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We study the level-spacing statistics in the entanglement spectrum of output states of random universal
quantum circuits where qubits are subject to a finite probability of projection to the computational basis at each
time step. We encounter two phase transitions with increasing projection rate. The first is the volume-to-area law
transition observed in quantum circuits with projective measurements. We identify a second transition within the
area law phase by repartioning the system randomly into two subsystems and probing the entanglement level
statistics. This second transition separates a pure Poisson level statistics phase at large projective measurement
rates from a regime of residual level repulsion in the entanglement spectrum, characterized by nonuniversal
level spacing statistics that interpolates between the Wigner-Dyson and Poisson distributions. By applying a
tensor network contraction algorithm introduced in [Z.-C. Yang et al., Phys. Rev. E 97, 033303 (2018)] to the
circuit spacetime, we identify this second projective-measurement-driven transition as a percolation transition of
entangled bonds. The same behavior is observed in both circuits of random two-qubit unitaries and circuits of
universal gate sets, including the set implemented by Google in its Sycamore circuits.

DOI: 10.1103/PhysRevB.101.235104

I. INTRODUCTION

Closed quantum many-body systems undergoing unitary
evolution generically reach a thermalized regime, exhibiting
volume-law entanglement [1–5]. Exceptions to this scenario
have drawn considerable attention, due to their relevance to
experimentally controllable quantum systems. For example,
many-body localization, which precludes thermalization and
leads instead to area-law entanglement, has been the subject of
extensive theoretical and experimental work [6–15]. Recently,
failure to thermalize has also been reported in simulations
of quantum circuits subjected to random measurement events
that model coupling to a classical environment [16–23]. Inter-
est in these models is fueled by the ongoing efforts to exploit
noisy intermediate-scale quantum devices for tasks beyond
the reach of classical computers.

The studies of Refs. [16–23] follow the time evolution of
an initial product state of qubits arranged in a one-dimensional
(1D) chain induced by local unitary gates randomly chosen
from a volume-law entangling set (such as, e.g., the Clifford
set), and subsequently measurement of each qubit with prob-
ability p. Intuitively, the nonunitary projective measurement
operation effectively disentangle the state and, at sufficiently
large measurement rate, results in a localization of the system
in Hilbert space characterized by the volume-to-area law
transition described in Refs. [16–23].

In this work, we study volume-law entangling unitary
quantum circuits subjected to a different kind of disentan-
gling perturbation, namely, projection operations that forcibly
“reset” qubits to the computational basis, randomly inserted
at a finite rate throughout the time evolution of the circuit.
Furthermore, we employ the level spacing statistics of the

entanglement spectrum [24], referred to hereafter as “the
entanglement spectrum statistics” (ESS), as a finer measure
of thermalization and entanglement [25–27]. Our computa-
tions are carried out by adopting the iterative tensor network
contraction method introduced in Ref. [28] to the 1+1D
spacetime of the circuits.

The main result of this paper is that the ESS features three
qualitatively different regimes separated by two transitions.
The first transition displays the same phenomenology as
discussed in the case of random projective measurements,
namely, a volume-to-area law transition at a finite projection
rate, p = pS [29], for contiguous partitions of the system into
subsystems A and B. Within the area law regime, we analyze
the ESS by changing the way the system is partitioned, as-
signing randomly the sites to either subsystem A or B. Probing
this repartioned system, we identify a second transition inside
the area law regime for contiguous partitions. For p→ pS+
the ESS obeys Wigner-Dyson statistics; for pS < p < pc, the
ESS assumes a nonuniversal form that interpolates between
the Wigner-Dyson and Poisson statistics (see Fig. 1); and for
p > pc the ESS becomes Poisson-distributed. By resolving
the entanglement bond dimensions of the 1+1D network
spatially, we conclude that the transition from nonuniversal
to Poisson statistics at pc is associated with the percolation
of entangled bonds in the spacetime geometry of the circuit.
We observe the same behavior, with two transitions, in 1+1D
circuits comprised of either two-qubit random-Haar unitaries
or of gates drawn from universal sets, including that imple-
mented by Google in its Sycamore circuits.

This paper is organized as follows. In Sec. II, we detail
the construction of our quantum circuit and of the random
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FIG. 1. Phase diagram as a function of projection probability p.
We observe three phases separated by two phase transitions at pS
and pc. The first transition, at pS , is the volume-to-area transition
identified in Refs. [16–23]. The second transition separates the pure
Poisson level statistics phase (p > pc) from a regime of residual level
repulsion in the entanglement spectrum (p < pc), characterized by
nonuniversal level spacing statistics that interpolates between the
Wigner-Dyson and Poisson distributions. We identify this second
projective-measurement-driven transition as a percolation transition
of entangled bonds in 1+1D spacetime.

one-qubit projection operators, and outline the method used
to compute the ESS. We then map each of these circuits into
a tensor network and describe the algorithm for contracting
these networks in Sec. III. In Sec. IV, we show numerical
results for the ESS in the thermalizing, nonuniversal, and
Poisson phases and locate the transition point, p = pc, be-
tween the latter two, which we interpret as a two-dimensional
percolation transition in the spacetime of the circuit in Sec. V.
Section VI summarizes our conclusions.

II. QUANTUM CIRCUITS AND RANDOM
MATRIX THEORY

We consider n qubits evolving in time t from an initial
product state of the form

|!(t = 0)⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩ , (1)

where the single-qubit state for the j-th qubit is defined as
|ψ j⟩ = cos(θ j/2) |0⟩ + sin(θ j/2)eiφ j |1⟩ with arbitrary angles
θ j and φ j . In what follows, the initial state evolves under
the action of (i) random unitary gates, and (ii) single-qubit
projection operators, randomly inserted after each gate with a
finite probability p. The state at time t is

|!(t )⟩ = M |!(t = 0)⟩ =
!

x

!x(t ) |x⟩ , (2)

where |x⟩ = |x1x2 . . . xn⟩ is a configuration in the computa-
tional basis with x j = 0, 1 for j = 1, . . . , n, and M is a 2n ×
2n nonunitary matrix describing both the unitary evolution and
the projection operations. The resulting circuit is illustrated in
Fig. 2, where two-qubit gates are represented as blocks and
projection operators as circles.

We choose the projection operator acting on the j-th qubit
to take the form M0 = I1 ⊗ I2 ⊗ · · · ⊗ |0 j⟩ ⟨0 j | ⊗ · · · ⊗ In,
where Ij is the identity operator on a single qubit. Although
we have chosen to project to the |0⟩ instead of the |1⟩ state, this
choice is immaterial in what follows. Projection operators are
not normpreserving, and hence the final state |!(t )⟩ is not nor-

FIG. 2. Illustration of initial product state evolved in time in a
quantum circuit. The circuit consists of local two-qubit unitary gates
(blocks) and projection operators (circles). The latter are introduced
randomly with probability p.

malized by default. We normalize final states for consistency.
Projection operators can be physically interpreted as randomly
picking a qubit and resetting it to the computational basis.
As will become evident below, the projector operators have a
disentangling effect, similar to that of the addition of measure-
ment operators in random Clifford or Haar-random circuits
[16–23]. In particular, projectors also lead to a volume-to-area
law transition as a function of nonunitary operator density.

Now, consider the pure state |!⟩ =
"
x !x|x⟩ after evolu-

tion with a quantum circuit as specified above, where x is the
configuration of the qubits in the computational basis and !x
is the coefficient for each x. !x can be reshaped into a matrix
!A,B by splitting the state into subsystems A and B. In this
way, |!⟩ is expressed as

|!⟩ =
!

xA,xB

!A,B |xA⟩ ⊗ |xB⟩ , (3)

where xA and xB are the local configurations for subsystems A
and B, respectively. Notice that the partition into subsystems A
and B can be chosen arbitrarily; for example, the subsystems
can be each contiguous or not. The choice of contiguous
subsystems is often made to study if the entanglement entropy
satisfies volume or area law. Here we shall also consider
random partitions, in which sites are randomly assigned to
subsystem A or B. This partitioning allows us to probe the ESS
even when the entanglement entropy is small for contiguous
partition, e.g., in the area law regime.

The entanglement spectrum can be obtained by a Schmidt
decomposition [24]

|!⟩ =
!

k

λk
##xkA
$
⊗
##xkB
$
, (4)

which is equivalent to singular value decomposition (SVD) of
matrix !A,B with singular values λk .

The set of entanglement levels λk defines the entanglement
spectrum (ES). The entanglement entropy is given by

S = −
!

k

λ2
k ln λ2

k . (5)
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With the ES in descending order, λk > λk+1, the ratio of
adjacent gaps in the spectrum can be defined as

rk = λk− 1 − λk

λk − λk+1
. (6)

We remark that ratios of other functions of the λk can be
defined, but these choices do not affect the ESS. For example,
let us define

r ( f )
k = f (λk− 1) − f (λk )

f (λk ) − f (λk+1)

= rk ×
f (λk− 1) − f (λk )

λk− 1 − λk

% f (λk ) − f (λk+1)
λk − λk+1

, (7)

which in the limit when the level spacings go to zero can be
replaced by

r ( f )
k → rk ×

f ′(λk− 1)
f ′(λk )

→ rk . (8)

In other words, for any smooth function f the statistics for the
ratios r( f )

k are the same as those for the ratios rk , in the limit
of dense spectra or small λk− 1 − λk spacings.

For Haar-random states, the probability distribution for
adjacent entanglement level ratios, which defines the ESS,
follows Wigner-Dyson statistics from random matrix theory
[30,31] and fits well the surmise [32]

PWD(r) = 1
Z

(r + r2)β

(1 + r + r2)1+3β/2
(9)

with Z = 4π/81
√

3 and β = 2 for the Gaussian unitary en-
semble (GUE) distribution. In contrast, the ESS for integrable
systems takes the Poisson form

PPoisson(r) = 1
(1 + r)2

. (10)

The most marked difference between the GUE and Poisson
distributions is the level repulsion (PWD → 0 for r → 0) in
the former and its absence (PPoisson > 0 at r = 0) in the
latter.

III. QUANTUM CIRCUITS AS TENSOR NETWORKS

A. Tensor network mapping

In this section, we map the random quantum circuits in-
troduced above and illustrated in Fig. 1 into a square-grid
tensor network and detail the contraction algorithm we use
to compute entanglement properties. The tensorial represen-
tation of the elements of the circuits is illustrated in Fig. 2.
We use open boundary conditions in the space and time
directions.

Each two-qubit gate g is expressed as a 4× 4 unitary ma-
trix T g(i1i2 )(o1o2 ), where (i1i2) and (o1o2) are combined indices
corresponding to gate input and output qubit states, respec-
tively. Each 4× 4 matrix can be reshaped into a 2× 2× 2× 2
tensor T gi1i2o1o2

. Since we want to transform the circuit into
a square lattice geometry, we regroup the indices of each
tensor to reshape it to a matrix T g(i1o1 )(i2o2 ) and use a SVD to

FIG. 3. Panel (a) shows how to rewrite a local two-qubit Haar-
random gate followed by a projection operator into two tensors where
each one has four active (i1, i2, o1, o2) and two dummy (b, b′) indices.
The active indices can be lumped together as i1i2 and o1o2. Panel
(b) shows how to use the correspondence between two- and one-bit
gates and a rank-4 tensor to map a quantum circuit into a rectangular
tensor network.

decompose it as

T g(i1o1 )(i2o2 ) =
!

m,m′
U(i1o1 )m (mm′ V ⋆

(i2o2 )m′

=
!

m,b,m′
U(i1o1 )m

√
*mb

√
*bm′ V ⋆

(i2o2 )m′

=
!

b

T α
(i1o1 )b T

β
(i2o2 )b, (11)

where U(i1o1 )m and V(i2o2 )m′ are unitary matrices and *mm′ is
a semipositive diagonal matrix containing the singular val-
ues. The two new matrices T α

(i1o1 )b =
"
mU(i1o1 )m

√
*mb and

T β
(i2o2 )b =

"
m′
√

*bm′V ⋆
(i2o2 )m′ , with b an index running over

singular values, are then reshaped to tensors T α
i1o1b

and T β
i2o2b

.
To end up with a rectangular geometry, we add a fourth
“dummy” index with dimension 1 to each tensor, connecting it
with a neighboring tensor in the space dimension, as indicated
by the faint vertical lines in Fig. 3(a).

Each single-qubit projector can also be expressed as a ten-
sor T po1o′1

, where o′1 has dimension 1. These can be contracted
into gate tensors as

T α
i1o′1bb

′ =
!

o1

T α
i1o1bb′ T

p
o1o′1

. (12)

Since initial states are taken to be product states, they can be
written simply as a tensor product of vectors, each vector cor-
responding to a single-qubit state. The state for the first qubit,
for example, is |ψi1⟩ = [cos(θi1/2), sin(θi1/2)eφi1 ] = Vi1 . This
can be contracted into the first gate tensor as

T α
o′1bb

′ =
!

i1

Vi1 T
α
i1o′1bb

′ . (13)

Finally, wherever no gates are applied to qubits at the top and
bottom boundaries, a rank-3 identity tensor δi1o1b is added to
complete the square lattice. With the above transformations,
we map the evolution described by the quantum circuit into
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FIG. 4. Illustration of the coarse-graining process used to con-
tract tensor networks in the time direction.

a tensor network, as shown in Fig. 3(b). Note that the final
(right) column of n indices is left free.

Next, we adopt a common indexing scheme for all tensors
in the network, where we denote every single tensor index as
s. The set of all indices in the tensor network is thus {S} =
{s1, s2, . . . , sN }, where N = 2d (2n − 1) is the total number
of indices and d is the circuit depth in time steps with two
columns of two-qubit gates per time step. Each tensor can be
uniquely determined by its subset of indices {s} ⊂ {S} as T{s}.
In this language, the final state |! f ⟩ is

|! f ⟩ = Tr
&

{s}
T{s}, (14)

where Tr indicates a trace over all nonfree indices connecting
tensors. Obtaining the final state is thus equivalent to partially
contracting a tensor network.

B. Contraction algorithm

To contract tensor networks, we employ a variant of
the iterative compression-decimation algorithm introduced in
Ref. [28]. We perform iterations of alternating compression
and decimation steps until the width of the lattice is fully
contracted.

The compression step is a sweep over lattice bonds where
we first contract the tensors at the ends of each visited bond
and then perform a SVD to restore the structure of the lattice,
in a way reminiscent of the density-matrix renormalization
group algorithm [33]. This step becomes significant when the
projector density in quantum circuits is increased, as we will
discuss below. We use the tools developed in Ref. [28] to
implement compression efficiently.

The decimation step coarsens the lattice at the expense of
increasing bond dimensions. As illustrated in Fig. 4 the tensor
network coarse graining is performed in the time direction, so
that every two columns of tensors are contracted into one. At
the end of decimation, we get a tensor chain representing the
final state.

IV. ENTANGLEMENT SPECTRUM STATISTICS
AND PHASE TRANSITIONS

We now use the formulations and tools previously dis-
cussed to perform numerical investigations of the ESS as a
function of projector density, p, in random quantum circuits
satisfying the geometry given in Fig. 2. For each circuit
realization, the initial state is of the form of Eq. (1), where all

θ j and φ j are selected uniformly at random. For comparative
purposes, two separate gate sets were used to construct the
random circuits. The first case is composed of two-qubit gates
selected from the Haar-random measure, while the second
consists of gates uniformly selected from the universal gate set
Usyc = {

√
X ,
√
Y ,
√
W , fSim} [34]. A single-qubit projector

is applied with probability p to each qubit after every gate
and before the final time step. We calculate the ES of many
random realizations and bin the spectra for the same p to
obtain the ESS. Our results are summarized in Fig. 5.

We begin by characterizing the quantum chaotic and in-
tegrable regimes for these circuits with Wigner-Dyson and
Poisson distribution ESS, respectively, and then proceed to
describe a previously unforeseen intermediate regime. For
p < pS , the ESS follows the GUE distribution over the entire
range of r, as seen in Figs. 5(a) and 5(d). This corresponds to a
highly entangled final state (i.e., volume-law state), indicating
that the system has settled into the quantum chaotic regime.
On the other hand, for p > pc, with pc ≃ 0.41, the ESS fol-
lows the Poisson distribution, which indicates that the system
is integrable — see Figs. 5(c) and 5(f). The intuition for this
change in the ESS as a function of p is that as the frequency
of projectors is increased, the system becomes frozen in
local states, therefore failing to entangle [16–23]. The small
deviations from the expected exact Poisson distribution are
due to our choice to avoid placing projectors in the final time
step of simulations. This choice prevents us from potentially
reducing the number of qubits in the system at the final time
step. This effect disappears in the thermodynamic limit, which
is investigated below by analysis using finite size scaling.

The primary result in our work is the discovery of an
intermediate regime between pS < p < pc, where the ESS
smoothly transitions from the GUE distribution to the Poisson.
We call this phase the residual repulsion phase. As shown in
Figs. 5(b) and 5(e), the strict level repulsion emblematic of
the chaotic regime disappears, i.e., P(r) becomes nonzero for
r → 0, and is replaced by a distribution that is between the
two regimes, having a maxima at a nonzero value of r. For
the quantum circuits taken from the set Usyc, this transitionary
phase exists within a shifted window of p values, specifically
0.15 < p < 0.3. We infer that this quicker transition occurs
as a result of the particular universal gate set that we have
selected. The argument is as follows: from Usyc, the gate
responsible for introducing entanglement into the system is
the fSim gate, which is an iSWAP gate concatenated with a
controlled Z , having an internal block structure as 1× 1, 2×
2, 1× 1. The entanglement created by this gate is not as robust
as that introduced by a random-Haar unitary gate, having no
predefined symmetries or structure. The entanglement arising
from this structured gate is therefore more susceptible to
the presence of projective measurements. Similar evidence
for this argument is also found when considering a separate
universal set U = CNOT, T, Hadamard. For this gate set, the
entangling gate (CNOT) has an internal structure of 2× 2, 2×
2, and only encodes a bit flip operation. In this case, we found
that the residual repulsion phase exists only within the narrow
window 0.01 < p < 0.03. In light of these narrower transition
windows for the gate sets Usyc and U, we choose to focus our
attentions on the Haar-random circuits when investigating the
thermodynamic limit of the ES.
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FIG. 5. Level spacing ratio distributions for the entanglement spectrum in the three phases of Fig. 1. From (a) to (c), the distributions are
taken from circuits constructed from the random-Haar measure with N bits and with depth d = N , whereas from (d) to (f) the distributions
are taken from circuits constructed from the universal gate set Usyc =

√
X ,
√
Y ,
√
W , fSim with N bits and depth d = 2N . (a) Volume-law

phase at p = 0.2, as indicated by the GUE distribution with level repulsion in the limits r → 0 and a Gaussian tail at r →∞. (b) Residual
repulsion phase at p = 0.35. Level repulsion disappears at r → 0 while a majority of levels show level repulsion as indicated by the presence
of a peak at finite r. (c) Poisson phase at p = 0.5. The spectrum displays an absence of level repulsion in similarity to the Poisson distribution.
(d) Volume-law phase at p = 0, again indicated by the GUE statistics in the level spacing. (e) Residual repulsion phase at p = 0.2 exhibiting
a shoulder instead of the shifted peak seen in (b). (f) Poisson phase at p = 0.4. The insets show the distributions in log-log scales in order
to capture their behavior at the tails. In (a), results are obtained from 500 realizations for n = 20 and from 1000 realizations for n < 20. For
(b) and (c), results are obtained from 1000 realizations for up to n = 24. In (d), (e), and (f) results are obtained from 500 realizations up to
n = 16.

The Kullback-Leibler (KL) divergence, defined as

DKL(P(x)||Q(x)) =
!

x

P(x)ln
'
P(x)
Q(x)

(
, (15)

provides a measure of distance between two distributions
P(x) and Q(x). If we calculate the DKL between numerically
calculated ESS distributions in the residual repulsion phase
and the Poisson distribution, there should exist a point pwhere
DKL goes to zero, indicating that the numerical distributions
have definitively become Poisson. However, as previously
mentioned, the numeric distributions will necessarily deviate
from the Poisson distribution for small-n circuits, such that
the DKL takes on a nonzero even in the Poisson phase. We
therefore instead calculate the quantity

-DKL = DKL(Pfinal||PPoisson ) − DKL(P2layer||PPoisson ), (16)

where Pfinal is the calculated final state ESS distribution and
P2layer is the ESS distribution obtained by evolving random
initial n-qubit product states with a single time step of Haar-
random two-qubit gates. This quantity is positive in the resid-
ual repulsion phase but vanishes in the Poisson phase, and can
hence be used as an indicator of the transition between the two
phases with varying p.

In Fig. 6 we locate the transition point pc by use of two
distinct figures of merit. The first one is the aforementioned
-DKL, shown in Fig. 6(a). In the inset of Fig. 6(b), we plot
-DKL as a function of 1/n and use the data for various n to ex-
trapolate linearly to n→∞. For small p, -DKL extrapolates
to a positive value at infinite size. The slope of the finite-size
scaling curve increases with increasing p and at pc ≃ 0.41 the
curves start intersecting the -DKL = 0 axis at finite n, indicat-
ing a transition to the Poisson phase. Additionally, in Fig. 6(c)
we show how the position of the maximum of Pfinal(r) changes
with p. For the Poisson distribution the maximum is at r = 0,
whereas the GUE distribution has its maximum P(r) at r =
(
√

5 − 1)/2 ≈0.618. Figure 6(c) shows that the maximum of
Pfinal(r) decreases from r ≈0.618, reaching zero close to pc.

V. ESS TRANSITION AT pc AND BOND
PERCOLATION IN SPACETIME

We propose that the transition at pc can be explained as
bond percolation in a square lattice [35]. Percolation theory,
however, predicts a transition at p = 0.5 and not at the ob-
served pc ≈0.41. The reason for this discrepancy is that a
single projector may affect multiple bonds.

235104-5



LEI ZHANG et al. PHYSICAL REVIEW B 101, 235104 (2020)

FIG. 6. (a) KL divergence -DKL between P(r) of evolved states and that of Poisson distribution as a function of projection rate p at
different system size. (b) -DKL at infinite size as a function of projection rate p. Inset: finite-size scaling for -DKL . (c) Position of maximum
P(r) as a function of projection rate p. The position is obtained from a histogram plot (not shown).

To illustrate this, we consider the more direct mapping
from circuit to tensor network shown in Fig. 7(a), which
implements only the first step of Fig. 3(a). Without projec-
tors, this yields a rotated square lattice with uniform bond
dimension 2. Adding a projection operator to a bond reduces
the dimension of that bond to 1. Naively, one would expect

FIG. 7. (a) Bond dimension distribution before (left) and after
(right) compression in a tensor network corresponding to circuit with
projectors inserted in bonds marked red. Bonds whose dimension
is reduced to 1 after compression are indicated by green lines.
(b) Numerical results for effective projection rate as a function of
projector insertion rate p.

that percolation occurs when a giant component of bonds
with a projector forms, which for the square lattice would
happen at density p = 0.5. However, the projection of a qubit
to the computational basis has a disentangling effect also
in its vicinity in spacetime and not only at the particular
point of insertion of a projector. This effect is resolved by
the compression step of our algorithm. In the example of
Fig. 7(a), after the compression step, all bonds indicated by
a green line are also reduced to dimension 1. This reasoning
suggests a modified percolation threshold based on the density
of dimension-1 bonds after a compression sweep, which we
call the effective projection rate.

We verify this numerically. Figure 7(b) shows the effective
projection rate as a function of the density of projectors
p. Dashed black lines indicate that an effective projection
ratio of 0.5 is achieved at p≈pc. This agrees well with
our ESS-based estimate for the transition point. As the two-
dimensional bond percolation transition is characterized by
absence of long range correlations, this reflects the fact that
the system becomes integrable at p > pc. It should be noted
that the compression algorithm is exact to machine precision
and hence accuracy does not factor appreciably into this
reasoning.

VI. CONCLUSION

The work presented here explores projection-driven quan-
tum circuits from the perspective of the ESS of the output
state. Our results uncover three distinct behaviors of the entan-
glement spectrum with increasing the rate, p, of projection of
qubits to the computational basis. The first regime, 0 < p <
pS , displays volume-law entanglement entropy and Wigner-
Dyson statistics of the ESS. At p = pS the systems undergoes
a volume-to-area-law transition similar to that studied in
Refs. [16–23]. The principal result of this paper is that the ESS
in the area law phase emerging at p = pS is nonuniversal and
interpolates between Wigner-Dyson and Poisson statistics,
with the region of residual level repulsion extending up to a
second transition, p = pc > pS , beyond which the ESS of the
system is Poisson.

This second transition within the area law phase is revealed
by repartioning the system randomly into two subsystems
and probing the entanglement level statistics. In particular,
our tensor network algorithm, which resolves entanglement
by monitoring the distribution of bond dimensions across the
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1+1D spacetime of the circuit, allows us to interpret this
transition as a percolation transition of entangled bonds and
to locate the corresponding critical value p = pc via finite size
scaling. We note that, unlike previous results in Refs. [21,22]
obtained in the limit of large local Hilbert space dimension
that associate the volume-to-area law transition to percolation
in a classical Potts model, here we find that the ESS transition
from nonuniversal to Poisson statistics is due to percolation of
entangled bonds in the circuit spacetime itself.

This work leaves open the question of the origin of the
intermediate regime with nonuniversal statistics of the entan-
glement spectrum. The nature of level statistics is determined
by the details of the interactions between eigenvalues which
can induce complex nonuniversal level statistics, including a
Griffiths-like phase observed in studies of many body local-
ization [36,37]. More detailed work is needed to elucidate
the nonuniversal regime in the ESS identified in this paper.

Nevertheless, the methodology and findings presented here
enable a more fine-grained characterization of entanglement
buildup in noisy quantum circuits compared to analyses based
solely on entanglement entropy, and can be used to study
near-term noisy quantum chips via quantum state tomography.
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