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Abstract— In this paper, full mechanisms of dissipation and
dispersion in poro-viscoelastic media are accurately simulated
in time domain. Specifically, four Q values are first proposed
to depict a poro-viscoelastic medium: two for the attenuation
of the bulk and shear moduli in the solid skeleton, one for the
bulk modulus in the pore fluid, and the other one for the solid-
fluid coupling. By introducing several sets of auxiliary ordinary
differential equations, the Q factors are efficiently incorporated
in a high-order discontinuous Galerkin algorithm. Consequently,
in the mathematical sense, the Riemann problem is exactly
solved, with the same form as the inviscid poroelastic material
counterpart; in the practical sense, our algorithm requires nearly
negligible extra time cost, while keeping the governing equations
almost unchanged. Parenthetically, an arbitrarily nonconformal-
mesh technique, in terms of both h- and p-adaptivity, is
implemented to realize the domain decomposition for a flexible
algorithm. Furthermore, our algorithm is verified with an ana-
lytical solution for the half-space modeling. A validation with an
independent numerical solver, and an application to a large-scale
realistic complex topography modeling demonstrate the accuracy,
efficiency, flexibility, and capability in realistic subsurface sensing.

Index Terms— Discontinuous Galerkin, domain decomposition,
porous viscoelasticity, Q-factor, subsurface sensing.

I. INTRODUCTION

IN THE realm of geoscience subsurface sensing, the Biot’s
biphasic model is pervasively used for a more accurate

description of realistic materials [1]–[3]. However, purely
poroelastic model may not be sufficient. Carcione [4, p. 280]
elucidates the importance of incorporating viscosity effects
into the poroelastic media, by comparing the recorded seis-
mograms and synthetic waveforms.
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Physically speaking, the dispersion and dissipation effects
of poroelastic waves, originate from not only the viscous solid
skeleton but also the infilling fluid and their interaction. Math-
ematically speaking, the governing equations for poroelastic
waves are comprised of: 1) dynamic Biot’s motion equation,
with respect to divergence of stresses in the viscous skeleton
(also called as lattice, matrix, or frame) and 2) dynamic
Darcy’s law, with respect to the gradient of pressure in the
viscous pore fluid. In this paper, we will propose a complete-
Q model, which is described by the stress–strain constitutive
relationship [4, p. 276].

However, numerical implementation of poro-viscoelastic
waves remains a delicate task for current numerical solvers.
Heuristically, the viscosity in poroelastic media can be
incorporated, in analogy with the existing viscoelastic mod-
eling. Typically, two approaches have been utilized to
resolve the viscosity-induced memory effects: the spa-
tial/temporal fractional-derivative operator and the auxiliary
variable approximation. The former is not affordable for 3-D
large-scale engineering problems, since it involves convolu-
tional integrals and requires tremendous storages of the entire-
history variables; nevertheless, the truncation principle is a
possibility for strong attenuation, especially for small Q values
[5]–[7]. Therefore, it is preferable to evaluate the time-domain
stress–strain relation efficiently, by resorting to the auxiliary
differential equations [8, Ch. 3]. Likewise, in electromagnetic
dispersive media, the auxiliary differential equation method
has widely been used [9].

In viscoelastic modeling, by introducing several sets of
auxiliary differential equations, the generalized Zener body
(GZB) and the generalized Maxwell body (GMB) are two
prevailing rheological solutions. They are comprised of either
serial or parallel combinations of Newton liquids and Hook
springs. Conventionally, the GMB model is widely adopted
in velocity-stress-based finite-difference time-domain (FDTD)
algorithm [8]. However, in the velocity-stress-based dis-
continuous Galerkin (DG) framework for viscoelastic mod-
eling, the exact Riemann solution is usually intractable
[10]–[12]. Specifically, the auxiliary equations are still par-
tial differential equations, thus involving spatially nonlocal
evaluation.

In this paper, we aim to efficiently evaluate the complete-Q
model in time domain: the GMB is used in the DG algorithm,
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based on velocity–strain variables. The new contributions we
deliver in this paper are given in the following.

1) A complete-Q model, with four Q values corresponding
to the physical insight, is proposed to fully incorpo-
rate dispersions and dissipations of an isotropic porous
medium for the first time.

2) We leverage several sets of auxiliary ordinary differential
equations (ODEs), thus only involving both temporally
and spatially localized damping, to accurately capturing
viscosity effects.

3) Consequently, from the perspective of mathematics, the
Riemann problem is exactly solved, with the same form
as the inviscid poroelastic material counterpart; from the
perspective of practicality, our algorithm requires nearly
negligible extra time cost, while keeping the governing
equations almost unchanged.

This paper is organized as follows. Section II provides
the governing equations for poroelastic media in the low-
frequency regime. Section III provides a complete-Q model,
and modifies the stress–strain constitutive relationship by
adding extra anelastic functions, which are governed by the
ODEs in lieu of the convolutional integral. Section IV applies
a nonconformal DG algorithm to the hyperbolic system. An
exact Riemann solution is obtained in Section V. Section VI
shows numerical validations and verifications. Conclusions are
drawn in Section VII.

II. GOVERNING EQUATIONS IN THE

LOW-FREQUENCY REGIME

For general poroelastic media, the Biot’s dynamic equation
and Darcy’s law read, respectively [4, p. 254],

∂τi j

∂x j
= ρ

∂vi

∂ t
+ ρ f

∂w
f
i

∂ t
+ F1

i (1a)

− ∂p

∂xi
= ρ f

∂vi

∂ t
+ � ∗ ∂w

f
i

∂ t
+ F2

i (1b)

where x j ( j = 1 to 3) and t are the independent variables,
corresponding to the Cartesian spatial coordinate and time
axis, respectively, and vi and w

f
i are the dependent variables,

corresponding to the particle velocity of the solid frame and
the pore-fluid particle velocity dispersion (i.e., the velocity
relative to the solid frame), respectively. Note that τi j (i, j = 1
to 3) and p are the stress tensor and the pore-fluid pressure,
respectively, which can be calculated from the dependent vari-
ables via the constitutive relation in Section III. In addition, we
have constants’ definitions: ρ is the density of the poroelastic
medium as ρ = (1 − φ)ρs + φρ f , φ is the porosity of the
poroelastic medium, ρs is the density of the solid frame,
and ρ f is the density of the fluid. In addition, F1

i and F2
i

correspond to body force densities imposed on the solid frame
and the pore fluid, respectively. Note that “∗” implies a time
convolutional integral. Especially, �(t) is the viscodynamic
operator

�(t) = ρwδ(t) + ν

κ
χ(t)H (t) (2)

where δ(t) is the Dirac delta function, H (t) is the Heaviside
function, ρw is the fluid inertia: ρw = ρ f T/φ, ν is the fluid

viscosity, κ is the permeability of the solid matrix, and T
is tortuosity of the solid matrix. Note that fcr = (ν/κ)/ρw

is the Biot’s critical frequency [13]. For the low-frequency
regime ( f < fcr), the fluid is with a Poiseuille-type behavior:
χ(t) = 1. For the convenience of solving problems in time
domain, (1) is further derived by Crammer’s rule, leading to
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Note this system will be closed by the constitutive relation
provided in Section III.

III. GMB-BASED CONSTITUTIVE RELATION

A. Lossless Poroelastic Medium

For a porous medium with pure elasticity, the constitu-
tive relationship in a matrix form, subject to Voigt notation
[8, p. 42], reads

τ = Dε (5)

where

τ 7×1 = (τxx, τyy, τzz, τyz, τxz, τxy,−p)� (6)

is comprised of the total stresses (rather than the effective
stresses for the frame) and fluid pressure for the pore, and

ε7×1 = (εxx , εyy, εzz, γyz, γxz, γxy,−ς)� (7)

is comprised of matrix strains and fluid strain (i.e., the vari-
ation of the fluid content). The detailed expressions for the
solid matrix strain are

εi j := ∂ui
∂x j

, for i = j

γi j := ∂ui
∂x j

+ ∂u j

∂xi
, for i �= j (8)

where ui is the displacement: ∂ui/∂ t := vi , and the formula-
tion of the fluid-infilling pore strain rate is

−∂ς

∂ t
:= ∂i · w f

i . (9)

The detailed expression for D reads

D7×7 =




MP 0 0 0 0 0 Mα
MP 0 0 0 0 Mα

0 0 MP 0 0 0 Mα
0 0 0 µm 0 0 0
0 0 0 0 µm 0 0
0 0 0 0 0 µm 0
Mα Mα Mα 0 0 0 M




(10)
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with

MP = K + 4

3
µm + Mα2

α = 1 − K

Ks
(11)

where K is the frame bulk modulus, µm is the frame shear
modulus, and α is the generalized effective stress component.
Note that M is the fluid-solid coupling modulus, with the
expression

M = Ks

(1 − K/Ks) − φ(1 − Ks/K f )
(12)

where Ks is the material’s bulk modulus, K f is the fluid bulk
modulus, and φ is the matrix porosity.

B. Poro-Viscoelastic Medium

For a GMB-based poro-viscoelastic medium with N relax-
ation mechanisms, the stress τ not only depends on strain
ε (just like the purely elastic media) but also the anelastic
functions {θ (n)}. We write this relationship as [8, p. 43]

τ = DUε −
N∑

n=1

D(n)θ (n) (13)

where

θ (n) = (
θ(n)
xx , θ (n)

yy , θ (n)
zz , 2θ(n)

yz , 2θ(n)
xz , 2θ(n)

xy , θ (n)
p

)� (14)

is controlled by the ODE as

∂

∂ t
θ (n) + ωnθ

(n) = ωnε (15)

where ωn is the relaxation angular frequency [14, eq. 6].
It is worth noting that the unrelaxed moduli DU is usually
not the same as the regular reference moduli D measured at
the reference angular frequency ωr . Furthermore, it is also
worth noting that the attenuation moduli D(n) is nothing
different from the unrelaxed moduli DU , but a linear mapping
relationship for every corresponding entry [8, p. 44]

D(n)
i j = Y (n)

i j DU
i j (16)

where no summation convention is applied and {Y (n)
i j } is called

as the anelastic ratio matrix. Note that unrelaxed modulus is
calculated as
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R + �1

2R2 (17)
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C. Complete-Q Model and the Q Transformation Rule

From Section III-B, we can observe that the paramount step
to construct the new constitutive relation is the determination
of the anelastic ratio matrix {Y (n)

i j }. Therefore, this section
focuses on this issue.

In retrospect, (10) suggests that in addition to the two
elastic properties of the frame, K and µm , another two input
parameters, such as M and α, are required for the constitutive
relation of a purely elastic porous medium. Intuitively, a
complete-Q model requires four attenuation parameters to
depict a poro-viscoelastic medium: QK and Qµm for the
attenuation of the bulk and shear moduli in the solid skeleton,
respectively, QK f for the bulk modulus in the pore fluid, and
QKs implicitly for the solid-fluid coupling. However, it is still
not suitable for a direct extension of (10) from purely elastic
to the viscoelastic scenario; nevertheless, with this physical
insight, it is, therefore, meaningful to explore the Q value
transformation rule below.

Kjartansson [15] provides quality factor definition, based
on the Caputo fractional derivative. In time domain, the
modulus M , any entry in DI J (I, J = 1 to 7), involves a
Caputo fractional derivative operator C

0 D2γ
t := ∂2γ /∂ t2γ as

M (t) =
(
M0

ω
2γ
r

)
C
0 D2γ

t (19)

with

M0 = Mr cos2
(πγ

2

)
(20)

and constant fractional order

γ = 1

π
arctan

1

Q
(21)

where Mr is the reference modulus. In frequency domain,
M becomes a much simpler complex value with a fractional
exponent as

M (ω) = M0

(
iω

ωr

)2γ

. (22)

It is worth noting that with this expression, the analytical
solutions can be extended from purely poroelastic media to
viscous poroelastic media by complexifing the moduli [16].
Combining (21) and (22), we get an alternative definition of
the quality factor, in terms of the tangential loss as

Q = �(M )

�(M )
(23)

where the identity

i2γ = (eiπ/2)2γ = cos(πγ ) + i sin(πγ ) (24)

has been used.
Now it is ready to propose a Q value transformation rule as

the following.

1) Given that complete-Q parameters {QK , Qµm ,
QK f , QKs } are known, we can get the corresponding

complex moduli {K̃ , µ̃m , K̃ f , K̃s}, according to (22).
Then, substituting them into (11) and (12), we can get
the corresponding complex moduli {α̃, M̃}.
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2) Substituting all these complex moduli into (10), we can
construct a complex elasticity matrix D̃.

3) Now for every nonzero entry D̃I J , according to the new
quality definition (23), we can obtain a quality factor
QI J , which may be frequency dependent.

4) According to the correspondence principle, for every
nonzero entry QI J , we can perform the Q-factor fitting
to obtain the anelastic ratios {Y (n)

i j } [14, eq. 6], [17].

IV. DG FORMULATION

A. Conservation Law System for the
Poro-Viscoelastic Equation

Combining (3), (8), (9), and (15), we can compactly arrive
at a conservation form, by omitting the excitations and lossy
terms

∂q
∂ t

= ∂ f
∂x

+ ∂ g
∂y

+ ∂h
∂z

(25)

where q, f , g, and h are with the dimension of (13+7N)×1
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0, 0, vz , vy, vx , 0, w
f
z ,

01×7N
)�

. (26)

This system is closed by the constitutive relationship (13).
Furthermore, this equation is a hyperbolic system, which will
be demonstrated in Section V.

B. DG Discretization

In contrast to the conventional finite-element method, every
element is treated as one integral domain � in the discon-
tinuous Galerkin Method. Arbitrary high-order nodal basis
functions can be used, by weakly imposing the continuity
boundary conditions across the interface ∂�n :=�, via a
numerical flux. Testing (25) by the function W , and integrating
it over �, then taking the integral by parts provide [18], [19]∫

�
W

∂q
∂ t

d� =
∫

�
W∇ · ( f x̂ + g ŷ + hẑ)d�

=
∮

∂�n
T−1W h̃∗d�

−
∫

�

(
∂W

∂x
f + ∂W

∂y
g + ∂W

∂z
h
)
d� (27)

where we evaluate integral on the surface, whose normal unit
is parallel with z̃ in the local coordinates, by a rotation matrix

Fig. 1. Characteristic lines: distinct wave propagation speeds and directions
are shown along the normal direction. The numbers of each wave speed are
provided in the brackets along each line.

T [4, p. 9]; accordingly, the flux variables are denoted by a
tilde notation. Note that an asterisk notation implies that an
exact Riemann solution is applied, which is an essential feature
of the DG algorithm [20].

C. hp-Adaptivity Version of the DG Algorithm

Modern numerical methods should be amenable to the adap-
tivity and efficiency in large multiscale engineering/industry
problems [21]–[23]. In this paper, we apply the arbitrarily
nonconformal technique to realize a kind of hp-adaptivity
version DG algorithm [24]. Recently, we have successfully
implemented it for the simulation of 3-D elastic waves in an
arbitrary high-order DG framework [14], [18], [19], [25], [26].
Compared with the multigrid version nonconformal technique,
this new technique provides much more flexibility, since the
element types are totally independent between two adjacent
regions.

V. UPWIND FLUX FOR ODE-BASED VISCOUS

POROELASTIC WAVES

Thanks to the surface integral in the locally rotated coordi-
nates in (27), we can simply solve 1-D Riemann problem as

∂q
∂ t

− ∂h
∂z

= 0. (28)

Note that for brevity, we have removed the tilde notation
above, but this Riemann problem is actually solved in the local
coordinates. We can obtain the Jacobian matrix as [27, p. 88]

[Cij ] = ∂hi
∂q j

. (29)

Note that the entries in (29) from 14 to 13 + 7N , totally 7N ,
are exactly null. Therefore, this proposed velocity–strain-based
formulation only adds 7N more nonpropagating eigenvalues:
this is mathematical perspective for local damping, instead of
nonlocal attenuation. This locality is valid in both temporal
and spatial sense, thus leading to an efficient evaluation of
viscoelasticity. This fact is more clearly shown as the the
characteristic line in Fig. 1, also indicating the hyperbolicity
of the poroelastic wave system equation [27, p. 45].

In this ODE-based framework, the exact Riemann problem
can be exactly solved, with an exactly same form as the
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TABLE I

POROELASTIC PARAMETERS FOR THE HALF-SPACE MODELING

equations without auxiliary ODEs; whereas it is intractable to
obtain a Riemann solver for those partial differential equation
(PDE)-based methods [10]. Following the same procedures in
[28] and [14], we can obtain the exact Riemann solution for
the poro-viscoelastic waves

H∗ − H

=
(

ZU (ZU + ZU+
)−1 ZU (ZU + ZU+

)−1ZU+

(ZU + ZU+
)−1 (ZU + ZU+

)−1ZU+

)

×(H+ − H) (30)

where the superscript “+” means a variable from the opposite
side of the interface. Note that ZU is the unrelaxed generalized
wave impedance matrix with the size of 4 × 4 [25], [28], H
is the stress(pressure)-velocity vector

H =
(

τxz τyz τzz p vz vy vx w
f
z

)�
. (31)

VI. NUMERICAL IMPLEMENTATION

A. Half-Space Modeling With Variant Q Factors

This example aims to validate the accuracy and efficiency
of the proposed high-order DG algorithm, applied to the
isotropic half-space modeling, where the medium is with
viscous poroelastic material with variant Q factors. Table I
gives the poroelastic parameters. The physical domain is
[−250, 250] × [−250, 250] × [−500, 0] m3, which is
discretized by 17 × 17 × 17 hexahedral elements in X/Y/Z
directions, correspondingly. A perfectly matched layer, with
the thickness of one-element, is attached to each surrounding
side at planes X = −250, 250 m, Y = −250, 250 m, and
Z = −500 m, except the top free boundary Z = 0 m,
to absorb outgoing waves [29], [30]. The excitation is a
z-polarized source, added in (1a), which has a Ricker wavelet
source time function with the peak frequency fc = 50 Hz.
The source and receiver are located at (0, 0,−300) m and
(200, 0,−450) m, respectively. The nodal basis function over
a hexahedron is with the order of 12 [18, eq. 6], thus leading
to 2.17 points per wavelength, corresponding to the maximum
frequency (3.5 fc). Three relaxation mechanisms are used,
and the reference frequency is chosen as fr = 10 Hz [14,
Fig. 2 and Table 1]. We extend the the analytical solutions
from purely poroelastic media to viscous poroelastic media by
complexifing the moduli. Fig. 2 shows the waveform compar-
isons of the vz components for different Q factors, obtaining
a good agreement between our algorithm and the analytical
solution [16], even after many-wavelength propagation. This
corroborates the high accuracy and efficiency of the high-order
method [31]. Furthermore, we can observe that the waveform

Fig. 2. Comparisons of vz waveforms between the analytical solution and the
DG algorithm, for different quality factors (Q = QP = QS = QKs = QK f ).
The waveforms are normalized to the one from lossless media. The relative
root-mean-square differences are marked along each waveform, and the twelve
seismic phases are marked.

Fig. 3. Snapshot of vz fields at t = 0.26 s. The isotropic poroelastic medium
is with the quality factor Q = QP = QS = QKs = QK f = 60. The source
and receiver are marked as a star and a triangle, respectively. The seismic
phases are also marked along each wavefront.

is slightly left shifted, whereas the amplitude is increasingly
attenuated, when Q decreases. Fig. 3 provides the snapshot of
the z-component solid particle velocity for the solid skeleton:
we can clearly observe the direct wave (i.e., slow P wave Ps),
and three-type wave splitting due to the reflection of the top
free boundary, from the direct fast P wave (i.e., PfPf, PfS, and
PfPs), and from the direct S wave (i.e., SPf, SS, and SPs).

B. Multilayer Modeling With the hp-Adaptivity Technique

This example shows a multilayer model as shown in
Fig. 4, with high-contrast realistic material properties provided



4596 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 7, JULY 2019

Fig. 4. Multilayer model with the hp-adaptivity technique, the top surface is
with free boundary condition; whereas all other boundaries are with perfectly
matched layers [29].

TABLE II

POROELASTIC PARAMETERS FOR THE MULTILAYER MODEL

in Table II. With the flexibility of our domain decomposition
technique: adaptive distributions of the approximation orders,
mesh sizes, and anelastic variable allocation are achieved,
helping strike the balance between accuracy versus efficiency.

A point source is located at (300, 200,−600) m in the fifth
layer. It is added in (1a) as (F1

x , F1
y , F1

z ) = (1, 2, 3) × S(t),
where S(t) is the Ricker wavelet as the source time function
with the peak frequency fc = 40 Hz. The reference solutions
are obtained from an FDTD algorithm, based on the GZB
model [33], [34], as implemented by the FDTD solver in [35].
Fig. 5 displays the waveform comparisons for the viscous
poroelastic and purely poroelastic media. We can find that
the Q factors have a tangible distortion on the waveforms, by
attenuating the high-frequency components more than the low-
frequency, especially for the reflected wavelets, and slightly
left shifting the waveforms. The dissipation and dispersion
are more obvious in Fig. 5(a) than Fig. 5(b), due to the longer
distance propagation. Furthermore, the memory and time con-
sumptions from the purely poroelastic modeling and viscous
poroelastic modeling with three relaxation mechanisms are
compared in Table III, respectively, showing only 31% and
25% extra costs. This fact elucidates the superiority of our
new ODE-based algorithm.

Fig. 5. Waveform comparisons of the solid particle velocity for the receivers
at (a) (100, 100, −70) and (b) (100, 100, −560) in the first and fifth layers,
respectively. Note that the black solid lines come from the FDTD algorithm,
while the red dashed from the DG; the odd rows correspond to viscous
poroelastic model, while the even for the purely poroelastic.

C. Nonconformal Mesh Technique Applied
to Topography Modeling

Next, we apply our algorithm to the modeling of realistic
complex topography by fully utilizing the flexibility of the
nonconformal mesh technique. Fig. 6 shows the configuration,
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TABLE III

MEMORY AND TIME COMPARISONS BETWEEN PURELY POROELASTIC
AND VISCOUS POROELASTIC MODELING

TABLE IV

POROELASTIC PARAMETERS FOR A TOPOGRAPHY MODELING

Fig. 6. Realistic topography modeling with the hp-adaptivity technique.
The top surface is with free boundary condition; whereas all other bound-
aries are with perfectly matched layers. A second-order mesh mapping
technique is utilized to capture the variance of the ground. The two
heterogeneous interfaces are on a plane, determined by three vertices
{(8000, 0,−1523.14), (0, 0, −1523.14), (0, 8000, −112.52)} m, and another
plane Z = −2000 m.

where the Tibetan topography is used (28.6◦ N, 88.3◦ E to
28.5◦ N, 88.4◦ E). The satellite data is downloaded from
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp (last
accessed November, 2018). A z-polarized source with a
Ricker wavelet of 5-Hz central frequency, added in (1a),
is located at (300, 300,−2100) m in the bottom layer.
Table IV provides the material properties from the top layers
to the bottom. The whole computational domain is about
175λmin × 175λmin × 136λmin in X,Y, and Z directions,
where λmin is the minimum wavelength corresponding
to 3.5 fc. To improve the simulation efficiency but without

Fig. 7. Snapshots of vz distribution on the ground and cut surfaces recorded
with equidistant time intervals.

scarifying accuracy, we apply the domain decomposition
technique by adaptively distributing nonconformal meshes and
nonuniform basis function orders. Fig. 7 shows the snapshots
for the vertical component of the solid particle velocity. The
transmitted fast P waves hit the ground in Fig. 7(a), then
the S waves arrive and spread in Fig. 7(b), followed by a
slow P wave shown in Fig. 7(c), where the surface waves
become conspicuous between the interfaces [36]. As time
moves on, the reflected waves, from the interface between
the first and second layers, propagate back to the ground.
Conspicuous scattering is observed from the small peaks
on the ground in Fig. 7(d). The fields are very complicated
due to the interactions between waves and the topography in
Fig. 7(e) and (f).

VII. CONCLUSION

A complete-Q model, comprised of four quality factors, is
proposed to depict the dissipation and dispersion of poro-
viscoelastic media in realistic subsurface sensing. Based on
the velocity–strain variables, the Riemann problem of the
new hyperbolic system is exactly solved for an adaptive
nonconformal-mesh discontinuous Galerkin method. Further-
more, the auxiliary equations are just ordinary differential
equations, thus leading to an efficient evaluation of the anelas-
tic functions. The verification and validation with an analytical
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solution and an independent code demonstrate the high flexi-
bility, accuracy, and efficiency of the proposed method.
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