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1. Introduction

Partially-Observed Boolean dynamical systems (POBDS) are
ageneral class of nonlinear state-space models consisting of
a hidden Boolean state process observed through an arbitrary

noisy mapping to a measurement space. This signal model has
many applications in fields such as genomics (Kauffman, 1969),
robotics (Imani & Braga-Neto, 2017a; Roli, Manfroni, Pinciroli,
& Birattari, 2011), and digital communication systems (Messer-
schmitt, 1990). The optimal minimum mean square error (MMSE)
state estimators for POBDS are the Boolean Kalman filter (BKF)
(Imani, 2019; Imani & Braga-Neto, 2017a; McClenny, Imani, &
Braga-Neto, 2017c) and Boolean Kalman smoother (BKS) (Imani &
Braga-Neto, 2015b, 2017a), respectively. In Imani and Braga-Neto
(2018c) and McClenny, Imani, and Braga-Neto (2017a), optimal
state estimators for POBDS with correlated measurement noise
are introduced.

Due to the structure of  the multivariate Boolean lattice, the
BKF and BKS have the desirable property of yielding both the
optimal maximum a posteriori  (MAP) and MMSE solutions for
each state vector component (Imani & Braga-Neto, 2017a, 2018e;
McClenny, Imani, & Braga-Neto, 2017b), which is not the case for
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the general multivariate MAP estimator,  in general. In addition,
exact algorithms are available for the computation of the BKF
and BKS (Braga-Neto, 2011; Imani & Braga-Neto, 2017a), which
is not the case for the optimal MMSE solution in general  non-
linear state-space models, in which case approximate solutions
employing sequential  Monte-Carlo techniques (also known as
particle filters)  (Doucet, De Freitas and Gordon, 2001; Doucet,
Godsill, & Andrieu, 2000; Imani & Braga-Neto, 2018e; Imani,
Ghoreishi, Allaire, & Braga-Neto, 2019; Kantas, Doucet, Singh,
Maciejowski, Chopin, et al.,, 2015), the Extended Kalman filter
(EKF) (Jazwinski, 1970), the Unscented Kalman filter (UKF) (Julier,
Uhlmann, & Durrant-Whyte, 1995), and the Sigma-Point Kalman
filter (SPKF) (Van Der Merwe, 2004) must be used. It should
be noted that the exact algorithms for the computation of the
optimal MMSE estimator are available in the case of a linear-
Gaussian state space through the classical Kalman Filter and
Smoother (Kalman, 1960), and for POBDS through BKF and BKS.
Exact calculation of the aforementioned optimal estimators
requires complete information about the system model; however,
in many real-world applications, the system parameters are not
fully known and must be estimated. = Several techniques have
been developed for approximate estimation of general nonlin-
ear non-Gaussian state space models with unknown parame-
ters. The methods can be divided into two main categories of
Maximum-Likelihood (ML) and Bayesian techniques.  The class of
ML techniques includes: (1) direct gradient-based ML techniques,
where the idea is to maximize the log-likelihood function using
gradient-ascent or quasi-Newton techniques (DeJong,  Liesenfeld,
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Moura, Richard, & Dharmarajan,
2006; Johansen, Doucet, & Davy, 2008; Malik & Pitt, ~ 2011), (2)
Expectation—-Maximization (EM) techniques (Schon, Wills, & Nin-
ness, 2011; Wills, Schon, Ljung, & Ninness, 2013), where the idea
is to maximize the “complete” log-likelihood function, as opposed

to ML-based techniques which maximize the “incomplete” log-
likelihood function, using the fact that maximizing the complete
log-likelihood is  easier than maximizing the incomplete one.
There are several particle-based Bayesian techniques for the in-
ference of general nonlinear state-space models (Lindsten, Jordan,
& Schon, 2014; Urteaga, Bugallo, & Djuri¢, 2016; Whiteley, An-
drieu, & Doucet, 2010). An important representative is the Particle
Marginal Metropolis—-Hastings (PMMH) method (Andrieu, Doucet,

& Holenstein, 2010). Several online particle-based techniques
have also been developed for applications when fully-recursive
estimation is desired (Crisan, Miguez, et al., 2018).

For POBDS under model uncertainty, maximume-likelihood
(ML) and maximum a posteriori (MAP) adaptive estimators were
proposed in Imani and Braga-Neto (2015a, 2017a, 2017b), respec-
tively. These techniques are built on ML and MAP point-based es-
timators for unknown parameters combined with optimal MMSE
state estimators for the state. =~ The drawback of these approaches
is their sensitivity to initialization and the requirement of large
amount of data for good performance.

We propose in this paper instead an optimal Bayesian filter
(OBF) approach to the problem of POBDS recursive estimation.
The basic principle is that the unknown true model belongs
to an uncertainty class of models and the OBF minimizes the
expected cost over the uncertainty class. Theidea has roots
going back to the 1960s in control theory (Martin,  1967; Silver,
1963), but has more recently applied in a fully optimized form
with intrinsically Bayesian optimal (IBR) filters, in which opti-
mization is relative to a prior distribution (Dalton & Dougherty,

2014), and with optimal Bayesian filters, in particular, regression,
where optimization is relative to a posterior distribution (Qian &
Dougherty, 2016). These concepts have also been recently applied
to classification in the form of optimal Bayesian classifiers (Dalton

& Dougherty, 2013a) and IBR classifiers (Dalton & Dougherty,
2013b). Directly relevant to the developments in the current
paper is their application in recursive linear filtering: the IBR
Kalman filter (Dehghannasiri,  Esfahani, & Dougherty, 2017), the
optimal Bayesian Kalman filter, which uses the data to update
the prior, thereby producing superior filtering to the IBR Kalman
filter (Dehghannasiri, Esfahani, Qian, & Dougherty, 2018), and the
optimal Bayesian Kalman smoother (Dehghannasiri & Dougherty,
2018).

Here, we extend the BKF and BKS to the cases where POBDS
is under model uncertainty. The methods are optimal relative
to the posterior distribution of the parameters. When the pa-
rameter space is discrete and finite, exact algorithms based on
an efficient, recursive matrix-based implementation are intro-
duced. These algorithms contain a bank of BKFs/BKSs in parallel,
which is reminiscent of the multiple model adaptive estimation
(MMAE) procedure for linear systems (Magill, 1965; Maybeck,
1982). These algorithms can be seen as generalizations of the
regular BKF and BKS. For general parameter spaces, an approxi-
mate Markov-Chain Monte-Carlo (MCMC) implementation of the
optimal Bayesian estimators is described.  Via numerical exam-
ples, the performances of these filters are compared to that of the
ML, MAP, and IBR estimators introduced in Dalton and Dougherty
(2014) and Imani and Braga-Neto (2017a, 2017b), respectively.

The article is organized as follows. In Section 2, the POBDS
signal model is introduced and its optimal MMSE estimators
are briefly described. In Section 3, first the POBDS under model
uncertainty is introduced, followed by the exact algorithms for
computation of optimal Bayesian estimators in the case of  dis-
crete parameter space and the approximate MCMC solution for

2012; lonides, Breto, & King,

continuous parameter space. Section 4 contains numerical  ex-
amples using POBDS models of  gene regulatory networks ob-
served through noisy measurements.  Finally, Section 5 contains
concluding remarks.

2. Partially-Observed Boolean Dynamical Systems (POBDS)

2.1. POBDS signal model

The POBDS model consists of a state model that describes the

evolution of the Boolean dynamical system and an observation
model that relates the state to the system output (measure-
ments).

The state model is defined as:
X = fXiq,w, i), k=1,2, ... (1)

where X k€ [0, 1] represents the state of d Boolean state
variables of the system at time k, u « € U is the input at time step k
which is assumed to be deterministic and known, and the process
noise nk is i.i.d. with arbitrary distribution,  which is independent
of Xo. A simple example of a state process corresponds to additive
Boolean input and noise, with

Xi = fXi 1) ®w & m, k=1,2, . .. 2)

where uk, nk € 0, 1]¢ and “®” denotes componentwise binary
addition (the exclusive-or logic operation). In this case, the input
and noise perturb the state by flipping the state of individual
variables. However, the methodology in this paper assumes the
general model in (1) where only the state must be a Boolean
vector.

The state vector is observed indirectly through the general
nonlinear observation model:

Yo = gX,w), k=1,2, ... (3)

where Y« is a vector of (typically non-Boolean) measurements,
and vk is i.i.d. observation noise process with arbitrary distribu-

tion and independent of  the n« process. For more information,
see Imani and Braga-Neto (2016a, 2016b, 2017b, 2017c, 2018a,
2018b, 2018d, 2019a, 2019b).

2.2. Optimal state estimators for POBDS

The general state estimation problem consists of finding an
estimator X-jx of state X given the sequence of  observations
Yik = (Y1, . . Yy)uptotimek, wherer ,k > 1. As optimality
criterion, we consider the mean-square error (MSE):

O, X)) = E X — Xepl® (4)

where ||| is the L , norm vector. The optimal minimum mean-
square error (MMSE) state estimator is

)A(Mf = argmin C(Xr,*r‘k), (5)
ﬁr\kew

where ¥ is the set of all Boolean estimators.
Foravectorv € D, 1]d, define the thresholding operator v = €
[0,1]% as v(i) = 1if v(i) > 1/2 and 0 otherwise, fori =1, . . d,,

respectively. It was shown in Braga-Neto (2011) and Imani and
Braga-Neto (2017a) that
X = EIX [ Yol , (6)

with optimal conditional MSE

ar = ax-, X))

>
= min {E[X-(i) | Yix], 1 — E[X-(0) | Ypk]] -

i=1
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The contributionof  each Booleanvariable ~ X-(i) to CY° is  Algorithm 1 BKF: Boolean Kalman Filter
min (E[X-(i) | Y111, 1 — E[X-(i) | Ys«]}. By using the identity  Iniialization: T plw ) ot = 1 5
min{a,1 —a) = 1/2 — f—1/2|,for0 < a <1, CfS canbe | Inf@aton Mool =T Xo =x fori =1, .. 2
. . 2: fork =1,2, . .do
written more compactly as:
J I | 3 Prediction: Mik—1 = MiPlk_qjk_1.
I 11
Cr"’l',f’ =5 - VE[X-(i) | Yix] — EI . (8) 4:  Update: Pk oc T (¥) Mkp—1.
=1 5: MMSE Estimator: )A(,'}"‘f = Afig.
This reveals that the maximum value for C ,’V"ks is d/2 (in fact, the P 4 | I
] o ) ] 6:  Optimal MSE:C i = 5 — 7 i, (AR — 3 1.
maximum contribution of each Boolean variable is 1 /2).
The optimal MMSE filter and smoother, correspondingtor = k 7: end for
andr < kin (6), are called respectively the Boolean Kalman filter
(BKF) and Boolean Kalman smoother (BKS) (Braga-Neto, 2011;
Imani & Braga-Neto, 2015a, 2017a, 2018e). It is also possible ) .
to define a Boolean Kalman predictor (BKP), forthe caser > by Mk (see Algorithm 2 below). It has been shown that Imani
k (Imani & Braga-Neto, 2017a), but this estimator will be of no and Braga-Neto (2017a):
furtherintergst here. . Nej o Mepq OArpq, T=1, ..k, (17)
We describe below the exa;ct algorithms for  BKF and BKS
computation. Let (x ', . . 3 ) be an arbitrary enumeration of the where “ 9’ denotes the componentwise multiplication of two
possible state vectors.  Define the state conditional probability vectors. According to Egs. (6) and (8),
distributi it : o
istri umnvecoras. ) Xyif = E(X [Yoa] = A, r =1, .. k, (18)
M) =P X =X |V , i=1,..2% 9 L "
rik() X =x | i ® with optimal conditional MSE
forr ,k = 0. According to Egs. (6) and (8), s | ) I
N MS _ | 0 —
R = EX [Yial = AMip, k=1,2, ... 10 Gk = AR = o r=1s Lk (19)
i=1
d . . . .
whereA = x'- -» isamatrixofsized X 2°. Notice that The entire procedure of fixed-interval BKS is given in Algorithm
in (10), the posterior distribution of the Boolean state ( M), vec- 2. Notice that the BKF and BKS both provide the posterior dis-
tor of size 2 ¢, is mapped to a vector of size d (A k), where each tribution of the Boolean state as well as the point-based MMSE
element denotes the probability that the corresponding Boolean estimation of the state. In addition, the complexity of BKF and BKS
variable is 1. Meanwhile, the optimal conditional MSE can be both grows exponentially with the number of Boolean variables,
computed as due to the transition matrix involved in their process. For large
p %, | | systems (i.e., large d), efficient particle filter implementation of
I 11 . : . ) i
Clzvl|ks — 5 I (AR — 5 I k=12, ... . (11) these tools is provided in Imani and Braga-Neto (2018e).
i=1
The computation of Rk can be performed recursively.  First, Algorithm 2 BKS: Fixed-lntkerval B9>olean Kalman Smoother
notice that 1: Initialization: Fop() = P X =%, fori =1, . . 2%
Mijq = Mknk71‘k71 k=12 .. . (12) Forward Probabilities:

where M  is the transition matrix of
with entries given by:

the Markov state process,

M)i = PXKk = X | Xeeq =X), 5,0 =1, .. 2% (13)
On the other hand,
Mik oc T(¥) Mkp—1, k=1,2, ... (14)

where “ oc” means that the result must be normalized to add up
to 1, and T (Y«) is the update matrix, which is a diagonal matrix of
size 29 x 27 with diagonal elements:

(T(Y))i =P Y | Xe=x, i=1,..2% (15)

The procedure is summarized in Algorithm 1.

We describe below the optimal fixed-interval smoother, which

estimates the state at each time point r in the interval 0 <r<k
Define the probability distribution vector A rjs via

Ar() =P Your, .. Yo [ Xe =, i=1,..2 (16)
for r,s = 0, .. k,where Ak is definedtobe1 ,i,.4, the

vector with all  components equal to 1. The vector A r|s satisfies
a backward recursion similar to the forward recursion satisfied

2: forr =1, . . kdo

3: Prediction: Rrp—q = My Rr_qp_1.
4: Update: Mrp o T(¥)Mrp—1.

5: end for

Backward Probabilities:

6: Initialization: A kjx = 1dyg.

7. forr =k, k-1, . . 1do

8: Update: A rp—1 = T (Yr) A rp.

9: Prediction: A r_qp—1 = M A —
10: end for

MMSE Estimator Computation:

11: forr =1, . . kdo
12: nr‘k oC nr|r71 OA rir—1.

13: )A(D"'ks = Afrp.

Za ! }

14:  C¥S = g - T tann)i - 3

rk —

15: end for
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3. Optimal estimators for POBDS under model uncertainty

3.1. POBDS under model uncertainty

In many practical problems, full information about the system
model is not available. There might be uncertainty about the
transition or observation functions or noise statistics. We assume
the uncertainty is parameterized by a vector =14, ...d
unknown parameters, where @takes a value in a set O, called the
uncertainty class. The POBDS model can then be expressed as:

X =f(X, ui, nik, @, k=1,2, . ..
Yo =g (X, v, 6, k=1,2, . ..

Direct application of  the algorithms described in the previ-
ous section is not possible due to the presence of unknown
parameters, and suboptimal adaptive estimators must  be em-
ployed. Maximume-likelihood (ML) and maximum a posteriori
(MAP) adaptive estimators for partially-known POBDS were de-
veloped in Imani  and Braga-Neto (2017a, 2017b) respectively.
Despite the generally good performance of these estimators in
simultaneous state and parameter estimation, they are sensitive
to initialization and require large sample sizes.

In this paper, we address these deficiencies by proposing op-
timal Bayesian Kalman filtering for recursive POBDS estimation.
Consider the estimation cost associated with each realization of
the parameter:

CoXr, Xep) = E 1% — Xk | 8, (20)

The optimal-Bayesian-estimator (OBE) Boolean recursive filter is
defined by ]

XOpF = argmin Egy,,  Co(Xe, Xet) . (21)
*r‘kE'[/

The OBE recursive filter provides the optimal solution relative to
the posterior distribution p( 6 | Yj). It can be shown (see the
Appendix) that it is given by

XRE = Egy,, [EDX [ Y, 6. (22)
with optimal conditional MSE
| I
d P 11
GEf =5 = PowulEDX0) [V 6] 2] (23)

i=1
As in the case of the optimal overall MSE, it is easy to see that
the cost is upper-bounded by d /2.

3.2. Optimal estimator for POBDS under Discrete Model Uncertainty

Let us first consider the case in which the parameter space
is discrete and finite: © = (01, 8, . . .uy}BInthis section,
we introduce algorithms for the exact computation of both the
optimal Bayesian filter and smoother in this case.

3.2.1. Boolean Kalman Filter under Discrete Model Uncertainty (BKF-
DMU)

Given the sequence of
conditional diftribution vector associated with

measurements Y 1.k, define the state

O, € O as:

i =P X =x|Yu &, i=1.. 2 (24)

forr ,k = 0, where Mg, = P X =x | @ isthe initial

distribution of the states associated with O .
Let alsoM ,? be the transition matrix of

?ssoci?ted to model 6, defined as:

(prior)
the state process

M = pXi=xX | X=X, @), Li=1,..2° (25

y

form =1, .. M,

Additionally, given a value of the observation vector Y « at time
k, the update matrix T ,?(Yk) associated to model @ is a diagonal
matrix of size 2 ¢ X 2d, defined as:
TE )i =P Y [ Xe=x, 8", i=1,..2% (26)

form =1, .. M,

The optimal Bayesian filter corresponds to the case r = kin
(22). Its computation requires the quantity
Zik = EH\YM [E[Xk |Y1:k: 9] V1:k]
(27)

= AI1EMpk(6hL

m=1

where pk(6) = P (0 |Y;.)is the posterior probability distribution
of Aattimek. From (22) and (23), the optimal Bayesian filter at
time k is then given by

X5 =z, (28)

and the optimal
to (23).

The previous computation can be performed exactly and effi-
ciently by running M BKFs in parallel, each tuned to a different
value of the parameter, as we show next. First, notice that the
posterior probabilities at  time k can be computed via the fol-
lowing Bayesian recursion (Ghoreishi,  2019; Ghoreishi & Allaire,
2017, 2019; Ghoreishi, Friedman, & Allaire, 2019):

Pi(Bn) o p(Yi | Yike1, @) pk_1(6n), (29)

conditional MSE can be computed according

form = 1, . .sM, withp o(6) as the prior probability of model

6 €06 holding geo Po(6) = 1. Now,

p(Yk | Yix—1, &)
zd

= p(Yi | X =%, 8)PO =X | Yiu_q, &)
j=1 (30)
Zd

= @@ Mung_,0 = 18" .
J=1
d
where g = Tk‘s‘"(Yk)I1,'f"7<_1 and |lv|y = = 7, v(i). Combining
(29) and (30), we obtain

Pi(Bn) o< |8 ll1 Pra(Bn), (31)

form = 1, .. M, Notice that ﬁf" is the unnormalized state
posterior probability distribution at time k, which is computed
in the update step of the BKF tuned to parameter 6. (see Algo-
rithm 1). This allows the computation of (27) and of the optimal
state estimator. An optimal estimator of the parameter is also
readily available based on the posterior p k(6). For example, the
MAP estimator is
~MAP

= argmax P«(6), (32)

6eO

providing a full joint state and parameter estimation approach.

The entire procedure is presented in Algorithm 3 and repre-
sented as a diagram in Fig. 1. The BKF-DMU recursively com-
putes the posterior distribution of the unknown parameter and
state as well as their point-based estimations.  The posterior
distribution of ~ the unknown parameter at time step k is de-
noted by [Px(6y), . . Pk,(&nz] and the posterior distribution of the
state can be computed by L Pk(6n )n,f“i. Notice that the BKF-
DMU has similarity with the multiple model adaptive estimation
(MMAE) procedure developed for the linear-Gaussian state-space
model (Magill, 1965; Maybeck, 1982) and later extended for es-
timation of the nonlinear/non-Gaussian state-space model using
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01 power spectra, and for morphological filtering the granulometric
| BKFfor 1185l size densities are replaced by the effective granulometric size
Model 1 [y, ) densities. The basic idea is to replace the characteristics deter-
e 2t -+ [pia(Oan) ining the ordi lution with effective characteristics that
Y sl Posteri Guar mining the ordinary solution with effective characteristics tha
|| BKFfor 1=k [ CRISAET are global with respect to the model uncertainty. This methodol-
Model 2 [ 7o, Update ogy constitutes a general paradigm for optimal signal processing
klk I7k(91)l lpk:(el\l) OBE under uncertainty (Dougherty,  2018).
k|k In the present  situation, there is no notion of an effective
. OBE update matrix. In (26) an update matrix is formed for each param-
L,| BKFfor 185" Il eter vector, and these are used jointly in (30). The difficulty is the
Model M|™70. discrete state space of the underlying Boolean dynamical system.
klle In fact, the notion of an IBR operator was first introduced in Yoon,

Qian, and Dougherty (2013), where the problem was to choose
Fig.1. Schematic representation of the proposed optimal Boolean Kalman Filter an operator, from a class of operators, to minimize the expected
under Discrete Model  Uncertainty (BKF-DMU). undesirable steady-state mass of  an uncertain hidden Markov

model, the application being to optimally perturb the logic of

gene regulatory networks modeled as Boolean networks.  As with

a particle filtering scheme (Doucet, Gordon and Krishnamurthy, the BKF-DMU, there were no effective characteristics with which
2001; Martino, Read, Elvira, & Louzada, 2017). to frame the solution; indeed, the optimal operator was obtained

As with the ordinary BKF in Algorithm 1, the BKF-DMU is fully by computing the costof  each operator and choosing the one
online, i.e., as new measurements arrive,  the optimal Bayesian possessing minimum cost.  This kind of direct minimization has
estimate of  state can be computed recursively. In fact, when many biomedical  applications, suchas in Mohsenizadeh, De-
uncertainty about the parameter decreases to zero, the BKF-DMU hghannasiri, and Dougherty (2016), ~where intervention consists
reduces to the BKF. The computational complexity of BKF-DMU is of interrupting a subset of interactions in order to obtain more
of order O(M2 %) at each time point. desired dynamics.

3.2.2. Boolean Kalman Smoother under Discrete Model Uncertainty

Algorithm 3 BKF-DMU: Boolean Kalman Filter under Discrete (BKS-DMU)

Model Uncertainty The extension of the fixed-interval smoother in Algorithm 2 to

1: Initialization: p o(6h), form =1, .. M, the Bayesian case is considered here. Given the sequence of mea-
2: Run M BKFs, each one tuned to a different  6n € 6. surements Y 1.k, we define the backward probability distribution
vector associated with parameter @ as:

3: fork =1,2, . .do
d

On ;. i ;
4:  Posterior Update: Usingthe outputs |||l of the BKF bank, A () = p(Yser, . . XY [X =x, &), i=1,..2 (33)
update the posterior of each parameter as:

forr,s =0, . . k,,where A ,?','( is defined to be 1 ,ay .
Pi(6h) < | V{m [hPer(Bn), m=1,.. M, According to (22), the optimal Bayesian state smoother re-
5. Usingthe outputs M, of the bank of BKFs, compute: quires the computation of
z =E E = z An%
Z = pk(an)Anl?fl‘(. Zrk = 0‘Y1:k[ [Xr |Y1:k9 ﬂ - nr‘kpk(a")’ (34)
m=1 m=1
6: Optimal Bayesian state estimator: with the optimal Bayesian smoother given by
X =z X3 = zp, (35)
7: Conditional optimal MSE of state estimator: with optimal conditional MSE given by (23)
I [ | I
a X ) 1 a X () 11
OBE _
Wmg o PRl GRr=5 - lzki 5l (36)
= i=1
8  Optimal Bayesian parameter estimator: As in the BKF-DMU case, this computation can be performed
dmAp = argmax Pi(6) by executing M BKSs in parallel, each tuned to a different value
) ’ of the parameter. The posterior probability distribution of Bgiven
9 end for all observations Y 1.k can be computed by applying (31) repeatedly
to obtain
- I
There are numerous differences between the BKF-DMU and
p p X , 37
the optimal Bayesian Kalman filter (OBKF) in Dehghannasiri et al. K(6n) o= Po(6h) e ”'Bﬂ" I (37
(2018). Most important is the fact that, whereas the BKF-DMU - ] ]
employs a bank of ordinary BKFs each possessing its own update form =1, . . M, The optimal MAP estimator of the parameter
matrix, the OBKF is solved by a set of recursive equations taking can be computed as in (32).  The entire procedure is presented in
a similar form to the equations for the ordinary Kalman filter Algorithm 4 and represented as a diagramin Fig. 2. Notice that
except that various statistics are replaced by effective statistics, given a time series of length k,  the BKS-DMU computes the pos-
which are related to the entire uncertainty class via the posterior terior d|str|t11t|on of the unknown parameters (i.e., [P (6 ) oo
distribution, and the ordinary Kalman gain matrix is replaced pf(ﬂ‘{)]’ r=1,..kina fomard process and the 5_m°°th§’g'3'
by the effective Kalman gain matrix. This is analogous to the trlbutlognof the Boolean state in a backward process (i.e., m=1 Pr
structure of  IBR filters in Dalton and Dougherty (2014) where (6)A 7, " = 1, . . k), The computational complexity of ~BKS-

for Wiener filtering the power spectra are replaced by effective DMU for estimation over the whole interval is of order O(Mk2 2d).
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Algorithm 4 BKS-DMU: Boolean Kalman Smoother under Dis-
crete Model Uncertainty

1: Initialization: p o(6h), form =1, . . M,

2: Run M BKSs, each one tuned to a different 6, € 6.

3: Posterior Calculation: Using the outputs ||| of the BKSs, compute
I
Pe(Bn) o= Po(@n)  [IA [k, m=1,. . M,
r=1
4: Optimal Bayesian parameter estimator:

~MAP
= argmax P«(6) .
80
5. forr =1, . . kdo
6: Using the outputs nﬂk of the bank of BKSs, compute:
z 2
Zk = Pk(ﬂn)Aﬂ,ﬁp
m=1
7 Optimal Bayesian state estimation:
XPE =z
8: Conditional MSE:
|
a X i
COBE _ _ _ I(Zrk)~_1|
Tk 2 | Zk ol
i=1
9: end for

6, )
BKS for {118 Hl}izl

N
Model 1 61 1k
i brm \ P0(91)l lpu("M)
: c GMAP
Y | [ BKsor {18213k, \ Posterior O

Model 2 Computation

Ol o

02 \k
AE

OBE

{1187 1 Yy
{rmlyk,

BKS for
Model M

Fig. 2. Schematic representation of  the proposed Boolean Kalman Smoother
under Discrete Model Uncertainty (BKS-DMU).

3.3. Estimator for POBDS under continuous model uncertainty

When the parameter space @ is continuous, e.g., ©® < R, the
algorithms proposed in the previous section cannot be applied.
This is due to the fact that the computation of the expectation
in (22) requires integration over the posterior  distribution of
the unknown parameter.  The exact computation of the poste-
rior distribution is not possible for a general  set of unknown
parameters. A naive way of handling this problem is discretiza-
tion of the parameter space. However, except for very simple
cases, this will  result in finite but very large parameter spaces,
which also renders intractable the application of the previously
proposed algorithms. In addition, the discretization process in-
troduces error, which may lead to poor estimation performance.
A popular framework for dealing with a continuous parameter
space for a general nonlinear/non-Gaussian state-space model is
the particle Markov chain Monte Carlo (PMCMC) framework (An-
drieu et al., 2010). This framework relies on particle methods for
approximation of the likelihood function, p(Yix | @for 6 €6.
Unlike general  nonlinear/non-Gaussian state-space models,
the exact likelihood function can be computed for POBDS, using
the BKF and BKS. Thus, we employ here the Metropolis—Hastings

MCMC (Hastings, 1970) algorithm to obtain an approximate so-
lution for POBDS under continuous model uncertainty. Let the
current MCMC sample be 6", A candidate MCMC sample 62" is

drawn according to a symmetric proposal distribution q( 0 | @).
Then %" = 6™ with probability

Y. 9nd H:and
a =mn A1, p(Y1:k | ) Po( ) (38)

p(Yix | 8)po(6”)

with %" = @ otherwise. In (38), Po(6) is the prior probability
of @and p(Y1.x | @is computed by running a BKF (or the forward
iteration of a BKS) tuned to parameter . The positivity condition
q(8 | Hj)) > Oforal 6" guarantees an ergodic Markov chain,
the steady-state distribution of which is the target distribution
p(0 | Y1) (Gilks, Richardson, & Spiegelhalter, 1995). (a Gaussian
distribution, which satisfies the positivity condition, is used in
this paper as the proposal distribution.)

After discarding the first N gy “burn-in” MCMC samples, the
next N ycuc samples are used to approximate the posterior distri-
bution as:

Nyeme
X6 - ), (39)

j=1

1
e ~ Nycme

where J is the standard generalized function of calculus.
the fact that [

Using

E0|Y1;k [E[x’" |Y1Zk7 H] = E[xr |Y1 ks O]Pk(QdO,

and
P(Xr | Y1:ka 0 = Anﬂk:

obtained from the application of the BKF or BKS,
MCMC approximation can be written as:

using (22), the

Nyeme

1 |
Anf, (40)

MCMC

Egivy.x (E[X | Yix, 6] ~ N
j=1

and the optimal Bayesian estimator and optimal conditional MSE

can be computed by applying (22) and (23), respectively. Thus,
the BKF-CMU and BKS-CMU provide the approximate posterior
distribution of the state and parameters along with their point-

based estimations.

The entire process is summarized ir( Algorithm 5. The com-
plexity of BKF-CMUis of order O (NBU™ + NMCMCyp2d” Thjg
computation can be intractable or very slow in the following two
conditions: (1) Large Model  Uncertainty: this requires selection
of large MCMC samples, which linearly affects the complexity of
Algorithm 5; (2) Large Systems: the complexity of Algorithm 5
grows exponentially with respect to the increase in the number
of Boolean variables (i.e., d). One way of dealing with large
systems is to replace the BKF and BKS with their particle filter
implementation introduced in Imani and Braga-Neto (2018e).
Dealing with these two conditions, which deals with scalability
of the proposed methods, will be part of our future research.

Notice that several recommendations have been made for
proper stopping criterion of the MCMC process. These methods
mostly rely on the effective sample size which depends on the
correlation between the trajectories of the Markov chain (Brooks,
Gelman, Jones, & Meng, 2011). Furthermore, the burn-in sample
size should ideally be selected large enough to guarantee with
a high probability that the start of the MCMC procedure after
the burn-in time is a sample from the posterior distribution.
This selection can be challenging, and in practice needs to be
selected according to the computational resources, dimension of
the parameter space and the nature of the problem (for more
information, see Gilks et al. (1995)).



M. Imani, E.R. Dougherty and U. Braga-Neto/ Automatica 111 (2020) 108609 7

Algorithm 5 BKF/BKS: under Continuous Model Uncertainty
(BKF-CMU/BKS-CMU)
1: SetNBum, NMCMC and Zrk = 0, r= 1, . k.,
2: Draw an initial sample: 6" ~ py(6).
3: Run i BKF  tuned to o for computation of
Id
F* = ’;=1 log|| @ |} and n,‘ﬁd,r =1, ..k,

4: forj =1,2, . . Ngym + Nycyc do

F ~q0 | V).

5: Draw a sample from proposal:

6: 5 Runa BKF/BKStunedto 6 for computationof L™ =
k nd and
rerlog || [ and nG™ r =1, Lk,
{ )
J
1 oxp(L ™) po(629)

7: Acceptancerate: o =min 1,
P exp(LP'?) po(6719)

[
(67", LF*") with probability o

8: (01ew’ Lg‘ew) = (gjld ’ s )

otherwise

9: ifj > N, then

10: Z) =z + WAH?{EWJ =1, ..k
11: end if

12: Y« gev, LY « 1T

13: end for

14: Optimal Bayesian estimation:

‘?E ~ zk, forr =1, .. k.,

15: Approximate conditional MSE:

d XA ) 1
2 |

4. Numerical results and performance analysis

In this section, we present the results of
ments using a gene regulatory network model, which compare
the performance of  the proposed framework with four other
approaches: (1) the optimal model-specific BKF/BKS (Braga-Neto,
2011; Imani & Braga-Neto, 2017a); (2) the maximum-likelihood
(ML) adaptive BKF/BKS (Imani & Braga-Neto, 2017a); (3) the max-
imum a posteriori (MAP) adaptive BKF/BKS (Imani & Braga-Neto,
2017b); and (4) the intrinsically Bayesian robust (IBR) estima-
tor (Dalton & Dougherty, 2014). These methods are defined next.
The optimal  “model-specific” BKF/BKS consists of the classical
BKF/BKS relative to the underlying true parameters.  These filters
are therefore the baseline for performance.

The ML-BKF/ML-BKS selects the model  with the largest log-
likelihood and then obtains the state estimator by plug-in:

numerical experi-

AML

argmax log p(Y1x | 8,
6c0

~ML

X = EX | Y, 6 .

AML
Computation of 6, involves either a bank of filters for discrete
parameter spaces, or an expectation—-maximization algorithm in
the case of continuous parameter spaces (Imani & Braga-Neto,
2017a).

The MAP-BKF/MAP-BKS maximizes the posterior probability
and then applies the plug-in approach:

AMAP
= argmax p(6 [Yi),
<O

A~ ~MAP
k= EX | Vi, 6.
AMAP
Finding 6, relies on the computationof ~ Px(6) = p(0 | Yyx),
described in the previous two sections.
The IBR-BKF/IBR-BKS is computed by solving the following
minimization problem: ]

X ?f = argmin Eg Cy(Xr, *r‘k) , (41)
ﬁr\kellf

where the expectation is relative to the prior distribution p( 0. 1t

can be shown that the solution is

X = Ep[E[X [Yix, 6]. (42)

Contrasting the previous two equations with (21) and (22), re-

spectively, makes clear that the difference between OBE and IBR
estimators is that the latter are optimized with respect to the

prior distribution of  the parameter, where as the former are
based on the posterior distribution, and therefore are expected
to obtain smaller conditional MSE. Notice that the computational
complexities of ML-BKF, MAP-BKF and IBR-BKF are similar to the
BKF-DMU, which is O(M2 2¢) for discrete parameter space of size
M.

4.1. Gene regulatory network model

The POBDS state model for gene regulatory networks can be
written as:

X =fX_)Sw dm, k=12 ... (43)

where X« € D, 1}% is a vector of gene expressions, f: [0, 1} =
[0, 1] is called the network function, ~ “@®” indicates component-
wise modulo-2 addition, wux € [0, 1}¢ is a Boolean control input,
and nk € D, 1}¢ is Boolean “transition noise”.
The network function is expressed in component  form as
f = (f1, . . f2), where each componentf ; : [0,1]¢ = { 0,1]
is a Boolean function that predicts the next state of genei,
for i = 1, .. d., Here, we consider the specific model
for the network function (Bahadorinejad, Imani, & Braga-Neto,
2018; Ghoreishi & Imani, 2019; Hajiramezanali, Imani, Braga-
Neto, Qian, & Dougherty, 2019; Imani, Dehghannasiri, Braga-Neto
and Dou%herty, 2018; Imani, Ghoreishi, & Braga-Neto, 2018):
1 Za ax(j) + bi > 0
fiy = 7 Xyt VT (44)
0, j=1 3x() + bi <0,
wherea j andb i are system parameters. This model is based
on pathway diagrams typically used in molecular biology (Lau,
Ganguli, & Tang, 2007). Parameter a ; can take three values: if
a; = +1, there is positive regulation (activation) from gene j to

genei; ifa ; = —1, there is negative regulation (inhibition) from
gene j to gene i; whereas ifa i = 0 then gene j is not an input to
gene i. Parameter b i can take two values: b i = +1/2ifgeneiis

positively biased, in the sense that an equal number of activation
and inhibition inputs will produce activation; the reverse being
the case ifb ; = —1/2.

Clearly, if uk(i) = 1 or nk(i) = 1, the next state of gene i will be
flipped. For simplicity, we assume that the process noise n « has
independent components, distributed as Bernoulli(p).  Parameter
p indicates the amount of “perturbation” to the Boolean state
process, and can be assumed to be in the interval 0<p <05
(the casep > 0.5is equivalent to taking the complement of £
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no-stress
(dna_dsb = 0)

DNA-damage
(dna_dsb =1)

Fig. 3. Negative feedback-loop p53-MDM2 gene network.
DNA-damage (dna_dsb = 1).

with p ‘=1-p< 0.5). Larger values of the noise intensity p lead
to more chaotic and unpredictable state transitions. On the other
hand, values of p close to zero mean that the state trajectories are
nearly deterministic.

Throughout this section,  we assume the following Gaussian
linear POBDS observation model

Yo = {+DXc+ w, k=1,2, . .. (45)

where vi ~ N (0, &I)is an uncorrelated zero-mean Gaussian
noise vector, M is a vector of baseline gene expressions (corre-
sponding to the “zero”  state for each gene) and D is a diagonal
matrix containing differential expression values for each gene
along the diagonal (these indicate by how much the “one” state of
each gene is overexpressed over the “zero” state). Such a Gaussian
linear model is an appropriate model for many important gene-
expression measurement technologies, such as cDNA microar-
rays (Chen, Dougherty, & Bittner, 1997) and live cell imaging-
based assays (Hua et al., 2012).

4.2. Experiments with discrete parameter spaces

The numerical experiments in this section evaluate the perfor-
mance of the BKF-DMU and BKS-DMU developed in Section 3.2.
The system model is assumed to be known except for some of the
regulation parameters a . This corresponds therefore to a gene
network inference problem.  Since each regulation parametera
can take values inthe set  {—1, 0, 1}, the size of the parameter
spaceisM = 3", where L is the number of unknown regulations.

We use the symmetric Dirichlet distribution to define priors
over the parameter space. Consider avector [W; . . . 0¥/ ~
By

Dirichlet( ¢), where @ > O0isthe concentfti(znparameter.
3

definiton, W > 0, fori =1, . . 3L,, and ;_, wi = 1. The prior
probability of the true model is assigned as:

Po(6°) = w, wherel ~ Cat(wy, . . . gW (46)
where Cat( w4, . . . gtWis the “categorical distribution”;  this

means thatp o(6") = wwith probability W, fori =1, . . 3L,. The
remaining weights are randomly assigned to other values of the
parameter as their prior probability. The concentration parameter
@ controls how peaked the priors are around the true parameter
value. our aim being to average over different sets of priors, each
set with peakedness determined by @. The larger @ is, the less
peaked the prior distribution is. Inthe limit @ = oo , the prior
distribution becomes uniform.

Some of the experiments below use a variation of this setup,
where the weights  {w4, . . . g Wvare randomly assigned to the

(a) Pathway diagram.

State transition diagrams corresponding to (b) no-stress (dna_dsb = 0), and (c)

various parameters,
prior.

in order to model the case of a misspecified

4.2.1. Experiments using the p53-Mdm2 network

The p53 gene codes for the tumor  suppressor protein p53
inhumans, andits activation plays a critical role in cellular
responses to various stress signals that might cause genome
instability and thus cancer (Batchelor, Loewer, & Lahav, 2009).
We use a model for the p53-MDM2 negative feedback-loop gene
regulatory network,  which consists of  four genes: ATM, p53,
Wip1, and MDM2, and the input “dna_dsb”, which indicates the
presence of DNA damage (double strand breaks).  The pathway
diagram of the network is presented in Fig. 3(a). Normal ar-
rows represent activating regulations and blunt arrows represent
suppressive regulations.  Letting the state vector tobe X k =
(ATM, p53, Wipl | MDM?), the gene interaction parameters a j can
be read off Fig. 3 (a):

a1 =0, d=0, 943= -, a,=0
Uy = +1, dyp =0, Gy = -1, dy = -
31 =0, d3p =41, d33 =0, d3 =0
g = -1, Q= +1, A3 =+1, 0y =0

The input vectoris u « = (dna_dsb, 0, 0, 0), and can take one of
its possible two values:  DNA damage, ux = (1,0, 0, 0), orno
stress, ux = (0,0,0,0), fork = 1,2, . . Under the assumption
of negative regulation biases, b, = —1/2, fori =1, . . d,two
state transition diagrams shown in Fig. 3 (b—c), are obtained for
the system. We can see that under no-stress, “0000” is a singleton
attractor state, while the other states are transient. ~ On the other
hand, under DNA damage, there is a cyclic attractor, correspond-
ing to an oscillation of p53,  along with the other proteins in its
regulatory pathway. These behaviors match the known biological
properties of the p53-MDM2 network (Weinberg, 2006).

The following parameter settings are used in our simulation:
p = 0.01,D = 201, 0> = 10, b = —1/2, p@i) = 30, fori =
1,2, 3, 4. The initial state distribution is assumed to be uniform:
P(Xo = %) = 1/16, fori =1, . . 16. This leads to the following
initial joint distribution:

i 1
ny(i) = PXc =X, @) = g X Po(h). (47)
fori =1, .. 16andm =1, .. 3L,. All results are averaged
over 1000 different prior distributions p () obtained as described
previously.
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Time
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Fig.4. Average MSE of different filters for the p53-Mdm2 network with (a) dna_dsb = 0 (no stress), and (b) dna_dsb = 1 (DNA damage).

In the first experiment, a3, dys and a o4 are assumed to be 1 dna_dsb =0 1 dna_dsb =1
unknown, so that the number of candidate modelsisM = 3° = 5 :\‘ — gii'gm((p = ?'1) :‘\ —— BKF-DMU(¢ = ?'1)
27. Fig. 4 displays the average MSE obtained over time by the 5 -go.s SN imes HiLBiE @=1 1 o8ty == Z’EZEK’“FW 4
baseline model-specific BKF, BKF-DMU, ML-BKF, MAP-BKF, and S 6l N
IBR-BKF. Moving from left to right in the figure, @ gets smaller QZJ_)L;
so that the prior distributions become more peaked around the g §0'4
true parameter values. g 202

As expected, the model-specific filter has the smallest average at | ] i
MSE. The BKF-DMU consistently outperforms the ML-BKF,  MAP- % 5 10 15 20 25 1 5 10 15 20 25
BKF and IBR-BKF.When the prior distribution is close to uniform Time Time
(ie., forlarge ), the ML-BKF and MAF,)-BKF dI.Splay essgntlglly Fig.5. Parameter estimation error rates for different filters for the p53-Mdm2
the same performance, as expected (since their formulation is network with (a) dna_dsb = 0 (no stress), and (b) dna_dsb = 1 (DNA damage).
identical for a uniform prior), while for more peaked distribu-
tions, the MAP-BKF significantly outperforms the ML-BKF. This
IS due to, thg fact that the MA,P'BKhF Ear;ta:ﬂia;\(/'a:ntage of Noti the over time. Notice that the BKF-DMU displays smaller error rates
information in the peaked prior, which the ML- cannot. No '(fe than the other estimators at all points in time. Smaller error rates
that the performance of ~ the l?’.KF'DMU approa.ches. th.e b?se"”e are obtained in the DNA-damage condition, as the cyclic attractor
performance of the model-specific-BKF as the prior distribution allows visiting more states and helps the estimation process.
becomes more peaked — this is particularly true in the case of Error rates for both the BKF-DMU and IBR-BKF are smaller for
DNA-dgmage. ) ) more peaked priors, as expected.

All filters tend to display larger average MSE in the case of DNA Aninteresting  fact becomes apparent at this point. As
damage. The reason for this is that under the no-stress condition, mentioned in connection with Fig. 5, parameter estimation per-
the system spends a significant amount of time in the rest state formance is worse in the no-stress condition than under DNA-
“0000”, whereas under DNA damage, more states are visited due damage. However, inFig. 4we sawthat state estimation
to the cyclic attractor, and the state estimation problem is more performance is much better in the no-stress condition. The reason
challenging. for this is that in the no-stress condition, most of the candidate

One can observe that  the IBR-BKF performs poorly for less models have similar dynamics and the same attractor “0000”,
peaked priors, and it is essentially useless in the case of DNA- " whereas in the DNA-damage condition, perturbation of the model
damage, unless the prior is highly peaked. The reason for this leads to different cyclic and singleton attractors, which means
behavior is that, in contrast to the BKF-DMU, the distribution that the state estimation problem is more challenging under
over the parameter space does not get updated as more data are DNA-damage, despite the fact that the parameter estimation
observed. problem is easier in this case.

The parameter estimation error rate over time for the BKF- Next, we consider the performance of the smoothers. The

DMU, ML-BKF, and IBR-BKF is presented in Fig. 5 for two settings
of the concentration parameter.  The error rate is computed as
the percentage of times the value of the parameter obtained by

the adaptive filter differs from the true parameter over the 1000
repetitions of the experiment.  The MAP-BKF is omitted since it is
equivalent to the BKF-DMU for parameter estimation purposes.
The IBR results are based entirely on the prior and so are constant

system is assumed to be in the DNA-damage condition,
regulation parameters are assumed to be unknown: a 13, do1, a3,
and a 3. Two different values for @ are considered, correspond-
ing to a peaked and a non-peaked prior. The results for both
filters and smoothers are displayed in Fig. 6. The horizon for the
smoothers were set atk = 20, so that corresponding smoothers
and filters have the same performance at time k = 20. The results

and four
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shown since they were
One can

observe a significant reduction in average MSE for all smoothers

in comparison to their corresponding filters,
the smoothers use more data than the filters.

and BKS-DMU achieve the smallest

son to the other estimators.

given the fact that
The BKF-DMU
average MSE in compari-

Furthermore, for the more peaked

prior, the performances of the MAP-BKF, MAP-BKS, BKF-DMU and
BKS-DMU all become closer to the baseline performance of the

model-specific estimators.
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Fig.8. Pathway diagram for the mammalian cell-cycle network.
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The effect of a misspecified prior  distribution is examined
next. The unknown regulation parameters are assumed to be
a5, dy3 and a o4. Here, we assume that the Dirichlet probabilities
(wy . .. ,3zl]vare randomly assigned to different parameters, cre-
ating misspecification. Fig. 7 displays the average MSE of various
filters for four distinct misspecified priors with different values
for @. We can see that the more peaked the prior is, the worse the
effect of misspecification of the prior on estimator performance
becomes, as expected. In fact, in the case ¢ =0.1, corresponding
to a very peaked prior, the average MSE of the BKF-DMU and the
MAP-BKF have not converged to the baseline after 25 time steps.
The BKF-DMU still performs better than the other filters, except
in the case of a very peaked misspecified prior, in which case its
performance is worse than that of the ML-BKF,  which is immune
to prior misspecification.  Hence, the ML-BKF is the conservative
choice if there are questions about the accuracy of prior modeling.

4.2.2. Experiments using the mammalian cell cycle network

Here we use a model  for the well-known mammalian cell-
cycle network (Faure, Naldi, Chaouiya, & Thieffry, 2006), which is
a relatively densely connected network of 10 genes, as displayed
in Fig. 8. The state vector is X k = (CycD, Rb, p27, E2F, CycE, CycA,
Cdc20, Cdh1, UbcH10, CycB). The gene interaction parameters a i
can be read off Fig. 8. For example, Rb is activated by p27, and
is inactivated by CycD, CycE, CycA, and CycB. These interactions
can be expressed in terms of interaction parameters asa o1 =
—1,0p = 0,03 = +1,dy = 0,5 = —1,dp5 = —1,0y7 =
0,953 = 0,059 = 0andazq9 = —1. In all numerical experiments
in this section, we assume thatp = 0.01, D = 201, o0? = 15,

different filters and smoothers

Fig. 9. Average MSE of
cell-cycle network.

for the mammalian

bi = —1/2, pi) = 30, fori = 1, .. 10. Theinitial state
distribution is assumed to be uniform: P(X o = x) = 1/2°, for
i=1, .. 2"

We assume that the regulation parametersa 3 anda 42 are

unknown, and all other parameters are known. Fig. 9 displays
the average MSE for all filters and smoothers.  The BKF-DMU and
BKS-DMU achieved better results than all ML and MAP estimators.
In addition, the performance of all ~ estimators converges to the
baseline as more data are available.

The effect of the noise parameters was examined in this sec-
tion. Table 1 displays the average MSE per step for filters and
smoothers over 1000 time series.  The priors are non-peaked
(@ = 10). One can observe the increase in average MSE of all
estimators as process and measurement noise intensities increase
and the estimation problem becomes more challenging. One can
see that the BKF-DMU and BKS-DMU achieve better results than
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Fig.7. Average MSE of different filters under misspecified priors for the p53-Mdm2 network with dna_dsb
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Fig.10. Average MSE of different filters for the p53-MDM2 network with dna_dsb

120y 7
\ |7 BKF-CMU: p(9) ~ N (20,25)
100} %\ |~ BKF-CMU:p(6) ~ N (20, 100)
& VY| —-ML-BKF
30 \\\

Time

Fig. 11. The average MSE in estimation of
p53-Mdm2 network with dna dsb =1.

continuous parameter ¢ for the

all other estimators. In addition, as expected, smoothers perform
significantly better than the corresponding filters.

4.3. Experiments with continuous parameter spaces

In this section, we employ the p53-Mdm2 Boolean network to
assess the performance of the BKF-CMU and BKS-CMU estimators
developed in Section 3.3. All gene connections are assumed to be
known, and so are all parameters of the observational model in
(45) except for the matrix D = d. The positive real-valued param-
eter 0 must thus be estimated. In the simulation, we set 6 =20.
Three prior distributions are considered for &: Uniform ( [0, 30]),
Gaussian N (20, 100) (less peaked), and Gaussian N (20, 25) (more
peaked). The MCMC parameters are set to N Bumn 500 and
NMCMC = 2000.

Fig. 10 displays the average MSE obtained over time by the
baseline model-specific BKF, MMMC-BKF, ML-BKF, MAP-BKF, and
IBR-BKF. Among the different prior distributions, the best re-
sults are obtained, unsurprisingly, for the peaked Gaussian prior.
Among all filters, the BKF-CMU displays the smallest average
MSE. As expected, the ML-BKF and MAP-BKF perform similarly
in the case of a uniform prior.  In addition, the IBR-BKF performs
better in the presence of a peaked prior, but its average MSE does
not converge to the baseline, since it does not update the prior as
data are observed.

The parameter estimation error rate over time for the BKF-

CMU and ML-BKEF is presented in Fig. 11 for two prior distri-

butions. The MAP-BKF is omitted since it is equivalent to the
BKF-CMU for parameter estimation purposes. Notice that the
BKF-DMU displays smaller error rates than ML-BKF at all time

points. Meanwhile, the error rate of BKF-CMU is lower for the
tighter prior distribution.

The effect of a poorly centered prior distribution is examined
in Fig. 12. Three prior distributions are considered for parameter
d. N (15, 25), N (10, 25), and N (5, 25). We can see that the further
the prior from the true value, the worse the effect on estimator

performance, as expected. The BKF-CMU still performs better

20

30
Time

20 30
Time

50

= 1 (DNA damage).

than the other filters, except in the case of a very highly misspeci-
fied prior, in which case its performance is worse than that of the
ML-BKF, which is immune to prior mis-centered prior. In fact, in
the cases of N (5, 25) and N (10, 25), the average MSE of the BKF-
CMU and the MAP-BKF have not converged to the baseline after

50 time steps. Hence, the ML-BKF is the conservative choice if
there are questions about the accuracy of prior modeling.

5. Conclusion

This paper introduces an optimal Bayesian framework for joint
state and parameter estimation for a class of partially-observed
Boolean dynamical systems (POBDS) under model uncertainty.
The proposed framework provides the optimal expected MSE
solution relative to the posterior distribution over the parameter
space. For a discrete (finite) parameter space, we introduce exact
optimal filter and smoother algorithms, called the BKF-DMU and
BKS-DMU respectively. These two estimators can be seen as direct
extensions of the ordinary BKF and BKS for POBDS with complete
information. For continuous parameter spaces, we proposed an
approximate solution based on MCMC. A comprehensive set of
numerical experiments using gene regulatory network models
demonstrate the superior performance of the proposed estima-
tors over a number of  other approaches. Future work includes
developing efficient estimators for systems with large numbers
of unknown parameters.
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Appendix

The following theorem gives the solution to the minimization
problem in (21).

Theorem 1. The optimal Bayesian state estimator )A(PVE(‘E is:
XORF = Egwyy [EDX [ Y, 6]. (48)
with optimal conditional MSE
K = By ColXe, XB5)
a i 11 (49)
=5 ED@ [ - o

Proof. Given the sequence of observations Y;k, we seek a
Boolean estimator X: of the state X by solving the minimization
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Table 1
Average MSE per step of different filters and smoothers.
p o? Filters Smoothers
Model-Specific BKF-DMU ML MAP IBR Model-Specific BKS-DMU ML MAP IBR
0.01 15 0.5843 0.6934 0.8118 0.7593 0.8975 0.4518 0.5495 0.6045 0.5675 0.8039
’ 20 0.9875 1.0916 1.2139 1.1546 1.2962 0.8561 0.9509 1.086 0.9669 1.2043
0.05 15 0.7797 0.8986 1.0875 0.9501 1.0948 0.6552 0.7504 0.8105 0.7675 1.0039
: 20 1.1850 1.3001 1.4088 1.3550 1.4917 1.0577 1.1510 1.2101 1.1666 1.4104
p(8) ~ N (15,25) p(8) ~ N (10,25) p(8) ~ N(5,25)
2 - | 2 " 2 — Model-Specific-
18 - gﬂggi—sﬂecmc-BKF its - gﬂ;g_e(l:—hsﬂtecmc—BKF 188 - gﬂKg—]CnSA% ific-BKF
16 - IBR-BKF 16 = IBR-BKF " _ :\72;2;;}:
: - MAP-BKF w -~ MAP-BKF — ML-BKF
10 20 1 10 20 30 40 50
Time Time Time
Fig.12. Average MSE of different filters under misspecified priors for the p53-Mdm2 network with dna dsb = 1 (DNA damage).
in (21). This minimization can be expanded as: The ith element in summation in the last line of Eq. (52) can be
[ ( )] computed as:
2 OBE _ E c ~
k= argmin Egy. ., Cp X, X[k $OBE, v/ .
- = aromin Eg,, Co X X PR = %) | i
= [ )
. S —E E| i .
= arg [Tlln E0|Y1;k E ||Xr _ Xr‘k ||2 | 0 !1 .0‘Y1:k [ [Xr(l) | Y1Ak) ﬂ 2 (53)
X k¥ = if E gy, [E[X-(i) | Yok, 6] > 1/2,
) - (50) E E[X:(i) | Yrk otherwise.
=argmin Egy,, E X — Xl | 6 o [EDX(D) | Yok, 6] ,

X ke Now, replacing (53) into (52) leads to
I . o
= a;rgmln _ 6IV1.x X (i) _Xr|k(l)| | 6. Crolln(aE — P % ﬁE(i,Y: X-(i) | Yok
\ke'I’ i=1 i1
. 24 d > I I
Eq. (50) exploits the fact that  ||v|][?> = |lv|]li = ~ i, v(i) fora -7 | Egy . [E[X-() | Yix, 6] — oo
2 | Y1k 1:K5 2 |-
Boolean vector v. i=1
The minimization in (50) can be achieved by choosing fo|k(i)
that minimizes E gy, , [E[|X-() — X-j(i)| | O)lforeachi =1, . . ., References
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