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a b s t r a c t

Partially-observed Boolean dynamical systems (POBDS) are a general class of nonlinear state-space
models that provide a rich framework for modeling many complex dynamical systems. The model
consists of a hidden Boolean state process, observed through an arbitrary noisy mapping to a
measurement space. The optimal minimum mean-square error (MMSE) POBDS state estimators are the
Boolean Kalman Filter and Smoother. However, in many practical problems, the system parameters
are not fully known and must be estimated. In this paper, for POBDS under model uncertainty, we
derive an optimal Bayesian estimator for state and parameter estimation. The exact algorithms are
derived for the case of discrete and finite parameter space, and for general parameter spaces, an
approximate Markov-Chain Monte-Carlo (MCMC) implementation is introduced. We demonstrate the
performance of the proposed methodology by means of numerical experiments with POBDS models
of gene regulatory networks observed through noisy measurements.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Partially-Observed Boolean dynamical systems (POBDS) are
a general class of nonlinear state-space models consisting of
a hidden Boolean state process observed through an arbitrary

noisy mapping to a measurement space. This signal model has
many applications in fields such as genomics (Kauffman, 1969),
robotics (Imani & Braga-Neto, 2017a; Roli, Manfroni, Pinciroli,
& Birattari, 2011), and digital communication systems (Messer-
schmitt, 1990). The optimal minimum mean square error (MMSE)
state estimators for POBDS are the Boolean Kalman filter (BKF)
(Imani, 2019; Imani & Braga-Neto, 2017a; McClenny, Imani, &
Braga-Neto, 2017c) and Boolean Kalman smoother (BKS) (Imani &
Braga-Neto, 2015b, 2017a), respectively. In Imani and Braga-Neto
(2018c) and McClenny, Imani, and Braga-Neto (2017a), optimal
state estimators for POBDS with correlated measurement noise
are introduced.

Due to the structure of the multivariate Boolean lattice, the
BKF and BKS have the desirable property of yielding both the
optimal maximum a posteriori (MAP) and MMSE solutions for
each state vector component (Imani & Braga-Neto, 2017a, 2018e;
McClenny, Imani, & Braga-Neto, 2017b), which is not the case for
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the general multivariate MAP estimator, in general. In addition,
exact algorithms are available for the computation of the BKF
and BKS (Braga-Neto, 2011; Imani & Braga-Neto, 2017a), which
is not the case for the optimal MMSE solution in general non-
linear state-space models, in which case approximate solutions
employing sequential Monte-Carlo techniques (also known as
particle filters) (Doucet, De Freitas and Gordon, 2001; Doucet,
Godsill, & Andrieu, 2000; Imani & Braga-Neto, 2018e; Imani,
Ghoreishi, Allaire, & Braga-Neto, 2019; Kantas, Doucet, Singh,
Maciejowski, Chopin, et al., 2015), the Extended Kalman filter
(EKF) (Jazwinski, 1970), the Unscented Kalman filter (UKF) (Julier,
Uhlmann, & Durrant-Whyte, 1995), and the Sigma-Point Kalman
filter (SPKF) (Van Der Merwe, 2004) must be used. It should
be noted that the exact algorithms for the computation of the
optimal MMSE estimator are available in the case of a linear-
Gaussian state space through the classical Kalman Filter and
Smoother (Kalman, 1960), and for POBDS through BKF and BKS.

Exact calculation of the aforementioned optimal estimators
requires complete information about the system model; however,
in many real-world applications, the system parameters are not
fully known and must be estimated. Several techniques have
been developed for approximate estimation of general nonlin-
ear non-Gaussian state space models with unknown parame-
ters. The methods can be divided into two main categories of
Maximum-Likelihood (ML) and Bayesian techniques. The class of
ML techniques includes: (1) direct gradient-based ML techniques,
where the idea is to maximize the log-likelihood function using
gradient-ascent or quasi-Newton techniques (DeJong, Liesenfeld,
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Moura, Richard, & Dharmarajan, 2012; Ionides, Bretó, & King,
2006; Johansen, Doucet, & Davy, 2008; Malik & Pitt, 2011), (2)
Expectation–Maximization (EM) techniques (Schön, Wills, & Nin-
ness, 2011; Wills, Schön, Ljung, & Ninness, 2013), where the idea
is to maximize the ‘‘complete’’ log-likelihood function, as opposed
to ML-based techniques which maximize the ‘‘incomplete’’ log-
likelihood function, using the fact that maximizing the complete
log-likelihood is easier than maximizing the incomplete one.
There are several particle-based Bayesian techniques for the in-
ference of general nonlinear state-space models (Lindsten, Jordan,
& Schön, 2014; Urteaga, Bugallo, & Djurić, 2016; Whiteley, An-
drieu, & Doucet, 2010). An important representative is the Particle
Marginal Metropolis–Hastings (PMMH) method (Andrieu, Doucet,
& Holenstein, 2010). Several online particle-based techniques
have also been developed for applications when fully-recursive
estimation is desired (Crisan, Miguez, et al., 2018).

For POBDS under model uncertainty, maximum-likelihood
(ML) and maximum a posteriori (MAP) adaptive estimators were
proposed in Imani and Braga-Neto (2015a, 2017a, 2017b), respec-
tively. These techniques are built on ML and MAP point-based es-
timators for unknown parameters combined with optimal MMSE
state estimators for the state. The drawback of these approaches
is their sensitivity to initialization and the requirement of large
amount of data for good performance.

We propose in this paper instead an optimal Bayesian filter
(OBF) approach to the problem of POBDS recursive estimation.
The basic principle is that the unknown true model belongs
to an uncertainty class of models and the OBF minimizes the
expected cost over the uncertainty class. The idea has roots
going back to the 1960s in control theory (Martin, 1967; Silver,
1963), but has more recently applied in a fully optimized form
with intrinsically Bayesian optimal (IBR) filters, in which opti-
mization is relative to a prior distribution (Dalton & Dougherty,
2014), and with optimal Bayesian filters, in particular, regression,
where optimization is relative to a posterior distribution (Qian &
Dougherty, 2016). These concepts have also been recently applied
to classification in the form of optimal Bayesian classifiers (Dalton
& Dougherty, 2013a) and IBR classifiers (Dalton & Dougherty,
2013b). Directly relevant to the developments in the current
paper is their application in recursive linear filtering: the IBR
Kalman filter (Dehghannasiri, Esfahani, & Dougherty, 2017), the
optimal Bayesian Kalman filter, which uses the data to update
the prior, thereby producing superior filtering to the IBR Kalman
filter (Dehghannasiri, Esfahani, Qian, & Dougherty, 2018), and the
optimal Bayesian Kalman smoother (Dehghannasiri & Dougherty,
2018).

Here, we extend the BKF and BKS to the cases where POBDS
is under model uncertainty. The methods are optimal relative
to the posterior distribution of the parameters. When the pa-
rameter space is discrete and finite, exact algorithms based on
an efficient, recursive matrix-based implementation are intro-
duced. These algorithms contain a bank of BKFs/BKSs in parallel,
which is reminiscent of the multiple model adaptive estimation
(MMAE) procedure for linear systems (Magill, 1965; Maybeck,
1982). These algorithms can be seen as generalizations of the
regular BKF and BKS. For general parameter spaces, an approxi-
mate Markov-Chain Monte-Carlo (MCMC) implementation of the
optimal Bayesian estimators is described. Via numerical exam-
ples, the performances of these filters are compared to that of the
ML, MAP, and IBR estimators introduced in Dalton and Dougherty
(2014) and Imani and Braga-Neto (2017a, 2017b), respectively.

The article is organized as follows. In Section 2, the POBDS
signal model is introduced and its optimal MMSE estimators
are briefly described. In Section 3, first the POBDS under model
uncertainty is introduced, followed by the exact algorithms for
computation of optimal Bayesian estimators in the case of dis-
crete parameter space and the approximate MCMC solution for

continuous parameter space. Section 4 contains numerical ex-
amples using POBDS models of gene regulatory networks ob-
served through noisy measurements. Finally, Section 5 contains
concluding remarks.

2. Partially-Observed Boolean Dynamical Systems (POBDS)

2.1. POBDS signal model

The POBDS model consists of a state model that describes the
evolution of the Boolean dynamical system and an observation
model that relates the state to the system output (measure-
ments).

The state model is defined as:

Xk = f(Xk−1, uk , nk ) , k = 1, 2, . . . (1)

where X k ∈ {0, 1}d represents the state of d Boolean state
variables of the system at time k, u k ∈ U is the input at time step k
which is assumed to be deterministic and known, and the process
noise nk is i.i.d. with arbitrary distribution, which is independent
of X0. A simple example of a state process corresponds to additive
Boolean input and noise, with

Xk = f(Xk−1) ⊕ uk ⊕ nk , k = 1, 2, . . . (2)

where u k , nk ∈ {0, 1}d and ‘‘⊕’’ denotes componentwise binary
addition (the exclusive-or logic operation). In this case, the input
and noise perturb the state by flipping the state of individual
variables. However, the methodology in this paper assumes the
general model in (1) where only the state must be a Boolean
vector.

The state vector is observed indirectly through the general
nonlinear observation model:

Yk = g(Xk , vk) , k = 1, 2, . . . (3)

where Y k is a vector of (typically non-Boolean) measurements,
and vk is i.i.d. observation noise process with arbitrary distribu-
tion and independent of the n k process. For more information,
see Imani and Braga-Neto (2016a, 2016b, 2017b, 2017c, 2018a,
2018b, 2018d, 2019a, 2019b).

2.2. Optimal state estimators for POBDS

The general state estimation problem consists of finding an
estimator X̂r|k of state X r given the sequence of observations
Y1:k = (Y1, . . . ,Yk ) up to time k, where r , k ≥ 1. As optimality
criterion, we consider the mean-square error (MSE):

C(Xr , X̂r|k ) = E
[
∥Xr − X̂r|k∥

2
]
, (4)

where ∥.∥2 is the L 2 norm vector. The optimal minimum mean-
square error (MMSE) state estimator is

X̂MS
r|k = argmin

X̂r|k∈Ψ

C(Xr , X̂r|k ) , (5)

where Ψ is the set of all Boolean estimators.
For a vector v ∈ [0, 1]d , define the thresholding operator v ∈

{0, 1}d as v(i) = 1 if v(i) > 1/ 2 and 0 otherwise, for i = 1, . . . ,d,
respectively. It was shown in Braga-Neto (2011) and Imani and
Braga-Neto (2017a) that

X̂MS
r|k = E [Xr |Y1:k ] , (6)

with optimal conditional MSE

CMS
r|k = C(Xr , X̂MS

r|k )

=

d∑

i=1

min {E [Xr (i) |Y1:k ] , 1 − E [Xr (i) |Y1:k ]} .
(7)
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The contribution of each Boolean variable Xr (i) to CMS
r|k is

min {E [Xr (i) |Y1:k ] , 1 − E [Xr (i) |Y1:k ]}. By using the identity
min {a, 1 − a} = 1/ 2 − |a − 1/ 2|, for 0 ≤ a ≤ 1, CMS

r|k can be
written more compactly as:

CMS
r|k =

d

2
−

d∑

i=1

⏐
⏐
⏐
⏐

E [Xr (i) |Y1:k ] −
1
2

⏐
⏐
⏐
⏐ . (8)

This reveals that the maximum value for C MS
r|k is d / 2 (in fact, the

maximum contribution of each Boolean variable is 1 / 2).
The optimal MMSE filter and smoother, corresponding to r = k

and r < k in (6), are called respectively the Boolean Kalman filter
(BKF) and Boolean Kalman smoother (BKS) (Braga-Neto, 2011;
Imani & Braga-Neto, 2015a, 2017a, 2018e). It is also possible
to define a Boolean Kalman predictor (BKP), for the case r >
k (Imani & Braga-Neto, 2017a), but this estimator will be of no
further interest here.

We describe below the exact algorithms for BKF and BKS
computation. Let (x 1, . . . ,x2d

) be an arbitrary enumeration of the
possible state vectors. Define the state conditional probability
distribution vector as:

Π r|k (i) = P
(
Xr = xi

|Y1:k
)
, i = 1, . . . ,2d

, (9)

for r , k ≥ 0. According to Eqs. (6) and (8),

X̂MS
k|k = E [Xk |Y1:k ] = AΠ k|k , k = 1, 2, . . . (10)

where A =
[
x1   · · · · · · · · ·x2d

]
is a matrix of size d × 2d . Notice that

in (10), the posterior distribution of the Boolean state ( Π k|k ), vec-
tor of size 2 d , is mapped to a vector of size d (A Π k|k ), where each
element denotes the probability that the corresponding Boolean
variable is 1. Meanwhile, the optimal conditional MSE can be
computed as

CMS
k|k =

d

2
−

d∑

i=1

⏐
⏐
⏐
⏐ (AΠ k|k )i −

1
2

⏐
⏐
⏐
⏐ ,

k = 1, 2, . . . . (11)

The computation of Π k|k can be performed recursively. First,
notice that

Π k|k−1 = MkΠ k−1|k−1 , k = 1, 2, . . . (12)

where M k is the transition matrix of the Markov state process,
with entries given by:

(M k )ij = P(Xk = xi
|Xk−1 = xj), i, j = 1, . . . ,2d

. (13)

On the other hand,

Π k|k ∝ T (Yk ) Π k|k−1 , k = 1, 2, . . . (14)

where ‘‘ ∝’’ means that the result must be normalized to add up
to 1, and T (Yk ) is the update matrix, which is a diagonal matrix of
size 2d

× 2d with diagonal elements:

(Tk (Yk ))ii = p
(
Yk |Xk = xi)

, i = 1, . . . ,2d
. (15)

The procedure is summarized in Algorithm 1.

We describe below the optimal fixed-interval smoother, which
estimates the state at each time point r in the interval 0 < r ≤ k.
Define the probability distribution vector ∆ r|s via

∆ r|s(i) = p
(
Ys+ 1, . . . ,Yk |Xr = xi)

, i = 1, . . . ,2d
, (16)

for r , s = 0, . . . ,k, where ∆ k|k is defined to be 1 2d×1, the
vector with all components equal to 1. The vector ∆ r|s satisfies
a backward recursion similar to the forward recursion satisfied

Algorithm 1 BKF: Boolean Kalman Filter

1: Initialization: Π 0|0(i) = P
(
X0 = xi), for i = 1, . . . ,2d .

2: for k = 1, 2, . . .do

3: Prediction: Π k|k−1 = MkΠ k−1|k−1 .

4: Update: Π k|k ∝ T (Yk ) Π k|k−1 .

5: MMSE Estimator: X̂MS
k|k = AΠ k|k .

6: Optimal MSE: C MS
k|k =

d

2 −
∑ d

i=1

⏐
⏐ (AΠ k|k )i − 1

2

⏐
⏐ .

7: end for

by Π r|k (see Algorithm 2 below). It has been shown that Imani
and Braga-Neto (2017a):

Π r|k ∝ Π r|r−1 ◦∆ r|r−1 , r = 1, . . . ,k, (17)

where ‘‘ ◦’’ denotes the componentwise multiplication of two
vectors. According to Eqs. (6) and (8),

X̂MS
r|k = E [Xr |Y1:k ] = AΠ r|k , r = 1, . . . ,k, (18)

with optimal conditional MSE

CMS
r|k =

d

2
−

d∑

i=1

⏐
⏐
⏐
⏐ (AΠ r|k )i −

1
2

⏐
⏐
⏐
⏐ ,

r = 1, . . . ,k, (19)

The entire procedure of fixed-interval BKS is given in Algorithm
2. Notice that the BKF and BKS both provide the posterior dis-
tribution of the Boolean state as well as the point-based MMSE
estimation of the state. In addition, the complexity of BKF and BKS
both grows exponentially with the number of Boolean variables,
due to the transition matrix involved in their process. For large
systems (i.e., large d), efficient particle filter implementation of
these tools is provided in Imani and Braga-Neto (2018e).

Algorithm 2 BKS: Fixed-Interval Boolean Kalman Smoother

1: Initialization: Π 0|0(i) = P
(
X0 = xi), for i = 1, . . . ,2d .

Forward Probabilities:

2: for r = 1, . . . ,k do

3: Prediction: Π r|r−1 = Mr Π r−1|r−1.

4: Update: Π r|r ∝ T (Yr ) Π r|r−1.

5: end for

Backward Probabilities:

6: Initialization: ∆ k|k = 12d×1.

7: for r = k, k − 1, . . . ,1 do

8: Update: ∆ r|r−1 = Tr (Yr ) ∆ r|r .

9: Prediction: ∆ r−1|r−1 = M T
r ∆ r|r−1.

10: end for

MMSE Estimator Computation:

11: for r = 1, . . . ,k do

12: Π r|k ∝ Π r|r−1 ◦∆ r|r−1.

13: X̂MS
r|k = AΠ r|k .

14: CMS
r|k =

d

2 −
∑ d

i=1

⏐
⏐ (AΠ r|k )i − 1

2

⏐
⏐ .

15: end for
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3. Optimal estimators for POBDS under model uncertainty

3.1. POBDS under model uncertainty

In many practical problems, full information about the system
model is not available. There might be uncertainty about the
transition or observation functions or noise statistics. We assume
the uncertainty is parameterized by a vector θ = [θ1, . . . , θl] of
unknown parameters, where θ takes a value in a set Θ , called the
uncertainty class. The POBDS model can then be expressed as:

Xk =f(Xk , uk , nk , θ) , k = 1, 2, . . .
Yk =g(Xk , vk , θ) , k = 1, 2, . . .

Direct application of the algorithms described in the previ-
ous section is not possible due to the presence of unknown
parameters, and suboptimal adaptive estimators must be em-
ployed. Maximum-likelihood (ML) and maximum a posteriori
(MAP) adaptive estimators for partially-known POBDS were de-
veloped in Imani and Braga-Neto (2017a, 2017b) respectively.
Despite the generally good performance of these estimators in
simultaneous state and parameter estimation, they are sensitive
to initialization and require large sample sizes.

In this paper, we address these deficiencies by proposing op-
timal Bayesian Kalman filtering for recursive POBDS estimation.
Consider the estimation cost associated with each realization of
the parameter:

Cθ(Xr , X̂r|k ) = E
[
∥Xr − X̂r|k∥

2 | θ
]
, (20)

The optimal-Bayesian-estimator (OBE) Boolean recursive filter is
defined by

X̂OBE
r|k = argmin

X̂r|k∈Ψ

Eθ|Y1:k

[
Cθ(Xr , X̂r|k )

]
. (21)

The OBE recursive filter provides the optimal solution relative to
the posterior distribution p( θ | Y1:k ). It can be shown (see the
Appendix) that it is given by

X̂OBE
r|k = Eθ|Y1:k [E[Xr |Y1:k , θ]] . (22)

with optimal conditional MSE

COBE
r|k =

d

2
−

d∑

i=1

⏐
⏐
⏐
⏐

Eθ|Y1:k [
E [Xr (i) |Y1:k , θ]] −

1
2

⏐
⏐
⏐
⏐ . (23)

As in the case of the optimal overall MSE, it is easy to see that
the cost is upper-bounded by d / 2.

3.2. Optimal estimator for POBDS under Discrete Model Uncertainty

Let us first consider the case in which the parameter space
is discrete and finite: Θ = {θ 1, θ2, . . . , θM }. In this section,
we introduce algorithms for the exact computation of both the
optimal Bayesian filter and smoother in this case.

3.2.1. Boolean Kalman Filter under Discrete Model Uncertainty (BKF-
DMU)

Given the sequence of measurements Y 1:k , define the state
conditional distribution vector associated with θm ∈Θ as:

Π θm
r|k (i) = P

(
Xr = xi

|Y1:k , θm
)
, i = 1, . . . ,2d

, (24)

for r , k ≥ 0, where Π θm

0|0 = P
(
Xr = xi

| θm
)

is the initial (prior)
distribution of the states associated with θm .

Let also M θ
k be the transition matrix of the state process

associated to model θ, defined as:
(

M θm
k

)

ij
= P(Xk = xi

|Xk−1 = xj
, θm ), i, j = 1, . . . ,2d

, (25)

for m = 1, . . . ,M.

Additionally, given a value of the observation vector Y k at time
k, the update matrix T θ

k (Yk ) associated to model θ is a diagonal
matrix of size 2 d

× 2d , defined as:

(T θm
k (Yk )) ii = p

(
Yk |Xk = xi

, θm
)
, i = 1, . . . ,2d

, (26)

for m = 1, . . . ,M.
The optimal Bayesian filter corresponds to the case r = k in

(22). Its computation requires the quantity

zk|k = Eθ|Y1:k [E[Xk |Y1:k , θ] |Y1:k ]

=

M∑

m=1

A Π θ
k|k

pk (θm ),
(27)

where p k (θ) = P (θ |Y1:k ) is the posterior probability distribution
of θ at time k. From (22) and (23), the optimal Bayesian filter at
time k is then given by

X̂OBE
k|k = zk|k , (28)

and the optimal conditional MSE can be computed according
to (23).

The previous computation can be performed exactly and effi-
ciently by running M BKFs in parallel, each tuned to a different
value of the parameter, as we show next. First, notice that the
posterior probabilities at time k can be computed via the fol-
lowing Bayesian recursion (Ghoreishi, 2019; Ghoreishi & Allaire,
2017, 2019; Ghoreishi, Friedman, & Allaire, 2019):

pk (θm ) ∝ p(Yk |Y1:k−1, θm ) pk−1(θm ) , (29)

for m = 1, . . . ,M, with p 0(θ) as the prior probability of model
θ ∈Θ holding

∑
θ∈Θ

p0(θ) = 1. Now,

p(Yk |Y1:k−1, θm )

=

2d
∑

j=1

p(Yk |Xk = xj
, θm ) P(Xk = xj

|Y1:k−1, θm )

=

2d
∑

j=1

(Tθm
k (Yk )) jj Π θm

k|k−1(j) = ∥β
θm
k ∥1 ,

(30)

where βθm
k = Tθm

k (Yk ) Π θm
k|k−1 and ∥v∥1 =

∑ 2d

i=1 v(i). Combining
(29) and (30), we obtain

pk (θm ) ∝ ∥β
θm
k ∥1 pk−1(θm ) , (31)

for m = 1, . . . ,M. Notice that β
θm
k is the unnormalized state

posterior probability distribution at time k, which is computed
in the update step of the BKF tuned to parameter θm (see Algo-
rithm 1). This allows the computation of (27) and of the optimal
state estimator. An optimal estimator of the parameter is also
readily available based on the posterior p k (θ). For example, the
MAP estimator is

θ̂
MAP
k = argmax

θ∈Θ

pk (θ) , (32)

providing a full joint state and parameter estimation approach.
The entire procedure is presented in Algorithm 3 and repre-

sented as a diagram in Fig. 1. The BKF-DMU recursively com-
putes the posterior distribution of the unknown parameter and
state as well as their point-based estimations. The posterior
distribution of the unknown parameter at time step k is de-
noted by [pk (θ1), . . . ,pk (θm )] and the posterior distribution of the
state can be computed by

∑ M
m=1

pk (θm )Π θm
k|k . Notice that the BKF-

DMU has similarity with the multiple model adaptive estimation
(MMAE) procedure developed for the linear-Gaussian state-space
model (Magill, 1965; Maybeck, 1982) and later extended for es-
timation of the nonlinear/non-Gaussian state-space model using
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Fig.1. Schematic representation of the proposed optimal Boolean Kalman Filter
under Discrete Model Uncertainty (BKF-DMU).

a particle filtering scheme (Doucet, Gordon and Krishnamurthy,
2001; Martino, Read, Elvira, & Louzada, 2017).

As with the ordinary BKF in Algorithm 1, the BKF-DMU is fully
online, i.e., as new measurements arrive, the optimal Bayesian
estimate of state can be computed recursively. In fact, when
uncertainty about the parameter decreases to zero, the BKF-DMU
reduces to the BKF. The computational complexity of BKF-DMU is
of order O(M2 2d ) at each time point.

Algorithm 3 BKF-DMU: Boolean Kalman Filter under Discrete
Model Uncertainty
1: Initialization: p 0(θm ), for m = 1, . . . ,M .

2: Run M BKFs, each one tuned to a different θm ∈Θ .

3: for k = 1, 2, . . .do

4: Posterior Update: Using the outputs ||βθk||1 of the BKF bank,
update the posterior of each parameter as:

pk (θm ) ∝ ||β
θm
k ||1 pk−1(θm ) , m = 1, . . . ,M .

5: Using the outputs Π θ
k|k of the bank of BKFs, compute:

zk|k =

M∑

m=1

pk (θm ) AΠ θm
k|k .

6: Optimal Bayesian state estimator:

X̂OBE
k|k = zk|k .

7: Conditional optimal MSE of state estimator:

COBE
k|k =

d

2
−

d∑

i=1

⏐
⏐
⏐
⏐
(
zk|k

)
i −

1
2

⏐
⏐
⏐
⏐ .

8: Optimal Bayesian parameter estimator:

θ̂
MAP
k = argmax

θ∈Θ

pk (θ) ,

9: end for

There are numerous differences between the BKF-DMU and
the optimal Bayesian Kalman filter (OBKF) in Dehghannasiri et al.
(2018). Most important is the fact that, whereas the BKF-DMU
employs a bank of ordinary BKFs each possessing its own update
matrix, the OBKF is solved by a set of recursive equations taking
a similar form to the equations for the ordinary Kalman filter
except that various statistics are replaced by effective statistics,
which are related to the entire uncertainty class via the posterior
distribution, and the ordinary Kalman gain matrix is replaced
by the effective Kalman gain matrix. This is analogous to the
structure of IBR filters in Dalton and Dougherty (2014) where
for Wiener filtering the power spectra are replaced by effective

power spectra, and for morphological filtering the granulometric
size densities are replaced by the effective granulometric size
densities. The basic idea is to replace the characteristics deter-
mining the ordinary solution with effective characteristics that
are global with respect to the model uncertainty. This methodol-
ogy constitutes a general paradigm for optimal signal processing
under uncertainty (Dougherty, 2018).

In the present situation, there is no notion of an effective
update matrix. In (26) an update matrix is formed for each param-
eter vector, and these are used jointly in (30). The difficulty is the
discrete state space of the underlying Boolean dynamical system.
In fact, the notion of an IBR operator was first introduced in Yoon,
Qian, and Dougherty (2013), where the problem was to choose
an operator, from a class of operators, to minimize the expected
undesirable steady-state mass of an uncertain hidden Markov
model, the application being to optimally perturb the logic of
gene regulatory networks modeled as Boolean networks. As with
the BKF-DMU, there were no effective characteristics with which
to frame the solution; indeed, the optimal operator was obtained
by computing the cost of each operator and choosing the one
possessing minimum cost. This kind of direct minimization has
many biomedical applications, such as in Mohsenizadeh, De-
hghannasiri, and Dougherty (2016), where intervention consists
of interrupting a subset of interactions in order to obtain more
desired dynamics.

3.2.2. Boolean Kalman Smoother under Discrete Model Uncertainty
(BKS-DMU)

The extension of the fixed-interval smoother in Algorithm 2 to
the Bayesian case is considered here. Given the sequence of mea-
surements Y 1:k , we define the backward probability distribution
vector associated with parameter θm as:

∆ θm
r|s (i) = p(Ys+ 1, . . . ,Yk |Xr = xi

, θm ) , i = 1, . . . ,2d
, (33)

for r , s = 0, . . . ,k, where ∆ θm
k|k is defined to be 1 2d×1.

According to (22), the optimal Bayesian state smoother re-
quires the computation of

zr|k = Eθ|Y1:k [E[Xr |Y1:k , θ]] =
M∑

m=1

A Π θm
r|k

pk (θm ) , (34)

with the optimal Bayesian smoother given by

X̂OBE
r|k = zr|k , (35)

with optimal conditional MSE given by (23)

COBE
r|k =

d

2
−

d∑

i=1

⏐
⏐
⏐
⏐
(
zr|k

)
i −

1
2

⏐
⏐
⏐
⏐ . (36)

As in the BKF-DMU case, this computation can be performed
by executing M BKSs in parallel, each tuned to a different value
of the parameter. The posterior probability distribution of θ given
all observations Y 1:k can be computed by applying (31) repeatedly
to obtain

pk (θm ) ∝ p0(θm )
k∏

r=1

∥βθm
r ∥1 , (37)

for m = 1, . . . ,M. The optimal MAP estimator of the parameter
can be computed as in (32). The entire procedure is presented in
Algorithm 4 and represented as a diagram in Fig. 2. Notice that
given a time series of length k, the BKS-DMU computes the pos-
terior distribution of the unknown parameters (i.e., [pr (θ1), . . . ,
pr (θM )], r = 1, . . . ,k) in a forward process and the smoothed dis-
tribution of the Boolean state in a backward process (i.e.,

∑ M
m=1

pr

(θm )Π θm
r|k , r = 1, . . . ,k). The computational complexity of BKS-

DMU for estimation over the whole interval is of order O(Mk2 2d ).



6 M. Imani, E.R. Dougherty and U. Braga-Neto / Automatica 111 (2020) 108609

Algorithm 4 BKS-DMU: Boolean Kalman Smoother under Dis-
crete Model Uncertainty
1: Initialization: p 0(θm ), for m = 1, . . . ,M .

2: Run M BKSs, each one tuned to a different θm ∈Θ .

3: Posterior Calculation: Using the outputs ||βθk ||1 of the BKSs, compute

pk (θm ) ∝ p0(θm )
k∏

r=1

||βθm
r ||1 , m = 1, . . . ,M .

4: Optimal Bayesian parameter estimator:

θ̂
MAP
k = argmax

θ∈Θ

pk (θ) .

5: for r = 1, . . . ,k do

6: Using the outputs Π θ
r|k of the bank of BKSs, compute:

zr|k =

M∑

m=1

pk (θm ) AΠ θm
r|k .

7: Optimal Bayesian state estimation:

X̂OBE
r|k = zr|k .

8: Conditional MSE:

COBE
r|k =

d

2
−

d∑

i=1

⏐
⏐
⏐
⏐
(
zr|k

)
i −

1
2

⏐
⏐
⏐
⏐ .

9: end for

Fig. 2. Schematic representation of the proposed Boolean Kalman Smoother
under Discrete Model Uncertainty (BKS-DMU).

3.3. Estimator for POBDS under continuous model uncertainty

When the parameter space Θ is continuous, e.g.,Θ ⊂ Rl, the
algorithms proposed in the previous section cannot be applied.
This is due to the fact that the computation of the expectation
in (22) requires integration over the posterior distribution of
the unknown parameter. The exact computation of the poste-
rior distribution is not possible for a general set of unknown
parameters. A naive way of handling this problem is discretiza-
tion of the parameter space. However, except for very simple
cases, this will result in finite but very large parameter spaces,
which also renders intractable the application of the previously
proposed algorithms. In addition, the discretization process in-
troduces error, which may lead to poor estimation performance.
A popular framework for dealing with a continuous parameter
space for a general nonlinear/non-Gaussian state-space model is
the particle Markov chain Monte Carlo (PMCMC) framework (An-
drieu et al., 2010). This framework relies on particle methods for
approximation of the likelihood function, p(Y1:k | θ) for θ ∈Θ .

Unlike general nonlinear/non-Gaussian state-space models,
the exact likelihood function can be computed for POBDS, using
the BKF and BKS. Thus, we employ here the Metropolis–Hastings

MCMC (Hastings, 1970) algorithm to obtain an approximate so-
lution for POBDS under continuous model uncertainty. Let the
current MCMC sample be θ(j) . A candidate MCMC sample θcand is
drawn according to a symmetric proposal distribution q( θ | θ(j) ).
Then θ(j+ 1) = θcand with probability

α = min
{

1,
p(Y1:k | θ

cand) p0(θcand)

p(Y1:k | θ
(j) ) p0(θ(j) )

}

, (38)

with θ(j+ 1) = θ(j) , otherwise. In (38), p0(θ) is the prior probability
of θ and p(Y1:k | θ) is computed by running a BKF (or the forward
iteration of a BKS) tuned to parameter θ. The positivity condition
q(θ | θ(j) ) > 0 for all θ(j) guarantees an ergodic Markov chain,
the steady-state distribution of which is the target distribution
p(θ |Y1:k ) (Gilks, Richardson, & Spiegelhalter, 1995). (a Gaussian
distribution, which satisfies the positivity condition, is used in
this paper as the proposal distribution.)

After discarding the first N Burn ‘‘burn-in’’ MCMC samples, the
next N MCMC samples are used to approximate the posterior distri-
bution as:

pk (θ) ≈
1

NMCMC

NMCMC∑

j=1

δ(θ − θ(j) ) , (39)

where δ is the standard generalized function of calculus. Using
the fact that

Eθ|Y1:k [E[Xr|Y1:k , θ]] =
∫

Θ

E[Xr|Y1:k , θ]pk (θ)dθ,

and

P(Xr |Y1:k , θ) = A Π θ
r|k ,

obtained from the application of the BKF or BKS, using (22), the
MCMC approximation can be written as:

Eθ|Y1:k [E[Xr |Y1:k , θ]] ≈
1

NMCMC

NMCMC∑

j=1

A Π θ(j)
r|k , (40)

and the optimal Bayesian estimator and optimal conditional MSE
can be computed by applying (22) and (23), respectively. Thus,
the BKF-CMU and BKS-CMU provide the approximate posterior
distribution of the state and parameters along with their point-
based estimations.

The entire process is summarized in Algorithm 5. The com-
plexity of BKF-CMU is of order O

(
(N Burn + N MCMC)k2 2d

)
. This

computation can be intractable or very slow in the following two
conditions: (1) Large Model Uncertainty: this requires selection
of large MCMC samples, which linearly affects the complexity of
Algorithm 5; (2) Large Systems: the complexity of Algorithm 5
grows exponentially with respect to the increase in the number
of Boolean variables (i.e., d). One way of dealing with large
systems is to replace the BKF and BKS with their particle filter
implementation introduced in Imani and Braga-Neto (2018e).
Dealing with these two conditions, which deals with scalability
of the proposed methods, will be part of our future research.

Notice that several recommendations have been made for
proper stopping criterion of the MCMC process. These methods
mostly rely on the effective sample size which depends on the
correlation between the trajectories of the Markov chain (Brooks,
Gelman, Jones,& Meng, 2011). Furthermore, the burn-in sample
size should ideally be selected large enough to guarantee with
a high probability that the start of the MCMC procedure after
the burn-in time is a sample from the posterior distribution.
This selection can be challenging, and in practice needs to be
selected according to the computational resources, dimension of
the parameter space and the nature of the problem (for more
information, see Gilks et al. (1995)).
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Algorithm 5 BKF/BKS: under Continuous Model Uncertainty
(BKF-CMU/BKS-CMU)
1: Set NBurn , NMCMC and zr|k = 0, r = 1, . . . ,k.

2: Draw an initial sample: θold ∼ p0(θ).

3: Run a BKF tuned to θold for computation of
Lθold

=
∑ k

r=1 log||βθ
old

r ||1 and Π θold
r|k , r = 1, . . . ,k.

4: for j = 1, 2, . . . ,NBurn + NMCMC do

5: Draw a sample from proposal: θcand ∼ q(θ | θold ).

6: Run a BKF/BKS tuned to θcand for computation of Lθcand
=

∑ k
r=1 log||βθ

cand
r ||1 and Π θcand

r|k , r = 1, . . . ,k.

7: Acceptance rate: α =min
{

1, exp(Lθ
cand

) p0(θcand)

exp(Lθold ) p0(θold )

}

8: (θnew , Lθnew ) =

{
(θcand, Lθcand ) with probability α

(θold , Lθold ) otherwise

9: if j > NBurn then

10: zr|k = zr|k +
1

NMCMC
A Π θnew

r|k , r = 1, . . . ,k.

11: end if

12: θold ← θnew , Lθold
← Lθnew .

13: end for

14: Optimal Bayesian estimation:

X̂OBE
r|k ≈ zr|k , for r = 1, . . . ,k.

15: Approximate conditional MSE:

COBE
r|k ≈

d

2
−

d∑

i=1

⏐
⏐
⏐
⏐
(
zr|k

)
i −

1
2

⏐
⏐
⏐
⏐ ,

r = 1, . . . ,k.

4. Numerical results and performance analysis

In this section, we present the results of numerical experi-
ments using a gene regulatory network model, which compare
the performance of the proposed framework with four other
approaches: (1) the optimal model-specific BKF/BKS (Braga-Neto,
2011; Imani & Braga-Neto, 2017a); (2) the maximum-likelihood
(ML) adaptive BKF/BKS (Imani & Braga-Neto, 2017a); (3) the max-
imum a posteriori (MAP) adaptive BKF/BKS (Imani & Braga-Neto,
2017b); and (4) the intrinsically Bayesian robust (IBR) estima-
tor (Dalton & Dougherty, 2014). These methods are defined next.
The optimal ‘‘model-specific’’ BKF/BKS consists of the classical
BKF/BKS relative to the underlying true parameters. These filters
are therefore the baseline for performance.

The ML-BKF/ML-BKS selects the model with the largest log-
likelihood and then obtains the state estimator by plug-in:

θ̂
ML
k = argmax

θ∈Θ

log p(Y1:k | θ) ,

X̂ML
r|k = E[Xr |Y1:k , θ̂

ML
k ].

Computation of θ̂
ML
k involves either a bank of filters for discrete

parameter spaces, or an expectation–maximization algorithm in
the case of continuous parameter spaces (Imani & Braga-Neto,
2017a).

The MAP-BKF/MAP-BKS maximizes the posterior probability
and then applies the plug-in approach:

θ̂
MAP
k = argmax

θ∈Θ

p(θ |Y1:k ) ,

X̂MAP
r|k = E[Xr |Y1:k , θ̂

MAP
k ].

Finding θ̂
MAP
k relies on the computation of pk (θ) = p(θ | Y1:k ),

described in the previous two sections.
The IBR-BKF/IBR-BKS is computed by solving the following

minimization problem:

X̂IBR
r|k = argmin

X̂r|k∈Ψ

Eθ

[
Cθ(Xr , X̂r|k )

]
, (41)

where the expectation is relative to the prior distribution p( θ). It
can be shown that the solution is

X̂IBR
r|k = Eθ [E[Xr |Y1:k , θ]] . (42)

Contrasting the previous two equations with (21) and (22), re-
spectively, makes clear that the difference between OBE and IBR
estimators is that the latter are optimized with respect to the
prior distribution of the parameter, where as the former are
based on the posterior distribution, and therefore are expected
to obtain smaller conditional MSE. Notice that the computational
complexities of ML-BKF, MAP-BKF and IBR-BKF are similar to the
BKF-DMU, which is O(M2 2d ) for discrete parameter space of size
M.

4.1. Gene regulatory network model

The POBDS state model for gene regulatory networks can be
written as:

Xk = f(Xk−1) ⊕ uk ⊕ nk , k = 1, 2, . . . (43)

where X k ∈ {0, 1}d is a vector of gene expressions, f : {0, 1}d
→

{0, 1}d is called the network function, ‘‘⊕’’ indicates component-
wise modulo-2 addition, uk ∈ {0, 1}d is a Boolean control input,
and nk ∈ {0, 1}d is Boolean ‘‘transition noise’’.

The network function is expressed in component form as
f = (f1, . . . ,fd ), where each component f i : {0, 1}d

→ { 0, 1}
is a Boolean function that predicts the next state of gene i,
for i = 1, . . . ,d. Here, we consider the specific model
for the network function (Bahadorinejad, Imani, & Braga-Neto,
2018; Ghoreishi & Imani, 2019; Hajiramezanali, Imani, Braga-
Neto, Qian, & Dougherty, 2019; Imani, Dehghannasiri, Braga-Neto
and Dougherty, 2018; Imani, Ghoreishi, & Braga-Neto, 2018):

fi(x) =

{
1,

∑ d
j=1

aijx(j) + bi > 0 ,
0,

∑ d
j=1

aijx(j) + bi ≤ 0 ,
(44)

where a ij and b i are system parameters. This model is based
on pathway diagrams typically used in molecular biology (Lau,
Ganguli, & Tang, 2007). Parameter a ij can take three values: if
aij = +1, there is positive regulation (activation) from gene j to
gene i; if a ij = −1, there is negative regulation (inhibition) from
gene j to gene i; whereas if a ij = 0 then gene j is not an input to
gene i. Parameter b i can take two values: b i = +1/ 2 if gene i is
positively biased, in the sense that an equal number of activation
and inhibition inputs will produce activation; the reverse being
the case if b i = −1/ 2.

Clearly, if u k (i) = 1 or nk (i) = 1, the next state of gene i will be
flipped. For simplicity, we assume that the process noise n k has
independent components, distributed as Bernoulli(p). Parameter
p indicates the amount of ‘‘perturbation’’ to the Boolean state
process, and can be assumed to be in the interval 0 < p ≤ 0.5
(the case p > 0.5 is equivalent to taking the complement of f
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Fig. 3. Negative feedback-loop p53-MDM2 gene network. (a) Pathway diagram. State transition diagrams corresponding to (b) no-stress (dna_dsb = 0), and (c)
DNA-damage (dna_dsb = 1).

with p ′ = 1−p < 0.5). Larger values of the noise intensity p lead
to more chaotic and unpredictable state transitions. On the other
hand, values of p close to zero mean that the state trajectories are
nearly deterministic.

Throughout this section, we assume the following Gaussian
linear POBDS observation model

Yk = µ +DXk + vk , k = 1, 2, . . . (45)

where v k ∼ N (0, σ2I) is an uncorrelated zero-mean Gaussian
noise vector, µ is a vector of baseline gene expressions (corre-
sponding to the ‘‘zero’’ state for each gene) and D is a diagonal
matrix containing differential expression values for each gene
along the diagonal (these indicate by how much the ‘‘one’’ state of
each gene is overexpressed over the ‘‘zero’’ state). Such a Gaussian
linear model is an appropriate model for many important gene-
expression measurement technologies, such as cDNA microar-
rays (Chen, Dougherty, & Bittner, 1997) and live cell imaging-
based assays (Hua et al., 2012).

4.2. Experiments with discrete parameter spaces

The numerical experiments in this section evaluate the perfor-
mance of the BKF-DMU and BKS-DMU developed in Section 3.2.
The system model is assumed to be known except for some of the
regulation parameters a ij . This corresponds therefore to a gene
network inference problem. Since each regulation parameter a ij

can take values in the set {−1, 0, 1}, the size of the parameter
space is M = 3L, where L is the number of unknown regulations.

We use the symmetric Dirichlet distribution to define priors
over the parameter space. Consider a vector [w1 . . . , w3L] ∼
Dirichlet( φ), where φ > 0 is the concentration parameter. By
definition, wi ≥ 0, for i = 1, . . . ,3L, and

∑ 3L

i=1 wi = 1. The prior
probability of the true model is assigned as:

p0(θ∗) = wl, where l ∼ Cat(w1, . . . , w3L) , (46)

where Cat( w1, . . . , w3L) is the ‘‘categorical distribution’’; this
means that p 0(θ∗) = wi with probability wi, for i = 1, . . . ,3L. The
remaining weights are randomly assigned to other values of the
parameter as their prior probability. The concentration parameter
φ controls how peaked the priors are around the true parameter
value. our aim being to average over different sets of priors, each
set with peakedness determined by φ. The larger φ is, the less
peaked the prior distribution is. In the limit φ → ∞ , the prior
distribution becomes uniform.

Some of the experiments below use a variation of this setup,
where the weights {w1, . . . , w3L} are randomly assigned to the

various parameters, in order to model the case of a misspecified
prior.

4.2.1. Experiments using the p53-Mdm2 network

The p53 gene codes for the tumor suppressor protein p53
in humans, and its activation plays a critical role in cellular
responses to various stress signals that might cause genome
instability and thus cancer (Batchelor, Loewer, & Lahav, 2009).
We use a model for the p53-MDM2 negative feedback-loop gene
regulatory network, which consists of four genes: ATM, p53,
Wip1, and MDM2, and the input ‘‘dna_dsb’’, which indicates the
presence of DNA damage (double strand breaks). The pathway
diagram of the network is presented in Fig. 3(a). Normal ar-
rows represent activating regulations and blunt arrows represent
suppressive regulations. Letting the state vector to be X k =

(ATM , p53 , Wip1 , MDM2), the gene interaction parameters a ij can
be read off Fig. 3 (a):

a11 = 0, a12 = 0, a13 = −1, a14 = 0
a21 = +1, a22 = 0, a23 = −1, a24 = −1
a31 = 0, a32 = +1, a33 = 0, a34 = 0
a41 = −1, a42 = +1, a43 = +1, a44 = 0

The input vector is u k = (dna_dsb , 0, 0, 0), and can take one of
its possible two values: DNA damage, uk = (1, 0, 0, 0), or no
stress, uk = (0, 0, 0, 0), for k = 1, 2, . . .. Under the assumption
of negative regulation biases, bi = −1/ 2, for i = 1, . . . ,d, two
state transition diagrams shown in Fig. 3 (b–c), are obtained for
the system. We can see that under no-stress, ‘‘0000’’ is a singleton
attractor state, while the other states are transient. On the other
hand, under DNA damage, there is a cyclic attractor, correspond-
ing to an oscillation of p53, along with the other proteins in its
regulatory pathway. These behaviors match the known biological
properties of the p53-MDM2 network (Weinberg, 2006).

The following parameter settings are used in our simulation:
p = 0.01, D = 20I, σ2 = 10, bi = −1/ 2, µ(i) = 30, for i =

1, 2, 3, 4. The initial state distribution is assumed to be uniform:
P(X0 = xi) = 1/ 16, for i = 1, . . . ,16. This leads to the following
initial joint distribution:

Π θm

0|0(i) = P(Xk = xi
, θm ) =

1
16

× p0(θm ) , (47)

for i = 1, . . . ,16 and m = 1, . . . ,3L. All results are averaged
over 1000 different prior distributions p 0(θ) obtained as described
previously.
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Fig.4. Average MSE of different filters for the p53-Mdm2 network with (a) dna_dsb = 0 (no stress), and (b) dna_dsb = 1 (DNA damage).

In the first experiment, a13 , a23 and a 24 are assumed to be
unknown, so that the number of candidate models is M = 33 =
27. Fig. 4 displays the average MSE obtained over time by the
baseline model-specific BKF, BKF-DMU, ML-BKF, MAP-BKF, and
IBR-BKF. Moving from left to right in the figure, φ gets smaller
so that the prior distributions become more peaked around the
true parameter values.

As expected, the model-specific filter has the smallest average
MSE. The BKF-DMU consistently outperforms the ML-BKF, MAP-
BKF and IBR-BKF.When the prior distribution is close to uniform
(i.e., for large φ), the ML-BKF and MAP-BKF display essentially
the same performance, as expected (since their formulation is
identical for a uniform prior), while for more peaked distribu-
tions, the MAP-BKF significantly outperforms the ML-BKF. This
is due to the fact that the MAP-BKF can take advantage of the
information in the peaked prior, which the ML-BKF cannot. Notice
that the performance of the BKF-DMU approaches the baseline
performance of the model-specific-BKF as the prior distribution
becomes more peaked — this is particularly true in the case of
DNA-damage.

All filters tend to display larger average MSE in the case of DNA
damage. The reason for this is that under the no-stress condition,
the system spends a significant amount of time in the rest state
‘‘0000’’, whereas under DNA damage, more states are visited due
to the cyclic attractor, and the state estimation problem is more
challenging.

One can observe that the IBR-BKF performs poorly for less
peaked priors, and it is essentially useless in the case of DNA-
damage, unless the prior is highly peaked. The reason for this
behavior is that, in contrast to the BKF-DMU, the distribution
over the parameter space does not get updated as more data are
observed.

The parameter estimation error rate over time for the BKF-
DMU, ML-BKF, and IBR-BKF is presented in Fig. 5 for two settings
of the concentration parameter. The error rate is computed as
the percentage of times the value of the parameter obtained by
the adaptive filter differs from the true parameter over the 1000
repetitions of the experiment. The MAP-BKF is omitted since it is
equivalent to the BKF-DMU for parameter estimation purposes.
The IBR results are based entirely on the prior and so are constant

Fig.5. Parameter estimation error rates for different filters for the p53-Mdm2
network with (a) dna_dsb = 0 (no stress), and (b) dna_dsb = 1 (DNA damage).

over time. Notice that the BKF-DMU displays smaller error rates
than the other estimators at all points in time. Smaller error rates
are obtained in the DNA-damage condition, as the cyclic attractor
allows visiting more states and helps the estimation process.
Error rates for both the BKF-DMU and IBR-BKF are smaller for
more peaked priors, as expected.

An interesting fact becomes apparent at this point. As
mentioned in connection with Fig. 5, parameter estimation per-
formance is worse in the no-stress condition than under DNA-
damage. However, in Fig. 4 we saw that state estimation
performance is much better in the no-stress condition. The reason
for this is that in the no-stress condition, most of the candidate
models have similar dynamics and the same attractor ‘‘0000’’,
whereas in the DNA-damage condition, perturbation of the model
leads to different cyclic and singleton attractors, which means
that the state estimation problem is more challenging under
DNA-damage, despite the fact that the parameter estimation
problem is easier in this case.

Next, we consider the performance of the smoothers. The
system is assumed to be in the DNA-damage condition, and four
regulation parameters are assumed to be unknown: a 13 , a21 , a23 ,
and a 32 . Two different values for φ are considered, correspond-
ing to a peaked and a non-peaked prior. The results for both
filters and smoothers are displayed in Fig. 6. The horizon for the
smoothers were set at k = 20, so that corresponding smoothers
and filters have the same performance at time k = 20. The results
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Fig. 6. Average MSE of different filters and smoothers for the p53-Mdm2
network with dna_dsb = 1 (DNA damage).

for the IBR-BKF and IBR-BKS are not shown since they were
significantly worse than those of the others estimators. One can
observe a significant reduction in average MSE for all smoothers
in comparison to their corresponding filters, given the fact that
the smoothers use more data than the filters. The BKF-DMU
and BKS-DMU achieve the smallest average MSE in compari-
son to the other estimators. Furthermore, for the more peaked
prior, the performances of the MAP-BKF, MAP-BKS, BKF-DMU and
BKS-DMU all become closer to the baseline performance of the
model-specific estimators.

The effect of a misspecified prior distribution is examined
next. The unknown regulation parameters are assumed to be
a13, a23 and a 24 . Here, we assume that the Dirichlet probabilities
[w1 . . . , w3L] are randomly assigned to different parameters, cre-
ating misspecification. Fig. 7 displays the average MSE of various
filters for four distinct misspecified priors with different values
for φ. We can see that the more peaked the prior is, the worse the
effect of misspecification of the prior on estimator performance
becomes, as expected. In fact, in the case φ =0.1, corresponding
to a very peaked prior, the average MSE of the BKF-DMU and the
MAP-BKF have not converged to the baseline after 25 time steps.
The BKF-DMU still performs better than the other filters, except
in the case of a very peaked misspecified prior, in which case its
performance is worse than that of the ML-BKF, which is immune
to prior misspecification. Hence, the ML-BKF is the conservative
choice if there are questions about the accuracy of prior modeling.

4.2.2. Experiments using the mammalian cell cycle network

Here we use a model for the well-known mammalian cell-
cycle network (Fauré, Naldi, Chaouiya, & Thieffry, 2006), which is
a relatively densely connected network of 10 genes, as displayed
in Fig. 8. The state vector is X k = (CycD, Rb, p27, E2F, CycE, CycA,
Cdc20, Cdh1, UbcH10, CycB). The gene interaction parameters a ij

can be read off Fig. 8. For example, Rb is activated by p27, and
is inactivated by CycD, CycE,CycA, and CycB. These interactions
can be expressed in terms of interaction parameters as a 21 =
−1, a22 = 0, a23 = + 1, a24 = 0, a25 = −1, a26 = −1, a27 =
0, a28 = 0, a29 = 0 and a 2 10 = −1. In all numerical experiments
in this section, we assume that p = 0.01, D = 20I, σ2 = 15,

Fig.8. Pathway diagram for the mammalian cell-cycle network.

Fig. 9. Average MSE of different filters and smoothers for the mammalian
cell-cycle network.

bi = − 1/ 2, µ(i) = 30, for i = 1, . . . ,10. The initial state
distribution is assumed to be uniform: P(X 0 = xi) = 1/ 210 , for
i = 1, . . . ,210 .

We assume that the regulation parameters a 23 and a 42 are
unknown, and all other parameters are known. Fig. 9 displays
the average MSE for all filters and smoothers. The BKF-DMU and
BKS-DMU achieved better results than all ML and MAP estimators.
In addition, the performance of all estimators converges to the
baseline as more data are available.

The effect of the noise parameters was examined in this sec-
tion. Table 1 displays the average MSE per step for filters and
smoothers over 1000 time series. The priors are non-peaked
(φ = 10). One can observe the increase in average MSE of all
estimators as process and measurement noise intensities increase
and the estimation problem becomes more challenging. One can
see that the BKF-DMU and BKS-DMU achieve better results than

Fig.7. Average MSE of different filters under misspecified priors for the p53-Mdm2 network with dna_dsb = 1 (DNA damage).



M. Imani, E.R. Dougherty and U. Braga-Neto / Automatica 111 (2020) 108609 11

Fig.10. Average MSE of different filters for the p53-MDM2 network with dna_dsb = 1 (DNA damage).

Fig. 11. The average MSE in estimation of continuous parameter δ for the
p53-Mdm2 network with dna dsb = 1.

all other estimators. In addition, as expected, smoothers perform
significantly better than the corresponding filters.

4.3. Experiments with continuous parameter spaces

In this section, we employ the p53-Mdm2 Boolean network to
assess the performance of the BKF-CMU and BKS-CMU estimators
developed in Section 3.3. All gene connections are assumed to be
known, and so are all parameters of the observational model in
(45) except for the matrix D = δI. The positive real-valued param-
eter δ must thus be estimated. In the simulation, we set δ =20.
Three prior distributions are considered for δ: Uniform ( [0, 30]),
Gaussian N (20, 100) (less peaked), and Gaussian N (20, 25) (more
peaked). The MCMC parameters are set to N Burn = 500 and
NMCMC = 2000.

Fig. 10 displays the average MSE obtained over time by the
baseline model-specific BKF, MMMC-BKF, ML-BKF, MAP-BKF, and
IBR-BKF. Among the different prior distributions, the best re-
sults are obtained, unsurprisingly, for the peaked Gaussian prior.
Among all filters, the BKF-CMU displays the smallest average
MSE. As expected, the ML-BKF and MAP-BKF perform similarly
in the case of a uniform prior. In addition, the IBR-BKF performs
better in the presence of a peaked prior, but its average MSE does
not converge to the baseline, since it does not update the prior as
data are observed.

The parameter estimation error rate over time for the BKF-
CMU and ML-BKF is presented in Fig. 11 for two prior distri-
butions. The MAP-BKF is omitted since it is equivalent to the
BKF-CMU for parameter estimation purposes. Notice that the
BKF-DMU displays smaller error rates than ML-BKF at all time
points. Meanwhile, the error rate of BKF-CMU is lower for the
tighter prior distribution.

The effect of a poorly centered prior distribution is examined
in Fig. 12. Three prior distributions are considered for parameter
δ: N (15 , 25), N (10, 25), and N (5, 25). We can see that the further
the prior from the true value, the worse the effect on estimator
performance, as expected. The BKF-CMU still performs better

than the other filters, except in the case of a very highly misspeci-
fied prior, in which case its performance is worse than that of the
ML-BKF, which is immune to prior mis-centered prior. In fact, in
the cases of N (5, 25) and N (10, 25), the average MSE of the BKF-
CMU and the MAP-BKF have not converged to the baseline after
50 time steps. Hence, the ML-BKF is the conservative choice if
there are questions about the accuracy of prior modeling.

5. Conclusion

This paper introduces an optimal Bayesian framework for joint
state and parameter estimation for a class of partially-observed
Boolean dynamical systems (POBDS) under model uncertainty.
The proposed framework provides the optimal expected MSE
solution relative to the posterior distribution over the parameter
space. For a discrete (finite) parameter space, we introduce exact
optimal filter and smoother algorithms, called the BKF-DMU and
BKS-DMU respectively. These two estimators can be seen as direct
extensions of the ordinary BKF and BKS for POBDS with complete
information. For continuous parameter spaces, we proposed an
approximate solution based on MCMC. A comprehensive set of
numerical experiments using gene regulatory network models
demonstrate the superior performance of the proposed estima-
tors over a number of other approaches. Future work includes
developing efficient estimators for systems with large numbers
of unknown parameters.
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Appendix

The following theorem gives the solution to the minimization
problem in (21).

Theorem 1. The optimal Bayesian state estimator X̂OBE
r|k

is:

X̂OBE
r|k = Eθ|Y1:k [E[Xr |Y1:k , θ]] . (48)

with optimal conditional MSE

COBE
r|k = Eθ|Y1:k

[
Cθ(Xr , X̂OBE

r|k )
]

=
d

2
−

d∑

i=1

⏐
⏐
⏐
⏐

E [Xr (i) |Y1:k ] −
1
2

⏐
⏐
⏐
⏐ .

(49)

Proof. Given the sequence of observations Y1:k , we seek a
Boolean estimator X̂r|k of the state X r by solving the minimization



12 M. Imani, E.R. Dougherty and U. Braga-Neto / Automatica 111 (2020) 108609

Table 1
Average MSE per step of different filters and smoothers.
p σ2 Filters Smoothers

Model-Specific BKF-DMU ML MAP IBR Model-Specific BKS-DMU ML MAP IBR

0.01 15 0.5843 0.6934 0.8118 0.7593 0.8975 0.4518 0.5495 0.6045 0.5675 0.8039
20 0.9875 1.0916 1.2139 1.1546 1.2962 0.8561 0.9509 1.086 0.9669 1.2043

0.05 15 0.7797 0.8986 1.0875 0.9501 1.0948 0.6552 0.7504 0.8105 0.7675 1.0039
20 1.1850 1.3001 1.4088 1.3550 1.4917 1.0577 1.1510 1.2101 1.1666 1.4104

Fig.12. Average MSE of different filters under misspecified priors for the p53-Mdm2 network with dna dsb = 1 (DNA damage).

in (21). This minimization can be expanded as:

X̂OBE
r|k = argmin

X̂r|k∈Ψ

Eθ|Y1:k

[
Cθ

(
Xr , X̂r|k

)]

= arg min
X̂r|k∈Ψ

Eθ|Y1:k

[
E
[
∥Xr − X̂r|k∥

2 | θ
]]

= arg min
X̂r|k∈Ψ

Eθ|Y1:k

[
E
[
∥Xr − X̂r|k∥1 | θ

]]

= argmin
X̂r|k∈Ψ

d∑

i=1

Eθ|Y1:k

[
E
[
|Xr (i) − X̂r|k (i)| | θ

]]
.

(50)

Eq. (50) exploits the fact that ∥v∥2 = ∥v∥1 =
∑ d

i=1 v(i) for a
Boolean vector v.

The minimization in (50) can be achieved by choosing X̂r|k (i)
that minimizes E θ|Y1:k [

E[|Xr (i) − X̂r|k (i)| | θ]], for each i = 1, . . . ,
d. But it is easy to see that, since the state variables are Boolean,
the minimizer is given by

X̂OBE
r|k (i) =

{
1, if E θ|Y1:k [E[Xr (i) |Y1:k , θ]] > 1/ 2,
0, otherwise,

= Eθ|Y1:k [E[Xr (i) |Y1:k , θ]] ,

for i = 1, . . . ,d. In other words,

X̂OBE
r|k = Eθ|Y1:k [

E[Xr |Y1:k , θ]] . (51)

The optimal conditional MSE achieved by X̂OBE
r|k is computed as

follows:

COBE
r|k = Eθ|Y1:k

[
Cθ(Xr , X̂OBE

r|k )
]

=

d∑

i=1

Eθ|Y1:k

[
E
[
|X̂OBE

r|k (i) − Xr (i)| | θ
]]

=

d∑

i=1

P
(
X̂OBE

r|k (i) ̸= Xr (i) |Y1:k

)
.

(52)

The ith element in summation in the last line of Eq. (52) can be
computed as:

P
(
X̂OBE

r|k (i) ̸= Xr (i) |Y1:k

)

=

⎧
⎨
⎩

1 − Eθ|Y1:k [E[Xr (i) |Y1:k , θ]] ,
if E θ|Y1:k [E[Xr (i) |Y1:k , θ]] > 1/ 2 ,

Eθ|Y1:k [E[Xr (i) |Y1:k , θ]] , otherwise.

(53)

Now, replacing (53) into (52) leads to

COBE
r|k =

d∑

i=1

P
(
X̂OBE

r|k (i) ̸= Xr (i) |Y1:k

)

=
d

2
−

d∑

i=1

⏐
⏐
⏐
⏐

Eθ|Y1:k [E[Xr (i) |Y1:k , θ]] −
1
2

⏐
⏐
⏐
⏐ . □
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