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ABSTRACT

We propose a new algorithm for inference of protein-protein
interaction (PPI) networks from noisy time series of Liquid-
Chromatography Mass-Spectrometry (LC-MS) proteomic ex-
pression data based on Approximate Bayesian Computation
- Sequential Monte Carlo sampling (ABC-SMC). The algo-
rithm is an extension of our previous framework PALLAS.
The proposed algorithm can be easily modified to handle other
complex models of expression data, such as LC-MS data, for
which the likelihood function is intractable. Results based on
synthetic time series of cytokine LC-MS measurements cor-
responding to a prototype immunomic network demonstrate
that our algorithm is capable of inferring the network topol-
ogy accurately.

Index Terms— Protein-Protein Interaction Network,
Liquid-Chromatography Mass-Spectrometry, Approximate
Bayesian Computation, Sequential Monte Carlo, PALLAS

1. INTRODUCTION

Reconstructing the molecular networks underlying the func-
tioning of a living cell is one of the main goals of biology
and medicine. In this respect, protein-protein interaction (PPI)
networks play a major role in most cellular processes. Infer-
ence of PPI networks from protein expression data is essen-
tial for understanding the structure, function, and dynamics of
the cell [1]. With the advancement of high-throughput exper-
imental technologies, such as Liquid-Chromatography Mass-
Spectrometry (LC-MS), massive amounts of proteomics data
make the data-driven reconstruction of PPI networks possible.

\4 or inference of PPI networks have been
g experimental [2, 3] and computational
6]. The Boolean network (BN) model [7]
1 which is widely used for inference gene
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regulatory networks (GRN) due to its ability to describe tem-
poral patterns of gene activation and inactivation and its com-
paratively small data requirement.

The Penalized mAximum LikeLihood and pArticle Swarms
(PALLAS) algorithm for GRN inference from gene-expression
data was introduced in [8]. PALLAS is a practical method
for gene network inference based on the Partially-Observable
Boolean Dynamical System (POBDS) model [9, 10], using
penalized maximum likelihood (PML) and particle swarms
for optimization. However, PALLAS assumes that the likeli-
hood function describing the expression data is available. In
the present paper, we extended PALLAS to the the inference
of PPI networks from proteomics data, for which the likeli-
hood function is intractable. This is achieved by applying Ap-
proximate Bayesian Computation based on Sequential Monte
Carlo sampling (ABC-SMC) method [11]. The ABC-SMC
method is combined with mixed fish school search (MFSS)
algorithm [8], to infer the PPI and estimate the parameters si-
multaneously, which allows it to handle the the absence of any
prior knowledge. The performance of the proposed approach
is assessed by numerical experiments based on a prototype
immunomic network.

2. PARTIALLY-OBSERVABLE BOOLEAN
DYNAMICAL SYSTEMS

The POBDS system is a nonlinear statistical model [9] that
allows for uncertainty in Boolean state transitions and partial
observation of the Boolean state variables through noise.

2.1. State model

Consider a state process {X;;k = 0,1,...}, where X; €
{0,1}¢ is a Boolean vector of size d. In the POBDS model,
the system state X, evolves according to:

X, = X)) @ ng QY
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for k = 1,2,... where f : {0,1}¢ — {0,1}¢ is called the
network function, n;, € {0, 1 }d is additive noise at time k, and
“@” indicates component-wise modulo-2 addition. The state
and noise processes are assumed to be independent. The state

model (1) can be suitably modified to include external inputs,
if desired.

The process noise vector n, is assumed to have indepen-
dent components distributed as Bernoulli(p), which models
uncertainty in the state transition. We assume p = 0.05 as a
default value in our framework, but a different value 0 < p <
0.5 can be selected by the user; however, the closer it is to
p = 0.5, the more chaotic the system will be.

In addition, we assume a specific model for the net-
work function. Let a sample state vector x € {O, 1}9 and
the network function f be expressed in component form as
X = (xq,...,xy) and £ = (fy,..., f,), respectively. Each
component f; : {0,1}¢ — {0,1} is given by

0, otherwise,

d
fix) = {1’ Stz @

where a;; and b; are system parameters. The former can take
three values: a;; = +1 if there is positive regulation (activa-
tion) from protein j to protein i; a;; = —1 if there is negative
regulation (inhibition) from protein j to protein i; and a;; = 0
if protein j is not an input to protein i. The latter specifies reg-
ulation biases and can take two values: b; = +1/2 if protein i
is positively biased in the sense that an equal number of activa-
tion and inhibition inputs will produce activation; the reverse
being the case if b; = —1/2. The network model is depicted
in Figure 1, where the threshold units are step functions that
output 1 if the input is positive, and 0, otherwise. This model
constraint reduces the number of parameters needed to specify
f from 29 to d?> + d.

representation of the network function.

2.2. Observation Model

Let Y, be the observation corresponding to the state X, at
time k. The sequence of states is observed indirectly through
the process {Y;;k =0, 1, ...}, where the measurement vector
Y, is a general nonlinear function of the state and observation
noise:

Y, = hX,v) 3)

for k = 1,2, ..., where the noise vector v, is assumed to inde-
pendent of the state process and state transition noise process.
In what follows, we consider the observational model for
liquid chromatography-mass spectrometry (LC-MS) data pro-
posed in [12], which we describe briefly next. The protein
concentration can be modeled as a Gamma distribution [13],

YI = F(ﬁ,&),l = 1’29"'sd3 (4)

where the shape £ and scale 9 parameters are assumed to be
uniform random variables, such that 2 ~ Unif(#,,,,, Zpign)
and 9 ~ Unif(9;5,,, Ip;0p). The multivariate Gaussian distri-
bution is recommended as the model for protein concentration
variations. In this paper, we assume that protein concentra-
tions are mutually independent, so that

yi=vi+tvi(§—Dx;+v;, )

fori = 1,...,d, where y; is the baseline of protein concen-
tration expression levels, {; is the fold change when protein i
is overexpressed, and v; is an uncorrelated zero-mean Gaus-
sian noise for protein i which v ~ WN(0,X), where T =
diag(af, ,03) and aiz =@pX yiz. The coefficient of variation
@ is calibrated based on the observed data.

3. EXTENDED PALLAS ALGORITHM

In this section, we describe the extended PALLAS algorithm
for inference of Boolean PPI networks from noisy time series
of LC-MS data. The framework uses the ABC-SMC algo-
rithm to perform an efficient computation of a penalized log-
likelihood cost function.

Let 0 = (edisc’ econt) € 0, with edisc € ®disc and ecom €
O ,ont» b€ the discrete and continuous unknown model parame-
ters, where ©, ©4;,. and ©_,, are the corresponding parameter
spaces, with ® = 04, X0, Here, ;. contains the param-
eters of the network function in (2), namely the edge param-
eters a;; € {-1,0,1}, fori,j = 1,...,d, and the regulation
bias parameters b; € {—1/2,1/2}, fori = 1,...,d. Hence,
O = {—1,0, l}d2 x {—=1/2,1/2}¢. This is a finite space,
but its cardinality [@4,.| = 3¢° x 2¢ increases extremely fast
with the number of proteins d. On the other hand, 6., con-
tains the observational parameters: the shape £ and scale 9 of
the baseline of protein concentration expression level, the fold
change ¢, and the coefficient of variation .

Next we describe main steps of the extended algorithm.
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3.1. ABC-SMC Algorithm

In our previous work [8], we use an auxiliary particle filter al-
gorithm to estimate the likelihood and obtain the unknown pa-
rameters by maximum the estimation. However, this method
cannot be used for complex models, in which the conditional
density g(Y|X) is intractable or computationally expensive.
Instead, we will assume that one may still able to obtain sam-
ples from this conditional likelihood for different values of the
parameter 6, which leads to the Approximate Bayesian Com-
putation (ABC) technique [11]. ABC replaces the calculation
of the likelihood with a comparison between the observed and
sampled data to approximate the likelihood, namely, we gen-
erate M samples from g, (Y, |X,) and the estimated likelihood
can be calculated as

~ zjf‘il 1d(Y..Y,) <€)
k= M

(6)

for k = 1,...,T, where ¢, is the precision tolerance, and
d(-,-) is the distance function between the observed and sam-
pled data. Theoretically, the approximation obtained by ABC
filtering is matched to true one when ¢, ~ 0 and M = co.

However, a drawback of the ABC method is the low accep-
tance rate when stuck in a bad region. In order to improve the
ABC performance, the use of Sequential Monte Carlo (SMC)
sampling has been suggested [14, 15, 16]. In the SMC algo-
rithm, % le\il g(Y, | Xy ;) is an approximation to the condi-
tional likelihood p(Y; | Yj.,_;). Thus, with the estimated
likelihood from the ABC algorithm, the full likelihood ap-
proximation p(Y;.,) can be generated.

In Algorithm 1 we present the ABC-SMC algorithm based
on [14, 16]. The basic design elements are the number of par-
ticles N, the number of auxiliary observation samples M and
the ABC precision tolerance e. The vector I, is the initial
(prior) distribution of the states at time zero. The vector W
gives the weight of the particles which is initialized to 1/N
for all particles. The resampling step is necessary when the
effective sample size (ESS) is low. The resampling threshold
E is commonly taken to be N /2 [17].

3.2. Penalized Likelihood Computation

Suppose that the sample data consist of # independent time
seriesY’l,k ={Y/,... ,Yi} uptotime k,for j = 1,...,n. The
penalized log-likelihood of model 6 at time k is defined as

2d
1 1
Ly(0) = log peY Y = Z lay; |
ij=1

» ©)
log pa(Y). ) = n Y lal,

ij=1
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egularization parameter, which has a de-
0.01 in our implementation. Hence, the

Algorithm 1 ABC-SMC

1: Initialize ) > €y > =+ > ey > 0 and
Xo,; ~ Moo, Wo,; = 1/N,fori = 1,2,...,N
2: for k = 1to T do:
3 fori = 1to N, do:
4 Xpi = fXp_1) @ my
5: for j = 1to M do:
6 Generate SA(;” ~ go(1Xy)

7: end for
_ W - Zj‘il L@(Y] . Y <€)
8: ki — M
9: Wi o Wi 1 ;Wi
10: end for

N
11 Wii = Wi/ 22 Wi
122 IESS = [T, (W, )™ < E:

13: Resample X ; with weights W, ;
14: SetW,,; = 1/N
15: end for

penalized log-likelihood in (7) is the sum of the average log-
likelihood per time series and a negative value times the num-
ber of edges in the model. Maximization of (7) thus encour-
ages the model to both fit the data and be sparse, i.e., contain
a small number of edges between proteins, which is in agree-
ment with biological knowledge. The value of n can be ad-
justed by the user to obtain a desired level of sparsity.
Notice that

log [pG(ch | Y{:k—l)pB(Yi—l | Y{:k—2)

10g pg(Y{ :k)

w pg(¥5 | Y)py(Y))]

k
= Y log p(Y, | Y], ),
m=1
3)
and based on [14, 16],
Vv )= L3 e 9
p@( kl 11/(—1) - ﬁz m,i’ ( )
i=1
where (7) can finally be written as
| & k | N 24
— 570,
L®) = = ¥ X log( i:lek,i) =1 Y layl. (10)

Jj=1 m=1 i,j=1

The maximum-likelihood estimator of parameter 0 at time k
is then given by

M- = L(0). 11
p arg max «(0) (11)
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3.3. Mixed Fish School Search Algorithm

Maximization of the penalized likelihood function is per-
formed by the mixed fish school search (MFSS) algorithm
described in [8, 18]. In the MFSS algorithm, the objective is
to find a model that maximizes a given score or fitness, in this
case, the penalizes likelihood of the model. Each candidate
model, i.e., each candidate parameter vector 8 = (644, Ocont)>
corresponds to a particle or “fish,” which has therefore a dis-
crete and a continuous part (hence, the name “mixed” FSS).
An ensemble of candidate solutions is a “school,” which is
iteratively updated by a series of biologically-inspired moves,
namely, (1) an individual movement operator for each fish (a
small random perturbation), (2) a feeding operator that up-
dates the weight of of all fish based on the fitness improvement
from the previous step, (3) a collective instinctive movement
operator that makes the fish that had successful individual
movements influence the collective direction of movement of
the school, and (4) a collective volitive movement operator
when the fish move in concert, depending on whether the
fish school is successful after the previous steps, i.e., its total
weight increases, or not. If the fish school is successful, then
it should contract, changing from exploration to exploitation
mode. Otherwise, it should expand in order to explore the
space more. This process is repeated for either a fixed number
of iterations or until there is no significant improvement in the
score. Please see [8] for a detailed description of the MFSS
algorithm.

4. NUMERICAL EXPERIMENTS

4.1. Performance Criteria

Here we consider two classes of metrics, one based on the
difference between the network functions and the other based
on edge-calling accuracy rates [19].

4.1.1. Edge-Calling Accuracy Rates

An edge in the groundtruth network represents a relation-
ship between two proteins. Here we consider directionality
(an edge from protein i to protein j is distinct from an edge
from protein j to protein i), but disregard activation/inhibition
relationships. Let TP and FN be the total number of di-
rectional edges that are correctly detected (irrespective of
inhibition/activation) and incorrectly missed by the inference
algonthm respectwely Similarly, let FP and TN be the to-
ectional edges that are incorrectly found
d, respectively. We define the following
y rates:

y/True Positive Rate (TPR):
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TPR = — 1P (12)
TP + EN

(i1) Specificity/True Negative Rate (SPC):

spC = — N (13)
FP + TN

(iii) Precision/Positive Predictive Value (PPV):

ppV = 1P (14)
TP + FP

4.1.2. Network Function Distance

Letf = (fy,....f;) and f = (fl, ,fd) be the network
functions of the groundtruth and inferred networks, where the
component functions f; and £, are Boolean functions on d
variables, for i = 1,...,d; see (1). The performance crite-
rion is the average number of disagreeing Boolean functions
between the two networks

a 24
fy— 1 (x/ F (x)
o) = —— ;;[f,(X)GBf,(X . (s)

This distance is related to the dynamical behavior of the net-
works, since it has to do with how the Boolean functions differ.

4.2. Immune System PPI Network Experiment

We investigate the performance of the extended PALLAS
algorithm using a prototype immunomic network during in-
fection [20]. The model consists of three state variables,
which represent immune activation of three distinct T-cell
populations. We assume that the dynamic activity of the var-
ious T-cell populations on the model are measure through
time series of LC-MS measurements of the corresponding
cytokines (interferon-gamma specific to CD4+ T helper cells,
interferon-gamma specific to CD8+ cytotoxic T cells, and
interleukin-10 specific to the CD44 regulator T cells).

Figure 2(a) depicts the model, which consists of a Boolean
network with three nodes, labeled "A", "B", and "C". The in-
teraction parameters a; ; can be read from the figure. For ex-
ample, node "C" is activated by node "A" and inhibited by
node "B". These interactions can be represented as az; =
1,a3, = —1,a33 = 0. Figure 2(b) depicts the resulting state-
space. From the state space, we can see that these states are
partitioned into two basins of attraction: the first one corre-
sponds to a single attractor, whereas the second one consists
of an attractor cycle. However, the two behaviors of the system
is only depends on the state of node "A". If it is not expressed
(there is no "helper T-cell" response), then the system will al-
ways tend to the resting single-state attractor 000. If "A" is
expressed (there is help), then the activity of the system cor-
responds to that of a attractor cycle with the effector reponse
being turned on and off cyclically.

In this experiment, We assume negative regulation biases,
b; = —1/2, for i = 1,2,3 and the synthetic data is generated
based on LC-MS model with parameters 2 = 4,9 = 100,{ =
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Fig. 2. Example of a simple Boolean network model of immunomic interactions during response to infection, consisting of three
nodes A, B, and C; node A is a promoter, B is a suppressor, while node C produces the effector response, while also promoting
suppression of B (negative feedback). a. Network wiring diagram and transition rules. b. Basins of attraction in state-space,

with attractors indicated by dashed rectangles.
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prage network function distance.

3,and @ = 0.01. Predefined interval ranges for estimation are
% € [2,6],9 € [80,120],¢ € [1,5],¢ € [0.01,0.2]. Av-
erage edge-calling accuracy rates and network function dis-
tances obtained over 10 repetitions of the experiment are dis-
played in Figure 3 and 4. In Figure 3, we can see that as the
time series length increases, the algorithm is both sensitive
and specific, with high precision, capturing well the topology
of the network. In figure 4 we can see that, in addition to
capturing the network edges well, the proposed algorithm can
correctly identify the regulatory functions, which controls the
system dynamics, as time series length increases.

5. CONCLUSION

In this paper, we describe an extension of the the PALLAS al-
gorithm by introducing a novel Approximate Bayesian Com-
putation - Sequential Monte Carlo sampling (ABC-SMC)
algorithm to handle the intractability of observational mod-
els of complex data, such as Liquid-Chromatography Mass-
Spectrometry (LC-MS) proteomic expression data. The algo-
rithm combines ABC-SMC and particle swarms intelligence
to infer the underlying Boolean network. In this paper, we
consider the specific case of LC-MS time series data, but
the methodology can be modified to accommodate other data
modalities. Numerical experiments with synthetic LC-MS
cytokine measurements of a prototype immunomic network
demonstrate that the proposed algorithm can capture both
topological and dynamical system properties accurately.
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