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Abstract
This paper studies an acceleration technique for incremental aggregated gradient 
(IAG) method through the use of curvature information for solving strongly convex 
finite sum optimization problems. These optimization problems of interest arise in 
large-scale learning applications. Our technique utilizes a curvature-aided gradient 
tracking step to produce accurate gradient estimates incrementally using Hessian 
information. We propose and analyze two methods utilizing the new technique, the 
curvature-aided IAG (CIAG) method and the accelerated CIAG (A-CIAG) method, 
which are analogous to gradient method and Nesterov’s accelerated gradient 
method, respectively. Setting � to be the condition number of the objective function, 
we prove the R linear convergence rates of 1 − 4c0�

(�+1)2
 for the CIAG method, and 

1 −

√

c1

2�
 for the A-CIAG method, where c0, c1 ≤ 1 are constants inversely propor-

tional to the distance between the initial point and the optimal solution. When the 
initial iterate is close to the optimal solution, the R linear convergence rates match 
with the gradient and accelerated gradient method, albeit CIAG and A-CIAG oper-
ate in an incremental setting with strictly lower computation complexity. Numerical 
experiments confirm our findings. The source codes used for this paper can be found 
on http://githu​b.com/hoito​wai/ciag/.
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1  Introduction

Consider a finite sum optimization problem with m component functions and a 
d-dimensional decision variable:

Problem (1) is motivated by the empirical risk minimization model where we are 
learning a parameter � from a finite set of data. The component function fi(�) repre-
sents the statistical mismatch between � and the ith piece of data collected. The aim 
of problem (1) is to learn the optimal parameter, denoted by �⋆ , that fits with the m 
available data points [28].

We are interested in the setting when each of the component function fi(�) is 
twice continuously differentiable and the sum function F(�) is strongly convex. 
Especially, this paper focuses on large-scale instances of (1) with m ≫ 1 . The 
difficulty with solving (1) lies in the overwhelming size of m, which prohibits 
us from even applying simple first order methods. For example, the full gradient 
(FG) requires the recursion: let 𝛾 > 0 be a step size,

that involves a computation cost of O(md) floating point operations (FLOPS) per 
iteration to compute the sum of m gradient vectors. As m ≫ 1 , this is undesirable 
from a practical standpoint. To this end, a popular yet powerful approach is to adopt 
the so-called incremental (or stochastic) methods where only one of the component 
functions, e.g., the ik th one, fik (�) , is explored at the kth iteration. Examples include 
the incremental gradient (IG) [4], incremental aggregated gradient (IAG) [5, 14, 27] 
methods when ik is deterministic; and the stochastic gradient (SG) [22], stochas-
tic average gradient (SAG) [24], SAGA​ [9], stochastic variance reduced gradient 
(SVRG) [30] methods when ik is chosen randomly. Related work can be found in 
[16, 26] for the case with non-convex functions; in [15] for the cases of finite-sum 
and primal-dual optimization; in [18, 19] for the case with non-smooth functions. 
The interested readers are referred to [6, Section 4, 5] for a comprehensive overview 
on the topic.

A number of the above incremental methods achieve linear convergence via 
the variance reduction technique, e.g., [9, 24, 30]. In the worst case, these meth-
ods require k = O(m log(1∕�)) iterations to guarantee that they compute an �
-optimal solution �k satisfying F(�k) − F(�⋆) ≤ 𝜖 . In problem instances when 
m ≫ 1 , such rates may not be ideal. In fact, recent work [1, 2, 15] showed that the 
dependence on m is necessary for incremental methods whose updates are linear 
combinations of the first order information. To improve the convergence rate of 
incremental methods, a recent direction is to adopt ideas of second-order optimi-
zation. Examples include [12, 17, 23] which extended Newton and quasi-Newton 
methods to the incremental setting, resulting in NIM [23] and IQN [17]. These 
works demonstrated that at the expense of additional storage or computation cost, 
it is possible to achieve local but superlinear convergence.

(1)min
�∈ℝd F(�) ∶=

∑m

i=1
fi(�) .

(2)�
k+1 = �

k − �

∑m

i=1
∇fi(�

k) ,
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We propose a curvature-aided gradient tracking technique for accelerating 
incremental gradient methods using the curvature (Hessian) information. By 
applying Taylor expansion on the component functions’ gradients, we derive a 
new gradient estimator whose error depends on the squares of the optimality 
gaps. Based on this new gradient tracking technique, we propose two incremental 
gradient methods, called Curvature-aided Incremental Aggregated Gradient 
(CIAG) method and Accelerated CIAG (A-CIAG) method. The proposed meth-
ods require O(md) storage cost and O(d2) computation cost per iteration. Further-
more, we characterize the R-linear convergence rates of the proposed methods. 
For the CIAG (resp.  A-CIAG) method, we show that the rate is 1 − 4c0�

(�+1)2
 

(resp. 1 −
√

c1

2�
 ), where � is the conditional number of the objective function of 

the summed objective function F(�) in (1), c0, c1 are constants which can be set to 
1 given that the initial iterate is close to the optimal solution [cf. Theorems 1 and 
2]. In addition, we establish the R-linear convergence rates for two non-linear 
inequalities [cf. Propositions 5 and 6] which are of independent interest. In detail, 
our result reveals that the convergence of CIAG and A-CIAG methods depends 
on the initialization, and the trajectory of convergence can be divided into two 
phases — the initial phase that exhibits a slow but global linear rate; and the 
asymptotic phase that exhibits linear convergence of an accelerated rate.

A comparison of the proposed CIAG/A-CIAG methods to state-of-the-art 
methods is summarized in Table  1. Compared to first order methods such as 
SAG, we remark that the proposed methods (as well as SVRG2, IQN, NIM) 
require the Hessian of the objective function to be Lipschitz continuous. Though 
the storage requirement for the proposed methods is O(md + d2) which is higher 

Table 1   Comparison of state-of-the-art methods for the strongly convex problem (1)

The second column is the memory required for the working variables. The third column is the per itera-
tion computation complexity in FLOPS. The last column is the (expected or worst-case) number of itera-
tions to reach an �-optimal solution. SVRG, AccSVRG, SVRG2 require recomputing the full gradient 
at every epoch and a careful tuning of the epoch size. The constant � is the condition number of F(�) 
[see (3) and (4) for the definition]. The rates for the last four methods are asymptotic, i.e., they hold only 
when the desired accuracy is small, e.g., 𝜖 ≪ 1 . The shaded rows denote the proposed methods which 
achieve a good trade-off between per-iteration complexity and convergence speed

Storage Comp. # Iterations to �-optimal solution

IAG [5] O(md) O(d) O(m � log(1∕�)) [worst-case]
SAG [24] O(md) O(d) O(max{�,m} log(1∕�)) [expected]
SAGA​ [9] O(md) O(d) O((� + m) log(1∕�)) [expected]
SVRG [30] O(d) O(d) O((� + m) log(1∕�)) [expected]
AccSVRG [21] O(d) O(d) O((m

√

� + m) log(1∕�)) [expected]
SVRG2 [11] O(d2) O(d2) O(� log(1∕�) + m) [expected]
IQN [17] O(md2) O(d2) O(m), i.e., super-linear [worst-case]
NIM [23] O(md + d

2) O(d3) O(m), i.e., super-linear [worst-case]
CIAG (proposed) O(md + d

2) O(d2) O(� log(1∕�) + m) [worst-case]
A-CIAG (proposed) O(md + d

2) O(d2) O(
√

� log(1∕�) + m) [worst-case]
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than the O(md) requirement of the SAG methods when d ≫ 1 , the number of iter-
ations required is significantly lower when the desired accuracy is high, 𝜖 ≪ 1 . 
Overall, as seen from Table 1, the proposed methods are desired when d is small-
to-moderate, and the number of component functions m is large.

It is worth mentioning that recently in [11] the authors proposed a method that 
incorporates Hessian information to accelerate SVRG method, giving the SVRG2 
method. The authors developed approximation techniques to reduce the per iteration 
complexity from O(d2) to O(d) . The best convergence rates achieved therein match 
that of the FG method and is the same as the CIAG method. However, we note that 
SVRG2 re-computes the full Hessian at the beginning of each epoch. This costs an 
additional O(md2) FLOPS per epoch and the cost is negligible only when the epochs 
are long, e.g., when the epoch lengths are O(m).

Organization Section  2 studies incremental algorithms with gradient tracking 
and introduces the curvature-aided gradient tracking technique. Section 3 describes 
the proposed CIAG and A-CIAG methods, and discusses the implementation issues. 
Section 4 provides the main convergence results. Section 5 demonstrates the efficacy 
of the proposed methods via numerical experiments.

Notations We use 0 to denote an all-zero vector/matrix with suitable dimen-
sions. Unless otherwise specified, we denote by ‖ ⋅ ‖ the Euclidean norm. A function 
f ∶ ℝ

d
→ ℝ is L-smooth if

for �,�� ∈ ℝ
d , and it is �-strongly convex if

for �,�� ∈ ℝ
d . Define �(f ) ∶= L∕� as the condition number of f. Also, f has an LH

-Lipschitz continuous Hessian if

where the norm on the left hand side is the matrix norm induced by Euclidean norm. 
For a non-negative scalar sequence {a(k)}k≥1 , we say that it converges R-linearly at 
a rate � if the sequence satisfies limk→∞ a(k+1)∕a(k) = � , where 0 ≤ 𝜌 < 1 . We use 
standard Bachmann-Landau notations for asymptotic quantities: a(k) = O(f (k)) 
(resp. a(k) = �(g(k)) ) implies that there exists k0 ∈ ℤ+ and non-negative constant C1 
(resp. C2 ) such that a(k) ≤ C1f

(k) (resp. a(k) ≥ C2g
(k) ) for all k ≥ k0.

2 � Gradient tracking in incremental methods

We provide a high-level description of how to incorporate curvature information 
to accelerate incremental aggregated gradient method. To set up the notation, let 
ik ∈ {1, ...,m} be the component function index selected at the kth iteration, e.g., 

(3)f (��) ≤ f (�) + ⟨∇f (�),�� − �⟩ + (L∕2)‖�� − �‖
2 ,

(4)f (��) ≥ f (�) + ⟨∇f (�),�� − �⟩ + (�∕2)‖�� − �‖
2 ,

(5)‖∇2f (��) − ∇2f (�)‖ ≤ LH‖�
� − �‖, ∀ �,�� ∈ ℝ

d ,
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a simple rule is to use the cyclic rule as ik = (k mod m) + 1 , or we may choose 
ik ∼ U{1, ...,m} . Let us define:

i.e.,  �k
i
 is the iteration index where the ith component function is last accessed after 

the completion of the kth iteration. As we focus on analyzing the worst-case perfor-
mance, we assume that �k

i
∈ [k − K + 1, k] for a constant K = O(m) . For example, 

K = m when ik is chosen by the cyclic rule.
First-order approximation As described in (2), at the kth iteration the gradient 

method computes the full gradient as the complete sum 
∑m

i=1
∇fi(�

k) . Such vector 
is unavailable in the incremental setting as only the access to the ik th function is 
desired. A simple idea is to replace the full gradient by:

or equivalently using the recursion:

with g0
���

=
∑m

i=1
∇fi(�

0) . The expression (7) describes the SAG and IAG methods, 
where their only differences lie in the selection strategy for ik.

When the functions fi are smooth, we have ‖∇fi(�
�
k
i ) − ∇fi(�

k)‖ = O(‖��
k
i − �

k
‖) . 

Furthermore, [14] shows that the error is bounded:

Note that this error represents the ‘variance’ in gradient estimation. Eq. (9) implies 
that the tracking error decays to zero as long as �k converges to �⋆ [recall that 
k − 𝜏

k
i
≤ K < ∞ and K = Θ(m) ]. However, the dependency on m of the right hand 

side in (9) is undesirable as it leads to the following estimates:

where (x)++ ∶= max{1, x} . As analyzed by [10, 14], due to the dependence of m2 
on the right hand side, the sequence of squared norm {‖�k − �

⋆

‖

2}k≥1 converges 
only when � = O(1∕m) , and finally this shows that ‖�k − �

⋆

‖

2 converges linearly 
at rate 1 −O((m2

�)−1) . Notice that a recent work [27] strengthened this rate to 
1 −O((m�(F))−1) . When the component function ik is selected independently at ran-
dom for each k, the rate may also be improved, see [24].

Second-order approximation The undesirable m-dependence of convergence 
rate with (7) is partly due to the crude approximation ∇fi(�

k) ≈ ∇fi(�
�
k
i ) used. As a 

(6)�
k
i
∶= max{� ∶ � ≤ k, i

�
= i} ,

(7)gk
���

∶=
∑m

i=1
∇fi(�

�
k
i ) ≈

∑m

i=1
∇fi(�

k) ,

(8)gk
���

= gk−1
���

− ∇fik (�
�
k−1
ik ) + ∇fik (�

k) ,

(9)‖gk
���

−
∑m

i=1
∇fi(�

k)‖ = O

�

𝛾m max
i=1,...,m

‖�
⋆ − �

𝜏
k
i
‖

�

.

(10)

‖�
k+1 − �

⋆

‖

2
≤

�

1 −O(
𝛾

𝜅(F)
)

�

‖�
k − �

⋆

‖

2 +O(𝛾2m2 max
(k−2K)++≤�≤k

‖�
� − �

⋆

‖

2) ,
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natural idea to improve the approximation, we consider the Taylor expansion applied 
on the ith gradient vector itself:

Compared to a first order approximation with ∇fi(�
k) ≈ ∇fi(�

�
k
i ) , the approximation 

given by the right hand side in (11) has two important features. First, we observe 
that this term yields a second-order approximation to the gradient of the component 
function fi(�) evaluated at �k , and thus leading to an improved approximation. Sec-
ond, the approximate term on the right hand side does not require access to the ith 
function evaluated at �k , which allows one to derive a similar recursion rule as (8) to 
incrementally compute the approximation.

To further evaluate the approximation quality given by (11), for each i we shall 
assume that the Hessian of fi is Lipschitz continuous. We observe the following 
upper bound on the error:

Lemma 1  [20, Lemma 1.2.5] Assume that ∇2fi(�) is LH,i Lipschitz. Then:

From Lemma  1, we notice that the approximation error of the right hand side 
in (11) depends on the squared difference between �k and ��

k
i  . When �k is close to 

�
�
k
i  , this error will be significantly smaller than what is obtained for the first order 

approximation methods in (7). We remark that similar approximation schemes are 
proposed in recent work [11, 31], which demonstrated the benefits of applying 
higher-order approximation in stochastic optimization.

We refer to this form of gradient approximation in (11) as the curvature-aided 
gradient tracking technique. In the remainder of this paper, we shall develop and 
analyze practical optimization methods using the technique.

3 � Proposed CIAG and A‑CIAG methods

We propose two incremental methods, CIAG and A-CIAG methods, which are 
built using the curvature-aided gradient tracking technique (11). Our first method, 
the CIAG method, performs the recursion:

where 𝛾 > 0 is a step size and the gradient surrogate is given by

(11)∇fi(�
k) ≈ ∇fi(�

�
k
i ) + ∇2fi(�

�
k
i )(�k − �

�
k
i ) .

(12)
�

�

�

∇fi(�) −
�

∇fi(�
�) + ∇2fi(�

�)(� − �
�)
�

�

�

�

≤ (LH,i∕2)‖� − �
�
‖

2, ∀ �,�� ∈ ℝ
d .

(18)�
k+1 = �

k − �gk
����

,
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where �k
i
 was defined in (6). The method can be interpreted as applying the curva-

ture-aided gradient tracking [cf.  (11)] to each individual component function and 
applying the FG update (2). On the other hand, the accelerated CIAG (A-CIAG) 
method follows the recursion: 

 where 𝛼 ∈ [0, 1), 𝛾 > 0 are predefined parameters and the gradient surrogate is

where �k
i
 was defined in (6). The term �k

ex
 in (20a) is called the extrapolated iterate, 

which incorporates the ‘inertia’ from previous iterates into the updates. Similar to 
the CIAG method, the A-CIAG method applies curvature-aided gradient tracking 
to the gradient of each individual component function, evaluated at �k

ex
 . We remark 

that even though Hessians are used in the CIAG and A-CIAG methods, we do not 
attempt to compute any matrix inverses which is in contrast with Newton methods. 
The Hessians here are used to accelerate the gradient tracking.

The CIAG and A-CIAG methods are similar since the full gradients evaluated at 
�
k and �k

ex
 are approximated by their respective curvature-aided gradient tracking 

approximates [cf.  (19) and (21)]. Both methods can be implemented in a memory 
efficient incremental fashion. To see this, define

and

Note that bk and Hk are the accumulated staled iterates, gradients and Hessians. 
These can be computed incrementally through storing the staled iterates in mem-
ory. Moreover, we can compute the gradient surrogates as gk

����
= bk +Hk

�
k and 

gk
�����

= bk +Hk
�
k
ex

 . A pseudo code for implementing CIAG and A-CIAG is pro-
vided in Algorithm 1.

(19)gk
����

∶=

m
∑

i=1

(

∇fi(�
�
k
i ) − ∇2fi(�

�
k
i )��

k
i

)

+

(

m
∑

i=1

∇2fi(�
�
k
i )

)

�
k ,

(20a)�
k
ex
= �

k + �(�k − �
k−1) ,

(20b)�
k+1 = �

k
ex
− �gk

�����
,

(21)gk
�����

∶=
∑m

i=1

�

∇fi(�
�
k
i

ex) − ∇2fi(�
�
k
i

ex)�
�
k
i

ex

�

+

�

∑m

i=1
∇2fi(�

�
k
i

ex)

�

�
k
ex
,

(22)�
k
i
∶=

{

�
�
k
i , for����,

�
�
k
i

ex , for� − ����,
Hk

∶ =

m
∑

i=1

∇2fi(�
k
i
),

(23)bk ∶=
∑m

i=1

�

∇fi(�
k
i
) − ∇2fi(�

k
i
)�k

i

�

.
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3.1 � Computation and storage costs

We comment on the computation and storage costs of CIAG and A-CIAG. Note that 
(15), (16) and (17) in the algorithm require O(d2) FLOPS and they are the domi-
nant computation steps involved. The overall complexities for CIAG and A-CIAG 
are thus O(d2) FLOPS per iteration. On the other hand, the algorithm requires stor-
ing m vectors of d-dimesion and a d × d matrix [cf. (13)], therefore the storage cost 
is O(md + d2) = O(md) if m ≥ d . When d is small, the computation and storage cost 
of CIAG and A-CIAG are comparable to existing methods such as SAG, SVRG; 
meanwhile for large d, the computation cost will be undesirable for CIAG and 
A-CIAG.

When the component functions are the negative log-likelihood of a linear model, 
the storage complexity can be reduced to as low as O(m) . Note linear models are 
common in machine learning problems. We write

(24)fi(�) = gi(⟨�, xi⟩) + (�∕2)‖�‖2 ,
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where xi represents the ith associated data, while gi ∶ ℝ → ℝ is twice continuously 
differentiable. Observe that

where I is the d × d identity matrix. Substituting the above into (16) gives:

Therefore, it suffices for CIAG and A-CIAG to keep {⟨xi,�i⟩}
m
i=1

 for implementing 
the incremental updates, leading to an O(d2 + m) storage cost.

4 � Convergence analysis

In this section, we demonstrate that the proposed methods converge globally and 
characterize their convergence rates. Let us state the assumptions.

Assumption 1  The delayed iteration indices �k
i
 [cf. (6)] satisfy 0 ≤ k − �

k
i
≤ K for 

all i, k and for some K ≥ 0.

Assumption 2  The function F(�) is �-strongly convex and L-smooth with 
L ≥ 𝜇 > 0.

Assumption 3  For each i, the Hessian of the function fi(�) is LH,i-Lipschitz 
continuous.

We define LH ∶=
∑m

i=1
LH,i as the Lipschitz constant for the Hessian of the sum 

function F(�) . The first assumption above can be satisfied when Line  4 of Algo-
rithm 1 is implemented with either cyclic function selection, i.e.,  ik = (k mod m) + 1 , 
or implemented with a random shuffling step at the beginning of every epoch [13]. 
The second and the last assumptions are standard and they can be satisfied by a 
number of functions relevant to machine learning applications, e.g., the logistic loss 
function.

Let us first present the convergence result for the CIAG method — taking the 
parameterization � = c∕(� + L) for some 0 < c ≤ 2 . We have:

Theorem 1  Let Assumptions 1, 2 and 3 hold. Consider the CIAG method with its 
optimality gap sequence defined as V (k) ∶= ‖�

k − �
⋆

‖

2 where �⋆ is the optimal solu-
tion to (1). If the step size parameter, c, satisfies:

(25)∇fi(�) = g�
i
(⟨�, xi⟩)xi + 𝜌 �, ∇2fi(�) = g��

i
(⟨�, xi⟩)xi(xi)

⊤ + 𝜌I ,

(26)
bk = bk−1 + (g�

ik
(⟨�k

ik
, xik⟩) − g�

ik
(⟨�k−1

ik
, xik⟩))xik

+ g��
ik
(⟨�k−1

ik
, xik⟩)⟨�

k−1
ik

, xik⟩xik − g��
ik
(⟨�k

ik
, xik⟩)⟨�

k
ik
, xik⟩xik

(27)Hk = Hk−1 + (g��
ik
(⟨�k

ik
, xik⟩) − g��

ik
(⟨�k−1

ik
, xik⟩))xikx

⊤

ik
.
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then there exists � ∈ [1 − 2�
�L

L+�
, 1) such that the sequence {V (k)}k≥1 converges 

linearly,

Moreover, there exists an upper bound sequence {V̄ (k)}k≥1 , which satisfies V̄ (k) ≥ V (k) 
for all k ≥ 1 and V̄ (1) = V (1) such that

Next, for the A-CIAG method, we adopt the parameters:

such that the extarpolation factor and step size are controlled by some 0 < c ≤ 1∕2 . 
Our result is summarized as follows:

Theorem 2  Let Assumptions 1, 2 and 3 hold. Consider the A-CIAG method with 
its optimality gap sequence defined as h(k) ∶= F(�k) − F(�⋆) . If the step size param-
eter, c, satisfies:

where

(28)

c < min
{

2,
1

K

√

√

√

√

𝜇L(𝜇 + L)

2LH(L
2(V (1))

1

2 + 4L2
H
(V (1))

3

2 )

,

(

1

K4

𝜇L(𝜇 + L)4

2L2
H
(L4V (1) + 16L4

H
(V (1))3)

)1∕5
}

,

(29)V (k)
≤ �

⌈(k−1)∕(2K+1)⌉V (1), ∀ k ≥ 1 .

(30)lim
k→∞

V̄ (k+1)

V̄ (k)
≤ 1 − 2𝛾

𝜇L

L + 𝜇

= 1 −O

(

c

𝜅(F)

)

.

(31)� =
1 −

√

��

1 +
√

��

, � =
c

L
,

(32)c < min
{

c̄1, c̄2, c̄3, 1∕2
}

,

(33)

c̄1 ∶=

⎛

⎜

⎜

⎜

⎝

√

𝜇

√

18K2LH

L2

20L2

𝜇

(2h(1))
1
2 +

�

40LH

𝜇

�2

(2h(1))
3
2

⎞

⎟

⎟

⎟

⎠

1
2

,

c̄2 ∶=

⎛

⎜

⎜

⎜

⎝

2𝜇

81K4L2
H

L4

�

20L2

𝜇

�2

(2 ̄h(1)) +
�

40LH

𝜇

�4

(2h(1))3

⎞

⎟

⎟

⎟

⎠

1
4

,

c̄3 ∶=
L

√

324K2LH
(h(1) )

1
2

√

𝜇

+ 1296K4L2
H

h(1)

𝜇
2

+ 𝜇

,
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then the optimality gap h(k) satisfies

for some 𝛿 < 1 ; moreover, there exists an upper bound sequence {h̄(k)}k≥1 such that 
h̄(k) ≥ h(k) for all k ≥ 1 and h̄(1) = h(1) , such that

The above theorems reveal that there are two phases of convergence for the CIAG 
and A-CIAG methods – one that converges at a slow linear rate [cf. (29) and (34)], and 
the asymptotic phase where the algorithms converge linearly at a fast rate comparable 
to the FG and AFG methods [cf. (30) and (35)]. Such behavior is similar to the linear 
and superlinear convergence phases in the Newton’s method [3], and they can be antici-
pated as the CIAG and A-CIAG methods make use of the second order information.

Due to the strong convexity of F(�) [cf. Assumption 2], the potential function used 
in the two theorems above are comparable, since

Both theorems require the step size parameters be chosen according to the initial 
conditions [cf.  (28) and (32)]. The allowable range of step size � is inversely pro-
portional to LH and V (1) . The former term LH measures the ‘quadratic-ness’ of the 
component functions such that LH = 0 if fi(�) are quadratic. The latter term V (1) is 
the initial optimality gap for the algorithms, which is originated from the use of cur-
vature information. The favorable cases are when LH ≈ 0 or V (1) ≈ 0 such that we 
can take c ≈ 1 . The latter implies the following asymptotic convergence rates:

They coincide with the convergence rates achieved by the FG and AFG methods, 
respectively. Since the per-iteration complexity of CIAG, A-CIAG are O(d2) , while 
the complexity of FG, AFG are O(md) , the advantage of the proposed methods is 
significant when m ≫ d . It is also interesting to compare the convergence criterion 
for the CIAG and A-CIAG methods. Most noticeably, the A-CIAG criterion (33) 
differs from the CIAG criterion (28) for the region specified by c̃3 as the A-CIAG 
requires the step size parameter be chosen as c = O(1∕K4) for large K. Since 
K = Θ(m) , the initial optimality gap has to be as small as h(1) = O(1∕m4) to attain 

(34)h(k) ≤ �
⌈

k

2K+1
⌉

(2h(1)), ∀ k ≥ 1 ,

(35)lim
k→∞

h̄(k+1)

h̄(k)
= 1 −

√

𝜇𝛾 = 1 −

�

c

𝜅(F)
.

(36)
�

2
V (k)

≤ h(k) ≤
L

2
V (k)

⟹ h(k) = Θ(V (k)) .

(37)

𝖢𝖨𝖠𝖦 ∶ lim
k→∞

V̄ (k+1)

V̄ (k)
= 1 −O

(

1

𝜅(F)

)

,

𝖠 − 𝖢𝖨𝖠𝖦 ∶ lim
k→∞

h̄(k+1)

̄h(k)
= 1 −

√

1∕2

𝜅(F)
.
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the fast rate as (37). In comparison, the CIAG method only requires V (1) = O(1∕m2) 
to attain (37) due to the milder requirements in (28).

When V (1) ≉ 0 and LH ≉ 0 , we can choose a small step size parameter c at the 
beginning of CIAG (or A-CIAG) method that satisfies (28) (or (33)). By (29) 
(or (34)), for some finite T0 , the method is guaranteed to find a solution with 
V (T0+1) < V (1) after T0 iterations. As such, we can ‘re-start’ the method using 
�
(T0+1) as the initial point with a larger step size parameter c. The procedure can 

then be repeated until c is increased to c = 2 (or c = 1

2
 for A-CIAG). In this way, 

the ideal asymptotic convergence rates in (37) are achieved. Alternatively, we 
can employ other incremental optimization methods such as SAG [24] to ‘warm-
start’ the CIAG or A-CIAG methods with an initial point satisfying V (1) ≈ 0 . We 
remark that analyzing the exact complexity of a ‘re-starting’ schedule is non-triv-
ial which is beyond the scope of the current paper.

Nevertheless, from our numerical experiments in Sect. 5, we find that the prac-
tical step sizes can often be chosen more aggressively. For a wide range of prob-
lems, using a constant step size parameter c, the CIAG and A-CIAG methods con-
verge quickly in terms of the number of iterations used and CPU time, without 
the aforementioned re-starting or warm-starting techniques.

4.1 � Proofs of Theorem 1 and 2

The analysis for CIAG and A-CIAG methods consists of three steps.

•	 First, we carry out a perturbation analysis on the FG and AFG methods. 
Effectively, we view the CIAG (resp.  A-CIAG) method as a perturbed FG 
(resp. AFG) method with inexact gradients, where the errors are defined as: 

•	 Second, we analyze an upper bound on ‖ek
����

‖ or ‖ek
�����

‖ in terms of 

 where we shall use V (k) , h(k) as the potential functions for CIAG method and 
A-CIAG method, respectively. Here, we exploited Assumption 3 on the Lipschitz 
continuity of Hessian for the component functions.

•	 Third, using the bounds derived in the previous steps we study a nonlinear ine-
quality system to derive the convergence criterion of V (k) and h(k) . The nonlinear 
inequality exhibits the desired R-linear convergence when k → ∞.

(38)ek
����

∶= gk
����

−

m
∑

i=1

∇fi(�
k), ek

�����
∶= gk

�����
−

m
∑

i=1

∇fi(�
k
ex
) .

(39)V (k) ∶= ‖�
k − �

⋆

‖

2, h(k) ∶= F(�k) − F(�⋆) ,
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Overall, the key to our proof is to analyze the dynamics of optimality gap V (k) (or 
h(k) ) as a nonlinear system, whose convergence can be guaranteed by an appropri-
ately chosen step size � and the asymptotic convergence rate will only depend on the 
linear terms in the optimality gaps.

In the following, we assume that the CIAG, ACIAG methods are both initialized 
such that (23) holds. This can be done ‘on-the-fly’ with a self-initialization step 
in (15) and the analysis below will hold for all k ≥ K , i.e.,  after a complete pass 
through the dataset.

Step 1. The first step is to analyze the CIAG (resp. A-CIAG) method as a per-
turbed version of the FG (resp. AFG) method, which employs gk

����
 (resp. gk

�����
 ) 

as the gradient surrogate. We have:

Proposition 1  Consider the CIAG method. Under Assumption 2, if � ≤ 2∕(� + L) , 
we have that for all k ≥ 1,

The proof largely follows from [14, Section 3.3] and is omitted.

Proposition 2  Consider the A-CIAG method. Under Assumption 2, if � ≤ 1∕(2L) , 
we have that for all k ≥ 1,

From the propositions, we observe that when the gradient errors vanish with 
e� = 0 , setting � = 2∕(� + L) (resp.  � = 1∕(2L) ) gives V (k+1) = O((1 − 1∕�(F))k) 
(resp. h(k+1) = O((1 −

√

1∕2�(F))k) ). In other words, the linear convergence rates 
for FG and AFG methods can be recovered.

Comparing the two propositions reveals the differences in error structure between 
the CIAG and A-CIAG methods. First, in (41) the A-CIAG’s error is convolved with 
the linearly converging sequence (1 −

√

��)� , while in (40) the CIAG’s error is sim-
ply additive; second, (41) consists of a negative term depending on ‖�� − �

�

ex
‖

2 . 
This negative term revealed through our refined analysis of the error dynamics of 
A-CIAG [see (81)] and the resultant proposition is an improvement over [25]. Sig-
nificantly, this negative term is an important key for establishing the fast conver-
gence of A-CIAG.

(40)V (k+1)
≤

�

1 − 2�
�L

� + L

�

V (k) + �
2
‖ek

����
‖

2 + 2�
√

V (k)
‖ek

����
‖ .

(41)

h(k+1) ≤ 2(1 −
√

��)kh(1) +

k
�

�=1

(1 −
√

��)k−�
�
√

2�h(�)‖e�
�����

‖

+

�

9�

�

‖e�
�����

‖

2 −
�

4

1 − ��

√

��

‖�
� − �

�

ex
‖

2

�

.
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Step 2. Our next step relates the gradient errors e�
����

 , e�
�����

 to the optimality 
gaps V (�) , h(�) for the CIAG, A-CIAG methods, respectively. We obtain bounds for 
the errors as follows:

Proposition 3  Consider the CIAG method. Under Assumptions 1, 2 and 3, we have 
that for all � ≥ 1,

Proposition 4  Consider the A-CIAG method. Under Assumptions 1, 2 and 3, we 
have that for all � ≥ 1,

We observe that the upper bounds for ‖ek
����

‖ and ‖ek
�����

‖ obey similar structure 
in terms of their dependences on V (q) and h(q) . The upper bound for ‖e�

�����
‖ depends 

on {‖�j+1 − �
j+1
ex

‖

2}�−1
j=(�−K)++

 which is the difference between the extrapolated varia-
bles and the main variables.

Step 3. We omit the constants which are obtained from the propositions given in 
the previous steps. Instead, we focus on the main steps in the analysis and relegate 
the exact analysis to Appendices B and F.

For the CIAG method, simply substituting (42) into (40) yields:

where the exact form of the system will be shown in (63). Define

and using the fact that, when V (k) is small, the second part in the right hand side of 
(44) can be bounded by its lowest order term O(�3)(V

(k)
max)

3

2 , we have:

On the other hand, for the A-CIAG method, substituting (43) into (41) and rearrang-
ing terms show that the (k + 1) th optimality gap is bounded as:

(42)‖e�
����

‖ ≤ �
2K2LH

�

L2 max
(�−K)++≤q≤�−1

V (q) + 4L2
H

max
(�−2K)++≤q≤�−1

(V (q))2
�

.

(43)

‖e�
�����

‖ ≤
3KLH

2

�−1
�

j=(�−K)++

‖�
j+1 − �

j+1
ex

‖

2

+ �
2
3K2LH

2

20L2

�

max
(�−K−1)++≤q≤�−1

h(q)

+ �
2
3K2LH

2

�

40LH

�

�2

max
(�−2K−1)++≤q≤�−1

(h(q))2 .

(44)
V (k+1)

≤

(

1 − 2�
�L

� + L

)

V (k) +O(�3)×

max
(k−2K)++≤q≤k

(

(V (q))
3

2 + (V (q))2 + (V (q))
5

2 + (V (q))4
)

,

(45)V (k)
max

∶= max
(k−2K)++≤q≤k

V (q)

(46)V (k+1)
≤

(

1 − 2�
�L

� + L

)

V (k) +O(�3)(V (k)
max

)
3

2 .
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whose exact form can be found in (96). We emphasize that the last term on the right 
hand side depends on the difference between �� and ��

ex
 , which is unique for A-CIAG 

method due to the use of extrapolated iterates.
To finish the proof, we identify that in both (46) and (47), the potential func-

tions for CIAG and A-CIAG methods, i.e.,  V (k+1) and h(k+1) , are upper bounded by 
— a constant factor ( < 1 ) multiplied by the previous potential function’s value; and 
a high-order term that depends on the delayed version of the potential function’s 
value. With a sufficiently small step size, the effects from the later term vanishes as 
k → ∞ and the proposed methods converge linearly at the desired rates.

Particularly, in the case of CIAG, we consider the non-linear inequality:

where 0 ≤ p < 1 , qj ≥ 0 , 𝜂j > 1 for all j with some J,M < ∞ . We have:

Proposition 5  Consider (48). For some p ≤ 𝛿 < 1 , if

then (a) {R(k)}k≥1 converges linearly as R(k) ≤ �
⌈k∕M⌉R(1) for all k ≥ 1 ; (b) there exists 

an upper bound sequence {R̄(k)}k≥1 with R̄(k) ≥ R(k) for all k ≥ 1 and R̄(1) = R(1) , that 
converges linearly at rate p asymptotically,

Consequently, Theorem 1 can be proven by identifying that R(k) = V (k) and substi-
tuting the appropriate constants in Proposition 5, see Appendix B.

In the case of A-CIAG, it can be verified that under our choice of step size, the 
coefficient in front of ‖�� − �

�

ex
‖

2 is always negative for all � ≥ 1 . Define

When h(�)max is small, the terms inside the last bracket of the summation in (47) can be 
bounded by its lowest order term as O(�

5

2 )(h
(�)
max)

3

2 . Therefore, we consider an upper 
bound sequence {h̄(k)}k≥1 with h̄(k) ≥ h(k) for all k and:

(47)

h(k+1) ≤ 2(1 −
√

��)kh(1) +

k
�

�=1

(1 −
√

��)k−�×

�

O(�
5

2 ) max
(�−2K−1)++≤q≤�

�

(h(q))
3

2 + (h(q))2 + (h(q))
5

2 + (h(q))4
�

+

�

max
�≤q≤min{�+K,k}

O(
√

�h(q)) −
�

4

1 − ��

√

��

�

‖�
� − �

�

ex
‖

2

�

,

(48)R(k+1)
≤ pR(k) +

J
∑

j=1

qj max
k�∈[(k−M+1)++,k]

(R(k�))�j , ∀ k ≥ 1 ,

(49)p +
∑J

j=1
qj(R

(1))𝜂j−1 ≤ 𝛿 < 1 ,

(50)lim
k→∞

R̄(k+1)∕R̄(k) = p .

(51)h(�)
max

∶= max
(�−2K−1)++≤q≤�

h(q) .
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Subtracting (1 −
√

𝜇𝛾)h̄(k) from both sides gives:

which resembles (46) in the case of CIAG. Similar to the previous developments, we 
expect the system to converge linearly at the rate 1 −

√

�� .
Formally, consider an abstracted form of (47) with the non-negative sequence 

{R(k)}k≥1 that satisfies:

for all k ≥ 1 , where f (R(q)) is a non-decreasing function of R(q) and 𝜂j > 1 for all 
j. The parameters p, sj, f̄ , b are all non-negative, we have b ≥ 1 and M < ∞ , and 
{D(�)}�≥1 is an arbitrary non-negative sequence. The above system converges lin-
early at a rate given by the constant factor p < 1:

Proposition 6  Consider (54). Suppose that

Then, there exists an upper bound sequence {R̄(k)}k≥1 satisfying

Finally, Theorem  2 can be proven by identifying R(k) = h(k) and substituting the 
appropriate constants, see Appendix F.

5 � Numerical experiments

This section covers the performance of CIAG and A-CIAG using numerical experi-
ments. We focus on the logistic regression problem for training linear classifiers. 
We are given m data tuples {(xi, yi)}mi=1 , where xi ∈ ℝ

d is the feature vector and 
yi ∈ {±1} is the label. The ith component function is:

(52)h̄(k+1) = 2(1 −
√

𝜇𝛾)kh̄(1) +

k
�

�=1

(1 −
√

𝜇𝛾)k−�O(𝛾
5

2 )(h̄(�)
max

)
3

2 .

(53)h̄(k+1) = (1 −
√

𝜇𝛾)h̄(k) +O(𝛾
5

2 )(h̄(k)
max

)
3

2 ,

(54)
R(k+1)

≤ pkbR(1) +

k
∑

�=1

pk−�
{ J

∑

j=1

sj max
(�−M)++≤q≤�

(R(q))𝜂j

+

(

max
�≤q≤k

f (R(q)) − ̄f

)

D(�)

}

,

(55)f̄ ≥ f (bR(1)) and 𝛿 ∶= p +

J
∑

j=1

sj(bR
(1))𝜂j−1 < 1 .

(56)
(i) R̄(k)

≥ R(k), ∀ k ≥ 1, (ii) R̄(k+1)
≤ 𝛿

⌈k∕M⌉(bR̄(1)), ∀ k ≥ 1

and (iii) lim
k→∞

R̄(k+1)∕R̄(k) = p .

(57)fi(�) =
1

2m
‖�‖

2 + log(1 + exp(−yi⟨�, xi⟩)) .
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This function has the form of a linear model in (24) and it also satisfies Assump-
tions 2 and 3. For instance, an upper bound to the gradient and Hessian smoothness 
of F(�) and fi(�) , respectively, can be evaluated as:

5.1 � Synthetic data

We adopt a simple random data model. First, we generate �
����

∼ U[−1, 1]d and the 
feature vector as xi = [x̃i; 1] where x̃i ∼ U[−1, 1]d−1 ; then, the label is computed as 
yi = sign(⟨xi,�����

⟩).
To set up the benchmark, the step sizes for NIM and IQN are � = 1 . For the IAG 

method, we set � = 50∕(mL) . For the CIAG and A-CIAG methods, we set � = 1∕L 
and we set the extrapolation weight for A-CIAG as � = 0.95 . The above methods 
are implemented with deterministic, cyclic component function selection, i.e.,  
ik = (k mod m) + 1 . We also compare a few stochastic methods: for SAG and AccS-
VRG, we set � = 50∕(mL) ; and the batch size is B = 5 for AccSVRG with an epoch 
length of m. For SVRG2, we set an epoch length of 0.1m. The step sizes for NIM 
and SVRG2 will be specified later.

The evolution of the optimality gap against the number of effective passes 
through data are shown in Fig. 1 for different problem sizes. We defined the number 
of effective passes as the number of iterations (k) divided by m. From Fig. 1, we 
observe that both NIM and IQN methods have the fastest convergence, since both 
methods are shown to converge superlinearly. However, we note that the curvature 
aided methods, A-CIAG, CIAG and SVRG2, also demonstrate similar convergence 
speed in terms of the number of effective data passes used. Especially, the speed of 
the proposed A-CIAG almost matches that of the NIM method. 

5.2 � Real data

We empirically compare the algorithms on the datasets from LibSVM [8]. For 
this example, the algorithms are implemented in C++ based on the source codes 
by [23] (available: http://githu​b.com/arodo​manov​/nim_icml1​6_code) to demon-
strate the fastest possible practical performance. We only compare the proposed 
CIAG, A-CIAG to IAG, NIM and SAG, where the first four algorithms employ 
a deterministic, cyclic component function selection and the last algorithm 
employs random component function selection. For the NIM method, we tested 
both of its exact and inexact setting, where the inexact setting is a double-loop 
method which uses a conjugate gradient method to tackle the Hessian inverse 
involved. We have used a mini-batch setting for all the tested methods such that 
each fi(�) is composed of B = 5 data tuples. The numerical experiments were 

(58)L = 1 +
1

4

m
�

i=1

‖xi‖
2
2
, LH,i =

1

4
‖xi‖

2
2
.

http://github.com/arodomanov/nim_icml16_code
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conducted on a Laptop computer with an Intel Core i7 2.8Ghz quad-core proces-
sor and 16 gigabytes of memory.

An overview of the performance comparison can be found in Table 2, while 
Table 3 shows the algorithms’ parameter settings used for different dataset. As 
seen, the A-CIAG method outperformed the benchmarks for many of the con-
sidered datasets in terms of the wall clock convergence time, and the number of 
effective passes required is comparable to the best available method, NIM. An 
exception is the experiment on the mnist dataset. We suspect that this is due 
to the potentially poor condition number with the mnist dataset, as we observe 
that the unaccelerated methods SAG, IAG and CIAG exhibit significantly slower 
convergence than for the other datasets.

To investigate the behavior of the algorithms, Fig. 2 shows the evolution of 
gradient’s norm ‖∇F(�k)‖ against the number of effective passes and wall clock 
time on the tested datasets. As seen, the convergence speed of A-CIAG matches 
that of the Newton-based NIM, yet the wall clock time required is faster as it 
does not involve computing the Hessians’ inverse. It is worthwhile pointing out 
that except for the datasets covtype and alpha, the SAG method achieves a 
solution accuracy of ‖∇F(�k)‖ ≤ 10−6 in less wall clock time than the proposed 
methods. The benefits of our proposed methods are significant when the solution 
accuracy is high, as predicted by our theoretical results.

6 � Conclusions

We proposed two new optimization methods utilizing curvature-aided gradi-
ent tracking for large-scale optimization via incremental data processing. The 
proposed methods, CIAG and A-CIAG, attain an �-optimal solution with only 
O(�(F) log(1∕�)) and O(

√

�(F) log(1∕�)) iterations, respectively, for a small � , 
and provided that the initial point is close to the optimal solution. Numerical 

Fig. 1   The y-axis denotes the optimality gap plotted in log-scale and the x-axis shows the number of 
effective passes (defined as k/m). (Left) for the case with m = 1000 , d = 51 . (Right) for the case with 
m = 2000 , d = 501 . Here, for NIM and SVRG2 we use the step sizes � = 0.01 and � = 0.1∕L , respec-
tively
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experiments on real and synthetic data demonstrate the benefit of our algorithms. 
Future work includes designing and analyzing an optimal ‘re-starting’ scheme to 
achieve the ideal convergence rate (37) when the initial point is not close to the 
optimal solution, and extending the methods to tackling non-smooth optimization 
problems.

Acknowledgements  This work has been partially supported by the NSF Grant CCF-1717391 and CUHK 
Direct Grant #4055113.

A Proof of Proposition 3

Let us express the gradient error as 

Table 2   Performance comparison

We show the number of effective passes (defined as k/m) and the wall clock time required to reach con-
vergence with ‖∇F(�k)‖ ≤ 10−10 . For the NIM method, we tested both ‘exact’ and ‘inexact’ settings in 
Hessian inverse. Results inside the brackets (⋅) correspond to ‘inexact’ setting
Bold values highlight the best performance for each dataset
a Results for SAG are averaged over 10 trials

Dataset A-CIAG CIAG NIM SAGa

mushrooms 5.22 pass 43.5 pass 4.81 (4.92) pass 359.9 pass
(m = 8124, d = 112) 0.299 sec. 2.509 sec. 1.01 (0.329) sec. 1.521 sec.
a9a 3.6 pass 52.2 pass 3.0 (3.2) pass 165.8 pass
(m = 32561, d = 123) 1.067 sec. 15.26 sec. 3.38 (1.10) sec. 3.685 sec.
SUSY 7.1 pass 7.6 pass 6.2 (6.2) pass 52.3 pass
(m = 5 × 106, d = 18) 24.88 sec. 26.81 sec. 35.92 (29.82) sec. 99.00 sec.
covtype 4.5 pass 13.5 pass 4.0 (4.5) pass 101.9 pass
(m = 581012, d = 54) 5.888 sec. 17.71 sec. 13.84 (7.06) sec. 32.33 sec.
w8a 5.5 pass 7.2 pass 5.3 (5.4) pass 251.01 pass
(m = 49749, d = 300) 12.73 sec. 16.48 sec. 69.13 (13.82) sec. 23.20 sec.
mnist 4.3 pass 143.6 pass 3.8 (3.8) pass ≥ 103 pass
(m = 60000, d = 784) 89.59 sec. 2801 sec. 755.2 (86.94) sec. ≥ 392 sec.
alpha 2.4 pass 7.6 pass 2.3 (2.5) pass 80.5 pass
(m = 5 × 105, d = 500) 149.5 sec. 475.6 sec. 1111.6 (176.4) sec. 210.7 sec.

Table 3   Parameters used for A-CIAG, CIAG methods in the numerical experiments

mushrooms a9a SUSY covtype w8a mnist alpha

A-CIAG
� =

10−3

L

� =
10−4

L

� =
10−5

L

� =
5⋅10−6

L

� =
10−3

L

� =
10−4

L

� =
5⋅10−6

L

� = 0.99 � = 0.99 � = 0.99 � = 0.99 � = 0.99 � = 0.99 � = 0.99

CIAG
� =

10−3

L

� =
2⋅10−4

L

� =
10−5

L

� =
5⋅10−6

L

� =
10−3

L

� =
10−4

L

� =
10−5

L
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  Applying Lemma 1:

Furthermore, we have

(59)e
k

����
=

m
∑

i=1

(

∇f
i
(��

k

i ) + ∇2
f
i
(��

k

i )(�k − �
�
k

i ) − ∇f
i
(�k)

)

.

(60)

‖ek
����

‖ ≤

m
�

i=1

LH,i

2
‖�

�
k
i − �

k
‖

2
≤

m
�

i=1

LH,i

2
(k − �

k
i
)

⏟⏟⏟

≤K

k−1
�

j=�k
i

‖�
j+1 − �

j
‖

2

≤
KLH

2

k−1
�

j=(k−K)++

‖�
j+1 − �

j
‖

2
≤

KLH

2
�
2

k−1
�

j=(k−K)++

‖e
j

����
+ ∇F(�j)‖2

≤ �
2KLH

k−1
�

j=(k−K)++

�

‖e
j

����
‖

2 + ‖∇F(�j)‖2
�

.

Fig. 2   Evolution of ‖∇F(�k)‖ (y-axis) against number of effective passes and wall clock time on the data-
sets. The experiment settings are the same as in Table 2
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where (a) is due to ‖a − b‖2 ≤ 2(‖a‖2 + ‖b‖2) . Plugging these back into (60) and 
using �k−K

i
≥ k − 2K gives:

B Step 3 in the Proof of Theorem 1

Combining Proposition 1 and 3 yields

which is the exact form for Eq. (44). The right hand side in (64) can be decomposed 
into two terms—the first term is of the same order as V (k) , and the other terms are 
delayed and higher-order terms of V (�).

Observe that (64) is a special case of (48) in Proposition  5 with R(k) = V (k) , 
M = 2K + 1 , p = 1 − 2��L∕(� + L) and

The corresponding convergence condition in (49) can be satisfied if

(61)‖∇F(�j)‖2 = ‖∇F(�j) − ∇F(�⋆)‖2 ≤ L2V (j),

(62)‖e
j

����
‖

(a)

≤

m
�

i=1

LH,i

�

V (j) + V (�
j

i
)
�

≤ 2LH max
�∈{�

j

i
}m
i=1

∪{j}

V (�) ,

(63)
‖ek

����
‖ ≤ �

2KLH

k−1
�

j=(k−K)++

⎛

⎜

⎜

⎝

L2V (j) +

�

2LH max
�∈{�

j

i
}m
i=1

∪{j}

V (�)

�2
⎞

⎟

⎟

⎠

≤ �
2K2LH

�

L2 max
(k−K)++≤�≤k−1

V (�) + 4L2
H

max
(k−2K)++≤�≤k−1

(V (�))2
�

.

(64)

V (k+1)
≤

(

1 − 2�
�L

� + L

)

V (k)

+ 2�3K2LH

(

L2 max
(k−K)++≤�≤k

(V (�))
3

2 + 4L2
H

max
(k−2K)++≤�≤k

(V (�))
5

2

)

+ 2�6K4L2
H

(

L4 max
(k−K)++≤�≤k−1

(V (�))2 + 16L4
H

max
(k−2K)++≤�≤k−1

(V (�))4
)

,

(65)
q1 = 2�3K2L2LH , �1 = 3∕2, q2 = 8�3K2L3

H
, �3 = 5∕2 ,

q3 = 2�6K4L2
H
L4, �3 = 2, q4 = 32�6K4L6

H
, �4 = 4 .

(66)
𝛾
5 2K4L2

H

(

L4V (1) + 16L4
H
(V (1))3

)

<

𝜇L

𝜇 + L

and 𝛾
2 2K2LH

(

L2(V (1))1∕2 + 4L2
H
(V (1))3∕2

)

<

𝜇L

𝜇 + L
,
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which can be implied by (28). The proof is thus concluded.

C Proof of Proposition 5

The proof of the proposition is divided into two parts. We first show that under (49), 
the sequence {R(k)}k≥1 converges linearly as in part (a) of the proposition; then we show 
that the rate of convergence is asymptotically given by p as in part (b) of the proposi-
tion [cf. (50)].

The first part of the proof is achieved using induction on all � ≥ 1 with:

The base case when � = 1 can be straightforwardly established:

Suppose that the statement (67) is true up to � = c , for � = c + 1 , we have:

Similar statement also holds for R(k) with k = cM + 3, ..., (c + 1)M + 1 . We thus con-
clude with:

which proves the first part of the proposition.
The second part of the proof establishes the asymptotic linear rate of convergence 

in (50). We consider the upper bound sequence {R̄(k)}k≥1 such that R̄(1) = R(1) and the 
inequality (48) is tight for {R̄(k)}k≥1 . Obviously, it also holds that R̄(k) ≤ 𝛿

⌈(k−1)∕M⌉R̄(1) 
for all k ≥ 1 . Now, observe that

For any k� ∈ [k −M + 1, k] and any 𝜂 > 1 , we have:

Note that as R̄(k+1)∕R̄(k) ≥ p , we have:

(67)R(k)
≤ �

� R(1), ∀ k = (� − 1)M + 2, ...,�M + 1 .

(68)

R(2) ≤ pR(1) +
∑J

j=1
qj(R

(1))�j ≤ �R(1) ,

⋮

R(M+1) ≤ pR(M) +
∑J

j=1
qj(R

(0))�j ≤ �R(1) .

R(cM+2)
≤ pR(cM+1) +

J
∑

j=1

qj max
k�∈[(c−1)M+2,cM+1]

(R(k�))�j

≤ p
(

�
cR(1)

)

+

J
∑

j=1

qj
(

�
cR(1)

)

�j
≤ �

c

(

pR(1) +

J
∑

j=1

qj(R
(1))�j

)

≤ �
c+1R(1) .

(69)R(k)
≤ �

⌈(k−1)∕M⌉ R(1), ∀ k ≥ 1 ,

(70)R̄(k+1)

R̄(k)
= p +

∑J

j=1
qj maxk�∈[(k−M+1)++,k]

(R(k�))𝜂j

R̄(k)
.

(71)
(R̄(k�))𝜂

R̄(k)
=

R̄(k�)

R̄(k)
(R̄(k�))𝜂−1 ≤

R̄(k�)

R̄(k)
(R(1))𝜂−1𝛿

(⌈
k�−1

M
⌉)(𝜂−1) .
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Taking k → ∞ shows that the right hand side vanishes. As a result, we have 
limk→∞ R̄(k+1)∕R̄(k) = p . This proves part (b) of the proposition.

D Proof of Proposition 2

The following proof is partially inspired by [7, 21, 25]. For simplicity, we drop the 
subscript ACIAG in gk

�����
 and ek

�����
 . Define � ∶= 1 −

√

��  and the estimation 
sequence as:

where gk ∶= bk +Hk
�
k
ex

 is the gradient surrogate used in (17). Recall that 
ek ∶= gk − ∇F(�k

ex
) is the gradient error. The following inequality, which holds for 

all � ∈ ℝ
d , can be immediately obtained using (73) and the �-strong convexity of 

F(�):

To facilitate our development, let us denote:

By setting � = �
⋆ in (74), we have:

Now, if F(�k+1) ≤ 𝛷
⋆

k+1
 , then the inequality above shows the evolution of the opti-

mality gap h(k) . This motivates our next step, relating F(�k+1) to 𝛷⋆

k+1
.

(72)
(R̄(k�))𝜂

R̄(k)
≤ p−M(R(1))𝜂−1𝛿

(⌈
k�−1

M
⌉)(𝜂−1) .

(73)
�1(�) ∶= F(�1

ex
) +

�

2
‖� − �

1
ex
‖

2

�k+1(�) ∶= � �k(�) +
√

��

�

F(�k
ex
) + ⟨gk,� − �

k
ex
⟩ +

�

2
‖� − �

k
ex
‖

2
�

,

(74)

�k+1(�) − F(�) = ��k(�) − F(�)

+
√

��

�

F(�k
ex
) + ⟨∇F(�k

ex
) + ek,� − �

k
ex
⟩ +

�

2
‖� − �

k
ex
‖

2
�

≤ �

�

�k(�) − F(�)
�

+
√

��⟨ek,� − �
s
ex
⟩

≤ �
k
�

�1(�) − F(�)
�

+

k
�

�=1

�
k−�

√

��⟨e� ,� − �
�

ex
⟩ .

(75)𝛷
⋆

k
∶= min

�

𝛷k(�), vk ∶= argmin
�

𝛷k(�) .

(76)

𝛷
⋆

k+1
− F(�⋆) ≤ 𝛷k+1(�

⋆) − F(�⋆)

≤ 𝜌
k
�

𝜇

2
‖�

⋆ − �
1
ex
‖

2 + F(�1
ex
) − F(�⋆)

�

+

k
�

�=1

𝜌
k−�

√

𝜇𝛾⟨e� ,�⋆ − �
�

ex
⟩

≤ 2𝜌k
�

F(�1) − F(�⋆)
�

+

k
�

�=1

𝜌
k−�

√

𝜇𝛾⟨e� ,�⋆ − �
�

ex
⟩ .
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Lower bounding 𝛷⋆

k+1
 in the presence of errors. Since ∇2

�k(�) = �I , the func-
tion �k(�) is quadratic and we can represent �k(�) alternatively as

By substituting (77) into the definition of �k+1(�) in (73) and evaluating the first 
order optimality condition of the latter, we have:

By setting � = �
k
ex

 in (73) and using the recursive definition of �k+1(�) , we obtain

while setting � = �
k
ex

 in (77) and using (78) gives us:

Comparing the right hand side of (79) and (80) shows:

Using the fact vk − �
k
ex
= (

√

��)−1
�

�
k
ex
− �

k
�

 (proven in Sect. D.1), we have

We obtain the following chain:

(77)𝛷k(�) = 𝛷
⋆

k
+

𝜇

2
‖� − vk‖2 .

(78)

√

��(gk + �(vk+1 − �
k
ex
)) + � �(vk+1 − vk) = 0 ,

⟹ vk+1 = �vk +
√

���
k
ex
−

�

�

�

gk .

(79)
𝛷k+1(�

k
ex
) = 𝜌𝛷k(�

k
ex
) +

√

𝜇𝛾F(�k
ex
) = 𝜌

�

𝛷
⋆

k
+

𝜇

2
‖�

k
ex
− vk‖2

�

+
√

𝜇𝛾F(�k
ex
) ,

(80)

𝛷k+1(�
k
ex
) = 𝛷

⋆

k+1
+

𝜇

2

�

𝜌
2
‖�

k
ex
− vk‖2 +

𝛾

𝜇

‖gk‖2 + 2𝜌

�

𝛾

𝜇

⟨gk,�k
ex
− vk⟩

�

.

𝛷
⋆

k+1
= 𝜌

�

𝛷
⋆

k
+

𝜇

2
‖�

k
ex
− vk‖2

�

+
√

𝜇𝛾F(�k
ex
)

−
𝜇

2

�

𝜌
2
‖�

k
ex
− vk‖2 +

𝛾

𝜇

‖gk‖2 + 2𝜌

�

𝛾

𝜇

⟨gk,�k
ex
− vk⟩

�

= 𝜌𝛷
⋆

k
+
√

𝜇𝛾F(�k
ex
) +

𝜇

2
𝜌

√

𝜇𝛾‖�
k
ex
− vk‖2 −

𝛾

2
‖gk‖2 − 𝜌

√

𝜇𝛾⟨gk,�k
ex
− vk⟩ .

(81)

𝛷
⋆

k+1
= 𝜌𝛷

⋆

k
+
√

𝜇𝛾F(�k
ex
) +

𝜇

2

𝜌

√

𝜇𝛾

‖�
k
ex
− �

k
‖

2 −
𝛾

2
‖gk‖2 − 𝜌⟨gk,�k − �

k
ex
⟩ .
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where (a) is due to the L-smoothness of F; (b) is due to (81); (c) is obtained 
by expanding gk as ∇F(�k

ex
) + ek ; (d) is obtained by adding and sub-

tracting (�∕2)‖�k − �
k
ex
‖

2 inside the first bracket, applying the identity 
� + �∕

√

�� = (1 − ��)∕
√

��  , and using the �-strong convexity of F; and (e) is due 
to the following chain of inequalities:

As 𝛷1(�
1) = F(�1) = 𝛷

⋆

1
 , applying the inequality (82) recursively shows:

Importantly, (83) establishes a lower bound on 𝛷⋆

k+1
 in terms of F(�k+1) and ek.

Proving Proposition 2. Finally, summing up (83) and (76) gives:

(82)

F(�k+1) −𝛷
⋆

k+1

(a)

≤ F(�k
ex
) − 𝛾⟨∇F(�k

ex
), gk⟩ +

L𝛾2

2
‖gk‖2 −𝛷

⋆

k+1

(b)
= 𝜌

�

F(�k
ex
) + ⟨gk,�k − �

k
ex
⟩ −𝛷

⋆

k

�

− 𝛾⟨∇F(�k
ex
), gk⟩ +

𝛾

2
(1 + L𝛾)‖gk‖2 −

𝜇

2

𝜌

√

𝜇𝛾

‖�
k
ex
− �

k
‖

2

(c)
= 𝜌

�

F(�k
ex
) + ⟨∇F(�k

ex
),�k − �

k
ex
⟩ −𝛷

⋆

k

�

− 𝛾⟨∇F(�k
ex
), gk⟩

+ 𝜌⟨ek,�k − �
k
ex
⟩ +

𝛾

2
(1 + L𝛾)‖gk‖2 −

𝜇

2

𝜌

√

𝜇𝛾

‖�
k
ex
− �

k
‖

2

(d)

≤ 𝜌

�

F(�k) −𝛷
⋆

k
+ ⟨ek,�k − �

k
ex
⟩

�

−
𝜇

2

1 − 𝜇𝛾

√

𝜇𝛾

‖�
k
ex
− �

k
‖

2

+
𝛾

2
(1 + L𝛾)‖gk‖2 − 𝛾⟨∇F(�k

ex
), gk⟩

(e)

≤ 𝜌

�

F(�k) −𝛷
⋆

k
+ ⟨ek,�k − �

k
ex
⟩

�

−
𝜇

2

1 − 𝜇𝛾

√

𝜇𝛾

‖�
k
ex
− �

k
‖

2 + 𝛾‖ek‖2 ,

�

2
(1 + L�)‖gk‖2 − �⟨∇F(�k

ex
), gs⟩

≤
�

2
(1 + L�)

�

‖ek‖2 + ‖∇F(�k
ex
)‖2

�

+
L�2

2

�

‖∇F(�k
ex
)‖2 + ‖ek‖2

�

− �‖∇F(�k
ex
)‖2

=

�

�

2
+ L�2

�

‖ek‖2 +
�

−
�

2
+ L�2

�

‖∇F(�k
ex
)‖2 ≤ �‖ek‖2 .

(83)

F(�k+1) −𝛷
⋆

k+1
≤

k
�

�=1

𝜌
k−�

�

(1 −
√

𝜇𝛾)⟨e� ,�� − �
�

ex
⟩ + 𝛾‖e�‖2 −

𝜇

2

1 − 𝜇𝛾

√

𝜇𝛾

‖�
�

ex
− �

�
‖

2

�

.



	 H.-T. Wai et al.

1 3

Let us take a look at the last summands in the above inequality: for any � ≥ 1,

where (a) is resulted from the fact ⟨e� ,�� − �
�

ex
⟩ ≤ (1∕2)(‖e�‖2∕c + c‖�� − �

�

ex
‖

2) 
for any c > 0 and we have set c = �

2

1−��
√

��

 therein; (b) is due to the relation 

‖�
� − �

⋆

‖ ≤

√

2h(�)∕𝜇 ; (c) is due to � +
√

�∕�

1−��
≤ 3

√

�∕� , which can be verified 
through replacing � by its upper bound 1/(2L) in the denominator of the fraction on 
the left-hand-side. Combining the two equations above yields the desired result of 
Proposition.

D.1 Proof of the equality

We prove vk − �
k
ex
= (

√

��)−1
�

�
k
ex
− �

k
�

 using induction on k. Clearly, the said equal-
ity holds for k = 1 since v1 = �

1 = �
1
ex

 , and we assume that it holds up to k. Consider:

where we have used the induction hypothesis. Furthermore, using �k+1 = �
k
ex
− �gk,

(84)

h(k+1) ≤ 2𝜌kh(1) +

k
�

�=1

𝜌
k−�

�

√

𝜇𝛾⟨e� ,�⋆ − �
�

ex
⟩

+ 𝜌⟨e� ,�� − �
�

ex
⟩ + 𝛾‖e�‖2 −

𝜇

2

1 − 𝜇𝛾

√

𝜇𝛾

‖�
�

ex
− �

�
‖

2

�

= 2𝜌kh(1) +

k
�

�=1

𝜌
k−�

�

√

𝜇𝛾⟨e� ,�⋆ − �
�
⟩

+ ⟨e� ,�� − �
�

ex
⟩ + 𝛾‖e�‖2 −

𝜇

2

1 − 𝜇𝛾

√

𝜇𝛾

‖�
�

ex
− �

�
‖

2

�

.

(85)

√

𝜇𝛾⟨e� ,�⋆ − �
�
⟩ + ⟨e� ,�� − �

�

ex
⟩ + 𝛾‖e�‖2 −

𝜇

2

1 − 𝜇𝛾

√

𝜇𝛾

‖�
�

ex
− �

�
‖

2

(a)

≤
√

𝜇𝛾‖e�‖‖�⋆ − �
�
‖ +

�

𝛾 +

√

𝛾∕𝜇

1 − 𝜇𝛾

�

‖e�‖2 −
𝜇

4

1 − 𝜇𝛾

√

𝜇𝛾

‖�
�

ex
− �

�
‖

2

(b)

≤

√

2𝛾h(�)‖e�‖ +

�

𝛾 +

√

𝛾∕𝜇

1 − 𝜇𝛾

�

‖e�‖2 −
𝜇

4

1 − 𝜇𝛾

√

𝜇𝛾

‖�
�

ex
− �

�
‖

2

(c)

≤

√

2𝛾h(�)‖e�‖ +

�

9𝛾

𝜇

‖e�‖2 −
𝜇

4

1 − 𝜇𝛾

√

𝜇𝛾

‖�
�

ex
− �

�
‖

2 ,

vk+1 − �
k+1
ex

= �vk +
√

���
k
ex
−

�

�

�

gk − �
k+1
ex

= �(vk − �
k
ex
) + �

k
ex
−

�

�

�

gk − �
k+1
ex

=
�

√

��

(�k
ex
− �

k) + �
k
ex
−

�

�

�

gk − �
k+1
ex

,
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where (a) is due to �(�k+1 − �
k) = (1 +

√

��)(�k+1
ex

− �
k+1).

E Proof of Proposition 4

We begin by observing that due to the LH,i-Lipschitz continuity of the Hessian of 
fi and using Lemma 1, we have:

Now, expanding the right hand side of (87) gives:

Remarkably, the above bound resembles that of Proposition 3 with the exception of 
the last term that depends on �j+1

ex
− �

j+1 . This is included to account for the extrapo-
lated iterates used in the A-CIAG method.

To find an upper bound of ‖e�
�����

‖ to corroborate Proposition 4, in what fol-
lows, we will upper bound ‖ej

�����
‖

2 and ‖∇F(�j
ex
)‖2 , respectively. Firstly,

Noticing that as ‖�j − �
𝜏
j

i
‖

2 ≤ 2(‖�j − �
⋆

‖

2 + ‖�
𝜏
j

i − �
⋆

‖

2) ≤ (4∕𝜇)(h(j) + h(𝜏
j

i
)) , it 

follows from (89) that

(86)

vk+1 − �
k+1
ex

=
√

��

−1
�

�(�k
ex
− �

k) +
√

��(�k
ex
− �

k+1
ex

) − �gk
�

(a)
=

√

��

−1
�

√

��(�k+1 − �
k+1
ex

) + �(�k+1 − �
k)

�

=
√

��

−1�

�
k+1
ex

− �
k+1

�

,

(87)‖e�
�����

‖ = ‖g�
�����

− ∇F(��

ex
)‖ ≤

m
�

i=1

LH,i

2
‖�

�

ex
− �

�
�

i

ex‖
2 .

(88)

‖e�
�����

‖ ≤

m
�

i=1

LH,i

2

�

�

�

�
�

ex
− �

�
�

i

ex
�

�

�

2

≤

m
�

i=1

LH,i

2
(� − �

�

i
)

⏟⏞⏟⏞⏟

≤K

�−1
�

j=�−��
i

‖�
j+1
ex

− �
j
ex
‖

2

≤
KLH

2

�−1
�

j=(�−K)++

‖�
j+1
ex

− �
j
ex
‖

2 =
KLH

2

�−1
�

j=(�−K)++

‖�g
j

�����
+ �(�j+1 − �

j)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=�j+1
ex

−�j+1

‖

2

≤
3KLH

2

�−1
�

j=(�−K)++

�

�
2
�

‖ej‖2 + ‖∇F(�j
ex
)‖2

�

+ ‖�
j+1
ex

− �
j+1

‖

2
�

.

(89)

‖e
j

�����
‖ ≤

m
�

i=1

LH,i

2

�

�

�

�
j
ex
− �

�
j

i

ex
�

�

�

2

≤

m
�

i=1

LH,i

�

(1 + �)2‖�j − �
�
j

i
‖

2 + �
2
‖�

j−1 − �
�
j

i
−1
‖

2
�

.
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which implies

Secondly,

thus

Substituting (91) and (93) into the right hand side of (88) verifies Proposition 4.

F Step 3 in the Proof of Theorem 2

To proceed with the proof, let us define the following quantity:

Using Proposition 4, we obtain:

We need to further bound h(k) [recall for (41) in Proposition 2] in terms of itself to 
create a ‘recursion’ for h(k) . To upper bound the right hand side of (41), let us start 
from (94). It follows that

(90)

‖e
j

�����
‖ ≤

4

�

m
�

i=1

LH,i

�

(1 + �)2(h(j) + h(�
j

i
)) + �

2(h(j−1) + h(�
j

i
−1))

�

≤
8LH

�

�

(1 + �)2 + �
2
�

max
(j−K−1)++≤q≤j

h(q) ≤
40LH

�

max
(j−K−1)++≤q≤j

h(q) ,

(91)
�−1
�

j=(�−K)++

‖e
j

�����
‖

2
≤ K

�

40LH

�

�2

max
(�−2K−1)++≤q≤�

(h(q))2 .

(92)‖∇F(�j
ex
)‖2 ≤ 2L2

�

‖�
j − �

⋆

‖

2 + ‖�
j − �

j−1
‖

2
�

≤
4L2

𝜇

�

3h(j) + 2h(j−1))
�

,

(93)
�−1
�

j=(�−K)++

‖∇F(�j
ex
)‖2 ≤

20L2K

�

max
(�−K−1)++≤q≤�−1

h(q) .

Ẽ(�) ∶= 𝛾

5

2

�

9

2
K2LH

�

�

40LH

𝜇

�2

max
(�−2K−1)++≤q≤�

(h(q))2 +
20L2

𝜇

max
(�−K−1)++≤q≤�

h(q)

�

+ 𝛾

9

2

81K4L2
H

4
√

𝜇

�

�

40LH

𝜇

�4

max
(�−2K−1)++≤q≤�

(h(q))4 +

�

20L2

𝜇

�2

max
(�−K−1)++≤q≤�

(h(q))2

�

.

(94)

√

2𝛾h(�)‖e�
�����

‖ +

�

9𝛾

𝜇

‖e�
�����

‖

2

≤ ̃E(�) +

�
�

j=(�−K+1)++

⎛

⎜

⎜

⎝

�

9𝛾h(�)K2L2
H

2
‖�

j − �
j
ex
‖

2 +
27K3L2

H

4

�

9𝛾

𝜇

‖�
j − �

j
ex
‖

4

⎞

⎟

⎟

⎠

.
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Moreover, we observe for � ≥ 2:

The coefficient in front of the last ‖�� − �
�

ex
‖

2 term can be upper bounded as:

If we define

where E(�,k) = E(�,k−1) for all k ≥ � + m . Applying Proposition 2 readily shows

Concluding the Proof of Theorem 2. Our goal is to analyze (97) using Proposition 6. 
Let us recognize that:

The conditions in (55) are satisfied when

k
�

�=1

𝜌
k−�

�

√

2𝛾h(�)‖e�‖ +

�

9𝛾

𝜇

‖e�‖2 −
𝜇

4

1 − 𝜇𝛾

√

𝜇𝛾

‖�
�

ex
− �

�
‖

2

�

≤

k
�

�=1

𝜌
k−�

�

Ẽ(�)

+

⎛

⎜

⎜

⎝

min{k,�+K−1}
�

j=�

⎛

⎜

⎜

⎝

�

9𝛾K2L2
H
h(j)

2
+

81K3L2
H

4

�

𝛾

𝜇

‖�
� − �

�

ex
‖

2

⎞

⎟

⎟

⎠

−
𝜇

4

1 − 𝜇𝛾

√

𝜇𝛾

⎞

⎟

⎟

⎠

‖�
� − �

�

ex
‖

2

�

.

(95)‖�
� − �

�

ex
‖

2
≤ 2(‖�� − �

⋆

‖

2 + ‖�
�−1 − �

⋆

‖

2) ≤
4

𝜇

�

h(�) + h(�−1)
�

,

C̃(�,k) ∶= 𝛾K2LH

�

9

2
max

�≤q≤min{�+K−1,k}
(h(q))

1

2 + 𝛾

81K4L2
H

𝜇

3

2

�

h(�) + h(�−1)
�

−
𝜇

4

1 − 𝜇𝛾

√

𝜇

.

(96)E(�,k) ∶= ̃E(�) + ̃C(�,k)
‖�

� − �
�

ex
‖

2

√

𝛾

,

(97)h(k+1) ≤ 2(1 −
√

��)kh(1) +

k
�

�=1

(1 −
√

��)k−�E(�,k) .

R(k) =h̄(k), p = (1 −
√

𝜇𝛾), b = 2, M = 2K + 1, 𝜂1 =
3

2
, 𝜂2 =

5

2
, 𝜂3 = 2, 𝜂4 = 4

s1 =𝛾
5

2

�

9

2
K2LH

20L2

𝜇

, s2 = 𝛾

5

2

�

9

2
K2LH

�

40LH

𝜇

�2

,

s3 =𝛾
9

2

81K4L2
H

4
√

𝜇

�

20L2

𝜇

�2

, s4 = 𝛾

9

2

81K4L2
H

4
√

𝜇

�

40LH

𝜇

�4

,

c =
𝜇

4

1 − 𝜇𝛾

√

𝜇

, D(�) =
‖�

� − �
�

ex
‖

2

√

𝛾

, f (h̄(q)) = 𝛾

�

K2LH

�

9

2
(h̄(q))

1

2 +
162K4L2

H

𝜇

3

2

h̄(q)

�

.
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and

that can be implied by

Substituting these constants into Proposition 6 proves the claims in Theorem 2.

G Proof of Proposition 6

Define {R̄(k)}k≥1 that satisfies:

By subtracting pR̄(k) from R̄(k+1) , (101) can be alternatively expressed as:

Now, consider the statements (1) and (2) in (56) as the following event:

for all z ≥ 1 . We shall prove that Ez is true for z = 1, 2, ... using induction.

(98)

√

𝜇

4
− 𝛾

�

K2LH

√

9(h̄(1))
1

2 +
324K4L2

H

𝜇

3

2

h̄(1) +
𝜇

3

2

4

�

≥ 0

⟺ 𝛾 ≤

√

𝜇

4

�

K2LH

√

9(h̄(1))
1

2 +
324K4L2

H

𝜇

3

2

h̄(1) +
𝜇

3

2

4

�−1

∶=
c̄3

L
,

(99)

1 > (1 −
√

𝜇𝛾) + 𝛾

5

2

�

9

2
K2LH

�

20L2

𝜇

(2h̄(1))
1

2 +

�

40LH

𝜇

�2

(2h̄(1))
3

2

�

+ 𝛾

9

2

81K4L2
H

4
√

𝜇

�

�

20L2

𝜇

�2

(2h̄(1)) +

�

40LH

𝜇

�4

(2h̄(1))3

�

,

(100)

𝛾 <

⎛

⎜

⎜

⎝

√

𝜇

√

18K2LH

�

20L2

𝜇

(2h̄(1))
1

2 +

�

40LH

𝜇

�2

(2h̄(1))
3

2

�−1
⎞

⎟

⎟

⎠

1

2

∶=
c̄1

L
and

𝛾 <

⎛

⎜

⎜

⎝

2𝜇

81K4L2
H

�

�

20L2

𝜇

�2

(2h̄(1)) +

�

40LH

𝜇

�4

(2h̄(1))3

�−1
⎞

⎟

⎟

⎠

1

4

∶=
c̄2

L
.

(101)R̄(k+1) = pkbR̄(1) +

k
∑

�=1

pk−�

(

J
∑

j=1

sj max
(�−M)++≤q≤�

(R̄(q))𝜂j

)

, R̄(1) = R(1) ,

(102)R̄(k+1) − pR̄(k) =

J
∑

j=1

sj max
(k−M)++≤q≤k

(R̄(q))𝜂j .

Ez =

{

R̄((z−1)M+k+1)
≥ R((z−1)M+k+1), R̄((z−1)M+k+1)

≤ 𝛿
z(bR̄(1)), k = 1, ...,M

}

,
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Base case with z = 1 . To prove E1 , let us apply another induction on k inside 
the event. For the base case of k = 1,

where we used the fact f̄ ≥ f (bR(1)) ≥ f (R(1)) . Furthermore, the base case holds as:

For the induction step, suppose that the statements in (103) are also true up to 
k = k� − 1 with z = 1 such that R̄(k�) ≥ R(k�) and R̄(k�) ≤ 𝛿(bR̄(1)) . Consider the case 
of k = k� , we observe that f̄ ≥ f (bR(1)) ≥ f (𝛿bR(1)) ≥ f (R̄(q)) ≥ f (R(q)) for all 
q = 1, ..., k� . Therefore, we can lower bound R̄(k�+1) as:

where the right hand side is exactly R(k�+1) ; also, using (102), we can show:

Induction Case. For the induction case, suppose that Ez is true for all z up to z′ . We 
consider the case when z = z� + 1 . Once again, we apply another induction on k. In 
the base case of k = 1 and z = z� + 1 , we have

where we used f̄ ≥ f (bR(1)) ≥ f (R̄(q)) ≥ f (R(q)) for all q up to q = z�M + 1 (by the 
induction hypothesis). Furthermore, the base case holds since:

(103)R̄(2)
≥ p(bR(1)) +

J
∑

j=1

sj(R
(1))𝜂j − (f̄ − f (R(1)))D(1) = R(2) ,

(104)R̄(2) = (bR̄(1))

(

p + (1∕b)

J
∑

j=1

sj(R̄
(1))𝜂j−1

)

≤ 𝛿(bR̄(1)) .

R̄(k�+1) = pk
�

(bR̄(1)) +

k�
∑

�=1

pk
�−�

(

J
∑

j=1

sj max
(�−M)++≤q≤�

(R̄(q))𝜂j

)

≥ pk
�

(bR(1)) +

k�
∑

�=1

pk
�−�

(

J
∑

j=1

sj max
(�−M)++≤q≤�

(R(q))𝜂j −

(

f̄ − max
�≤q≤k�

f (R(q))

)

V (�)

)

,

(105)R̄(k�+1)
≤ (bR̄(1))

(

𝛿p +

J
∑

j=1

sj(bR̄
(1))𝜂j−1

)

≤ 𝛿(bR̄(1)) .

R̄(z�M+2) = pz
�M+1(bR̄(1)) +

z�M+1
∑

�=1

pz
�M+1−�

(

J
∑

j=1

sj max
(�−M)++≤q≤�

(R̄(q))𝜂j

)

≥ pz
�M+1(bR(1)) +

z�M+1
∑

�=1

pz
�M+1−�

(

J
∑

j=1

sj max
(�−M)++≤q≤�

(R(q))𝜂j

−

(

f̄ − max
�≤q≤z�M+1

f (R(q))

)

V (�)

)

= R(z�M+2) ,
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Let the statements in Ez be true up to k = k� − 1 , z = z� + 1 . With k = k�,

The induction case is thus proven. This shows that the event Ez is true for all z ≥ 1.
Proving statement (iii). We apply statement (ii) to prove (iii). From (102),

For any q ∈ [(k −M)++, k] , we have

Since 𝜂j > 1 and |q − k| ≤ M , we have �⌈(q−1)∕M⌉(�j−1) → 0 as k → ∞ , moreover as 
R̄(k+1)∕R̄(k) ≥ p for all k ≥ 1 , R̄(q)∕R̄(k) ≤ p−M for all q. Therefore, we get
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