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Joint Network Topology and Dynamics Recovery
from Perturbed Stationary Points

Hoi-To Wai, Anna Scaglione, Baruch Barzel, Amir Leshem

Abstract—This paper presents an inference method to learn a
model for complex system based on observations of the perturbed
stationary points. We propose to jointly estimate the dynamics pa-
rameters and network topology through a regularized regression
formulation. A distinguished feature of our approach rests on the
direct modeling of rank deficient network data, which is widely
found in network science but frequently ignored in the prior
research. The new modeling technique allows us to provide the
network identifiability condition under the scenarios of insufficient
data. In the special case where the dynamics parameters are
known, we show how the interplay between dynamics and
sparsity in the graph structure can lead to verifiable conditions
for network identifiability. Furthermore, relying only on the
steady states equations, our method avoids the necessity to record
transient data, and allows to meaningfully combine data from
multiple experiments. Numerical experiments are performed on
examples with gene regulatory networks and opinion dynamics
to justify our claims.

Index Terms—network identification, complex systems, station-
ary points

I. INTRODUCTION

Our ability to understand and predict the behavior of complex
social, biological and technological systems relies on validated
mechanistic models that accurately depict the exchanges
between their many interacting components. The challenge
is that, as opposed to particle and molecular systems, in which
interactions are driven by fundamental physical principles [2],
[3], the behavior of complex systems is characterized by diverse
forms of dynamics, lacking fundamental rules by which to
determine the microscopic mechanisms of interactions. For
instance, we cannot directly access precise mechanisms of
opinion dynamics in social systems, or construct an accurate
model for different sub-cellular interactions between genes [4].
To overcome this barrier, we wish to extract the unknown
models directly from data — a promising approach that
has gained much traction thanks to the proliferation of high
throughput data.

Mathematically, a complete model of a complex system
includes two layers of descriptions: the graph structure
(a.k.a. network topology) describing the map of interactions
between the components, and the dynamics capturing the
mechanisms driving these interactions. Using empirical data
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to learn or recover such complete complex system models is
challenging, as the space of potential graphs/mechanisms is
vast, and hence its identification requires an infeasible amount
of empirical data, casting severe limits on our ability to recover
complex system dynamics. In practice, the search space for
learning the complex system model can be significantly reduced
if we exploit (i) sparsity as the majority of relevant systems
are characterized by highly sparse graphs; (ii) prior knowledge
of the network dynamics since for many systems we possess
partial knowledge, often heuristic, of the relevant dynamic
functions. Prior methods employing the assumptions above
are successful in a number of applications; see our literature
review in Section I-A.

The main theme of this paper is to show that joint network
topology and dynamics parameters recovery can be performed
successfully even if one relies only on perturbation data for
the stationary points of the system under different conditions.
The stationary points are the stable solutions of the steady
state equations or the so called phase portraits of the system,
which can be anticipated in a number of physical systems. For
instance, we can measure the stationary point after letting the
dynamical system evolves for sufficiently long period of time.
We remark that relying on stationary points is advantageous as
they are often observed with less noise due to their stationarity
over time, e.g., they can be aggregated to reduce variance by
repeated experiments. From a theoretical aspect, we investigate
a set of identifiability conditions under the constraint that
the amount of available perturbation data is scarce. This is a
common scenario due to the high cost of data acquisition. As
a result, the inference problem relies on rank deficient data
which prohibits perfect recovery of the network topology in
general. Despite that, we show here that accurate recovery is
achievable under an intertwined condition between the number
of edges in the graph and the expander property of the graph
structure. From a practical aspect, we model the examined
complex system using a parametric template to fully exploit
the prior knowledge on the network dynamics. We describe
a family of the relevant models that allows one to develop a
tractable inference method for the system’s network topology
and dynamic parameters.

Overall, our approach provides a data-efficient recipe to
infer the system’s hidden dynamic equations, capturing its
underlying mechanisms, unknown links and their strengths.

Notation. Boldfaced lower-case (resp. upper-cased) letters
denote vectors (resp. matrices) in this paper. For a vector x, we
use [x]i or xi to denote its ith element. We also use ‖x‖, ‖x‖1,
‖x‖0, to denote Euclidean norm, `1 norm and the number of



2

non-zeros of x, respectively. For a matrix X , Xij denotes its
(i, j)th element whereas xrow

i denotes its ith row vector and
[X]I,: denotes the collection of its row vectors in the index
set I. Moreover, ‖X‖F := ‖vec(X)‖ is the Frobenius norm.
The operator � denotes element-wise product between two
vectors/matrices. For any K ∈ Z+, we have [K] := {1, ...,K}.

A. Prior Work

The problem of network topology reconstruction has attracted
the interest of many researchers in recent years, and the
ideas researched can be coarsely divided in two classes of
methodologies. One popular approach is largely agnostic about
the family of models, and takes a statistical view of the
network identification problem. In addition to heuristics such as
thresholding correlation matrices [5] or unsupervised learning
[6]–[8], a disciplined method is to impose a graphical model
as the latent model to the observed data. We then view the
observed data as outcomes of independent random experiments.
The graphical model captures the conditional independence
among state variables, and the graph topology is encoded in
the inverse of the data covariance matrix. Further exploiting
sparsity of the graph yields the graphical LASSO problem [9] —
let Ĉ be the sampled covariance matrix of some observations
from the network and A be the estimated adjacency matrix
encoding the network topology, we consider

minA�0 − log detA+ Tr(AĈ) + ρ ‖vec(A)‖1, (1)

where ρ ≥ 0 is a penalty parameter controlling sparsity
of the solution, as overviewed in [10]. Despite having a
well understood performance in terms of consistency and
convergence rate [11], the graphical model approach has two
fundamental shortcomings: 1) it can identify only undirected
graphs; 2) in phenomena that exhibit interesting emergent
behavior, the posited model does not capture the network
structure — in some cases, sample covariance matrix may
even be ill conditioned, leading to severe numerical problems
in the identification of the network. In particular, consistency
guarantees for graphical LASSO, such as [12], rely on the
assumption that Ĉ converges to A−1 as the number of samples
accrued goes to infinity. This implicitly requires the ground
truth covariance matrix to be a full rank matrix, which is not
satisfied by a number of the physical phenomenon observed
in complex systems. For instance, the set of perturbation data
for gene network reconstruction where the observation rank is
limited by the amount of data available [13].

Another approach is aware of the model and uses data that
correspond to the dynamic evolution during transients in order
to solve an inverse optimization problem. This line of work can
be found in the physics community employing nonlinear models
[14], [15], in inverse optimization [16], in network tomography
[17], in parameter estimation [18], [19], as well as the emerging
field of graph signal processing exploiting various regularization
[20], spectral templates [21], and smoothness with respect to the
graph Laplacian [22]–[24], causal modeling [25], [26], model
from opinion dynamics [27], structural equation model [28],
and joint inference of graph signal with graph topology [29].
There are several benefits coming from this approach. First, this

approach captures the causal relationship between the agents
interactions, as the network inferred is a directed network.
Second, the identification of the non-linearity is expressive
of the type of function the agents have in the system. While
model mismatch maybe a problem, in most cases reasonable
guesses are available; see also the kernel based method in
[28]. A disadvantage of this method is its reliance on accurate
sampling of data. In some applications sampling transient data
is possible, though it may be expensive. In others, the change of
state are latent or the states themselves are hidden. An example
is the data collected from gene network inference experiments
such as [13]. While sampling the data during transients after a
perturbation experiment is possible, the data are often noisy
and the convergence to stable states is relatively fast, leading to
an ill-conditioned problem. Lastly, an underlying assumption of
the above methods is that a sufficient number of snapshots can
be accrued for solving the inverse problem, with an exception
for [27], [30], [31] which focus on linear models. The approach
in this paper is related to the above methods, but we focus on
the nonlinear network dynamics inspired by physical systems.

The current paper significantly extended its abridged version
[1] by (i) providing complete proofs for the theoretical claims;
(ii) performing a unified analysis of identifiability for cases
pertaining to dynamical systems; (iii) supporting the claims
with extensive empirical analysis.

B. Contributions and Organization

This paper learns a complex system model through observing
the stationary points generated from it. Our contributions are
three-fold. We first formulate a joint recovery problem for
the graph structure and dynamics parameter, and we propose
a data efficient approach to tackle it. Then, we prove a set
of identifiability conditions of the graph structure in a few
practical complex system models that are relevant to social
and biological networks. We find that these conditions depend
upon the graph structure itself, which can be satisfied when
the nodes’ degrees are roughly constant and small compared
to the total number of nodes. Lastly, we demonstrate that
the proposed approach achieves outstanding performance on
recovering network topology from synthetic and empirical data.

In the remainder of this paper, Section II outlines the
proposed models for complex systems and the perturbation ex-
periments for the observed data. Moreover, Section III proposes
a computational approach for network dynamics identification,
and Section IV provides a set of identifiability guarantees
for recovering graph structure from a few relevant models.
Lastly, Section V provides case studies on the application of
our approach to simulated complex systems and Section VI
describes the strategies for processing empirical data.

II. OUR MODEL

The network of interest is described by a strongly connected,
directed graph G = (V,E,A) with V = [N ] := {1, ..., N}
being the set of N nodes (components) and E ⊆ V ×V is the
set of edges that describe the interactions between nodes. If
(j, i) ∈ E, it is possible for a change in the state of node j to
directly induce changes to the state of node i. The graph is
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endowed with a weighted adjacency matrix A ∈ RN×N+ where
Aij is the weight of the edge (j, i) and Aij = 0 if (j, i) /∈ E.
Larger weights mean stronger interactions. Note that self-loops
are excluded and therefore Aii = 0.

In our model, the network dynamics describes the time
evolution of the states in a complex system as the superposition
of non-linear pairwise interactions. This can be summarized
by the following system of differential equations:

ẋi(t) = gi(xi(t)) +
N∑
j=1

Aijh(xi(t), xj(t);θi), (2)

for i = 1, ..., N , where ẋi(t) := dxi(t)
dt is the first order time

derivative of the ith node state xi(t) at time t. In (2), gi(·)
models the self-influence of node i, θi ∈ Rd is a set of
parameters of the dynamic template functions h(x, y;θ) that
model the pairwise state interactions.

Throughout this paper, we assume there exists at least one
non-trivial stationary point, denoted by x ∈ RN , to the system
(2), and that the system always converges to a stationary point;
see [32]. A stationary point xi(t) satisfies that the right hand
side of (2) is zero simultaneously for i = 1, ..., N . To obtain
a compact description of the stationary point, it is convenient
to define the following vectors:

a := vec(A>), θ := {θi}Ni=1, (3)

where vec(A>) is the vectorization obtained by stacking up the
row vectors of A. In the above, a encodes the graph structure
and θ encodes the dynamics parameters for all nodes. We
then define the nonlinear response matrix H(x,y;θ), whose
dimension depends on x,y, i.e., if x ∈ RN , y ∈ RM , then
H(x,y;θ) ∈ RN×M , we have:

[H(x,y;θ)]ij := h(xi, yj ;θi), (4)

where xi (resp. yj) is the ith (resp. jth) element of the vector
x (resp. y). We additionally define

F(x,y;θ) :=
(
IN×N ⊗ 1>M

)
Diag(vec(H>(x,y;θ))),

g(x) := (g1(x1), ..., gN (xN ))>, (5)

where ⊗ denotes the Kronecker product and 1M is an M -
dimensional all ones vector. With the definitions above, any
stationary point to (2), x := (x1, ..., xN ), satisfies:

0 = g(x) + F(x,x;θ)a. (6)

While (6) is non-linear in the state x, it is linear in the network
topology, a.

When combined with different dynamic templates on the
response function h(·), our model in (2) covers a number of
common complex systems, as exemplified below.

Example 1 (Gene Dynamics). Consider a gene regulatory
network of N genes. The state xi(t) is the expression level
for the ith gene and the interaction equation (2) dictates how
gene is regulated by all other genes1. The nonlinear dynamics

1Note that a highly expressed gene transcribes proteins at increased rates,
leading to a higher concentration level of proteins.
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Fig. 1. Nonlinear Response Functions of Network Dynamics considered.
(Left) The Michaelis-Menten model [cf. (7)]. (Right) Modulation functions of
neighbors’ opinion effects [cf. (8)].

template functions for this case are modeled after the Michaelis-
Menten dynamics [33], [34]:

gi(x) = −x, h(x, y;θi) = h(y;θi) =
yγi

1 + δiyγi
, (7)

where θi = (γi; δi) ∈ R2
+. A distinctive feature of this dynamics

is that the nonlinear function is independent of x. Plugging
(7) into (2) shows that the influence from the regulating genes
on gene i is independent of the expression level of gene i.

The parameter set consists of two non-negative variables,
δi and γi. When δi → 0, it describes a molecular interaction
process which is effectively polynomial in y, hence representing
a mass-action kinetic term; when δi ∼ 1, it describes an
activation interaction, in which a gene’s regulatory impact
saturates to h(y,θi)→ 1, capturing the switch-like nature of
genetic activation [33]. On the other hand, γi controls the
diminishing return of the influence strength depending on the
expression level of the neighboring gene, such that if γi is small,
the influence strength will saturate rapidly with increases in
the expression levels. See Fig. 1 (left) for an illustration.

Example 2 (Opinion Dynamics). Consider a social network
with N agents and edges represent the friendships. The state
xi(t) is the opinion of agent i at time t and the interaction
equation (2) describes the opinion exchange between agents.
The nonlinear dynamics template functions are:

gi(x) = 0, h(x, y;θi) = µ(|y − x|;θi)(y − x), (8)

where µ(|x|;θi) is a non-increasing function in |x| satisfying
µ(0;θi) = 1.

The non-increasing property of µ(|x|;θi) modulates the
effects of neighbors’ opinions that are far away from the agent.
Concretely, common examples of µ(|x|;θi) include —
• (a) constant function µa(|x|) = 1 for all x which is the

DeGroot model [35];
• (b) threshold function µb(|x|; τi) = 1(|x| ≤ τi) which is

the bounded confidence model [36];
• (c) sigmoid function µc(|x|; τi, σi) = 1+e−σiτi

1+eσi(|x|−τi)
which

is a smooth approximation of the threshold function.
Note the (a) is a special case of (b) and (c) with τi → ∞,
and (b) can be approximated by (c) when σi →∞. See Fig. 1
(right) for an illustration of different response functions.

A. Perturbation Models
The focus of this paper is to identify the graph structure and

dynamics of the complex system (2) using the stationary points
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observed from the network dynamics. For convenience, we
shall denote the relevant parameters by Θ := (a,θ). Given the
set of stationary points, a natural idea is to recover Θ through
fitting the set of equations (6) defined on the set of stationary
points. However, a complex system admits only a few modes
of stationary points. In particular, the set of stationary points

X := {x ∈ RN : 0 = g(x) + F(x,x;θ)a}, (9)

lies in a low dimensional subspace of RN . For example, if
we consider opinion dynamics with a modulating function
satisfying µ(|x|;θ) > 0 for all x [cf. Example 2] and the
graph G is strongly connected, then one has X = span{1}
[37], i.e., X is a one dimensional subspace of RN . Under
the premise of a low dimensional X , recovering Θ can be
challenging, if not impossible, as the latter comprises of at least
N2 parameters and X does not generate a sufficient number of
equations for identifying Θ. As a remedy, a common approach
adopted by practitioners is to consider adding perturbations
which produces additional perturbed stationary points to help
revealing the network.

We study two types of perturbations, topological perturba-
tions and dynamical perturbations, of complex systems that
are motivated by real experiment setups. Later we shall show
that for these types of perturbation, a stationary point xpert

satisfies:

0 = gpert(xpert) + Fpert(xpert,θ)a, (10)

for some gpert(·),Fpert(·) that depends on the complex system
and perturbation. Similar to a number of prior work [21],
[23], [29], we assumed implicitly that the network topology is
unchanged upon perturbation. Moreover,

Assumption 1. The perturbed system converges to one sta-
tionary point, for instance, xpert, which satisfies (10).

Let us study two specific perturbation types in detail —

Topology Perturbations. The topology can be modified in
two ways: by eliminating a node and by eliminating an edge.
Node perturbation: Let π(k) ∈ {1, ..., N} be a selected node
at the kth perturbation. Starting from some time t0, node
π(k) is removed from the system in the topology perturbation
experiment. The state evolution now obeys

ẋi(t) = gi(xi(t)) +
N∑

j=1,j 6=π(k)
Aijh(xi(t), xj(t);θi), (11)

for i = 1, ..., π(k)− 1, π(k) + 1, ..., N and any t ≥ t0. Setting
the right hand side of (11) to zero, the stationary point x(k)

satisfies (10) with:

gk(x(k)) = (I − eπ(k)e>π(k))g(x(k)),

Fk(x(k),θ) = (I − eπ(k)e>π(k))F(x(k),x(k);θ)

Diag
(
vec(1(1− eπ(k))>)

)
,

(12)

where [eπ(k)]i = 0 for i 6= π(k), and [eπ(k)]i = 1 if i =
π(k). As seen, this perturbation operates on the topology level,
disconnecting a node from the rest of the network.

This type of perturbation is relevant to gene deletion
experiments that are common in gene network recovery [13].

A special case is that with the type of dynamics specified in
(7), the effect of topology perturbation on the steady state is
equivalent to setting a boundary condition on the dynamics
such that xπ(k)(t) = 0 and knocking out the gene π(k).
Edge perturbation : In this case we have π(k) ∈ E. It is easy
to understand that the structural change affects only Fpert(·)
and the stationary point satisfies (10) with:

gk(x(k)) = g(x(k)),

Fk(x(k),θ) = F(x(k),x(k);θ)(I − eπ(k)e>π(k)).
(13)

The perturbation effect can also be captured as a sparse
perturbation of the network vector (I−eπ(k)e>π(k))a = a+wk
where wk = −eπ(k)Aπ(k). Since in our setting the network
is unknown the type of experiment that would lead to such
perturbation would have to be blind to what particular edge has
been removed. In this case, the inference problem formulation
should identify not only a and θ but also the sparse vector
wk that corresponds to the edge or edges that are deactivated
through the perturbation. Given the lack of a specific example
or set of data to test these methods, we are going to focus on
the node removal in the following.

Dynamics Perturbations. Consider modifying (2) by includ-
ing external controls into the system. For the kth perturbation
experiment, let u(k)i (t) be the additional control signal applied
to the system after t ≥ t0. The perturbed system obeys

ẋi(t) = gi(xi(t))+
N∑
j=1

Aijh(xi(t), xj(t);θi)+u
(k)
i (t), (14)

for all i = 1, ..., N and t ≥ t0. Suppose that the control signals
reach a steady state as t→∞ and we denote the steady state
as u(k)(∞) := (u

(k)
1 (∞), ...., u

(k)
N (∞)). It is easy to observe

that x(k) is a stationary point to the perturbed system if it
satisfies (10) with:

gk(x(k)) = g(x(k)) + u(k)(∞),

Fk(x(k),θ) = F
(
x(k),x(k);θ

)
.

(15)

As seen, this type of perturbation is applied directly to the
nodes, by injecting a control signal that alters the nodes’ states,
and changes the dynamics by introducing external signals.

A relevant setting to this type of perturbation is the opinion
dynamics with insertion of stubborn agents whose opinions
are constant [27], [38]. In this case, the ith control signal is

u
(k)
i (t) =

S∑
j=1

Bijh(xi(t), z
(k)
j ;θi), (16)

where z(k)j is the jth stubborn agent’s opinion and [B]ij =
Bij ≥ 0 is the bipartite network which connects the stubborn
to the non-stubborn agents. In particular, the perturbed steady
state obeys a specific structure given by:

Lemma 1. Consider Example 2 of opinion dynamics. If
the kth dynamics perturbation is given by u

(k)
i (t) =∑S

j=1Bijh(xi(t), z
(k)
j ;θi) for all t ∈ R+ with Bij ≥ 0, then

it holds that

x(k) = (Diag(A(k)1 +B(k)1)−A(k))−1B(k)z(k), (17)
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where we have defined [A(k)]ij := Aij µ(|x(k)j − x
(k)
i |), and

[B(k)]ij := Bij µ(|z(k)j − x(k)i |). Furthermore, if µ(|x|) = 1

for all x [DeGroot’s case], then A(k) = A and B(k) = B.

The proof can be found in Appendix A. The lemma shows
that the steady states are determined by the network structure
and stubborn agents’ opinions.

III. JOINT NETWORK TOPOLOGY AND DYNAMICS
RECOVERY PROBLEM

As each of the perturbed system admits a different set of
stationary points, together with the unperturbed stationary point
from (6), these lead to a set of stationary points that spans an
(K + 1)-dimensional subspace of RN in general. Under the
assumption that the right dynamics should lead to the sparsest
network, we propose to study the following joint topology and
dynamics recovery problem:

min
ã∈RN2

+ ,θ̃∈RNd ‖ã‖0 (18a)

s.t. gk(x(k)) + Fk(x(k), θ̃)ã = 0, k = 0, ...,K, (18b)

where ãi denotes the ith block of length N in the vector ã.
We have set x(0) = x and correspondingly g0(x(0)) = g(x),
F0(x,θ) = F(x,x;θ). For k ≥ 1, the functions gk(·),Fk(·)
were defined in the last section. For topological perturbation,
the perturbed nodes π(k) for each perturbation is known
[cf. (12)]; for dynamical perturbation, the control signal is
known [cf. (15)]. We set a ≥ 0 in light of the non-negativities
requirements in Section II.

As we will show in Section IV, it can be proven that an
optimal solution to problem (18) [or a slightly modified version]
recovers the true network structure of the complex system. In
particular, we find that in the case of opinion dynamics under
dynamical perturbations, an optimal solution to (18) matches
the true network structure.

On the other hand, the network identification problem for the
case of gene dynamics under topology perturbations requires a
pre-processing step based on the data and solving a modified
version of (18). First of all, we consider:

Proposition 1. Denote [h(x;θ)]i := h(xi;θi). If the kth
topology perturbation, i.e., x − x(k), is small and ‖(I −
eπ(k)e

>
π(k))A∇xh(x(k);θ)‖2 < 1, where ∇xh(x(k);θ) is the

Jacobian2 of the vector function h(x;θ), then it holds that:

x− x(k) ≈ ([x̄]π(k))eπ(k) + [x̄]π(k)
∂h(x;θ)
∂x |x=0 a

col
π(k), (19)

where eπ(k) is the π(k)th coordinate vector and acol
π(k) is the

π(k)th column vector of A.

The proof can be found in Appendix B, which relies on
the first order Taylor expansion of nonlinear equations. The
proposition shows that the perturbation caused by removing the
π(k)th node is limited to its one-hop (out)-neighbors. Similar
results have been qualitatively observed in [39], [40], and

2The Jacobian is the diagonal matrix ∇xh(x(k);θ) :=
Diag([..., ∂h(x;θi)/∂x|

x=x
(k)
i

, ...]).

Algorithm 1 Alternating optimization procedure for (22).

1: Input: data {x(k)}Kk=1, initial guess of parameter
{θ(1)i }Ni=1, (optional) knowledge on topology from pre-
processing, S.

2: for ` = 1, 2, ... do
3: Update the estimate on the network topology parameter:

a(`+1) ∈ arg min
ã∈RN2

+

JK(ã,θ(`)) + ρ ‖ã‖1 s.t. [ã]S = 0.

4: Update the estimate on dynamics parameter:

θ(`+1) ∈ arg min
θ̃∈RNd

JK(a(`+1), θ̃),

where the above may be solved using a grid search, or
solved inexactly via a projected gradient descent step.

5: end for
6: Output: estimated network topology and parameters
a(`+1),θ(`+1).

our proposition gives a quantitative account. Proposition 1
motivates us to consider the following set. Let η > 0, define

Sη :=

K⋃
k=1

{
i+π(k)(N − 1) : i ∈ [N ],

[x(0) − x(k)]i

[x(0)]π(k)
≤ η

}
,

(20)
which is a subset of [N2] of cardinality at most KN . Notice
that as K � N , Sη is an estimate of the positions of zeros in
a small subset of the true network topology a. The above set
is then used in a modified problem of (18) which incorporates
Sη , as follows

min
ã∈RN2

+ ,θ̃∈RNd ‖ã‖0 s.t. (18b) and [ã]S = 0., (21)

and we set S = Sη in the interested case of gene dynamics
and topological perturbation. Since (18) is a special case of
(21) with S = ∅, we focus on (21) in the rest of this paper.

An obvious drawback of (21) is that it involves a non-convex
objective function due to the `0 norm. To attain a tractable
solution, it is common to consider the `1 norm relaxation:

min
ã∈RN2

+ ,θ̃∈RNd JK(ã, θ̃) + ρ ‖ã‖1
s.t. [ã]S = 0,

(22)

with ρ > 0 being a regularization parameter and we defined

JK(ã, θ̃) :=
1

K + 1

K∑
k=0

∥∥gk(x(k)) + Fk(x(k), θ̃) ã
∥∥2.

We observe that the first term in the objective function of (22)
finds the best fit a,θ to the set of perturbed stationary points in
the least square sense. And the recovery condition is improved
through the use of the `1 regularization, ‖a‖1, which promotes
sparsity in the solution.

Problem (22) is non-convex due to the coupling between
θ and a. As a remedy, we adopt a standard alternating
optimization approach which cycles between the optimization
for a and θ; see Algorithm 1. It is well known that the algorithm
converges to a stationary point of (22), e.g.,
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Proposition 2. [41, Theorem 2(a)] Every limit point of
the sequence {a(`),θ(`)}∞`=1 generated by Algorithm 1 is a
stationary point of (22).

The convergence result also holds when the exact minimiza-
tion of a or θ is replaced by a gradient descent sub-routine
for further complexity savings; see [41] for instance.

IV. IDENTIFIABILITY OF THE NETWORK TOPOLOGY

This section is devoted to studying conditions under which
(21) identifies the graph structure that is characterized by the
(vectorized) adjacency matrix a. We focus on the case when the
dynamics parameters θ are perfectly known. For simplifying
notations, throughout this section we shall drop the dependence
on θ of the matrices defined previously.

To begin, observe from (18b) that the equality constraints
are equivalent to a set of linear constraints on the parameter a.
With the aid of sparsity, we can derive a sufficient condition
for the perfect recovery of a as follows:

Definition 1. [42] For a matrix A, spark(A) (a.k.a. Kruskal
rank) is defined as the minimum number k such that there
exists k column vectors of A which are linearly dependent.

Lemma 2. If it holds that K ≥ ‖a‖0 and

spark
((

F1
(
x(1)

)> · · · FK
(
x(K)

)> )>) ≥ 2K + 1,

(23)
then a is identifiable via solving (21) when θ is known.

The proof is standard and can be found in Appendix C.
The above condition, which is similar to a recent work [29,
Theorem 1 & 2], is applicable to arbitrary dynamics under the
perturbation models described. However, as the ‘spark’ of the
matrix in (23) is tied directly to topological and non-linear
features of the complex networks model, it can be hard to
evaluate the condition. The statement of Lemma 2 rings hollow
as it is not amenable to interpretation.

Rather than merely relying on Lemma 2, a key challenge
of the current work is to demonstrate that knowledge of the
underlying dynamical systems in networks enables one to derive
interpretable conditions for identifiability. In particular, we shall
focus on two special cases, namely (a) the gene dynamics with
topology perturbations and (b) the opinion dynamics with
dynamic perturbations.

For case (a) with gene dynamics, let Si be the restriction of
Sη to entries of the ith row vector, arow

i , of A with respect to
the vectorized adjacency a. We consider

Assumption 2. The index set Si is a superset of the set of all
zeros in the partial ground truth topology [arow

i ]π([K]).

This assumption holds when the approximation in Proposition 1
is accurate, e.g., when the function h(x) in Example 1 is well
approximated by a linear function within the operating region.
Our main identifiability result is as follows:

Theorem 1. Under Assumption 2 and let â be an optimal
solution to (21). Fixing d and let N →∞. Let the network be
a d-regular random graph, and |Si| = O(1) for all i.

If the perturbation data is observed from K = Ω(d)
experiments, then it holds in high probability that

‖ârow
i − arow

i ‖1 = O(εgene), i = 1, ..., N, (24)

where arow
i (resp. ârow

i ) refers to the ith row of A (resp. Â),
for some εgene > 0 modeling the approximation error which is
small when the dynamics is roughly linear.

For case (b) with opinion dynamics, we consider

Assumption 3. The function µ in Example 2 satisfies µ(x) ≥
1− εop for all x, for some small εop ∈ [0, 1].

This assumption implies that the nonlinear opinion dynamics is
a slightly perturbed version of linear DeGroot dynamics [recall
that the latter case has µ(x) = 1 for all x]. We show:

Theorem 2. Under Assumption 3 and let â be an optimal
solution to (21). Let dmax be the maximum in-degree of the
graph G and it is a fixed number, N →∞, and the network
(corresponding to B) between stubborn and non-stubborn
agents be such that each non-stubborn agent is connected to
exactly ` stubborn agent, chosen uniformly at random.

If there are S = Ω(dmax) stubborn agents and the number
of stationary points collected is K = S, then it holds that

‖ârow
i − arow

i ‖1 = O(εop), i = 1, ..., N, (25)

where arow
i (resp. ârow

i ) is the ith row of A (resp. Â), in high
probability.

In both cases, our results show that identifiability depends on
the structure of the network to be inferred. This is reasonable
as the latter determines the stationary points used as evidence
for network inference. In particular, these conditions favor
networks whose sub-network has regular degrees. Under these
assumptions on the network structure, the theorems guarantee
that one can recover the network under the usual condition
that the number of stationary points observed K grow with
the network’s degree. Let us present a general roadmap for the
proofs of the theorems.

Roadmap of Analysis. In the first step [cf. Section IV-A], we
reduce the identifiability conditions of (21) for case (a) and
(b) into algebraic conditions pertaining to sparse recovery. We
show that any solution to (18), ãrow

i , must satisfy:

∆i = Ei
(
arow
i − ãrow

i

)
, (26)

where ∆i is a vector modeling the approximation error, and
arow
i is the ith row vector of A. Moreover, Ei is the weighted

adjacency matrix of a bipartite sub-graph taken from the graph
to be identified itself.

The second step in Section IV-B is to analyze the properties
of Ei leading to identifiability, i.e., any ãrow

i satisfying (26)
is ãrow

i ≈ arow
i . A common feature of our results is that

recoverability can be guaranteed when the corresponding sub-
graph is a ‘good’ expander —

Definition 2. A bipartite graph G(A,B) with |A| = n, |B| =
m and m ≤ n, has the expander parameters (dl, du, α, δ) if:
• the degrees for the left node set, A, are bounded in [dl, du]

for all vi ∈ A.
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• for any S ⊆ A with |S| ≤ αn, we have δ|E(S,B)| ≤
|N(S)|, where E(S,B) is the set of edges from S to B
and N(S) = {vj ∈ B : ∃ vi ∈ S s.t. (vj , vi) ∈ E} is the
neighborhood of S in B.

A ‘good’ expander has dl ≈ du, δ ≈ 1 and large α. As
observed by [43], this is a structural property that can be satis-
fied by a number of random graph constructions. Concretely,
we show that a random construction satisfies the expander
requirement in high probability whenever K = Ω(dmax),
where dmax is the maximum in-degree of the graph, thereby
establishing the identifiability of the network weights when the
number of perturbation experiments is sufficient (proportional
to the density of the graph).

Lastly, the final step in Section IV-C proves the theorems
by using the condition for the existence of expander graphs
and compare it with the random graph models assumed for the
graphs of interest.

Remark 1. The Assumptions 2, 3 required are indeed stringent.
One may question about their validity in more practical
nonlinear dynamics. For this, we shall relegate the examination
of the sensitivity of network inference method to our empirical
analysis. That said, the importance of our results is to provide
a guideline for designing network inference experiments via
an interpretable identifiability condition.

A. Step 1: Problem Reduction

Below, we show that the solution to (21) can be written in
the form of (26) for case (a) and (b).
Case (a): Gene Dynamics with Topology Perturbations.
We assume that π(k) = k without loss of generality. Using
structure of the Kronecker products, we can decompose (21)
into N sub-problems that to be considered independently. For
i = 1, ..., N , consider

ârow
i ∈ arg min

ãrow
i ∈RN+

‖ãrow
i ‖0 (27a)

s.t. [ãrow
i ]Si = 0, (27b)

[x(k)]i = (arow
i )>h(x(k)), k = 0, 1, ...,K. (27c)

Following the insights from Lemma 2, we observe that an
identifiability condition for (27) depends on the steady states
x(k), k = 1, ...,K. The main challenge, however, lies on the
fact that the steady state x(k) is generated from a nonlinear
system which is not available in a closed form. To tackle the
issue, we resort to a Taylor approximation approach which
unveils a critical relationship between identifiability using (27)
and the structure of network topology.

Denote the set of K-dimensional vectors {yi}Ni=1 given by
[yi]k := [x(k)]i − xi, k = 1, ...,K. Observe that [x(k)]i =
(arow
i )>h(x(k)), when i /∈ [K], it holds

[yi]k = (arow
i )>

(
h(x(k))− h(x)

)
≈ xk (arow

i )>Diag(h
′
)
(∂h(x)

∂x |x=0 a
col
k + ek

)
,

(28)

where [h
′
]i := ∂h(x)

∂x |x=x(k)
i

. The approximation above is due
to Proposition 1 and applying the Taylor approximation on

the difference vector h(x)− h(x(k)). Stacking up (28) from
k = 1 to k = K, we obtain the linear system:

yi ≈ Λ
((
IK×K 0K×(N−K)

)
+ Ẽi

)
Diag(h

′
)arow

i , (29)

where we have defined

Ẽi := ∂h(x)
∂x |x=0

(
[A]:,[K]

)>
and Λ := Diag(x). (30)

Applying a similar set of approximations to the equalities in
(27c) implies

yi ≈ Λ
((
IK×K 0K×(N−K)

)
+ Ẽi

)
Diag(h

′
) ãrow

i

(as Λ 6= 0) =⇒
0 ≈

((
IK×K 0K×(N−K)

)
+ Ẽi

)
Diag(h

′
)
(
ãrow
i − arow

i

)
.

(31)

Eq. (31) characterizes the restriction on the optimization
variable ãrow

i implied by the constraint Eq. (27c), which is an
underdetermined system as N � K. The matrix inside the
bracket on the right hand side of (31) can be regarded as a
sensing matrix for the system. As the identity matrix I tends
to have a larger magnitude than Ẽi, the overall sensing matrix
(I 0)+Ẽi will be dominated by I . That is, (I 0)+Ẽi ≈ (I 0).
This implies that the elements of arow

i over the coordinates
[N ] \ [K] can be unrecoverable as the rows of the sensing
matrix are (approximately) supported only on [K].

Let us utilize the constraint (27b) to refine our conditions.
Under Assumption 2, the matrix-vector product on the right
hand side of (31) evaluates to zero for the rows in Si.
Importantly, it implies

∆gene
i = Ei

(
ãrow
i − arow

i

)
where Ei :=

[
Ẽi
]
Si,:Diag(h

′
),

(32)
and ∆gene

i with ‖∆gene
i ‖1 ≤ εgene models the overall approxi-

mation error due to the approximations used. This retrieves a
similar form as (26). Therefore, Eq. (32) now corresponds to
a reduced identifiability condition that depends on Ei which
itself is a sub-graph of the graph to be identified.

Case (b): Opinion Dynamics with Dynamics Perturbations
from Stubborn Agents. For any i, k, define the total influence
strength on the agents [cf. (17)] as

c
(k)
i := 1>(µ

(k)
A,i � arow

i ) + 1>(µ
(k)
B,i � browi ), (33)

where µ(k)
A,i (resp. µ(k)

B,i) is a vector whose jth element equals
µ(|x(k)i − x

(k)
j |) [resp. µ(|z(k)j − x

(k)
i |)]. We assume that

c
(k)
i > 0 for any i, k and the normalized control signal’s value
u
(k)
i /c

(k)
i is known.

Similar to the development of (27) and by setting Mi ≥
maxk c

(k)
i , we observe that solving (21) is equivalent to solving

the sub-problems for i = 1, ..., N ,

min
ãrow
i ∈RN+

‖ãrow
i ‖0

s.t. (x(k))>
(
µ

(k)
i � ãrow

i

)
= x

(k)
i − u

(k)
i /c

(k)
i ,

[ãrow
i ]i = 0, ‖ãrow

i ‖1 ≤Mi, k ∈ [K],

(34)

Again, our challenge is to study the feasible set of (34) through
explicitly modeling the stationary points.
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Applying (15) and Lemma 1 show that for all k = 1, ...,K,

x
(k)
i c

(k)
i − u

(k)
i

= (B(k)z(k))>(I −Diag(c(k))−1A(k))−>(µ
(k)
i � arow

i ),
(35)

where the ith element of c(k) is c(k)i . Consequently, using (17),
any feasible solution ãrow

i to (34) must satisfy

0 = (B(k)z(k))>(I −Diag(c(k))−1A(k))−>

(µ
(k)
i � (arow

i − ãrow
i )),

(36)

for all k = 1, ...,K. Define the matrices U
(k)
B ,U

(k)
A ,

[U
(k)
B ]ij = µ(|z(k)j −x

(k)
i |), [U

(k)
A ]ij = µ(|x(k)j −x

(k)
i |). (37)

Observe the decompositions:

B(k) = B + δB(k), δB(k) := (U
(k)
B − 11>)�B

A(k) = A+ δA(k), δA(k) := (U
(k)
A − 11>)�A,

(38)

where we notice that ‖δA(k)‖ = O(εop), ‖δB(k)‖ = O(εop)
due to Assumption 3.

For small εop, using the above decomposition shows that
(36) is equivalent to

(z(k))>
(
B>(I−Diag(c)−1A)−1 +ζ(k)

)
(arow
i − ãrow

i ) = 0,
(39)

where ‖ζ(k)‖ = O(εop) and c is a vector whose ith element
equals 1>arow

i + 1>browi . Assume Z is full row rank and
K = S, where the number of perturbation experiments equals
the number of stubborn agents. Concatenating the K constraints
in (39) and using the boundedness of ãrow

i ,arow
i show

∆op
i = B>(I −Diag(c)−1A)−>(arow

i − ãrow
i ), (40)

where in this case ‖∆op
i ‖ = O(εop) models the error due to

nonlinearity. In particular, we will show that B> in (40) plays
a similar role as Ei found in (32).

B. Step 2: Identifiability Condition with Expander Graphs

The next step is to examine a common condition on Ei
and B> for (32) and (40) to ensure that ãrow

i ≈ arow
i in

the network topology identification problems. In particular,
the support of Ei coincides with the partial adjacency matrix
A>:,Si ; while the support of B> coincides with the sub-graph
connecting between the stubborn and non-stubborn agents. The
support of these matrices can be described by a bipartite graph
Gi(A,B) where A with |A| = N is denoted by convention as
the left node set, and B with |B| = |Si| (for Ei), or |B| = S
(for B>) is denoted as the right node set. The edge set of
Gi(A,B) is given as:

E(Gi(A,B)) :=
{

(`, q) : ` ∈ A, q ∈ B,
[
E
]
q,`
6= 0
}
, (41)

where we set E = Ei for the gene dynamics, and E = B> for
the opinion dynamics. Our first observation lies in the following
proposition which connects the structure of Gi(A,B) to the
identifiability of arow

i from (32) and (40):

Proposition 3. Consider the bipartite graph Gi(A,B) de-
scribed in (41) and the sensing matrix E . Let Gi(A,B) be

α = 0.08 α = 0.16 α = 0.24 α = 0.32

dl = 4 β ≥ 0.342 β ≥ 0.528 β ≥ 0.673 β ≥ 0.794
dl = 5 β ≥ 0.234 β ≥ 0.385 β ≥ 0.510 β ≥ 0.619
dl = 7 β ≥ 0.161 β ≥ 0.282 β ≥ 0.389 β ≥ 0.487
dl = 9 β ≥ 0.134 β ≥ 0.242 β ≥ 0.341 β ≥ 0.434

TABLE I
EVALUATING THE MINIMUM β REQUIRED IN (44) FOR DIFFERENT PAIRS OF

α, dl .

an (dl, du, α, δ) expander graph [see Definition 2]. For any
1 ≤ s ≤ |Si|, if 2s ≤ αN , and the entries of E satisfy

emin δdl − emax(du − δdl) > 0,

emax := max
`,q

[E]`,q, emin := min
`,q, [E]`,q 6=0

[E]`,q.
(42)

Then, for all vector x ∈ RN with ‖x‖0 ≤ 2s, it holds that

‖Ex‖1 ≥ υ? ‖x‖1, where υ? := emin δdl − emax(du − δdl).
(43)

The proof can be found in Appendix D. The proposition
shows that if Gi is a ‘good’ expander (with du ≈ dl, δ ≈ 1
and large α) such that the conditions in (42) are satisfied, then
the sparse matrix E satisfies a one-sided restricted isometry
property (RIP) with an order proportional to αN .

We next characterize the expander graph parameters of the
induced graph Gi(A,B) [cf. (41)] to satisfy (42), with a focus
on the interplay between the number of perturbations K and
the sparsity of the unknown arow

i . To this end, we borrow the
following proposition from our previous work:

Proposition 4. [27, Proposition 5] Let G(A,B) be a bigraph
with |A| = N , |B| = β?N , and its degree sequence is fixed for
the left node set as d(vi). Denote dl = mini∈A d(vi) and du =
maxi∈A d(vi). Suppose the edge set of G(A,B) is generated
such that for each vi ∈ A, we connect the node to d(vi) random
neighbors in B uniformly. Fix α ∈ (0, 1) and set

β? > inf
{
β ∈ (0, 1) : β > α,

dl > max
{

3,
H(α) + βH(α/β)

α log(β/α)

}}
,

(44)

where H(α) = α logα + (1 − α) log(1 − α) is the binary
entropy function. Then, with high probability as N →∞, the
graph G(A,B) is an (dl, du, α, 1− 1

dl
)-expander.

The proposition shows that a ‘high-quality’ expander graph
can be obtained with a random construction from a bounded
degree sequence. The left node set, A, corresponds to all the
nodes in the network, while the right node set, B, corresponds
to the number of perturbation such that βN = |Si| (gene
dynamics) or βN = S (opinion dynamics). As Proposition 3
shows that the parameter α controls the maximum recoverable
sparsity of arow

i , the second inequality in (44) gives the
condition on the required value for β under different condition
for α. Concretely, Table I gives the value for pairs of α, β
satisfying (44) for different dl. If α decreases, β decreases
nearly proportionally. If d increases, β decreases towards α.



9

C. Step 3: Concluding the Proofs

Proof of Theorem 1. Define the scalar constant as α = 2d
N ,

where d is the degree of a node in the regular network. Applying
Proposition 4 and using the assumptions in the Theorem show
that the bi-graph G(Si, V ) is an (d− 1, d, α, 1− 1/(d− 1))-
expander graph in high probability if the tuple of β = |Si|

N and
α satisfy the condition in (44). In particular, since

β =
|Si|
N
≈ K

N
=

Ω(d)

N
, (45)

the condition (44) is satisfied.
Consequently, as the support of Ei in our case is given by

G(Si, V ), Proposition 3 shows that the norm ‖Eix‖1 is lower
bounded by υ?‖x‖1 if ‖x‖0 ≤ αN and

υ? = emin d− 2(emax − emin) > 0. (46)

Finally, observe that any optimal solution to (27) must satisfies
‖ârow

i ‖0 ≤ ‖arow
i ‖0, therefore ârow

i − arow
i is at most

2‖arow
i ‖0 ≤ αN sparse. Since the construction of Ei satisfies

the requirement in Proposition 3, this implies∥∥Ei(ârow
i − arow

i

)∥∥
1
≥ υ? ‖ârow

i − arow
i ‖1

=⇒ ‖ârow
i − arow

i ‖1 ≤ (υ?)
−1 ‖∆gene

i ‖1.
(47)

This completes the proof.

Proof of Theorem 2. Following from (40), we observe:

‖B>(I −Diag(c)−1A)−>x‖1
≥ ‖B>x‖1 − ‖B>A>(Diag(c)−A)−>x‖1,

(48)

for all x ∈ RN . Setting

ξ? :=
‖B>‖1‖A>‖1 maxi∈{1,...,N}

1
ci

1− ‖A>Diag(c)−1‖1
, (49)

it can be shown that

‖B>A>(Diag(c)−A)−>x‖1 ≤ ξ?‖x‖1. (50)

On the other hand, under the said condition on the network
between stubborn and non-stubborn agents, if β = S/N
satisfies the condition in Proposition 4, then the support pattern
ofB> corresponds to an expander of parameter (`, `, α, 1−1/`)
with high probability. From Table I, the maximum allowable
α satisfies α ∝ β, we have αN = Θ(dmax).

Consequently, by the optimality of ârow
i , the error vector

ârow
i −arow

i is at most 2‖arow
i ‖0 sparse. Observe that we have

αN = Θ(dmax) ≥ 2‖arow
i ‖0, invoking Proposition 3 with

E = B> shows

‖∆op
i ‖1 = ‖B>(I −Diag(c)−1A)−>(ârow

i − arow
i )‖1

≥ (υ? − ξ?)‖ârow
i − arow

i ‖1. (51)

Observing that ‖∆op
i ‖1 = O(εop) concludes the proof.

V. NUMERICAL EVALUATION

This section presents numerical experiments for justifying
our claims about the efficacy of network dynamics identification
from stationary points. Precisely, we evaluate the proposed
recovery procedure on synthetic data from complex systems
with randomly generated networks and dynamics.

Before presenting the main results, it is important to note
that the minimization for a in line 3 of Algorithm 1 can be
decomposed into N independent sub-problems. To demonstrate
the decomposition technique, we take the loss function used
with dynamic perturbation as an example. Using the property
of Kronecker products and the definition of F

(
x(k),x(k);θ

)
,

the least square term reduces to

N∑
i=1

∣∣b(k)i + 1>N
(
vec(H>(x(k),x(k)))i � arow

i

)∣∣2
:=
∑N
i=1 Lk,i(arow

i ;x(k))

(52)

such that b(k)i := [g(x(k)) +u(k)(∞)]i, vec(H>(x(k),x(k)))i
is the ith block of the N2 dimensional vector
vec(H>(x(k),x(k))) and arow

i is the ith row vector of
A. Using this observation, we can express the sub-problem
needed by line 3 of Algorithm 1 as:

min
ãrow
i ∈RN+ ,i=1,...,N

N∑
i=1

( 1

K

K∑
k=1

Lk,i(ãrow
i ;x(k))+ρgi(ã

row
i )

)
,

(53)
which represents N independent sub-problems, each involving
an N -dimensional vector. These problems can then be solved in
a parallel fashion, each of the sub-problems can be solved with
a worst case complexity of O(N3.5 log(1/ε)), where ε > 0 is
the desired accuracy [44]. As we observe from the numerical
experiments below, the proposed method can easily scale to
large networks with N ≈ 1000 nodes.

We test the performance of the proposed network dynamics
identification method using randomly generated complex
systems. Particularly, we consider three common types of
random topology models [45] — Erdos-Renyi (ER), Watts-
Strogatz (WS), and Preferential Attachment (PA), which are
parameterized by the connect probability pER, the rewiring
probability pWS and minimum node degree dPA, respectively.
In some examples, we also test the method on random regular
graphs with fixed degree for all nodes. Though the proposed
method identifies directed graph, the graphs generated in
the experiments are undirected. The network weights A are
generated uniformly such that Aij = 1/di if (j, i) ∈ E where
di is the in-degree of node i. The stationary points (including
the perturbed ones) are then generated as: 1) for gene dynamics,
using the 4th order Runge-Kutte method [46]; 2) for opinion
dynamics, through directly simulating the discretized version
of (2) for t = 500 time steps using a random initialization of
xi(0) ∼ U [−1, 1]. For benchmarks, we focus on comparing
the area under ROC (AUROC), area under precision-recall
(AUPR), and normalized mean squared error (NMSE), defined
as NMSE := ‖A− Â‖2F /‖A‖2F under different scenarios.
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Fig. 2. Inference Performance (unknown a and known θ) with gene dynamics and N = 100 nodes. In the legend, ‘ER’ and ‘Reg’ refer to the
experiments with ER and regular graphs, respectively. (Left) AUROC. (Middle) AUPR. (Right) NMSE. The shaded area denotes the 10th/90th percentile
confidence interval.

A. Gene Dynamics and Topology Perturbations

As our first example we consider a small network (N = 100),
driven by (7), in which we take (δi, γi) to be (1, 0.5), and focus
on inferring the network parameter a = (Aij)i=1,...,N,j=1,...N .
We set the regularization parameter in (22) to ρ = 10−8, noting
that the performance is insensitive to the specific choice of
ρ, and use the prior support set S in (20) with η = 0.02.
Fig. 2 (a) and (b) show the performance comparison with ER
graphs of pER = 2 logN/N and regular graphs with fixed
degree at dreg = 10, note we have pER ≈ dreg/N . Moreover,
the figures indicate that we achieve a perfect reconstruction,
i.e., AUROC, AUPR → 1 already at K ≈ 25 (red), namely
that we achieve a complete reconstruction of Aij’s N2 ∼ 104

unknown parameters with just 25 experiments. For comparison,
GENIE3, the leading inference method in DREAM5 [13]
achieves significantly lower scores, even as K approaches 50.
In each simulated experiment, we remove a distinct randomly
selected node π(k) ∈ [N ], and examine the dynamics response,
extracting the final perturbed steady state from (7). We then use
our method to infer a, measuring the quality of our inference
via AUROC and AUPR, representing standard tests for network
inference assessment. Hence, our proposed method significantly
outperformed GENIE3, whose performance strongly depends
on the amount of stationary point data. The NMSE comparison
shows that the network weights with regular graph are perfectly
recovered when K ≥ 32 (Fig. 2 (c)).

Next, we consider also unknown dynamics, seeking also
to retrieve the value of θ. The same setting was used for
simulating the stationary points as in the previous example. For
this example, we apply grid search for θ in the AO procedure
over a grid with γ, δ ∈ {0.1, 0.2, ..., 1}. We observe in Fig. 3
a similar trend, in which our method (red) achieves a higher
score under lower K compared to GENIE3. This time, as θ
is also unknown, slightly more experiments are required to
achieve perfect reconstruction (K ≈ 30).

In Table II we simulate the performance on large-scale
networks (with N = 1000) under known dynamics parameter
θ. We examined ER graphs with pER = 1.1 logN/N , WS
graphs with average degree of logN and rewiring probability
of pWS = 0.2, and PA graphs, a most empirically relevant
structure [47], with minimum node degree of dPA = 4, such that
the average degrees of these graphs are comparable. We observe
that the number of experiments required K (K ≈ 150 returns
a reasonable performance for all cases) can be maintained

at a small fraction of N . Interestingly, for gene regulation,
we observe the best performance on the PA graphs. As such
graphs are highly prevalent, we find this to be an encouraging
result. The most challenging one is the WS graphs. This can
be explained as a consequence of its unique structure, in which
the sub-graphs formed by the out-going edges of the perturbed
nodes do not correspond to a random regular bi-partite graph.
This is a crucial condition required by the identifiability analysis
in Section IV.

B. Opinion Dynamics with Dynamic Perturbations

We now consider perturbations on opinion dynamics intro-
duced by stubborn agent as described in Fact 1. We examine the
scenario with a mismatched dynamics model that the steady-
state opinions are simulated using the bounded confidence
model [cf. µb(·) in Example 2] with threshold set to τ = 0.4
for half of the agents, and τ = 0.6 for the other half; the initial
opinions are set to xi(0) ∼ U [−1, 1]; meanwhile the dynamics
inference is performed using a sigmoid approximation [cf. µc(·)
in Example 2] with σ = 10 and τ is an unknown parameter.
For problem (22), we set ρ = 10. Moreover, the network
from stubborn agents to non-stubborn agents [cf. B in (16)] is
generated as a random regular bi-partite graph with degree 5.

Similar to the previous set of experiments on gene dynamics,
we consider a small network (N = 100) example, and compare
the inference performance against the number of stubborn
agents S on two types of graphs: ER and WS graphs with
pER = 2 logN/N and pWS = 0.2. Similar to the examples in
gene dynamics, the expected degrees for the nodes are constant
for the two network models. The inference is performed through
observing K = S steady state opinions. From Fig. 4, we
observe that even under the non-ideal scenario with mismatched
dynamics, the proposed method recovers the network accurately
with improvement over GLASSO3.

In Table II, we simulate the performance on large networks
(with N = 1000) where the settings for random topologies are
the same as in the gene dynamics of the same table. Again,
we observe that the number of experiments required K can
be maintained at a smaller fraction of N through exploiting
sparsity in the network. In contrast to the gene dynamics case,
we recall from Section IV that the identifiability condition
depends on the network given by B which is constructed as a
random regular bi-partite graph. The performance difference

3Code from: http://publish.illinois.edu/xiaohuichen/code/graphical-lasso/

http://publish.illinois.edu/xiaohuichen/code/graphical-lasso/
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Fig. 3. Inference Performance (unknown a and θ) with gene dynamics and N = 100 nodes. (Left) AUROC. (Middle) AUPR. (Right) Error of estimating
a and θ.

Gene Dynamics Opinion Dynamics

Topology K = 100 K = 150 K = 200 K = 100 K = 150 K = 200

ER 0.972/0.481 0.973/0.819 0.995/0.980 0.964/0.927 0.999/0.999 1.000/1.000
WS 0.971/0.752 0.971/0.870 0.962/0.923 0.999/0.999 1.000/1.000 1.000/1.000
PA 0.997/0.889 0.999/0.974 1.000/0.990 0.904/0.748 0.956/0.889 0.976/0.941

TABLE II
INFERENCE PERFORMANCE ON GENE, OPINION DYNAMICS (WITH UNKNOWN a AND KNOWN θ) WITH N = 1000 NODES. THE RESULTS SHOWN ARE

AVERAGED OVER 10 REALIZATIONS, SHOWN IN THE ORDER OF ‘AUROC/AUPR’.
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Fig. 4. Inference Performance (unknown a and θ) with opinion dynamics and N = 100 nodes. (Left) AUROC. (Middle) AUPR. (Right) NMSE. Shaded
area is the 10th/90th percentile confidence interval.

between ER, WS and PA graphs rest solely on the variance of
the degree distribution. As such, the proposed method performs
best on WS graphs and worst on PA graphs.

The numerical analysis demonstrates that incorporating
knowledge from physical model can lead to significant im-
provement in the inference accuracy. This further supports our
claims on the identifiability of nonlinear dynamic systems.

VI. EMPIRICAL DATA FROM GENE REGULATORY
NETWORKS

The ultimate goal of our methodology is to reconstruct
the complex system (2) from empirical data. Hence we
collected data from real perturbation experiment on E. coli and
S. cerevisiae, and used our framework to retrieve their hidden
dynamics parameters. Lacking a ground truth for the dynamic
parameters a,θ, we test our method’s performance against the
common gold-standard for the networks, assuming that a high
quality reconstruction of a is, in and of itself, indicative of a
successful approximation of the dynamics.

a) DREAM5 Dataset: We test our method against the
DREAM5 network inference challenge [13], which is an
accepted benchmark for network inference methods. Focusing
on E. coli and S. cerevisiae, we extracted a total of KT = 326

(E. Coli) and KT = 238 (S. cerevisiae) vectors of stationary
points, each of x`, ` ∈ {1, ...,KT } is a result of a perturbation
experiment. Accounting for the data of repeated perturbation
experiments of the same condition, the dataset includes K = 56
(E. coli), K = 7 (S. cerevisiae) distinct topology perturbation
conditions. The target network consists of N = 4, 511 (E. coli)
and N = 5, 950 (S. cerevisiae) genes. The dataset also features
a set of TF = 334 (E. coli), TF = 333 (S. cerevisiae)
transcription factors, which are the regulating genes, i.e., genes
with outgoing links; however, some percentage of marked
transcription factors are wrongly labeled decoys.

b) Preprocessing Step: A key advantage of network
inference from stationary points is that one could aggregate
noisy observations from repeated experiments. To exploit that,
for the DREAM5 dataset, we partition the dataset of stationary
points as [KT ] = K0 ∪ K1 ∪ · · · ∪ KK such that K0 is the set
of stationary points under no perturbation, and Kk ⊆ [KT ]
corresponds to the kth topology perturbation. Assuming that
the complex system (2) has a unique stationary point, we can
write

x` = x(0) +w`, ∀ ` ∈ K0

=⇒ X(0) := (x`)`∈K0
= x(0)1> +W0,

(54)
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E.coli S.cerevisiae

Methods AUROC AUPR Score AUROC AUPR Score

TIGRESS[48] 0.595 0.069 4.41 0.517 0.02 1.082

GENIE3[6] 0.617 0.093 14.79 0.518 0.021 1.387

RankSum[13] 0.65 0.09 24.90 0.528 0.022 6.236

Proposed 0.6823 0.0508 33.29 0.525 0.021 4.161

(top105) 3.13×10 66 8.5×10 2 6.47×10 8 2.9×10 2

GENIMS[8] 0.705 0.052 48.33 0.533 0.02 8.454

Proposed 0.7573 0.0574 93.28 0.5734 0.0252 62.64

(top5×105) 1.04×10 184 2.7×10 3 1.5×10 119 2.38×10 7

Allscoresarecalculatedfromthetop105predictions.ExceptionsareGENIMSandproposedmethod(top5×105)thatarebasedonall,andtop5×105

predictions,respectively.
TABLEIII

INFERENCEPERFORMANCEONTWOEMPIRICALDATASET.THELOWERCOLUMNS’SCORESARETHEp-VALUESFORTHEAUROC/AUPRMETRICS.
MOREOVER,THEPROPOSEDMETHODFINDSTHEPARAMETERSASδ=0.047,γ=0.5893FORE.coliANDδ=0.5571,γ=0.3749FORS.cerevisiae.

wherewestackedupthestationarypointsinK0toformthe
matrixX(0):=(x)∈K0 ∈R

N×|K0|,andw modelsthe
variationduetoimperfectionintheexperiments. Whenthe
noiseissmall,X(0)isclosetorank-one.Therefore,defining

u
(0)
1 asthetoplefteigenvectorofX

(0)andσ1asitsassociated
eigenvalue,wecanestimatex(0)by

x(0)=σ1u
(0)
1 . (55)

WethendenotebyU
(0)
−1theremainingeigenvectorsofX

(0)

andusethefactthatx(0)isinthenullspaceofU
(0)
−1,to

estimatex(k)by

x(k)=x(0)+ 1
|Kk|
U
(0)
−1(U

(0)
−1) ∈Kk

x, (56)

wherethesecondtermontherighthandsideisanestimate
ofx(k)−x(0).Oftenwehave|K0| |Kk|withDREAM5
beingnoexception,having|K0|=139,|Kk|≈5foreach
k≥1(E.coli)and|K0|=107,|Kk|≈4foreachk≥1
(S.cerevisiae).Hence,theunperturbedstationarypointscan,
inprinciple,beestimatedwithhighreliability,providingfirm
groundsfortheinference.Fortheperturbedstationarypoints,
since|Kk|issmall,weobservethatasimpleaggregation
proceduresufficesasx(k)−x(0)isorthogonaltox(0).
c)Parameters:Weset η=0.005forthesupportset

estimator[Sηin(20)].In(22),Theregularizationparameters
(ρ,γ,ζ)aresetto(3,1,53)(resp.(3×10

−1,1,53))fortheE.
coli(resp.S.cerevisiae)network.TheAOproceduretackles
(22)withthefunctiontemplate(7)andaprojectedgradient
(PG)steponθ,whichhasseveralparameterstobeinitialized
—foreachi∈[N],weinitializebysetting(γi,δi)=(0.5,0.5)
andthestepsizeofPGissetto1×10−2.Lastly,theAO
procedureissettoterminateafter10iterations.

d)Results:IntheDREAM5frameworkoneranksall
linksaccordingtotheirinferredconfidencelevels.Then,using
thetop105links,theinferenceisconfrontedwiththeDREAM5
gold-standardintermsofAUROCandAUPR,assigningto
eachap-value,pAUROCandpAUPR.Themethodscoreisthen
calculatedviaScore:= log10pAUROC+log10pAUPR

2 .Theresults
presentedinTableIIIindicatethatourproposed method
achievesthehighestscoreforE.coli,andthesecondhighestfor
S.cerevisiae,outperformingthetopscoringinferencemethods
inDREAM5.ThecomparisonwithGENIMS[8]includesthe

top5×105predictions,tobeconsistentwiththeGENIMS
data,thatusedthisnumberoflinks.Undertheseconditionswe
findourmethodachievesoverwhelminglyhighscores,topping
allothercontenders.NotethatTIGRESS[48]isalsoatop
performingmethodoftheDREAM5challengeandGENIMSis
animprovedmethodfromGENIE3.Theseresultsdemonstrate
thatourmethodisabletoinfertheGRNfromfewsteady-state
data,whileimprovingtheperformancecomparedtothestate-
of-the-art.Thisisdespitethefactthatwelimitedourselvesto
onlyusesteadystatedata,henceignoringthetransientdata,
whichwasavailabletothecompetingmethods.Inparticular,
ourtopperformanceonE.coliwasachievedwithonly∼40%
ofthedataprovidedbyDREAM5.

VII.CONCLUSIONS

Inthispaper,westudiedthenetworkdynamicsidentification
problemforrecoveringacomplexsystemfromobservations
ofitsstationarypoints.Theproblemofinterestencompasses
asimultaneousrecoveryofnetworktopologyanddynamics
parameters.Weproposedanefficientnumericalmethodand
showedthatthenetworktopologyisidentifiableunderthe
restrictionthattheobservationencompassesonlyalimited
numberofstationarypoints,whichissmallrelativetothe
networksize.Thelatterfeatureisdesirableasempiricaldataset
availableareoftenrankdeficient.Weverifytheefficacyofour
methodonbothsyntheticandempiricaldata.
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APPENDIXA
PROOFOFLEMMA1

Considerthestationarypointconditionforthekthperturba-
tion.Foralli∈[N],wehave

0=
N
j=1Aijµ(|x

(k)
j −x

(k)
i |)x

(k)
j −x

(k)
i

+
S
j=1Bijµ(|z

(k)
j −x

(k)
i |)z

(k)
j −x

(k)
i

(57)
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The lemma is proven from the definition of Ã(k), B̃(k) and
stacking up the N equations above.

APPENDIX B
PROOF OF PROPOSITION 1

Without loss of generality, we consider π(k) = k such that
the kth perturbation removes the kth node. Let us write

x− x(k) = [x]kek + ε such that [ε]k = 0. (58)

Our goal is to find ε in the above. From the steady-state
equation (12), observe

x− x(k) = A(h(x;θ)− h(x(k);θ)) + eke
>
kAh(x(k);θ).

(59)
Notice that ek is in the null space of (I − eke

>
k ). Therefore,

combining (58) and (59) and left multiplying (I − eke
>
k ) to

the both sides of the equations yields:

ε = (I − eke
>
k )A

(
h(x;θ)− h(x(k);θ)

)
(a)≈ (I − eke

>
k )A∇h(x(k);θ)([x]kek + ε)

(60)

where (a) is obtained by the Taylor’s approximation for h(x)
centered at x(k). Expanding terms inside the bracket implies

ε ≈ (I − eke
>
k )A∇h(x(k);θ) ε

+ [x]k(I − eke
>
k )A∇h(x(k);θ)ek

(61)

We notice that ∇h(x(k);θ) is a diagonal matrix with
∂h(x;θ)
∂x |

x=x
(k)
i

on its (i, i)th entry and x
(k)
k = 0, therefore

the latter term can be simplified as

[x]k(I − eke
>
k )A∇h(x(k);θ)ek

= [x]k
∂h(x;θ)
∂x |x=0(I − eke

>
k )acol

k

= [x]k
∂h(x;θ)
∂x |x=0a

col
k ,

(62)

where the last equality is due to the fact that the kth element
of acol

k is zero. We thus have

ε ≈ (I−eke
>
k )A∇h(x(k);θ)ε+[x]k

∂h(x;θ)
∂x |x=0a

col
k . (63)

Observe that (63) is recursive in ε, therefore if we denote
x̃ := [x]k

∂h(x;θ)
∂x |x=0, then

ε = x̃
(
I − (I − eke

>
k )A∇h(x(k);θ)

)−1
acol
k

= x̃
(
I + (I − eke

>
k )A∇h(x(k);θ)+

((I − eke
>
k )A∇h(x(k);θ))2 + · · ·

)
acol
k

≈ x̃acol
k = [x]k

∂h(x;θ)
∂x |x=0 a

col
k ,

(64)

where the second equality is due to the Taylor’s expansion.
Notice that the series expansion holds when λmax((I −
eke
>
k )A∇h(x(k);θ)) < 1.

APPENDIX C
PROOF OF LEMMA 2

The proof follows from the classical theory for compressed
sensing, e.g., [42]. Without loss of generality, consider dynam-
ics perturbation and observe that (18) solves the compressive
sensing problem that can be simplified as:

minâ ‖â‖0 s.t. Sa = Sâ, [â]S = 0. (65)

Clearly, â = a is a feasible solution to the problem above.
Moreover, suppose that there exists a feasible ã with ‖ã‖0 ≤
‖a‖0 ≤ K, we obtain that:

0 = S(a− ã) = [S]:,supp(a−ã)x, (66)

where x = [a − ã]supp(a−ã) and supp(a) is the set of non-
zeros for a vector a. Since spark(A) ≥ 2K + 1 ≥ |supp(a−
ã)|, the sub-matrix [S]:,supp(a−ã) is full-rank. This implies
that x = 0 and thus a = ã. The proof is concluded.

APPENDIX D
PROOF OF PROPOSITION 3

Our proof follows a similar line of arguments as in [27,
Proposition 3]. Let x ∈ RN be an 2s-sparse vector with its
support set denoted as supp(x) := {i ∈ [N ] : xi 6= 0}. The
definition of expander graphs implies

δdl |S| ≤ δ |E(S,B)| ≤ |N(S)|, (67)

for all S ⊆ supp(x) ⊆ A since |supp(x)| ≤ 2s ≤ αN . The
Hall’s theorem [49] shows that there are δdl disjoint matchings
for supp(x), a subset of the left node set A. We decompose
Ei as:

Ei = EM +EC , (68)

such that supp(EM ) ∩ supp(EC) = ∅. Moreover, supp(EM )
corresponds to the δdl disjoint matchings for supp(x) such
that each row of EM has at most one non-zero entry and each
column has exactly δdl non-zero entries; and the remainder
EC has at most du − δdl non-zero entries per column. Notice
that this implies ‖EMx‖1 ≥ emin

i δdl ‖x‖1 and ‖ECx‖1 ≤
emax
i (du − δdl) ‖x‖1. Therefore,

‖Eix‖1 = ‖(EM +EC)x‖1
≥
(
emin
i δdl − emax

i (du − δdl)
)
‖x‖1.

(69)

This concludes the proof of the proposition.
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