
A Unified Dynamic Programming Framework for
the Analysis of Interacting Nucleic Acid Strands:
Enhanced Models, Scalability, and Speed
Mark E. Fornace,†,# Nicholas J. Porubsky,†,# and Niles A. Pierce∗,‡,§,¶
†
Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

‡
Division of Biology & Biological Engineering, California

Institute of Technology, Pasadena, CA 91125, USA.
§
Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA 91125, USA.

¶
Weatherall

Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.

ABSTRACT: Dynamic programming algorithms within the NUPACK software suite enable analysis of nucleic acid sequences over
complex and test tube ensembles containing arbitrary numbers of interacting strand species, serving the needs of researchers in
molecular programming, nucleic acid nanotechnology, synthetic biology, and across the life sciences. Here, to enhance the underlying
physical model, assure scalability for large calculations, and achieve dramatic speedups when calculating diverse physical quantities
over complex and test tube ensembles, we introduce a unified dynamic programming framework that combines three ingredients:
1) recursions that specify the dependencies between subproblems and incorporate the details of the structural ensemble and the
free energy model, 2) evaluation algebras that define the mathematical form of each subproblem, 3) operation orders that specify
the computational trajectory through the dependency graph of subproblems. The physical model is enhanced using new recursions
that operate over the complex ensemble including coaxial and dangle stacking subensembles. The recursions are coded generically
and then compiled with a quantity-specific evaluation algebra and operation order to generate an executable for each physical
quantity: partition function, equilibrium base-pairing probabilities, MFE energy and structure proxy, suboptimal structures, and
Boltzmann sampled structures. For large complexes (e.g., 30,000 nt), scalability is achieved for partition function calculations using
an overflow-safe evaluation algebra, and for equilibrium base-pairing probabilities using a backtrack-free operation order. A new
blockwise operation order that treats subcomplex blocks for the complex species in a test tube ensemble enables dramatic speedups
(e.g., 20–120×) using vectorization and caching. With these performance enhancements, equilibrium analysis of substantial test tube
ensembles can be performed in ≤ 1 minute on a single computational core (e.g., partition function and equilibrium concentration for
all complex species of up to 6 strands formed from 2 strand species of 300 nt each, or for all complex species of up to 2 strands formed
from 80 strand species of 100 nt each). A new sampling algorithm simultaneously samples multiple structures from the complex
ensemble to yield speedups of an order of magnitude or more as the number of structures increases above ≈103. These advances are
available within the NUPACK 4.0 code base (www.nupack.org) which can be flexibly scripted using the all-new NUPACK Python
module.

KEYWORDS: RNA, DNA, base-pairing, secondary structure, equilibrium, complex ensemble, test tube ensemble, coaxial and
dangle stacking subensembles, free energy model, dynamic programming algorithm, recursion, evaluation algebra, operation order,
partition function, base-pairing probability, minimum free energy, concentration, structure sampling.

Dynamic programming algorithms enable efficient and exact
equilibrium analysis of nucleic acids with respect to approxi-
mate physical models. Algorithms are formulated in terms of
nucleic acid secondary structure (i.e., the base pairs of a set of
DNA or RNA strands) and employ empirical free energy pa-
rameters1–13 to calculate diverse physical quantities.10,14–22

We have previously developed dynamic programming algo-
rithms that are unique in treating complex and test tube
ensembles containing arbitrary numbers of interacting strand
species,22 providing crucial tools for capturing concentration
effects essential to analyzing and designing the intermolecular
interactions that are a hallmark of molecular programming,
nucleic acid nanotechnology, and synthetic biology. These
algorithms are implemented within NUPACK (Nucleic Acid
Package), a growing software suite for the analysis and design
of nucleic acid structures, devices, and systems.23

Here, following 15 years of methods development,22–29 we
reconsidered every equilibrium analysis algorithm, arriving at
a new unified dynamic programming framework that leads to
major improvements of five varieties:

• Elucidation: diverse physical quantities are calculated
using dynamic programs each combining three ingredi-
ents: model-specific recursions, a quantity-specific eval-
uation algebra, and a quantity-specific operation order.

• Model: new recursions capture the structural and ener-
getic details of coaxial and dangle stacking subensembles
in the complex ensemble.

• Scalability: over-flow safe evaluation algebras and
backtrack-free operation orders enable robust partition
function and pair probability calculations for large com-

plexes.
• Speed: new blockwise operation orders yield dramatic

speedups of 1–2 orders of magnitude for equilibrium anal-
ysis of test tube ensembles.

• Brevity: use of a generic programming paradigm and
compile-time polymorphism dramatically reduce the size
of the code base.

We begin by defining the underlying physical model, includ-
ing definitions of the complex and test tube structural ensem-
bles, and specification of the free energy model for a complex
ensemble including coaxial and dangle stacking subensembles.
We then describe the unified dynamic programming frame-
work, describing new recursions that capture the details of
the enhanced physical model, and new evaluation algebras
and operation orders that enable calculation of diverse physi-
cal quantities for complex and test tube ensembles of interact-
ing DNA or RNA strands. The resulting suite of algorithms
comprise the all-new NUPACK 4.0 analysis code base. En-
hanced models, scalability, and speed will benefit researchers
in molecular programming, nucleic acid nanotechnology, syn-
thetic biology, and across the life sciences.

PHYSICAL MODEL

Complex Ensemble and Test Tube Ensembles. NUPACK
algorithms operate over two fundamental ensembles:

• Complex ensemble: The ensemble of all (unpseudoknot-
ted connected) secondary structures for an arbitrary
number of interacting DNA or RNA strands.

1

a b

c

d

e

f

D

E

D

E

Complex DEA

A

C

C

B

B

Complex ABC

A

B
C

Test tube

A B CStrands

BBC
BC AAA

ACB
BBB

CCCCA
CCB

ABC

AAC

AB A

BBABB

AABB
CC

CCA
AA

C

Complexes

Figure 1: Complex and test tube ensembles. (a) A connected unpseudoknotted secondary structure for complex of 3 strands
with strand ordering π = ABC. An arrowhead denotes the 3′ end of each strand. (b) Polymer graph representation of the
same secondary structure showing no crossing lines for strand ordering π = ABC. (c) Alternative strand ordering π = ACB
yields a polymer graph with crossing lines. (c) A pseudoknotted secondary structure with base pairs i·j and d·e (with i < d)
that fail to satisfy the nesting property i < d < e < j, yielding crossing lines in the corresponding polymer graph (e) for the
sole strand ordering π = DE. (f) A test tube ensemble containing strand species Ψ0 = {A,B,C} interacting to form all complex
species Ψ of up to Lmax = 3 strands.

• Test tube ensemble: The ensemble of a dilute solu-
tion containing an arbitrary number of DNA or RNA
strand species (introduced at user-specified concentra-
tions) interacting to form an arbitrary number of com-
plex species.

Furthermore, to enable reaction pathway engineering of
dynamic hybridization cascades (e.g., shape and sequence
transduction using small conditional RNAs30) or large-scale
structural engineering including pseudoknots (e.g., RNA
origamis31), NUPACK generalizes sequence analysis and de-
sign to multi-complex and multi-tube ensembles.29

The sequence, φ, of one or more interacting RNA strands is
specified as a list of bases φa ∈ {A,C,G,U} for a = 1, . . . , |φ|.
For DNA, φa ∈ {A,C,G,T}. A secondary structure, s, of one
or more interacting RNA strands is defined by a set of base
pairs, each a Watson–Crick pair [A·U or C·G] or a wobble pair
[G·U]. For DNA, the corresponding Watson–Crick pairs are A·T
and C·G and there are no wobble pairs. Example secondary
structures are displayed in Figures 1ad.

For algorithmic purposes, it is convenient to describe sec-
ondary structures using a polymer graph representation, con-
structed by ordering the strands around a circle, drawing the
backbones in succession from 5′ to 3′ around the circumfer-
ence with a nick between each strand, and drawing straight
lines connecting paired bases (e.g., Figure 1bc). A secondary
structure is unpseudoknotted if there exists a strand order-
ing for which the polymer graph has no crossing lines (e.g.,
Figure 1b), or pseudoknotted if all strand orderings contain
crossing lines (e.g., the kissing loops of Figure 1de). A sec-
ondary structure is connected if no subset of the strands is free
of the others. Consider a complex of L distinct strands (e.g.,
each with a unique identifier in {1, . . . , L}) corresponding to

strand ordering π. The complex ensemble Γ(φ) contains all
connected polymer graphs with no crossing lines for sequence
φ and strand ordering π (i.e., all unpseudoknotted secondary
structures).22 (We dispense with our prior convention22,23,27

of calling this entity an ordered complex.)
As a matter of algorithmic necessity, all of the dynamic

programs developed in the present work operate on com-
plex ensemble Γ(φ) treating all strands as distinct. How-
ever, in the laboratory, strands with the same sequence are
typically indistinguishable with respect to experimental ob-

servables. Fortunately, for comparison to experimental data,
physical quantities calculated over ensemble Γ(φ) can be post-
processed to obtain the corresponding quantities calculated
over ensemble Γ(φ) in which strands with the same sequence
are treated as indistinguishable (see Section S5 for details).

The ensemble Γ(φ) ⊆ Γ(φ) is a maximal subset of distinct
secondary structures for strand ordering π. Two secondary
structures are indistinguishable if their polymer graphs can
be rotated so that all strands are mapped onto indistinguish-
able strands, all base pairs are mapped onto base pairs, and
all unpaired bases are mapped onto unpaired bases; otherwise
the structures are distinct.22

A test tube ensemble is a dilute solution containing a set
of strand species, Ψ0, introduced at user-specified concentra-
tions, that interact to form a set of complex species, Ψ, each
corresponding to a different strand ordering treating strands
with the same sequence as indistinguishable. For L strands,
there are (L− 1)! strand orderings if all strands are different
species (e.g., complexes π = ABC and π = ACB for L = 3
and strands A, B, C), but fewer than (L − 1)! strand order-
ings if some strands are of the same species (e.g., complex π
= AAA for L = 3 with three A strands). By the Representa-
tion Theorem of Dirks et al.,22 a secondary structure in the
complex ensemble for one strand ordering does not appear in
the complex ensemble for any other strand ordering, averting
redundancy. It is often convenient to define Ψ to contain all
complex species of up to Lmax strands (e.g., Figure 1f), al-
though Ψ can be defined to contain arbitrary complex species
formed from the strand species in Ψ0.

Loop-Based Free Energy Model. For each (unpseudoknot-

ted connected) secondary structure s ∈ Γ(φ), the free energy,

∆G(φ, s), is estimated as the sum of the empirically deter-
mined free energies of the constituent loops3–5,8, 12,13 plus a
strand association penalty,32 ∆Gassoc, applied L−1 times for
a complex of L strands:

∆G(φ, s) = (L− 1) ∆Gassoc +
∑

loop∈s

∆G(loop). (1)

The secondary structure and polymer graph of Figure 2 illus-
trate the different loop types, with free energies modeled as
follows:3–5,8, 12,13

2

a b

hairpin stack bulge interior multi exterior

C

C

B

BA
A

Figure 2: Loop-based free energy model for a complex. (a)
Canonical loop types for complex with strand ordering π =
ABC. (b) Equivalent polymer graph representation. An ar-
rowhead denotes the 3′ end of each strand.

• A hairpin loop is closed by a single base-pair i · j. The
loop free energy, ∆Ghairpin

i,j , depends on sequence and
loop size.

• An interior loop is closed by two base pairs (i · j and d · e
with i < d < e < j). The loop free energy, ∆Ginterior

i,d,e,j de-
pends on sequence, loop size, and loop asymmetry. Bulge
loops (where either d = i + 1 or e = j − 1) and stacked
pairs (where both d = i + 1 and e = j − 1) are treated
as special cases of interior loops.

• A multiloop is closed by three or more base pairs.
The loop free energy is modeled as the sum of three
sequence-independent penalties: (1) ∆Gmulti

init for forma-
tion of a multiloop, (2) ∆Gmulti

bp for each closing base

pair, (3) ∆Gmulti
nt for each unpaired nucleotide inside

the multiloop, plus a sequence-dependent penalty: (4)

∆Gterminalbp
i,j for each closing pair i · j.

• An exterior loop contains a nick between strands and
any number of closing base pairs. The exterior loop free
energy is the sum of ∆Gterminalbp

i,j over all closing base
pairs i · j. Hence, an unpaired strand has a free energy
of zero, corresponding to the reference state.22

Coaxial and Dangle Stacking Subensembles within Com-
plex Ensembles. Within a multiloop or an exterior loop, there
is a subensemble of coaxial stacking states between adja-
cent closing base pairs and dangle stacking states between
closing base pairs and adjacent unpaired bases. The phys-
ical model for multiloops and exterior loops has previously
been enhanced for the ensemble of a single strand10 by in-
corporating coaxial stacking5,6, 13 and dangle stacking2,7, 8, 13

terms into the multiloop and exterior loop free energies. For
the complex ensemble, we have previously neglected coaxial
stacking and incorporated a heuristic dangle stacking state.22

Here, we exactly incorporate all coaxial and dangle stacking
states in the complex ensemble. Within a multiloop or ex-
terior loop, a base pair can form one coaxial stack with an
adjacent base pair, or can form a dangle stack with at most
two adjacent unpaired bases; unpaired bases can either form
no stack, or can form a dangle stack with at most one adja-
cent base pair. See Figure 3 for an illustration of the valid
stacking states for a multiloop (panel a) or two exterior loops
(panels b and c).

For a given multiloop or exterior loop, the energetic contri-
butions of all possible coaxial and dangle stacking states are
enumerated so as to calculate the free energy:

∆Gstacking = −kT log
∑

ω∈loop

∏
x∈ω

e−∆Gx/kT (2)

where ω indexes the possible stacking states within the loop
and x indexes the individual stacks (coaxial or dangle) within
a stacking state. The free energy of a multiloop or exterior
loop is augmented by the corresponding ∆Gstacking bonus.
Hence, a secondary structure s continues to be defined as a
set of base pairs, and the stacking states within a given multi-
loop or exterior loop are treated as a structural subensemble
that contributes in a Boltzmann-weighted fashion to the free
energy model for the loop. Let sq ∈ s denote a stacking state
of the paired and unpaired bases in s. We may equivalently
define the free energy of secondary structure s in terms of the
free energies for all stacking states sq ∈ s:

∆G(φ, s) = −kT log
∑
sq∈s

e−∆G(φ,sq)/kT (3)

Let Γ
q
(φ) denote the ensemble of stacking states correspond-

ing to the complex ensemble of secondary structures Γ(φ).

Symmetry Correction. For a secondary structure s ∈ Γ(φ)
with an R-fold rotational symmetry there is in R-fold re-
duction in distinguishable conformational space, so the free
energy (1) must be adjusted22 by a symmetry correction:

∆G(φ, s) = ∆G(φ, s) + ∆Gsym(φ, s). (4)

where

∆Gsym(φ, s) = kT logR(φ, s). (5)

Because the symmetry factor R(φ, s) is a global property of
each secondary structure s ∈ Γ(φ), it is not suitable for use
with dynamic programs that treat multiple subproblems si-
multaneously without access to global structural information.
As a result, dynamic programs operate on ensemble Γ(φ) us-
ing physical model (1) and then the Distinguishability Cor-
rection Theorem of Dirks et al.22 enables exact conversion
of physical quantities to ensemble Γ(φ) using physical model

(4). Interestingly, ensembles Γ(φ) and Γ(φ) both have util-
ity when examining the physical properties of a complex as
they provide related but different perspectives, akin to com-
plementary thought experiments (see Section S5).

Free Energy Parameters. Supported temperature-
dependent RNA and DNA parameter sets include:

• rna95 based on (Serra & Turner, 1995)2 with additional
parameters8 including coaxial stacking5,13 and dangle
stacking2,8, 13 in 1M Na+.

• dna04 based on (SantaLucia, 1998)3 and (SantaLucia
& Hicks, 2004)9 with additional parameters8 including
coaxial stacking6 and dangle stacking7,8 in user-specified
concentrations of Na+, K+, NH+

4 , and Mg++ (see Sec-
tion S1.2 for details on implementation of the salt cor-
rections).3,6, 9, 11

• rna06 based on (Mathews et al., 1999),5 (Mathews et al.,
2004),10 and (Lu et al., 2006)12 with additional param-
eters4,8 including coaxial stacking5,13 and dangle stack-
ing2,8, 13 in 1M Na+.

• custom using user-specified parameters representing nu-
cleic acids or synthetic nucleic acid analogs in experi-
mental conditions of choice.

See Sections S1.5–S1.7 for details about parameter sets.

ALGORITHMS
Physical Quantities. Consider a complex with sequence φ.

We provide dynamic programs to calculate:

3

a
0 coaxial stacks
0 dangle stacks

0 coaxial stacks, 1 dangle stack 0 coaxial stacks, 2 dangle stacks

1 coaxial stack
0 dangle stacks

1 coaxial stack, 1 dangle stack

1 coaxial stack, 2 dangle stacks

b

1 dangle stack

2 dangle stacks

0 coaxial stacks 1 coaxial stack

0 dangle stacks

c

multiloop coaxial stackmultiloop dangle stackmultiloop exterior loop coaxial stack

exterior loop dangle stack

exterior loop

Multiloop stacking states Exterior loop stacking states

Exterior loop stacking states

Figure 3: Coaxial and dangle stacking states for multiloops and exterior loops. (a) Stacking subensemble for the multiloop of
Figure 2a. (b,c) Stacking subensembes for two exterior loops from Figure 2a.

• the partition function,

Q(φ) =
∑

s∈Γ(φ)

e−∆G(φ,s)/kT , (6)

over ensemble Γ(φ) treating all strands as distinct. The
equilibrium probability of any secondary structure s ∈
Γ(φ) is then

p(φ, s) = e−∆G(φ,s)/kT /Q(φ). (7)

Post-processing Q(φ) yields the partition function Q(φ)
over ensemble Γ(φ) treating strands with the same se-
quence as indistinguishable.22

• the base-pairing probability matrix P (φ) with entries

P
i,j

(φ) ∈ [0, 1] corresponding to the probability

P
i,j

(φ) =
∑

s∈Γ(φ)

p(φ, s)Si,j(s) (8)

that base pair i · j forms at equilibrium within ensem-
ble Γ(φ), treating all strands as distinct. Here, S(s) is
a structure matrix with entries Si,j(s) = 1 if structure s
contains base pair i · j and Si,j(s) = 0 otherwise. Abus-
ing notation, the entry Si,i(s) is 1 if base i is unpaired in

structure s and 0 otherwise; the entry P
i,i

(φ) ∈ [0, 1] de-
notes the equilibrium probability that base i is unpaired
over ensemble Γ(φ). Hence S(s) and P (φ) are symmetric
matrices with row and column sums of 1.

• the free energy of the minimum free energy (MFE) stack-

ing state sqMFE(φ) ∈ Γ
q
(φ) treating all strands as distinct:

∆G(φ, sqMFE) = min
sq∈Γ

q
(φ)

∆G(φ, sq). (9)

• the MFE proxy structure

sMFE′ = {s ∈ Γ(φ)|sqMFE∈s, s
q
MFE(φ) = arg min

sq∈Γ
q
(φ)

∆G(φ, sq)}.

(10)

defined as the secondary structure containing the MFE
stacking state within its subensemble. If there is more
than one MFE stacking state, the algorithm returns all
corresponding MFE proxy structures.

Complex ABC

final answer:

1-nt subsequences
2-nt subsequences
3-nt subsequences

...

a

Operation order

A

A

B

B

C

C

Q1,N

Q1,1

QN,NQ1,N

Figure 4: Operation order for partition function dynamic pro-
gram over a complex ensemble with N nucleotides.

• the set of suboptimal secondary structures

Γsubopt(φ,∆Ggap) =

{s ∈ Γ(φ)|sq∈s,∆G(φ, sq) ≤ ∆G(φ, sqMFE) + ∆Ggap}
(11)

with stacking states within a specified ∆Ggap ≥ 0 of the
MFE stacking state.

• a set of J secondary structures Boltzmann sampled from
ensemble Γ(φ) treating all strands as distinct:

Γsample(φ, J) ∈ Γ(φ). (12)

Post-processing then yields the set of J secondary struc-
tures Boltzmann sampled from ensemble Γ(φ) treating
strands with the same sequence as indistinguishable:

Γsample(φ, J) ∈ Γ(φ). (13)

Now consider a test tube ensemble containing an arbitrary
set of strand species Ψ0 interacting to form an arbitrary set
of complex species Ψ. We provide algorithms to calculate:

4

+

Hairpin loop Interior loop Multiloop

Empty At least one pair

One pair More than one pair

Qi,j

Qi,j

Qi,j

b

m

Exterior loop

recursion

recursion

recursion

=

= +

+

+ +

b
i

j

d

e

b
i

j

d

e

i

j

=

i

j

i

j

i

j

i

j

b

m

i

j

c

m

b

i

j

d

e

i

j

d

e

b

i

j

d

e

b

m

interior loop
multiloop

exterior loop
hairpin loop

a

b

c

Qi,j = 1 +
∑

i≤d<e≤j

Qi,d−1 Q
b
d,e

Qb
i,j = exp{−∆Ghairpin

i,j /kT}+
∑

i<d<e<j

Qb
d,e exp{−∆Ginterior

i,d,e,j /kT}

+
∑

i<d<e<j

Qm
i+1,d−1Q

b
d,e exp

{
−[∆Gmulti

init +2∆Gmulti
bp +ne+1,j−1∆Gmulti

nt]/kT
}

+
∑

i ≤ c < j
s.t. nick after c

Qi+1,c Qc+1,j−1

Qm
i,j =

∑

i≤d<e≤j

Qb
d,e exp

{
−[∆Gmulti

bp +(ni,d−1+ne+1,j)∆Gmulti
nt]/kT

}

+
∑

i≤d<e≤j

Qm
i,d−1 Q

b
d,e exp

{
−[∆Gmulti

bp +ne+1,j∆Gmulti
nt]/kT

}

1

Figure 5: Partition function dynamic program recursion diagrams (left) and recursion equations (right).22 A solid straight
line indicates a base pair and a dashed line demarcates a region without implying that the connected bases are paired. Shaded
regions correspond to loop free energies that are explicitly incorporated at the current level of recursion (colors correspond to
the loop types of Figure 2). (a) Qi,j represents the partition function for subsequence [i, j]. There are two cases: either there are
no base pairs (corresponding to the reference free energy 0 and partition function contribution 1) or there is a 3′-most base pair
d · e. In the latter case, determination of the partition function contribution makes use of previously computed subsequence
partition functions Qbd,e and Qi,d−1. By the distributive law, multiplication of these subsequence partition functions (each
representing a sum over substructures) implicitly sums over all pairwise combinations of substructures. The independence of
the loop contributions in the energy model (1) implies that these products appropriately add the free energies in the exponents.
(b) Qbi,j is the partition function for subsequence [i, j] with the restriction that bases i and j are paired. There are four cases:
either there are no additional base pairs (corresponding to a hairpin loop), there is exactly one additional base pair d · e
(corresponding to an interior loop), there is more than one additional base pair (corresponding to a multiloop) with 3′-most
pair d · e and at least one additional pair specified in a previously computed subsequence partition function Qmi,d−1, or there
is an exterior loop containing a nick after nucleotide c. ni,j ≡ j − i + 1 denotes the number of nucleotides between i and j
inclusive. (c) Qmi,j is the partition function for subsequence [i, j] with the restrictions that the subsequence is inside a multiloop
and contains at least one base pair. There are two cases: either there is exactly one additional base pair d · e defining the
multiloop, or there is more than one additional base pair defining the multiloop (with 3′-most pair d · e). The time complexity
of these recursions is O(N4) (indices i, d, e, j on the right hand side) and the space complexity is O(N2) (indices i, j on the
left hand side).

• the set of equilibrium concentrations xΨ ≡ xc ∀c ∈ Ψ,
(specified as mole fractions) that are the unique solution
to the strictly convex optimization problem:22

min
xΨ

∑
c∈Ψ

xc(log xc − logQc − 1) (14a)

subject to
∑
c∈Ψ

Ai,cxc = x0
i ∀i ∈ Ψ0, (14b)

expressed in terms of the previously calculated set of par-
tition functions QΨ. Here, the constraints impose con-
servation of mass: A is the stoichiometry matrix such
that Ai,c is the number of strands of type i in complex
c, and x0

i is the total concentration of strand i present in
the test tube. Based on dimensional analysis,22 the con-
vex optimization algorithm operates on mole fractions,
but for convenience, accepts molar strand concentrations
[i]0 = x0

i ρH2O as inputs and returns molar complex con-
centrations [c] = xcρH2O as outputs, where ρH2O is the
molarity of water.

• the ensemble pair fractions for the test tube ensemble,
for example

fA(iA · jB) (15)

denotes the fraction of A strands that form base pair
iA · jB (correspondingly fB(iA · jB) denotes the fraction

of B strands that form base pair iA · jB). In order to cal-
culate these base-pairing observables, it is first necessary
to calculate the set of equilibrium concentrations xΨ and
the set of base-pairing probability matrices PΨ.

Existing Dynamic Programs.Before describing the new
unified dynamic programming framework, it is helpful to
briefly summarize existing algorithms that operate on com-
plex ensemble Γ(φ) using a simplified free energy model that
neglects coaxial stacking and approximates dangle stacking.22

The complex ensemble size, |Γ(φ)|, grows exponentially with
the number of nucleotides (Figure S37), N ≡ |φ|, but the par-
tition function can be calculated in O(N3) time and O(N2)
space using a dynamic program.15,22 The algorithm calcu-
lates the subsequence partition function Qi,j for each sub-
sequence [i, j] via a forward sweep from short subsequences
to the full sequence (Figure 4), finally yielding the partition
function of the full sequence, Q1,N . The recursions used to
calculate Qi,j from previously calculated subsequence parti-
tion functions can be depicted as recursion diagrams (Fig-
ure 5 left; with free energy contributions colored to match
the loop types of Figure 2) or equivalently using recursion
equations (Figure 5 right). The Q recursion relies on ad-
ditional restricted partition functions Qb and Qm that are
also calculated recursively. Collectively, the Q, Qb, and Qm

recursions yield Q(φ) = Q1,N , incorporating the partition

function contributions of every structure s ∈ Γ(φ) based on

5

Table 1: Algorithmic ingredients for calculating diverse physical quantities.

Quantity Symbol Recursions Evaluation Algebra Dependency Operation Order

Partition function Q(φ) Stacking SumProduct, SplitExp – Blockwise forward sweep
MFE ∆G(φ, sqMFE) Stacking MinSum – Blockwise forward sweep

Complex ensemble size |Γ(φ)| No stacking Count – Blockwise forward sweep
Pair probability matrix P (φ) Stacking SumProduct, SplitExp – Blockwise forward sweep
Sampled ensemble Γsample(φ, J) Stacking ArgRandJ Q(φ) Backtracking, priority queue
MFE structure proxy sMFE′ (φ) Stacking ArgMin ∆G(φ, sqMFE) Backtracking, stack

Suboptimal ensemble Γsubopt(φ,∆Ggap) Stacking ArgMinGap ∆G(φ, sqMFE) Backtracking, stack

Concentrations xΨ – – QΨ Convex optimization
Ensemble pair fractions fA(iA · jB) – – xΨ, PΨ –

Dynamic program

Structural ensemble
+

Free energy model

Physical quantity

Recursions

Operation order

Evaluation algebra
+

+

Figure 6: Unified dynamic programming framework. To cal-
culate a physical quantity of interest based on a physical
model comprising a structural ensemble and a free energy
model, each dynamic program combines three ingredients:
model-specific recursions, a quantity-specific evaluation alge-
bra, and a quantity-specific operation order.

free energy model (1) treating all strands as distinct. After
calculating the partition function with a forward sweep from
short to long sequences, dynamic programs that backtrack
through the matrix of subsequence partition functions from
long to short subsequences can be used to calculate the ma-
trix of equilibrium base-pairing probabilities, P (φ),15,22,26 or

to Boltzmann sample a structure from ensemble Γ(φ).18,22

The partition function dynamic program can be converted
into an MFE dynamic program in a straightforward way by
replacing every product of exponentiated free energies with
a sum of free energies and every sum of alternative parti-
tion function contributions with a minimization over alter-
native free energy contributions, yielding the MFE of the
full sequence, ∆G(φ, sMFE) = F1,N .14,22 After calculating
the MFE with a forward sweep from short to long subse-
quences, dynamic programs that backtrack through the ma-
trix of subsequence MFEs from long to short subsequences
can be used to determine the MFE secondary structure(s),

sMFE(φ) ∈ Γ(φ), or the ensemble of suboptimal structures,

Γsubopt(φ,∆G
gap). At the heart of the improvements in the

present work is a new unified treatment of this suite of dy-
namic programs for calculating diverse physical quantities.

Unified Dynamic Programming Framework. In the new
unified framework, each dynamic program combines three in-
gredients (Figure 6): a set of recursions, an evaluation al-
gebra, and an operation order. A set of recursions specifies
the dependencies of each subproblem, capturing the struc-
tural details of the complex ensemble and the energetic details
of the loop-based free energy model. An evaluation algebra
yields the mathematical form of each subproblem, allowing re-
cursions to be generically extended to each physical quantity
of interest. An operation order defines the computational tra-
jectory through the dependency graph of subproblems, yield-
ing dramatic speedups using appropriate data structures. In
the following sections, we first introduce a new set of recur-
sions that treat the enhanced physical model including coax-
ial and dangle stacking, and then describe evaluation algebras
and operation orders that enable calculation of diverse physi-
cal quantities for complex and test tube ensembles (Table 1).

Recursions for the Complex Ensemble with Coaxial and
Dangle Stacking. To treat the enhanced physical model in-
cluding coaxial and dangle stacking contributions for all mul-
tiloops and exterior loops, we require a new set of recursions
that incorporate the subensemble of stacking states and free
energies defined by equation (2) and illustrated in Figure 3.
For the recursions without coaxial and dangle stacking, the
elementary recursion entity is a terminal base pair (Figure 7a;
a base pair that terminates a duplex in an exterior loop or
multiloop context). For example, a recursion might contain
exactly one terminal base pair, a 3′-most terminal base pair,
or one or more terminal base pairs. By contrast, for new
recursions with coaxial and dangle stacking, the elementary
recursion entity becomes a stacking state (Figure 7b), which
may be either a coaxial stacking state (two adjacent termi-
nal base pairs that are coaxially stacked in a multiloop or
exterior loop context), or a dangle stacking state (zero, one,
or two unpaired nucleotides dangle stacking on an adjacent
terminal base pair in a multiloop or exterior loop context).
For example, a recursion might contain exactly one stack-
ing state, a 3′-most stacking state, or one or more stacking
states. Note that a terminal base pair without coaxial and
dangle stacking corresponds to the subset of a dangle stack-
ing state where there are zero nucleotides dangle stacking, so
the complex ensemble without coaxial and dangle stacking
is a subset of the complex ensemble with coaxial and dan-
gle stacking. The inclusion of coaxial and dangle stacking

i

j

i+k

j-l

i

j

d b

b

b

exterior coax

exterior dangle

i

j

d

b

exterior loop

a

b

Terminal base pair

Stacking state

Coaxial stacking state Dangle stacking state

Without coaxial and dangle stacking

With coaxial and dangle stacking

Figure 7: Elementary recursion entities without or with coax-
ial and dangle stacking. (a) Terminal base pair: a base pair
that terminates a duplex (i · d) in an exterior loop or multi-
loop context. (b) Stacking state: (1) Either a coaxial stack-
ing state: two adjacent terminal base pairs that are coaxially
stacked (i · d and d + 1 · j) in an exterior loop or multiloop
context, (2) or a dangle stacking state: zero, one, or two un-
paired nucleotides (neither i nor j, i only, j only, both i and j)
dangle stacking on an adjacent terminal base pair (i+k ·j− l)
in an exterior loop or multiloop context. Shading denotes free
energies incorporated by the recursion.

6

Algebra Algorithm Output 0 1 a⊕ b a⊗ b W (g)

a SumProduct Partition function 0 1 a+ b a · b exp (−g/kT)

Count Ensemble size 0 1 a+ b a · b 1

MinSum MFE ∞ 0 min(a, b) a+ b g

b SplitExp Partition function

Mantissa 0 1 am · 2ae+γ + bm · 2be+γ am · bm exp (−g/kT)

Exponent 0 γ 0 ae + be + γ γ

c ArgRand Sampled structure

Value 0 1 av + bv av · bv exp (−g/kT)

Elements ∅ ∅ arg rand(av, bv) aλ ∪ bλ ∅

d ArgMin MFE structure proxy

Value ∞ 0 min(av, bv) av + bv g

Elements ∅ ∅ arg min(av, bv) aλ ∪ bλ ∅

Table 2: Evaluation algebras for dynamic programming algorithms operating on a complex ensemble. a and b are elements
within a given evaluation algebra domain. SumProduct yields the partition function of the complex ensemble. Count yields
the number of secondary structures in the complex ensemble. MinSum yields the free energy of the MFE stacking state in the
complex ensemble. SplitExp yields the partition function in split mantissa/exponent form using a given exponent shift γ in
order to avoid overflow for the complex ensemble. ArgRand yields a Boltzmann sampled secondary structure with partition
function value xv and associated with recursion elements xλ. ArgMin yields the secondary structure containing the MFE
stacking state with free energy value xv and associated with recursion elements xλ. See Section S3 for details.

subensembles adds significant complexity to the specification
of recursions. The full set of O(N3) recursions with coaxial
and dangle stacking are provided in Section S2. In the fol-
lowing sections, we describe how diverse physical quantities
can be calculated using these recursions in combination with
different evaluation algebras and operation orders.

Evaluation Algebras for Partition Function, Minimum Free
Energy, and Ensemble Size. As previously noted for the com-
plex ensemble without coaxial and dangle stacking, the par-
tition function recursion diagrams of Figure 5a can equiva-
lently be expressed as the partition function recursion equa-
tions of Figure 5b, and these in turn can be systematically
transformed into recursion equations to calculate the MFE.
Alternatively, we may view the partition function and MFE
recursion equations as the results of applying two different
evaluation algebras to a generic set of recursion diagrams
and equations that capture the details of a given physical
model (comprising a structural ensemble and a free energy
model). Here, we formalize an evaluation algebra as an alge-
braic structure composed of: 1) a semiring R equipped with
commutative binary operators ⊕ and ⊗ and associated iden-
tity elements 0 and 1, 2) a map W from free energy param-
eters to R with the property W (0) = 1, and 3) a map Q
from recursion indices to R. Table 2a defines the evaluation
algebras for the partition function and MFE algorithms, as
well as the evaluation algebra for calculating the size of the
complex ensemble, |Γ(φ)|. For example, using the SumProd-
uct evaluation algebra to calculate the partition function: 1)
⊕ is standard addition, ⊗ is standard multiplication, 0 is 0,
1 is 1, 2) W (g) is the Boltzmann factor exp(−g/kT) with
the property W (0) = 1, and 3) Q is the trivial matrix lookup
operator Q(n, i, j) 7→ Qni,j , where n denotes the type of recur-

sion (e.g., n = b for a Qb recursion). The evaluation algebras
used to calculate the partition function, MFE, and complex
ensemble size can be applied to recursions that operate over
the complex ensemble with or without coaxial and dangle
stacking subensembles.

This paradigm of applying a quantity-specific evaluation
algebra to a model-specific set of recursions extends to di-
verse physical quantities, as we describe in the sections that
follow. This generic programming abstraction dramatically
reduces the size of the code base and enforces implementa-

tion correctness. Instead of writing separate code to upgrade
the recursion equations to the new physical model for each
physical quantity, a single set of recursion equations is coded
and compiled using C++ expression templates for each of the
evaluation algebras in Table 2 to produce a suite of executa-
bles for calculating the corresponding physical quantities.

Overflow-safe evaluation algebra for large partition func-
tion calculations. One of the challenges with calculating the
partition function is the prevention of overflow as the size of
the complex, N ≡ |φ|, increases. Using double-precision (64-
bit) arithmetic, the maximum expressible number is ≈10308,
enabling calculation of partition functions for complexes of
≈1400 nt for random sequences and ≈450 nt for designed se-
quences (which typically have a free energy landscape with a
deep well). Using quadruple-precision (128-bit) arithmetic,
the maximum expressible number is increased to ≈104932

(platform-dependent), which enables partition function cal-
culations for complexes of up to ≈22,000 nt for random se-
quences and ≈7000 nt for designed sequences (at the cost of
doubled storage).22

Here, to enable partition function calculations for even
larger complexes, we define an overflow safe evaluation alge-
bra that operates separately on the mantissa and exponent for
the partition function calculation (Table 2b). The elements
of the partition function recursion matrix are represented as
a = am2ae , where am is a single-precision (32-bit) float and
ae is a 32-bit integer, so the maximum expressible number is
≈10646457031.

For exposition, we assume in Table 2 that any expression is
to be calculated with respect to a known reference exponent
shift, γ, to which the expression is aligned. For instance,
consider the expression a ⊗ b where a = 40 (am = 0.625,
ae = 6), b = 96 (bm = 0.75, be = 7), and γ = −6, then
xm = am · bm = 0.625 · 0.75 = 0.46875 and xe = ae + be + γ =
6 + 7 − 6 = 7 corresponding to a ⊗ b = xm · 2xe · 2−γ =
0.46875 ·27 ·26 = 0.46875 ·213. The recursion result may thus
be calculated and stored as (0.46875,13) without explicitly
computing its real equivalent, 3840. See Section S3.1.4 for a
full description of the evaluation algebra including selection
of an appropriate γ for each expression.

With this construction, the storage cost is thus identical
to using double-precision but overflow is no longer limiting,

7

a

C
block

B
block BC

block

ABC
block

AB
block

A
block

B C

AB
BC

ABC

A

b

Complex
ABC

Dependency graph

Ev
al

ua
tio

n
or

de
r

Caching
Caching

Caching

Caching

Caching

CachingB
block

AB
block

A
block

Complex
AB

Subcomplex blocks

A

A

B

B

A CB

A

C

B

c Vector operation for element
in interstrand BC block

row i

col j

element
i, j

Figure 8: Blockwise operation order for dynamic programs operating on complex and test tube ensembles. (a) Subcomplex
blocks within dynamic programming matrices (cf. Figure 4): triangular intrastrand blocks (A, B, C) and rectangular inter-
strand blocks (AB, BC, ABC) for complexes AB and ABC. Element i, j corresponds to a conditional ensemble for subsequence
[i, j] which contains no nicks if i, j is in an intrastrand block and one or more nicks if i, j is in an interstrand block. (b) Depen-
dency graph for block evaluation: bottom to top for forward algorithms (depicted), top to bottom for backtracking algorithms.
(c) Each recursion operation for calculation of element i, j in an interstrand block (e.g., Qi,j ←

∑
i≤d<j Qi,dQd+1,j) can be

implemented as multiple vectorized dot products between valid subvectors of row i (brown) and valid subvectors of column j
(gray) to obtain element i, j (purple), where valid positions are those that avoid introducing disconnected structures into the
complex ensemble.

and the space and time complexity of the algorithm become
the limiting factors. Empirically, we observe a ≈2–2.5× in-
crease in cost for the overflow-safe evaluation algebra relative
to a double-precision floating point evaluation algebra (Fig-
ure S41). In practice, we use a blended approach by switching
between the single-precision SumProduct, double-precision
SumProduct, and the SplitExp evaluation algebras as over-
flow occurs during the partition function calculation for a
given complex.

Efficient blockwise dynamic programs over subcomplexes
using caching and vectorization. To this point, we have con-
sidered dynamic programs that operate on a complex of L
strands. We now re-examine that goal in the more general
context of a test tube ensemble containing the set of strand
species Ψ0 interacting to form the set of complex species Ψ.
For example, suppose Ψ0 contains M strand species and Ψ is
defined to contain all complexes of up to Lmax strands. The
simplest option is to calculate the partition function for each
complex c ∈ Ψ independently.22 With this approach, as de-
scribed previously, the partition function Q1,N for a complex
with N nucleotides is calculated with a dynamic program that
builds up from short subsequences to the full-length sequence,
sweeping along each diagonal of the matrix of subsequence
partition functions (Figure 4). This simplicity comes at the
cost of some inefficiency, for when multiple copies of the same
strand species appear in a complex, intermediate results ap-
pear in multiple locations within the matrix. Moreover, when
the same strand species appears in multiple complexes, inter-
mediate results appear in multiple matrices.

Here, we reduce the cost of calculating the partition func-
tions for the set of complexes Ψ by decomposing each matrix
into two types of subcomplex blocks (Figure 8a): triangu-
lar intrastrand blocks (e.g., blocks A, B, C) and rectangular
interstrand blocks (e.g., blocks AB, BC, ABC). Blocks are
computed in ascending order of the number of strands per
block (blocks with the same number of strands can be cal-
culated independently) and cached such that blocks arising
in multiple locations within a complex or test tube ensem-
ble are not recomputed (Figure 8b). Section S4.2 provides
pseudocode for a blockwise operation order that is O(N3) for
a complex of N nucleotides, including exact calculation of

Recursions
Evaluation algebra

Forward sweep
Backtracking

Operation order

W (∆Gcoax
d,j−1,i)

W (∆Gmulti
init +∆Gmulti

bp)

Q(b, d, j

Q(m, i+ 1, d

Q(b, i, j)

Figure 9: Conceptual interplay between three dynamic pro-
gram ingredients: recursions, evaluation algebra, and oper-
ation order. Recursions specify the dependencies between
subproblems and incorporate the details of the structural en-
semble and free energy model. Evaluation algebras define
the mathematical form of each subproblem. Operation orders
specify the computational trajectory through the dependency
graph of subproblems.

interior loop contributions.17,24 Moreover, with this block-
wise operation order, recursions (Section S2) can be coded
using vectorized dot products (Figure 8c) such that compila-
tion with the appropriate evaluation algebra (Table 2) yields
an efficient vectorized dynamic program for calculating the
corresponding physical quantity. The interplay between the
three dynamic programming ingredients (recursions, evalua-
tion algebra, and operation order) is illustrated conceptually
in Figure 9.

Enhanced efficiency and scalability of the partition func-
tion algorithm for complex ensembles including very large
complexes. Figure 10 highlights efficiency gains for partition
function calculations on complex ensembles. Compared using
the same physical model without coaxial and dangle stack-
ing, the vectorized NUPACK 4.0 implementation yields ≈30–
90× speedups over NUPACK 3.2 depending on the complex
size. Operating on the enhanced physical model that includes
coaxial and dangle stacking subensembles, NUPACK 4.0 con-
tinues to achieve speedups of ≈13–45× over NUPACK 3.2

8

NUPACK 4.0

A

C

B

b

Complex ensemble No stacking
Stacking

No stacking

a

NUPACK 3.2

10
1

10
2

10
3

10
4

Complex size (nt)

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

W
al

l c
lo

ck
 ti

m
e

(s
)

Partition Function

10
1

10
2

10
3

10
4

Complex size (nt)

0

20

40

60

80

100

S
pe

ed
up

NUPACK 4.0 vs NUPACK 3.2

Figure 10: Enhanced efficiency for partition function calculations on complex ensembles including very large complexes. Calcu-
lation of the partition function for a complex of 3 strands, each with a different random sequence of uniform length. NUPACK
4.0 (vectorized, overflow-safe implementation, physical model with or without coaxial and dangle stacking) vs NUPACK 3.2
(not vectorized, quadruple-precision arithmetic, physical model with no coaxial or dangle stacking). (a) Computational cost.
(b) Computational speedup (ratio of mean wall clock times). Means wall clock time over 5 sets of random sequences per
complex size (due to overflow, results not available for largest complex size using NUPACK 3.2). Conditions: RNA, 37 ◦C,
1M Na+.

0 5000 10000 15000 20000 25000 30000

Complex size (nt)

100

105000

1010000

1015000

1020000

P
ar

tit
io

n
fu

nc
tio

n

Test set
Random
Designed

32 bit
64 bit
128 bit

Partition Function Values

Arithmetic

Figure 11: Overflow-safe partition function calculations on
complex ensembles including very large complexes. Dashed
lines denote the overflow thresholds for single-, double-, and
quadruple-precision arithmetic. Partition function calcula-
tions performed using NUPACK 4.0 (overflow-safe implemen-
tation with coaxial and dangle stacking) for two test sets:
random test set (complexes of 3 strands, each with a differ-
ent random sequence of uniform length), designed test set
(duplexes with designed sequences). Mean partition function
over 5 sets of random or designed sequences per complex size.
Conditions: RNA, 37 ◦C, 1M Na+.

operating on the simpler physical model that neglects these
terms. Figure 11 demonstrates that the overflow-safe evalua-
tion algebra SplitExp enables NUPACK 4.0 to calculate par-
tition functions exceeding the overflow thresholds for single-,
double-, and quadruple-precision floating point arithmetic.
Note that the partition function grows faster as a function
of complex size for designed sequences than for random se-
quences due to the presence of a deep well on designed free
energy landscapes.

Enhanced efficiency of the partition function algorithm for
sets of complexes in test tube ensembles.Figure 12 high-
lights efficiency gains for partition function calculations for
sets of complexes in test tube ensembles. Blockwise caching
yields an empirical speedup of ≈(Lmax − 1) for a range of
test tube ensembles containing M strand species interacting

to form all complexes of up to Lmax strands (Figure 12a).
Comparing the performance of NUPACK 4.0 (with the ben-
efits of vectorization and blockwise caching but the added
cost of an enhanced physical model with coaxial and dangle
stacking) to NUPACK 3.2 (without these features) reveals
speedups of ≈20× for test tubes containing all complexes of
up to Lmax = 2 strands and up to ≈120× for test tubes con-
taining all complexes up to Lmax = 6 strands. With NUPACK
4.0, Figure 13 illustrates the size of test tube ensembles for
which equilibrium analysis can be performed in ≤ 1 minute
on a single computational core (e.g., M = 80 strand species
of 100 nt each interacting to form all complex species of up
to Lmax = 2 strands, or M = 2 strand species of 300 nt each
interacting to form all complex species of up to Lmax = 6
strands).

Backtrack-free base-pairing probability matrices.Histor-
ically, equilibrium base-pairing probabilities for a single
strand15,25 or a complex22 are calculated using a dynamic
program that backtracks through the matrix of subsequence
partition functions. This backtracking process involves sub-
traction of intermediate partition function quantities, creat-
ing the risk of losing precision due to subtraction of large
numbers differing by a small amount. To eliminate this con-
cern, here we calculate equilibrium base-pairing probabilities
without backtracking using the same blended evaluation alge-
bras and a modification of the blockwise operation order that
are used for overflow-safe partition function calculations.

To see how this is possible, consider a complex with strand
ordering π = ABC and a total of N nucleotides. As an
intermediate result, the partition function algorithm calcu-
lates Qb

i,j , the conditional partition function for subsequence
i, . . . , j subject to the constraint that i is paired to j. We may
similarly calculate the conditional partition function, Qbext

i,j ,
for the remaining nucleotides external to subsequence i, . . . , j,
namely nucleotides j+1, . . . , N, 1, . . . , i−1 (Figure 14a). Be-

cause the structural ensemble Γ(φ) excludes pseudoknots, the
base pair i · j partitions the structural ensemble into non-
interacting internal and external ensembles, so the partition
function of all structures containing base pair i ·j is the prod-
uct Qb

i,jQ
bext
i,j . As a result, the equilibrium probability of base

pair i · j over ensemble Γ(φ) is given by

P i,j(φ) = Qb
i,j(φ)Q

bext
i,j (φ)/Q1,N (φ). (16)

9

All complex
species of
up to Lmax

strands

a b

Number of strand species M

NUPACK 4.0 w/wout blockwise

Number of strand species M

Maximum
complex
size LmaxM strand

species

Test tube ensemble

NUPACK 4.0 vs NUPACK 3.2

1 2 3 4 5 6 7 8

20

40

60

80

100

120

1 2 3 4 5 6 7 8
1

2

3

4

5

6

Sp
ee

du
p

Sp
ee

du
p

2
3
4
5
6

Figure 12: Enhanced efficiency of the partition function algorithm for sets of complexes in test tube ensembles. Calculation
of the partition function for all complexes of up to Lmax strands for a test tube ensemble containing M strand species, each
with a different random 50 nt sequence. (a) Speedup with vs without blockwise caching for NUPACK 4.0. (b) Speedup using
NUPACK 4.0 (vectorized, blockwise caching, enhanced physical model with coaxial and dangle stacking) vs NUPACK 3.2 (no
blockwise caching, not vectorized, physical model with no coaxial or dangle stacking). Mean wall clock time over 10 sets of
random sequences per test tube ensemble size. Conditions: RNA, 37 ◦C, 1M Na+, each strand introduced at 10 nM.

M
ax

im
um

 c
om

pl
ex

 s
iz

e
L m

ax

Number of strand species M

Test tube analysis in ≤ 1 minute

1 2 3 4 5 6 7 8 10 15 20 30 40 60 80 100

1

2

3

4

5

6

7

8

9

10
Strand length (nt)

30
100
300

Figure 13: Equilibrium test tube analysis in under 1 minute. Calculation of the partition function and equilibrium complex
concentration for a test tube ensemble containing M strand species that form all complexes of up to Lmax strands. Symbols
denote test tube ensembles for which the wall clock time ≤ 1 minute. After calculating the set of partition functions QΨ for a
given test tube ensemble Ψ, the set of equilibrium concentrations xΨ is obtained by solving the convex optimization problem
(14). Mean wall clock time over 5 sets of random sequences per test tube ensemble size. Conditions: RNA, 37 ◦C, 1M Na+,
each strand introduced at 10 nM.

Mathews employed this approach using new recursions to cal-
culate the external conditional partition function Qbext

i,j for a

single strand.10 Here, treating the general case of a com-
plex of L strands, we observe that Qbext

i,j can be calculated in
a straightforward way without new recursions by replicating
the strands to form a “doubled” complex with sequence φ′

(e.g., π = ABCABC) containing 2N nucleotides and calcu-
lating Qb

i,j using the standard recursions for all subsequences
of up to N nucleotides (Figure 14b). The external subse-
quence j+1, . . . , N, 1, . . . , i− 1 for the original complex with
sequence φ is simply the internal subsequence j,N + i for the
doubled complex with sequence φ′. Hence, we have:

P i,j(φ) = Qb
i,j(φ)Q

b
j,N+i(φ

′)/Q1,N (φ). (17)

In Figure 14, the yellow blocks are previously cached from
the partition function calculation. The orange entries corre-
spond to calculation of Qb

j,N+i(φ
′). The cost of evaluating

each entry is proportional to subsequence length (the hori-
zontal or vertical distance from the diagonal), so the average
cost per entry in the orange block is higher than for the yellow

blocks. Empirically, after calculating the partition function
Q(φ) at a cost CQ, calculation of the equilibrium base-pairing

probability matrix P (φ) costs an additional CP ≈1.5–3CQ

(Figure S40).

Evaluation algebras and backtracking operation orders for
simultaneous structure sampling, MFE structure determina-
tion, and suboptimal structure determination.After calculat-
ing the partition function Q(φ) for a strand18 or a complex,22

a structure ssample can be randomly sampled from the struc-

tural ensemble Γ(φ) by backtracking through the matrix of
subsequence partition functions. Likewise, after calculating
the minimum free energy ∆G(φ, sMFE) for a strand14 or a
complex,22 the corresponding MFE structure sMFE(φ) can
be determined by backtracking through the matrix of subse-
quence MFEs. These dynamic programs can be expressed in
our unified dynamic programming framework (Figure 6) us-
ing the same set of recursion diagrams/equations (Section S2)
as the forward algorithms, but employing new evaluation al-
gebras (Table 2cd), and with the operation order reversed so
the blockwise dependency tree (Figure 8b) is traversed top to

10

N

N + i

A B C

A

B

C

A B C

CC

A B C

A

A

B

B

Original complex ABC
with sequence

Doubled complex ABCABC
with sequence

A

B

C

A

B

C

a b

bext

b

b

b

Qb
i,j(φ)

φ φ′

i

i

j

j

Qb
j,N+i(φ

′)

1

1

N

2N

Q1,N (φ)

Qb
i,j(φ)

B
A

C
Figure 14: Backtrack-free calculation of the equilibrium base-pairing probability Pi,j(φ) for a complex ABC of N nucleotides
with sequence φ using (17) and the conditional partition functions Qbi,j(φ) and Qbj,N+i(φ

′). The latter is calculated by
considering the “doubled” complex ABCABC of 2N nucleotides with sequence φ′.

bottom.

For structure sampling, backtracking starts from the re-
cursion for Q1,N and for MFE structure determination, back-
tracking starts from the recursion for F1,N . In either case,
backtracking is used to “choose” between competing recursion
elements when a ⊕ operator is encountered and to “join” com-
patible recursions elements when a ⊗ operator is encountered;
the mathematical implementations of these operators are de-
scribed by quantity-specific evaluation algebras (Table 2cd).
For sampling, ⊕ corresponds to randomly choosing between
competing (Boltzmann-weighted) recursion elements, while
for MFE structure determination, ⊕ corresponds to choosing
the MFE of competing recursion elements. For both structure
sampling and MFE structure determination, ⊗ corresponds
to the set union ∪ of compatible recursion elements.

The MFE structure determination algorithm can be
generalized to calculate the set of suboptimal structures
Γ(φ,∆Ggap) within a specified free energy gap ∆Ggap ≥ 0
of the MFE using generalized evaluation operators for ⊕ and
⊗ (see Section S3.2.6). In practice, we implement this more
general algorithm and then apply it with ∆Ggap = 0 if the
MFE structure proxy is requested. The number of subopti-
mal structures can grow rapidly with ∆Ggap and N so we per-
form backtracking using a stack data structure that reduces
memory usage by generating complete structures at the earli-
est opportunity, enabling these structures to be emitted in a
streaming fashion while additional structures are determined
(see Section S4.6).

While the pair probability matrix P (φ) provides the equi-
librium probability of each base pair over the complex en-
semble, it does not reveal correlation information between
different base pairs. By sampling a set of J secondary struc-
tures and averaging or clustering over this set, it is possible
to address questions like “what is the probability that a set
of adjacent bases are simultaneously unpaired?”18 or “is the
free energy landscape dominated by multiple deep basins each
defined by a set of related secondary structures?”33 Existing
algorithms perform sequential sampling of J structures for a
strand18 (O(JN2) time complexity if long interior loops are
excluded) or a complex22 (O(JN3) with exact treatment of
interior loops). Motivated by the central use case where a
set of J structures is needed for averaging or clustering, here
we develop a simultaneous sampling approach that samples
J structures all at once (O(JN2) with exact treatment of in-
terior loops). A given recursion element may contribute to
a large number of sampled structures (e.g., if there is a deep
well on the free energy landscape), so we perform backtrack-
ing using a priority queue data structure that reduces com-

putational effort by ensuring that all samples of any given
recursion element are performed during a single visit to that
recursion element (see Section S4.4). With the simultaneous
sampling algorithm, we observe order-of-magnitude speedups
over sequential sampling for J above ≈ 103 (Figure 15), and
empirical complexity ∼J0.8N1.2 for J samples from a random
complex ensemble of N nucleotides (see Section S6.6).

CONCLUSIONS
The new unified dynamic programming framework combines
recursions capturing the details of the physical model with
quantity-specific evaluation algebras and operation orders to
enable efficient and scalable calculation of diverse physical
quantities over complex and test tube ensembles of inter-
acting DNA or RNA strands. The physical model was up-
graded by deriving recursions for the complex ensemble that
include coaxial and dangle stacking subensembles for multi-
loops and exterior loops. The recursions are coded generically
and then compiled with a quantity-specific evaluation alge-
bra and operation order to generate an executable for each
physical quantity. As a result, future upgrades to the physical
model can be implemented by updating the generic recursions
rather than by updating code for each physical quantity. For
large complexes, scalability is achieved for partition function
calculations using an overflow-safe evaluation algebra, and
for equilibrium pair probabilities by using a backtrack-free
operation order, enabling calculations on complexes contain-
ing 30,000 nt. For test tube ensembles, dramatic efficiency
gains of 1–2 orders of magnitude are achieved using a new
blockwise operation order that facilitates vectorization and
caching. Recognizing that Boltzmann sampling is most use-
ful for averaging or clustering information calculated on large
set of structures, a new sampling algorithm yields order-of-
magnitude speedups by sampling all requested structures si-
multaneously. These enhancements to the physical model,
algorithm scalability, and algorithm speed represent substan-
tial advances for researchers analyzing nucleic acid structures,
devices, and systems. Moreover, these enhancements are di-
rectly applicable to sequence design algorithms operating over
complex and test tube ensembles27–29 as sequence analysis is
the most costly component of sequence design; work is un-
derway to integrate these advances into the NUPACK 4.0
sequence design algorithms.

METHODS SUMMARY
Implementation. NUPACK algorithms are programmed in

the C++17 programming language. Dynamic programs

11

Sampling Simultaneous vs sequential sampling

Number of
samples (J)

101

102

103

104

105

106

Complex size (nt)

W
al

l c
lo

ck
 ti

m
e

(s
)

Complex size (nt)

S
pe

ed
up

ba

Simultaneous
Sequential

Figure 15: Enhanced efficiency for sampling multiple structures from complex ensembles using simultaneous rather than
sequential sampling. Boltzmann sampling secondary structures for a complex of 3 strands, each with a different random
sequence of uniform length. (a) Computational cost. (b) Computational speedup (ratio of mean wall clock times). Mean
wall clock time over 10 sets of random sequences per complex size. Conditions: RNA, 37 ◦C, 1M Na+. See Section S6.6 for
additional data.

are implemented using a generic programming paradigm34

employing expression templates and compile-time polymor-
phism; generic recursion equations capturing the details of
the structural ensemble and free energy model are translated
via template metaprogramming into a separate vectorized ex-
ecutable for calculating each physical quantity in Table 2.
Single-threaded single instruction multiple data (SIMD) vec-
torization is implemented using the Boost.SIMD library.35

The convex optimization problem (14) is solved in the dual
form using an efficient trust region method22 using the Ar-
madillo linear algebra library for matrix operations.36

Trials.All benchmarks were run on AWS EC2 C5 instances
(3.0 GHz Intel Xeon Platinum processors) with 72 GB of
memory (except 144 GB for Figure 10).

RESOURCES
NUPACK Source Code.The NUPACK source code can be

downloaded for non-commercial academic use subject to the
NUPACK License (nupack.org). NUPACK documentation
includes a User Guide and example jobs.

NUPACK Python Module.The all-new NUPACK Python
interface allows streamlined and flexible in-memory scripting
of NUPACK jobs, reducing file I/O and increasing the conve-
nience of developing workflows composing multiple NUPACK
commands.

Technical Support. Please direct questions, comments, fea-
ture requests, and bug reports to support@nupack.org.

ASSOCIATED CONTENT
Supporting Information
Additional free energy model details, recursions for the com-
plex ensemble with or without coaxial and dangle stacking,
evaluation algebras for each physical quantity, operation or-
ders for each physical quantity, distinguishability issues, ad-
ditional studies, validation.

AUTHOR INFORMATION
Corresponding Author
*E-mail: niles@caltech.edu

ORCID
Mark E. Fornace: 0000-0002-5829-5839
Nicholas J. Porubsky: 0000-0001-6330-2645

Niles A. Pierce: 0000-0003-2367-4406

Author Contributions
#M.E.F and N.J.P. contributed equally.

Notes
The authors declare no competing financial interests.

ACKNOWLEDGMENTS

We thank all the NUPACK users that have helped out as beta
testers over the years, as well as the many NUPACK users
that have emailed support@nupack.org to request features
or report bugs. We thank J.S. Bois for helpful discussions,
J. Huang for assistance developing the NUPACK Python
module, and S.J. Schulte for performing preliminary stud-
ies. This work was funded by the National Science Founda-
tion (Software Elements NSF-OAC-1835414, INSPIRE NSF-
CHE-1643606, Molecular Programming Project NSF-CCF-
1317694), by the Programmable Molecular Technology Cen-
ter (PMTC) within the Beckman Institute at Caltech, by the
AWS/IST Cloud Credit Program at Caltech, by a Microsoft
Azure sponsorship, by the National Institutes of Health (Na-
tional Research Service Award T32 GM007616), by a Pro-
fessorial Fellowship at Balliol College, University of Oxford,
and by the Eastman Visiting Professorship at the University
of Oxford.

REFERENCES
(1) Tinoco, I., Jr., Uhlenbeck, O. C., and Levine, M. D.

(1971) Estimation of secondary structure in ribonucleic
acids. Nature 230, 362–367.

(2) Serra, M. J., and Turner, D. H. (1995) Predicting ther-
modynamic properties of RNA. Methods Enzymol. 259,
242–261.

(3) SantaLucia, J., Jr. (1998) A unified view of polymer,
dumbbell, and oligonucleotide DNA nearest-neighbor
thermodynamics. Proc. Natl. Acad. Sci. 95, 1460–1465.

(4) Xia, T. B., SantaLucia, J., Jr., Burkard, M. E., Kierzek,
R., Schroeder, S. J., Jiao, X. Q., Cox, C., and Turner,
D. H. (1998) Thermodynamic parameters for an ex-
panded nearest-neighbor model for formation of RNA
duplexes with Watson-Crick base pairs. Biochemistry
37, 14719–14735.

12

(5) Mathews, D. H., Sabina, J., Zuker, M., and Turner,
D. H. (1999) Expanded sequence dependence of ther-
modynamic parameters improves prediction of RNA sec-
ondary structure. J. Mol. Biol. 288, 911–940.

(6) Peyret, Nicolas, Prediction of nucleic acid hybridization:
parameters and algorithms. Thesis, Wayne State Univer-
sity (2000).

(7) Bommarito, S., Peyret, N., and SantaLucia, J. (2000)
Thermodynamic parameters for DNA sequences with
dangling ends. Nucleic Acids Res. 28, 1929–1934.

(8) Zuker, M. (2003) Mfold web server for nucleic acid fold-
ing and hybridization prediction. Nucleic Acids Res. 31,
3406–3415.

(9) SantaLucia, J., Jr., and Hicks, D. (2004) The thermody-
namics of DNA structural motifs. Annu. Rev. Biophys.
Biomol. Struct. 33, 415–440.

(10) Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder,
S. J., Zuker, M., and Turner, D. H. (2004) Incorporating
chemical modification constraints into a dynamic pro-
gramming algorithm for prediction of RNA secondary
structure. Proc. Natl. Acad. Sci. 101, 7287–7292.

(11) Koehler, R. T., and Peyret, N. (2005) Thermodynamic
properties of DNA sequences: characteristic values for
the human genome. Bioinformatics 21, 3333–3339.

(12) Lu, Z. J., Turner, D. H., and Mathews, D. H. (2006)
A set of nearest neighbor parameters for predicting the
enthalpy change of RNA secondary structure formation.
Nucleic Acids Res. 34, 4912–4924.

(13) Turner, D. H., and Mathews, D. H. (2010) NNDB: The
nearest neighbor parameter database for predicting sta-
bility of nucleic acid secondary structure. Nucleic Acids
Res. 38, D280–D282.

(14) Zuker, M., and Stiegler, P. (1981) Optimal computer
folding of large RNA sequences using thermodynamics
and auxiliary information. Nucleic Acids Res. 9, 133–
147.

(15) McCaskill, J. S. (1990) The equilibrium partition func-
tion and base pair binding probabilities for RNA sec-
ondary structure. Biopolymers 29, 1105–1119.

(16) Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer,
L. S., Tacker, M., and Schuster, P. (1994) Fast folding
and comparison of RNA secondary structures. Chem.
Mon. 125, 167–188.

(17) Lyngsø, R. B., Zuker, M., and Pedersen, C. N. S. (1999)
Fast evaluation of internal loops in RNA secondary
structure prediction. Bioinformatics 15, 440–445.

(18) Ding, Y., and Lawrence, C.E. (2003) A statistical sam-
pling algorithm for RNA secondary structure prediction.
Nucleic Acids Res. 31, 7280–7301.

(19) Dimitrov, R. A., and Zuker, M. (2004) Prediction of
hybridization and melting for double-stranded nucleic
acids. Biophys. J. 87, 215–226.

(20) Andronescu, M., Zhang, Z. C., and Condon, A. (2005)
Secondary structure prediction of interacting RNA
molecules. J. Mol. Biol. 345, 987–1001.

(21) Bernhart, S. H., Tafer, H., Muckstein, U., Flamm, C.,
Stadler, P. F., and Hofacker, I. L. (2006) Partition
function and base pairing probabilities of RNA het-
erodimers. Algorithms Mol. Biol. 1.

(22) Dirks, R. M., Bois, J. S., Schaeffer, J. M., Winfree, E.,
and Pierce, N. A. (2007) Thermodynamic analysis of
interacting nucleic acid strands. SIAM Rev. 49, 65–88.

(23) Zadeh, J. N., Steenberg, C. D., Bois, J. S., Wolfe, B. R.,
Pierce, M. B., Khan, A. R., Dirks, R. M., and Pierce,
N. A. (2011) NUPACK: Analysis and design of nucleic
acid systems. J. Comput. Chem. 32, 170–173.

(24) Dirks, R. M., and Pierce, N. A. (2003) A partition func-
tion algorithm for nucleic acid secondary structure in-

cluding pseudoknots. J. Comput. Chem. 24, 1664–1677.
(25) Dirks, R. M., Lin, M., Winfree, E., and Pierce, N. A.

(2004) Paradigms for computational nucleic acid design.
Nucleic Acids Res. 32, 1392–1403.

(26) Dirks, R. M., and Pierce, N. A. (2004) An algorithm
for computing nucleic acid base-pairing probabilities in-
cluding pseudoknots. J. Comput. Chem. 25, 1295–1304.

(27) Zadeh, J. N., Wolfe, B. R., and Pierce, N. A. (2011) Nu-
cleic acid sequence design via efficient ensemble defect
optimization. J. Comput. Chem. 32, 439–452.

(28) Wolfe, B. R., and Pierce, N. A. (2015) Nucleic acid se-
quence design for a test tube of interacting nucleic acid
strands. ACS Synth. Biol. 4, 1086–1100.

(29) Wolfe, B. R., Porubsky, N. J., Zadeh, J. N., Dirks,
R. M., and Pierce, N. A. (2017) Constrained multistate
sequence design for nucleic acid reaction pathway engi-
neering. J. Am. Chem. Soc. 139, 3134–3144.

(30) Hochrein, L. M., Schwarzkopf, M., Shahgholi, M., Yin,
P., and Pierce, N. A. (2013) Conditional Dicer sub-
strate formation via shape and sequence transduction
with small conditional RNAs. J. Am. Chem. Soc. 135,
17322–17330.

(31) Geary, C., Rothemund, P. W. K., and Andersen, E. S.
(2014) A single-stranded architecture for cotranscrip-
tional folding of RNA nanostructures. Science 345, 799–
804.

(32) Bloomfield, V. A., Crothers, D. M., and Tinoco, I., Jr.
(2000) Nucleic acids: structures, properties, and func-
tions (University Science Books, Sausalito, CA).

(33) Ding, Y., Chan, C. Y., and Lawrence, C. E. (2005) RNA
secondary structure prediction by centroids in a Boltz-
mann weighted ensemble. RNA 11, 1157–1166.

(34) Stepanov, A. A., and Rose, D. E. (2014) From math-
ematics to generic programming (Pearson Education,
Crawfordsville, Indiana).

(35) Esterie, P., Falcou, J., Gaunard, M., and Lapreste, J.-T.
(2012) Boost.SIMD: Generic programming for portable
SIMDization. In Proceedings of the 2014 workshop on
programming models for SIMD/vector processing (ACM,
New York). pp. 1–8.

(36) Sanderson, C., and Curtin, R. (2016) Armadillo: A
template-based C++ library for linear algebra. J. Open
Source Softw. 1, 26.

13

For Table of Contents Use Only

Complex

A

B
C

Test tube

A B CStrands

BBC
BC AAA

ACB
BBB

CCCCA
CCB

ABC

AAC

AB A

BBABB

AABB
CC

CCA
AA

C

Complexes

Title: A Unified Dynamic Programming Framework for
the Analysis of Interacting Nucleic Acid Strands: Enhanced
Models, Scalability, and Speed

Authors: Mark E. Fornace, Nicholas J. Porubsky, and Niles
A. Pierce

14

