flow algorithm [23]:

Theorem 5 (Billionnet and Minoux 1985). The problem of maximizing a cubic supermodular pseudoboolean function can be seen as 
a special case of the maximum weight stable set problem in a bipartite graph, hence can be solved polynomially by a maximum flow 
algorithm.

When s2
i j ≥ λ2bl

kp , condition of formula (8) is satisfied, thus Q (X) is a cubic supermodular pseudoboolean function. 
Then the maximization of Q (X) can be reformulated as the search for minimum cut in graph G . Obviously, there is no 
K5 and K3,3 in graph G . Thus, G is a planar graph. This means the maximization of Q (X) for fixed λ1 and λ2 can be 
calculated in O ((e + f ) log log(e + f )) time [28]. We reconsider about the problem of Fig. 1c, when λ1 = λ2 = 1, Q (X) =
15x3x6x7 + 12x4x7x8 + x1x3 + x3x4 + 5x3x6 + 2x3x7 + 2x4x7 + 2x4x8 + x5x6 + 6x6x7 + 6x6x8 + 2x7x8 + 6x̄1 + 2x̄2 + x̄3 + 2x̄4 +
7x̄5 + 4x̄6 + 3x̄7 + 5x̄8 + 15. Fig. 2 shows the equivalent graph. The red lines in Fig. 2 represent the minimum cut. And the 
optimal X = (0, 0, 1, 1, 0, 1, 1, 1). We should note that the minimum cut of graph G can just give the maximization of Q (X)

which may not guarantee the constraints of formula (6). We will consider this issue in the next section.
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5. Algorithms for the SRPCSE problem

In this section, we propose two algorithms to solve the SRPCSE problem. Firstly, we introduce a discrete Lagrangian 
iteration method based algorithm (DLIB algorithm) to get the optimal solution of formula (5). Then we try to use the 
equivalence between the maximization of Q (X) and the minimum cut of graph G to construct another algorithm (MQMCG
algorithm).

5.1. DLIB algorithm

As we mentioned in the front section, the discrete Lagrangian method can be used to solve discrete constrained opti-
mization problems. We introduce this method into the SRPCSE problem by replacing the objective function (formula (5)) 
and constraint functions (formula (6)) with the Lagrangian function of formula (7). We then calculate the optimal value of 
the objective variable X and the Lagrangian-multiplier λi by iteratively doing descents in the Lagrange-multiplier space and 
ascents in the objective variable space. Xh+1, λh+1

1 and λh+1
1 in each iteration can be obtained by formula (9). Obviously, the 

value of 
X Q (Xh, λh
1, λ

h
2) is very important for the calculating of the above three variables. But, as we all know, the value 

of 
X Q (Xh, λh
1, λ

h
2) is not unique. We choose the first one that reduces Q (X) (the so-called hill climbing method [25]). 

Furthermore, instead of updating λ1 and λ2 in each iteration, we update them when a local optimal X of Q (X) is reached.

Xh+1 = Xh + 
X Q (Xh, λh
1, λ

h
2)

λh+1
1 = λh

1 +
n∑

k=1

ar
kxh

k − ur

λh+1
2 = λh

2 +
n∑

k=1

n∑

p=1

bl
kpxh

k xh
p − vl

(9)

The details of the DLIB algorithm are shown in Algorithm 1. All necessary variables are initialized in Line 1. The local 
optimal X is found step by step for each λ1 and λ2 (Line 4 to Line 7). The parameter ζ controls the magnitude of the 
changes in λ1 and λ2 (Line 8 to Line 9). When the value of Q (X) can not be changed by the iteration or the times of 
iteration get to the upbound (τ ), the process will be over (Line 11 to Line 14).

Algorithm 1 DLIB Algorithm.

Input X0, λ0
1, λ0

2, A1, B1, S1, S2, S3, u1, v1, ε , ζ , τ ;
1: h = 0, z = 0, t = 0, f lag = f alse
2: while f lag == False do
3: X ′ = Xh

4: while 
X Q (Xh, λz
1, λz

2) <> 0 do
5: Xh+1 = Xh + 
X Q (Xh, λz

1, λz
2)

6: h = h + 1
7: end while
8: λz+1

1 = λz
1 + ζ(

∑n
k=1 a1

k xh
k − ur)

9: λz+1
2 = λz

2 + ζ(
∑n

k=1
∑n

p=1 b1
kp xh

k xh
p − vl)

10: z = z + 1 t = t + 1
11: if Q (Xh, λz

1, λz
2) == Q (X ′, λz

1, λz
2) or t == τ then

12: f lag = T rue
13: return(Xh, λz

1, λz
2) break

14: end if
15: end while

5.2. MQMCG algorithm

The DLIB algorithm will finally stop at a local optimal point or saddle point. But its efficiency could be low because 
of the low searching speed of the local optimal objective variable X . As is shown in Line 4 to Line 7 of Algorithm 1, one 
update can only make the objective variable advanced for one step in one direction. We know that the optimal point of 
Q (X) for fixed λi can be reached in O ((e + f ) log log(e + f )) time when Q (X) is supermodular. Therefore, we can replace 
the updating process of Xh by planar graph minimum cut process in the DLIB algorithm to enhance the efficiency of the 
algorithm. The sufficient and necessary condition of the supermodularity is s2

i j ≥ λ2bl
i j . Fortunately, this condition will always 

be true because there are rarely binary constraints in actual applications. If it is not satisfied, the associated tokens always 
have more contribution on constrained attribute than their contribution on the semantic relatedness. So we can simply 
delete the corresponding cubic and binary terms in Q (X) to make sure Q (X) is supermodular. Following the above idea, 
we propose the MQMCG algorithm (Algorithm 2).
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Algorithm 2 MQMCG Algorithm.
1: Initializing variables.
2: while Xh is not a solution do
3: Constructing equivalent graph Gh of Q (Xh, λh

1, λh
2)

4: mc = Min_Cut(G)

5: Calculating Xh+1 from mc

6: Calculating λh
1, λh

2
7: end while

Table 1
Values of parameters in experiments.

n p1 p2 Upper attribute Upper semantic relatedness

100K 0.0005 0.0001 5 10

λ0 u1 ζ Lower attribute Lower semantic relatedness

1 3000 0.003 0 0

The variables initialization method is the same as that of Algorithm 1 (Line 1). The stop condition (Line 2) and the 
updating strategy of λi are also the same as that of Algorithm 1. We can use any one of the existing fast minimum cut 
algorithms to generate the Min_Cut function in Line 4.

The MQMCG algorithm can reduce the time consumption of each iteration of the DLIB algorithm. But it also exposes 
another issue that the result is the optimal point of Q (X) (formula (7)) rather than that of the real objective function 
(formula (5)), although it can get the best balance between the requirement and the constraints. For example, in the above 
example of graph Fig. 1c, the result will be X = (1, 0, 1, 1, 0, 1, 1, 1) if we change the weight vector of the edge between 
t1 and t3 to (1, 8). This will make the constraint condition 

∑n
i=1, j=1 b1

i j xi x j ≤ 30 and 
∑n

i=1 a1
i ≤ 15 false. Sometimes the 

constraint condition is strict while sometimes this above balance is acceptable. We must handle this issue if it is the former 
case.

Assume that Sh represents the result subset corresponding to Xh . If it contains more amount of constrained attributes 
values, we cyclically remove from Sh the point that has the greatest relative contribution to the constraint attributes until 
the constraint conditions are true. We measure the relative contribution of a token ti to the constraint attributes by the θi

that is defined in formula (10).

θi =
∑

j∈N bij + ai
∑

j∈N bij + ai + ∑
j,k∈N s3

i jk + ∑
j∈N s2

i j + s1
i

(10)

Due to the space limitation, we do not give the detail description of the removing process. We can either use this process 
after the Min_Cut operation in each iteration or just do it one time when the whole loop of the MQMCG algorithm is over.

6. Experimental results

In this section, we evaluate our algorithms and compare it against the state-of-the-art greedy algorithm. To evaluate the 
subset extraction algorithms, we randomly generate a corpus and consider the following parameters: corpus size (n), the 
probability of semantic relatedness among arbitrary tokens (p1), and the probability of the existence of binary attribute 
between any two tokens (p2). We compare the total semantic relatedness preserved in the result subset. The values of 
parameters we set in experiments are shown in Table 1. In practical applications, we can always limit the sizes of con-
nected subsets to less than 100K by eliminating some weak semantic relatedness links. Therefore, we set the size of corpus 
as 100K . We use Mozes’s minimum cut algorithm [28] which is the fastest algorithms currently known in the MQMCG
algorithm.

We perform 1000 experiments on each corpus and take the average of results. Table 2 shows one simulation result of 
the MQMCG algorithm and the greedy algorithm (the initial subset is �0), and five results of the DLIB algorithm (different 
randomly selected initial subsets). Obviously, the MQMCG algorithm can preserve more semantic relatedness than the other 
two under the same constraints. The results of the DLIB algorithm depend on the initial subset and the magnitude of the 
changes in λ, which makes the result unstable. In experiments, ζ has a significant impact on λ. A bigger ζ will make the 
two new algorithms stop without iteration on λ. Conversely, a lower ζ will cause the two new algorithms to iterate too 
many times on λ and make them time-consuming.

7. Conclusions

In this paper we propose two Pseudo-Boolean optimization based algorithms (the DLIB algorithm and the MQMCG algo-
rithm) by introducing the discrete Lagrangian method and the supermodular cubic Pseudo-Boolean optimization method. To 
make sure that the MQMCG algorithm can reach the optimal point of the real objective function, we define the measure-
ment method of the relative contribution of a token. Finally, we evaluate their performance. There is none existent corpus 
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Table 2
Some results of algorithms.

Algorithm Total semantic relatedness Total attribute λ

DLIB 3057 1725 1
7259 3547 0.84
6428 2964 0.82
8537 2844 0.66
7375 2857 0.58

MQMCG 8993 2998 0.83
Greedy 8598 2999 1

that includes labels of relatedness, we can just do some simulation experiments. Therefore, the experimental results and 
conclusions part are a little weak in this paper. In the future, we will try to modify some corpus by annotating the related-
ness among its tokens. Then We will further improve the accuracy of the MQMCG algorithm when the objective function is 
not supermodular and do more experiments.
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