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In the absence of external material deposition, crystal surfaces usually relax to become flat by decreasing
their free energy. We study analytically an asymmetry in the relaxation of macroscopic plateaus, facets, of
a periodic surface corrugation in 1+1 dimensions via a continuum model below the roughening transition
temperature. The model invokes a continuum evolution law expressed by a highly degenerate parabolic
partial differential equation (PDE) for surface diffusion, which is related to the nonlinear gradient flow of
a convex, singular surface free energy with a certain exponential mobility in homoepitaxy. This evolution
law is motivated both by an atomistic broken-bond model and a mesoscale model for crystal steps. By
constructing an explicit solution to this PDE, we demonstrate the lack of symmetry in the evolution of top
and bottom facets in periodic surface profiles. Our explicit, analytical solution is compared to numerical

Facet simulations of the continuum law via a regularized surface free energy.
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Burton-Cabrera-Frank (BCF) model
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1. Introduction

The epitaxial growth and relaxation of crystals include kinetic
processes by which atoms are deposited from above, and are ad-
sorbed and diffuse on a substrate to form solid films or other
nanostructures. Hence, the crystal surface undergoes morpholog-
ical changes [1-3]. If the crystal of the film matches that of the
substrate, the processes pertain to homoepitaxy. Below the rough-
ening transition temperature, macroscopic plateaus, called facets,
may form. Their evolution is linked to various nanoscale phenom-
ena [3]; for example, the stability of semiconductor quantum dots
and the wetting/dewetting of crystal surfaces [4].

In this paper, we study implications of a continuum model
based on a singular-diffusion partial differential equation (PDE)
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satisfied by the height profile in crystal surface relaxation, in the
absence of external material deposition, in 14+1 dimensions. This
evolution law encompasses continuum thermodynamics and mass
conservation. The model is related to a nonlinear, weighted H~'-
gradient flow for a convex, singular surface free energy in ho-
moepitaxy. The PDE is motivated by the continuum limit of the
following models: (i) a mesoscale theory of line defects, steps, under
diffusion-limited kinetics in monotone step trains [5,6]; and (ii)
a family of atomistic, broken-bond models, in which the kinetic
rates obey the Arrhenius law involving the energy barriers for atom
hopping [7,8].

Physically, our continuum model reflects the presence of strong,
isotropic stiffness of steps. This notion of step stiffness is related to
the energy cost to create a step, and affects the local-equilibrium
density, o, of adsorbed atoms (adatoms). By the Gibbs-Thomson
relation at equilibrium [9,10], this g, is an exponential function of
the step chemical potential, us, scaled by the Boltzmann energy,
kgT. The s is defined as the change per atom in the step energy;
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and in principle expresses the joint effect of step stiffness and step-
step interactions [2,11,12]. We assume that | us| may be of the same
order as or larger than kgT; thus, the exponential dependence of o,
on s cannot be neglected. A similar chemical potential was used
in [7] in the setting of adatom rates in order to derive continuum
equations for the height profile from an atomistic perspective. At
the continuum level, the assumption of an exponential law for g
versus u; implies that the adatom mass flux is proportional to the
gradient of exp[us/(kgT)], instead of the gradient of ws/(kgT) as,
e.g., in[13,14].

The continuum evolution law, henceforth called “exponential
PDE”, that results from the aforementioned exponential law ex-
presses an asymmetry in the evolution of convex and concave
parts of the surface. By assuming that step-step interactions are
negligible, we show informally via construction of an analytical
solution that an implication of the PDE is an asymmetry in facet
evolution: top and bottom facets evolve differently in a periodic
surface corrugation in 141 dimensions. In addition, we indicate
numerically how such an asymmetry manifests in the presence of
elastic-dipole step-step interactions. This more complicated case
lies beyond the scope of our present study.

Our approach may offer a qualitative explanation of an asym-
metry in the evolution of facets of one-dimensional, periodic sur-
face corrugations observed via kinetic Monte Carlo simulations
[15]. In this work [15], the (counter-intuitive) asymmetry in facet
evolution is attributed to the relatively large amplitude of the ini-
tial height profile. Here, we view the asymmetry in facet dynamics
as a direct consequence of the exponential PDE for the height. In
this vein, we should also mention experimental observations of an-
nealed gratings of Si with evolving facets [ 16]. These observations
evade a complete understanding (see, e.g., [17]). Several pending
questions emerge from our study. In particular, its extension to two
spatial dimensions is the subject of future work.

It should be noted that in past continuum treatments of epitax-
ial growth, the exponential of s /(kgT)is typically linearized under
the hypothesis that |us| < kgT; see, e.g., [6,13,14,18-21]; see also
the comment in [7]. This simplification in turn yields the standard
(linear) Fick law for the mass flux in terms of the continuum-scale
step chemical potential. The resulting continuum-scale evolution
law does not distinguish between convex and concave parts of
surface profiles.

We adopt an approach based on the following tools. (i) The
extended-gradient (or, subgradient) formalism for the construc-
tion of an explicit solution to the PDE for the height profile across
facets. This formalism is an extension of the PDE framework from
the previous, familiar cases of evaporation-condensation and sur-
face diffusion under linearization of g5 versus us, in which the
metric space is L? or (non-weighted) H~! [22,23], to the present,
more complicated case of nonlinear gradient flow. (ii) Numerical
simulations of the PDE by use of a regularized surface free energy,
in the spirit of [ 18,24]. Our findings point to a few open questions
about the connection of the microscale dynamics of crystals to the
corresponding exponential PDE.

Our main results in this paper can be summarized as follows.

e We formulate a singular-diffusion PDE model. Away from
facets, this model is consistent with the continuum limit of
the Burton-Cabrera-Frank (BCF) theory for moving steps in
241 dimensions [5,6]. The PDE is also motivated by a family
of KMC models of crystal surface relaxation that include both
the solid-on-solid (SOS) and discrete Gaussian models [7,8].

e We consider the setting with a periodic surface corrugation
in 141 dimensions, and treat facet edges as free boundaries.
Accordingly, we informally develop an explicit solution for
the height profile with recourse to the extended-gradient
formalism in the absence of elasticity (i.e., without step-step

interactions). Our construction invokes mass conservation
and continuity of the continuum-scale step chemical poten-
tial across the facet. This procedure results in two coupled
differential equations for the facet position and height, x; and
hs. This approach forms an extension of the theory underly-
ing [23,25-27] to the framework of the exponential PDE.

o In the context of the extended-gradient formalism outlined
above, we show that the expansion of a facet is accompanied
by a jump of the height profile at the facet edge; and the facet
expands at finite speed.

e By heuristically analyzing the differential equation system for
(xf, hy) in the periodic setting without elasticity, we predict
that top and bottom facets are characterized by distinctly
different evolutions. In particular, the top facet starts ex-
panding regardless of its initial size; in contrast, the bottom
facet expands if its initial size exceeds a certain critical length
which we compute analytically.

e To test our analytical results, we compare them against nu-
merical simulations by using a regularized surface free en-
ergy [18,24]. Our numerics confirm our prediction that top
and bottom facets behave in distinct fashion.

From a physical perspective, the present, fully continuum treat-
ment of facets, which are known to have a microscopic struc-
ture [2], leaves pending questions that need to be spelled out.
The governing PDE can in principle be derived for monotone step
trains. For the case with a linear-in-chemical-potential Fick law,
see, e.g., [6,28]. This type of PDE, viewed as a continuum limit of
step motion, may break down in the vicinity of facets, where the
distance between steps changes rapidly [29-31]. Specifically, in
the radial setting it has been shown that the continuum prediction
based on the subgradient formalism may not be consistent with
step flow; microscopic events of step annihilations on top of facets
may significantly affect the surface slope outside the facet [31].

Hence, our results here are viewed as direct consequences of
continuum thermodynamics and mass conservation. Our goal is to
point out qualitative features of facet evolution that contrast some
of the insights obtained previously by the continuum theory with
a linearized law for the equilibrium adatom density versus step
chemical potential. A striking feature predicted by our model is
the asymmetry between top and bottom facets. The connection of
our approach to step motion or KMC simulations in the presence of
facets is left unresolved, and deserves further research in the near
future.

1.1. Continuum framework

Next, we outline the main ingredients of the continuum model
in canonical form. In Section 2, we provide details about the linkage
of the continuum evolution laws to microscale models [6].

For a crystal surface evolving near a fixed crystallographic plane
of symmetry, the surface free energy as a functional of height is
convex and reads [32,33]

E[h]=y/ <|Vh|+§|vm3> dx (2 CR), (1)
2

where y is proportional to the energy cost to create a line defect
(step), h(x, t) is the graph of the surface, and the facet is identified
with points (x, h) where Vh(x, t) = 0. It is important that, when
g = 0, free energy (1) supports jumps in the height profile;
see Section 4. Physically, E[h] expresses the joint effect of step
line tension (|Vh| term), and elastic-dipole step-step repulsive
interactions (|Vh|> term) where g is a non-negative constant equal
to the relative strength of the interaction (g > 0) [32]; see
also [11,12]. Formula (1) does not account for long-range elasticity
of heteroepitaxy; see, e.g., [34,35].
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Accordingly, the continuum-scale step chemical potential is
defined as the variational derivative of E[h], viz., [21]

O di vh + g|Vh|Vh (2)
=— =—ydiv| — ,
s sh 4 \Vh] g

where we set the atomic volume equal to unity for algebraic con-
venience. Notice that (2) is ill-defined locally at the facet (where
Vh = 0). By the Gibbs-Thomson relation [6,9,10], which is
connected to the theory of molecular capillarity, the correspond-
ing local-equilibrium density of adatoms is given by o = @°
explus/(kgT)], where o° is a constant reference density. We note
here that this relationship between the chemical potential and the
density is a standard assumption, but not rigorously derived as of
yet; see equation (20) in [36] and equations (7) and (13) in [37] for
some discussion. For diffusion-limited kinetics, by which surface
diffusion between steps is the rate-limiting process, by Fick’s law
the vector-valued adatom flux reads [6]

J = —D; Vos = —D0°Vels/ks), 3)

where D; is the surface diffusion constant.
The desired evolution PDE results by combining (2) and (3) with
the familiar mass conservation statement

oth +div] =0. (4)
Consequently, the height profile, h(x, t), obeys the PDE

oh = Ae PAv (%wtg\vmvn)’ .
below the roughening transition; 8 = (kgT)~'. For g = 0, PDE (5)
becomes

aoh = e P40 (RH). (6)

Here, we set the material parameter Ds0° equal to unity; alterna-
tively, this parameter, D, can be absorbed in the scaling of the
time variable. In a similar vein, the parameter y is eliminated in (5)
by suitable scaling of the spatial coordinates or the Boltzmann
energy, kgT. Note that a simplified version of PDE (5) comes
from linearizing the exponential of the Gibbs-Thomson relation,
0s ~ 0%(1 + Bus), under the typical assumption that the chemical
potential, i, has magnitude sufficiently smaller than kgT [10].

1.2. Relevant microscopic models

The derivation of PDE (5) is expected to hold away for facets [6].
This PDE is plausibly linked to: (a) the BCF model of step flow
on monotone step trains [5,6,28]; and (b) a family of atomistic
models [8]. Here, we outline elements of these microscale theories.
In Section 2, we provide a more detailed review of their linkages
to (5).

First, consider the mesoscale picture of step flow. The BCF
model accounts for diffusion of adatoms and attachment/
detachment of atoms at steps [5]. Key ingredients of the respective
formalism are: (i) a step velocity law by mass conservation; (ii) a
diffusion equation for adatoms on each nanoscale domain, terrace,
between steps; and (iii) a Robin boundary condition for the adatom
density at the step edge. Hence, the step is viewed as a free bound-
ary for a Stefan-type problem; the step position is determined via
diffusion and each terrace is a level set for the height. In the kinetic
regime of diffusion-limited kinetics, the Robin boundary condition
reduces to a Dirichlet condition [5]. In the continuum limit, the step
height, which is equal to the vertical lattice spacing, approaches
zero while the surface slope is kept fixed.

Alternatively, in the respective atomistic picture based on the
SOS model, the core mechanism is the hopping of atoms on the
crystal lattice [8,38]. The formalism relies on a Markovian process

representing the motion of each atom from one lattice site to a
neighboring site. In this model, the transitions between atomistic
configurations are determined by Arrhenius rates which in turn are
related to the number of bonds that each atom would be required
to break in order to move. In [8], a macroscopic limit of these
dynamics, as the lattice spacing vanishes, is proposed via the form
of the surface tension as the p-Laplacian for the potential V(x) =
|x|P, p > 1. PDE (5) is an extension of that macroscopic limit in [8]
top = 1.Notably, the resulting PDE is sensitive to the way by which
the initial height profile is scaled [8].

1.3. Our mathematical approach and core result

Our mathematical approach makes use of a version of the
subgradient formalism [22], adapted to the exponential, fourth-
order PDE (5). In physical terms, intuitively, this formalism may
be viewed as tantamount to a limiting procedure by which the
facet is artificially smoothed out and then is allowed to approach
a flat plateau. This procedure can be viewed as the outcome of the
regularization of the surface free energy, E[h]; see, e.g., [18,24]. It
should be noted that a different approach of regularization found in
the literature relies on the truncation of Fourier series expansions
for the height profile, which yields nonlinear differential equations
for the requisite coefficients [13,21,39].

Our construction of a solution treats the facet edge as a free
boundary, in the spirit of [40]. In the continuum thermodynamics
framework, the boundary conditions at the facet edge result from
the extended-gradient formalism as follows. Replace PDE (5) by the
statement that d;h picks the subgradient of E[h] with the minimal
norm in the appropriate metric; see, e.g., [23,41] for works on the
H~! gradient flow. In particular, in 1 4+ 1 dimensions PDE (6) is
written as

s 3xh) 8xh
ooh = —o, | () g, (21
t X |:€ XX <|8xh|

-y [[‘”(lgiz)ax (25)] :

This evolution can be viewed as the nonlinear (weighted) H™'-
P axh

gradient flow with (exponential) mobility equal to e *\init) for

the free energy functional E[h] given by (1) with g = O0; see

Appendix for a discussion. We write

9:h = dyxv Where v = e %,

where w = hy/|h|, —3,w € 9pE is an element of the [*-
subdifferential of E[h], and the function v(x) is determined in the
sense described in Section 3. The functions v and d,v are con-
tinuous; in addition, these functions are subject to the symmetry
of the surface profile. Thus, —9yw = u, the continuum-scale
step chemical potential, and w are continuous across the facet.
Furthermore, the mass conservation statement d,h+9,J] = 0 where
J = —0xv is the x-component of the (vector-valued) adatom flux
J, entails a jump condition for the continuum-scale adatom flux
and height across the facet edge [25]. It should be borne in mind
that the facet height, hy, is constant in ; thus, the above conditions
can be applied by successive integrations with respect to x of the
conservation law for the height, where 9;h in the facet region is the
vertical facet speed, flf.

For g = 0, i.e, if step-step interactions are neglected, this
procedure entails a discontinuous height and mass flux at the facet
boundary, in agreement with rigorous studies in [25] on the total
variation flow model
dch = —d}

Wh\ _ .,(%E
* (laxm)_a"(c?h)’ )
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which has the structure of a (non-weighted) H ! gradient flow. The
reader is referred to [35,42] for related works in the presence of
elasticity.

A noteworthy result here is the derivation of a system of two
differential equations for the facet position, x¢, and facet height, hy,
via the exponential PDE. By properties of this system, we infer that
facets in convex and concave parts of the surface behave differently.
In particular, by our theory, if the initial height profile is sinusoidal,
the surface peaks immediately break into expanding facets; in
contrast, no facets form at the valleys of the initial profile (see
Section 4). It should be mentioned that experimental observations
in epitaxial relaxation do not seem to report the formation of asym-
metric facets of one-dimensional corrugations, although lack of
symmetry in facet dynamics is observed in two spatial dimensions
in a certain temperature range [16].

1.4. Limitations

Our work points to several open questions. First, the precise na-
ture of the gradient flow for PDE (5) is not adequately understood.
As noted earlier, the comparison of our continuum predictions to
results from the step flow near facets is an interesting problem left
for future research. A requisite issue in this context is the sign of
the interactions between colliding steps on facets [ 17]. In a similar
vein, we do not pursue comparisons of the continuum predictions
against KMC simulations, which would connect the PDE solution to
atomistic dynamics; see [8]. Our construction of an explicit solu-
tion to the exponential PDE focuses on one spatial coordinate with
diffusion-limited kinetics and g = 0.In 2+1 dimensions or settings
with elasticity or other kinetics (say, attachment-detachment lim-
ited kinetics), the subgradient formalism becomes more intricate.
The facet evolution in such cases needs to be further studied.

1.5. Paper outline

The remainder of this paper is organized as follows. In Section 2,
we review linkages of PDE (5) to existing microscopic models.
Section 3 focuses on the construction of the ODEs governing facet
dynamics. In Section 4, we numerically solve both the ODE system
and an appropriately regularized version of the PDE; and compare
the outcomes. Finally, in Section 5, we summarize the results
obtained and outline some topics for future work.

2. Mesoscale and atomistic descriptions: A review

In this section, we describe ingredients of the mesoscale and
atomistic models that motivate the study of (5) as a hydrodynamic-
type limit. In particular, we review basics of the BCF model [5]
and a heuristic derivation of its continuum limit assuming that
this limit exists (Section 2.1). We also outline the relevance to the
exponential PDE of a kinetic Monte Carlo model of crystal surface
relaxation [8] (Section 2.2). The emergence of the BCF description
of step flow from atomistic dynamics is not addressed here; see,
e.g., [43].

2.1. BCF model and its continuum limit

By the BCF model [5], the crystal surface consists of atomic steps
separated by nanoscale terraces. In this subsection, we review the
basic elements of step flow, needed for our purposes, by mainly
following the formalism of [6,44].

Fig. 1 depicts the top view of descending, non-intersecting steps
of atomic height a in two dimensions. The steps surround a top ter-
race. The projections of the step edges onto a fixed, high-symmetry
reference plane (xy-plane, with position vector r) are modeled
by a family of smooth curves, numbered by i (i = 1, 2, ..., N)

Fig. 1. Geometry of monotone step train in 2+1 dimensions (top view). In curvi-
linear coordinates (7, o), the depicted contours are projections of descending steps
onto a fixed reference plane; n = n; at the ith edge while o varies along a step edge.
The step orientation, relative to a fixed axis, is indicated by the (local) angle ¢.

relative to the top terrace where N >> 1.These curves are described
by the position vector r(n, o; t), where n and o are viewed as
Lagrangian coordinates. In general, the ith step is defined as the
set {r(n;i,o;t) 0 < o < 2w}, and the ith terrace is given
as the region {r(n, o; t) N <n < N1, 0 <o < 2r}In
the special case of radial geometry, when the steps are concentric
circles, the variable n corresponds to the polar coordinate for the
distance from the origin. The variable o corresponds to the angle in
polar coordinates and increases counterclockwise. In general, the
unit vectors normal and parallel to step edges in the direction of
increasing n and o are denoted e, and e,, where we takee,-e, = 0.
The corresponding metric coefficients are

gr) = |3,,l‘|, %_(r = |3gl'|, (8)

with the convention that d,r = §,e, and 0,1 = &,e,.
The surface height, h(r(n, o; t), t), is a function of n only and
obeys

hly=nioy —hly=n= —a.

In the continuum limit, we let a | 0 while we keep the slope fixed.
The Taylor expansion of the left-hand side of the last equation
entails that a/(&,(6n);) approaches the positive slope —(9 . h)|,—,;=
[Vh| asa | 0,and (§n); := nir1 — ni = O(a) so that the slope is
kept fixed. Note that 9, :=&,'9,.

2.1.1. Laws of step flow and continuum limit

The main assumptions of the step flow model are: (i) The steps
move by mass conservation through attachment/detachment of
adatoms at each step edge with kinetic rate k; and (ii) the adatoms
diffuse on each terrace in the quasi-steady regime, i.e., the density
of adatoms, g;, on the ith terrace reaches the steady state much
faster than the motion of steps. Thus, DsAo; = d;0; ~ 0 for
ni < n < niy1, Where D is the terrace diffusivity. In addition, we
assume that the continuum limit, as a — 0, of step flow exists. In
this limit, we treat the parameter D;/(ka) as constant.

By mass conservation, the normal velocity of the ith step is
given by

vii=a "Jie1 —Ji1)  at(m, o). (9)

Here, J; 1 (r(n, o; t),t) = e, - Ji(x(n, o; t), t) where J; = —D;V; is
the vector-valued adatom flux on the ith terrace. By slight abuse
of notation, we also write J; 1 (n, o) = Ji 1 (r(n, o; t), t) when no
confusion occurs; and ditto for g;.
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In the continuum limit, as a | 0, (9) reduces to a mass conser-
vation statement. Indeed, the v; , approaches d:h/|Vh| at (n;, o).
Furthermore, by Taylor expanding J; | (n, o) on the ith terrace (for
N < N < Mix1)asn 1 nipq in terms of the value of J; | (n, o) at
n = n; (i.e., the value obtained by n | n;), we have

Jit(mi, o) = Ji 1(Miv1, 0) — (8n)idy)i, L(mi, o).

Then, we apply the quasi-steady approximation, div]; ~ 0 on the
ith terrace, which gives £19,J; (1, o) + &;'8,Ji,y(n, o) ~ 0 for
ni < n < niy1, and allow 7 to approach »; on the ith terrace
(n 4 n;). Thus, we obtain

Jis(ni, o) & Ji L (i1, o) + (E,(80E, " 0odi (i, ©).

Here, J; |(n, 0) = €, - Ji(n, o) on the ith terrace. Hence, the right-
hand side of (9) approximately reads

Vit ~ @ i, (i 0) = Ji i (ix1, 0) — (E(8M0E, 9o )i (i, o)}
%afl{—( )i 9L (i o) — (&,(8M)E; 9l (mi, o)}
“HENEMNE, 0L (i o) + &80y (mix o))

which is identified with —| Vh|~'div] in the continuum limit. In this
derivation, the continuum-scale flux, J(r, t), is defined as the limit
of Ji_i(ni,0)asa — 0,with], =e, -Jand]; = e, -]. Therefore,
we obtain conservation statement (4), viz.,

ah = —div].

Next, we consider the attachment/detachment of atoms at
steps. By the quasi-steady approximation, we set DsAg; = 0;0; ~
0 on the ith terrace. The boundary conditions for this diffusion
equation are of the Robin type, viz.,

—JiL =kloj —oi") at(m;,0),
.]i,l :k(Qr _Qle:.l]) at(nH»l’U/)? (10)

where k is the attachment-detachment rate and Ql-i is the restric-
tion of p; at a step edge as n approaches n; (+) or n;+1 (—) on the ith
terrace. The quantity qu is the equilibrium adatom density at the
ith step and is given by the Gibbs-Thomson relation (discussed
below). This Q,.eq is strictly defined on each step, incorporates the
thermodynamics of each step, e.g., elastic step-step interactions,
and is in principle distinct from the restrictions at the ith edge
of the (steady-state) adatom densities, o; and g;_1, defined on the
adjacent terraces. Egs. (10) are combined for o # o’ to yield

o) = kloi(nit1, o) — 0i(ni, 0)]
— klof1(a) — 0{%(0)].

We now show that, in the limit o := ¢’—0c — 0and(87n); | 0, the
last equation heuristically entails a Fick-type law for continuum-
scale flux,J = (Ji, J;), in terms of the continuum-scale equilibrium
density, 0. This density is defined on the high-symmetry (xy-
) plane as the limit of g,e , considered as a function of #; and o,
when (6n); | 0. Recall that (8n); is O(a) as a | 0, because the
slope is kept fixed; thus, the limits a | 0 and (§1); | O are taken
simultaneously while a/(8n); is kept fixed. On the other hand, o
is allowed to approach zero independently of a. Next, consider the
Taylor expansion

Jit(ni, o)+ Ji L (Mg,

0i(nix1, 0") — ai(ni, o) ~ (8n); 3,0i + (80)ds0i
—(&,(8m))D5 i1 — (E5(80))D; iy at (mi, o),

where we used the definitions of the adatom flux components,

JiL = —Dy(&,'0,0:1) and Ji = —Ds(§,'3,0:), on the ith terrace.
By anticipating the continuum limit, we set
Jislni o) = Ji(n,0), Jini (g1, o) =], o),

(11)

0;%(0) ~ 0%(n, o), oty (a") ~ 0*(n', o),

for some 5 and »'. In addition, we set a{.§,,(877),~}‘1 ~ m(n, o) which
should approach the positive surface slope, |Vh|, at (n, o). This
approximation allows us to replace &,(6n); by a/m. Furthermore,
we consider the Taylor expansion

0fh(0") = %) ~ ¢*(', ') — 0*(n. o)
~ (3,0°1)(8n) + (3,0°1)(80) at (n, o)
where §n = n’ — n. Let us assume that [6]

=D _ o
=t

so that this parameter can be treated as constant in the continuum
limit. Hence, from boundary conditions (10) we obtain the expres-
sion

1 &GN, 1. .
{G+p)1+ a p@aw%}

n (85 (80 )){
2]

asa | 0,

]H + Ds(gg_laageq)} =0

at the point (n, o) (where |Vh| # 0). In this expression, we can
allow a | 0 with o # O0; or, alternatively, set o = 0 with
a # 0, treating a and §o as independent from each other. Note
that the dimensionless parameter (£,(67))/a, which enters the
above expression, can be replaced by 1/m and approaches |Vh|~!.
Hence, we extract the formulas

D _ e
Ji= —T (f,, 1311.9 q)’ fH

1

= —D;(§,'8,0%),  (12a)

in the local coordmate system. Setting 3, = & 19, and 9 =
£719,, we find that the above flux components are in agreement
with the corresponding formulas derived in [6] by a different
method, namely, the approximate solution of the diffusion equa-
tion via the separation of length scales into fast and slow on
each terrace. In particular, for diffusion-limited kinetics, when the
diffusion of adatoms on terraces is the slowest process, the length
D;/k is much smaller than the terrace size, [Ds/(ka)]|Vh| <« 1;
thus, by (12a) we find

D
= —D,(£,'9,0%) if —|Vh < 1.
ka
(12b)

Therefore, ] = ], e, + Jje, = —DsV0®9, as expected by the typical
Fick law of diffusion [6]; cf. (3) where g is identified with ¢®9.
Egs. (4) and (12) need to be complemented with a formula for
0% involving the continuum-scale step chemical potential, 1. At
the level of step flow, the Gibbs-Thomson relation dictates that

Jo=—Ds(&8,0%).,

i

o' = g%’ (13)

where @ is a reference density for an atomically flat terrace. The
step chemical potential, ui(o), of the ith step is defined as the
change of the step energy by addition or removal of an atom to or
from the step edge at n = n;. Following [6], consider a short step
length, ds = £,do, of the ith edge that has energy t4ds at (n;, o); U;
is the step energy per unit length. The exchange of atoms with the
step edge results in the motion of the step along its local normal by
distance dr = &,dn where d7 is the respective shift of #;. Hence,
the step energy ¢4;ds changes by d,,(¢4; do'), where the shift operator
d, is defined by d Q = Ql,+dy—Ql,. Accordingly, we write
1 d,(¢ds
Mi = (u! ) {S lan,ul+u1 (Engo) lanéa} atn = n;. (14)
a drds
By using the elementary formula & 18,,50 = k&, where « is the
curvature of the curve r(n, o; t) wit 11 n = const., we obtain

1 -1
ni = a (KjZ/{j + S']i 87)1.2/[,') . (15)
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The quantity ¢4 incorporates the step line tension, y;, which is the
energy cost per unit length to create a step and may in principle de-
pend on the step orientation ¢ (see Fig. 1), as well as the step-step
interaction contribution, ui"‘t. In a simple scenario for homoepi-
taxy, ; = ya is a global, material-dependent constant; and step
interactions are modeled as nearest-neighbor repulsions [33,45],
viz.,

Ui =ay +U"™, U™ =g Vi + Vi), (16)

where g is the interaction strength (energy/length), and V; ;14
amounts to the interaction between the ith and (i + 1)th steps and
depends on n; and 7;+1. For elastic-dipole or entropic interactions,
the V;; (j = i £ 1) is taken to be [6]

1
Viier = —mi,@(ri, Tio1),

1
Viig1 = *m,'z‘p(ri, Tit1), 3

3
where

m; ‘=
Tig1 — T

n
. _ _ /
k] ri - r|77=7]1's r= / EY], d77 k]
no

and &(¢, x)is a geometrical factor described in some detail in [6].
In the continuum limit, the curvature «; of the step approaches
—div[Vh/|Vh|] at the point (n;, o). By (15), the step chemical
potential, ;, approaches form (2) under mild assumptions for &.
The interested reader is referred to [6].
Note that in the attachment-detachment-limited regime,
where

D
—|Vh| > 1,
ka

the attachment/detachment of atoms at steps is the slowest pro-
cess. In this case, the resulting PDE in 141 dimensions acquires a
slope-dependent, extra mobility, viz.,

1 —ﬁax(M+g\axh|aXh)
0xe [oxhl . 17
|ach] (7

The study of this PDE lies beyond our present scope.

Bth= 3x|:

2.2. Broken-bond model and hydrodynamic limit

In this subsection, we review aspects of the emergence of con-
tinuum laws from atomistic principles in [8]. Motivated by an
adatom model proposed in [7] and studies of hydrodynamic limits
undertaken in [46-48], the authors in [8] derive exponential PDEs
of form similar to (5). This atomistic formulation views the crystal
surface as a function hy(«, t) for time t > 0 and position @ €
Tﬁ, = (Z/NZ)d on the periodic lattice, with values of hy in the set
of integers, Z; d is the spatial dimension. The rates are related to
an interaction potential, V : Z — R, taken to be the non-negative,
strictly convex, symmetric function, V(z) = |z|P, of the discrete
slope, z. The choice for V made in [8], and the most common choice
in the literature on the physics of crystal surfaces, is V(z) = |z| (if
p = 1), which amounts to bond breaking by the SOS model [38].

From such an interaction potential, V = |z|P, in [8] a family of
Arrhenius rates are proposed based upon a generalized coordina-
tion number. One can think of the generalized coordination num-
ber as the (symmetrized) energy cost associated with removing a
single atom from site « on the crystal surface, where the energy is
determined by summing over the interaction potential evaluated
on local fluxes.

In [8], two scaling limits are studied. First, for p > 1, the
evolution of the height of a smooth crystal surface is found to be

1
dh = — - A(div(Vop(Vh). (18)

where Vop : R? — R is the gradient of the surface tension, op,
which is a convex function determined by a free-energy compu-
tation and depends on the choice of the interaction potential, V.
The definition of this op arises from essentially applying the local
Gibbs measure (local equilibrium) for finding non-equilibrium dy-
namics in the microscopic model of crystal surface evolution [8].
In particular, op stems from using a discrete chemical potential,
which matches well the macroscopic dynamics; see [8]. PDE (18)
arises from a smooth diffusion scaling limit of the form hy(x, t) =
N~ 'h(a, N*t) with Nx € [a — 1/2, a + 1/2).

Similarly, in [8], a second PDE for a rough crystal evolution is
proposed for p > 1 with fixed temperature 8~' (8 > 0), viz.,

1 4 :
oh = 524 (e—d‘V(Wc(V’”)) . oc(z) = lim kPop(kz).  (19)

K—>00
The form that the surface tension then takes is the p-Laplacian for
oc(z) = B|z|P, resulting in the evolution

'1 _pd; _
3h = ﬁA (6 5d|v((|Vh\P 2Vh))> ) (20)

This PDE arises from a rough scaling limit of the form hn(x, t) =
N~9h(a, N72t) with Nx € [ — 1/2, ¢ + 1/2)and q = p/(p — 1).

However, the rough scaling when p = 1 can be adapted
by formally following the derivation in [8, Section 6.2], if one
systematically lowers the temperature, 8”1, as one increases the
system size (8 = B(N) such that B(N) — oo as N — oo0). Then,
the methods of [8] can be invoked to derive (5) with Boltzmann
constant $, and, for instance, ¢ = 1 and 8(N) = BN.

3. ODE system for facet motion via exponential PDE

In this section, we formulate an ODE system for facets in a
periodic surface corrugation with g = 0 (no elasticity) in 141
dimensions. This amounts to the construction of a solution for
the height profile. We first discuss a general framework for the
gradient flow. Accordingly, we analytically indicate the different
behaviors of top and bottom facets by use of the ODEs. For algebraic
convenience, we use PDE (6) by setting 8 equal to unity, absorbing
B into the spatial coordinates. In Section 4, our construction of a
solution is compared to numerics for the PDE by regularization of
the surface free energy, E[h].

In the case with the (non-weighted) H~'-total variation flow
(e.g.[25-27]), the PDE takes the form
Orh = —0xy Oy (ﬂ) , h(x,0) = hy(x), (21)

[0xh]
where hg(x) is assumed to be symmetric and have an extremum at
x = 0. Aweak solution to (21) is derived in [25] as a facet solution
(symmetric about the maximum or minimum of hy at x = 0) near
the critical point x = 0 of hy. This weak solution has the form

| he(t)  forx < x¢(t),
i, £) = {ho(x) forx > x:(t),

where x = x;(t) is the facet position and h¢(t) is the facet height.
The dynamics for (x(t), hs(t)) obey the ODE system

hf(t) = —3Xf(t)73,
{ X¢(t)(ho(xr) — he(£)) = —3x¢(t) 2. (22)

This is the symmetric formulation for the H~!-total variation flow.
For the case of the L? total variation flow, in which the PDE for h is
of second order, see, e.g., [22].

We now turn our attention to simplified exponential PDE (6).
For this case, we lack a mathematically rigorous theory. Following
the works of [25-27], we recognize that (6) can be realized as

loxhl ) for the

the weighted H~!-gradient flow, with mobility eiax(
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respective free energy functional E[h] of (1) withg = 0. For
the convenience of the reader, a formal discussion of the weighted
H~!-gradient flow with (nonlinear) mobility is provided in Ap-
pendix. Note that PDE (6) is written as

o) dh
oeh = —ay | e (1)
t X |:€ XX <|8xh|

=9, [e’ax(\gizw)ax (‘Sj)]
Ssh ’

where the variational derivative §E/Sh is defined in the sense of
L2. This model of evolution implies an asymmetry between convex
and concave parts of the crystal surface, as demonstrated below.

3.1. ODE dynamics from subdifferential formulation

In view of the above formalism, we proceed to derive ODEs for
facet motion in the exponential total variation flow

p axh
och = e (%) (e, 0) = ho(x), (23)

using the natural profile stemming from a regularized solution for
the 1-Laplacian.

Evidently, PDE (23) has the structure
Bth = —8,(]
J = —2:0%
0% = e

SE

n= sh = —dyw(dxh)
where J is the (scalar) mass flux, u is the continuum-scale step
chemical potential, ¢ is the equilibrium adatom density, and
w(u) = u/|u| (see also Assumption A4 below).

We spell out the following simplifying symmetry assumptions
(a few of which we have already mentioned above):

(continuity equation),
(Fick’s law),
(Gibbs-Thomson relation),

(thermodynamic force),

A1. The height solution is symmetric (with respect to x = 0),
i.e, h(—x, t) = h(x, t).

A2. The facet has zero slope, i.e., 9;h = 0 forx € (—x,x7). In
addition, for a top facet we have 9,h < 0 when x > x;, and
for a bottom facet we have dsh > 0 when x > x;.

A3. The vertical speed of the top facet is negative, I:1f < 0; and the
vertical speed of the bottom facet is positive, hy > 0.

A4. The function w(u) = u/|u| (u is the slope) is extended onto
the facet as an odd function on R. We set w(x, t) = w(dxh).

A5. The mass flux J(x, t) is an odd function on R, i.e., J(—x, t) =

—J(x, t).

In view of Assumption A1, it suffices to consider x > 0. On the
facet, where 0 < x < x¢(t) and h(x, t) = hs(t) (by Assumption A2),
we therefore obtain

hy = =4,
which by integration yields
J(x, £) = —xhy + (o).

Note that Ci(t) = 0 by the symmetry consideration that J will
be odd (by Assumption A5). In addition, as in the total variation
flow observations of [25], we are compelled to recognize a jump
in h at x = x¢(t), forcing the remaining functions J and p to have
continuous derivatives.

By the PDE structure, we additionally have

ax(e/t) = __](Xv t)v

which entails

2
u(x, £) = In (thf +C2(t)) .

We also have
x*.
oW = —In <5hf + Cz(t)> ,

which is integrated to give

X 2
W(x, t) = —/ In (%hf + cz(r)> ds + Cs(t).
0

The integration constant C3(t) is determined by our assumption
that w(x, t)is an odd function of x (Assumption A4); hence, C; = 0.
In addition, mass conservation dictates that

Xf
/ ho(s)ds = hgxg,
0
which yields the motion law

)'cf(ho(Xf) — hf) = thf. (24)
3.2. Dynamics of top facet

At this stage, we need to specify if the symmetric facet lies in the
convex or concave part of the surface. This choice affects the sign of
hy and leads to different dynamics as we discuss below. Let us begin
with the case in which the facet is a degenerate local maximum. In
this case, flf < 0 by Assumption A3.

By continuity of w and u, the following conditions hold:

Xf 52 .
w(xs, t) = —/ In (Shf + Cz(t)) ds = —1,
0

P
w(xp.t) =1In <2fhf + Cz(t)> =0.

The condition for u yields
2

X5,
Gt)y=1- Ehf (G > 0).
Here, w(xf, t) = —1, since x = x; lies at the right endpoint of

the top facet and away from the maximum. (Note that w(hy) =
hy/|hy| = —1 on the right of the facet, by Assumption A2.)
Hence, we obtain the system

N szh ds =1
/0 iz )es=1 (25)

x;(ho(xp) — hy) = hyx;.

The first equation reads

w ¥ X7 I
In(1—- ZLh—¢g2)de =,/ L.
fo n o Ny §°)dé 5

This equation is simplified by use of the integral
a a
In(1+a®—£%)dé = —2a+2iv/1+ a?tan”! (—i) )
/0 ( ) V1+a?

Recall that the (in principle multivalued) function tan~!z is ex-
pressed as

1 1 1+iz
tan~ z= —In — ).
2i 1—iz

Accordingly, the above integral is written as

a 1+ +a
n(1+a—-)de =—-2a+vV1+aIn| ——— ],
/(; ( ) VJ1+a2—a
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where the logarithm takes real values here. By use of the definition

Iy
Xf = Xf Tf, (26)

we find that (25) can be written as

2. /14X In (X +,/1+X?) —2X; = ”1—”
\f \f f f = 5 (27)
)'(f(ho(Xf) — hf) = thf.
Egs. (26)and (27) form a closed ODE system describing the top-
facet dynamics. Because hy < 0, we may frame (26) and (27) as a
system of differential-algebraic equations (DAE). These equations

are now recast into a form that can be solved by implicit ODE
solvers, viz.,

> x'fF(Xf)

Xf = TxFX)’
_ hy = —2F(X; )2, (28)
X¢(ho(xs) — hy) = —2x¢F(X; )%,

where

F(Xp) = 2,/ 1+ X7 In(X; + /1 +X?) — 2X;.

It is of interest to note that the algebraic equation for X; suggests
that the correct value for X;(0) is given by a solution of

x:(0) [2‘/1 +X21n (xf + /14 sz) - zxf] —X =0, (29)

which has three roots given by Xy = 0, +g(x;). The nonzero roots
+g(xs) for large X; should take the form

e%ﬂ
2

We reach the conclusion that, under the dynamics of (28), there
is no restriction on the initial width, 2x¢(0), of the facet for the
expansion of the facet at later times, t > 0.

g(xp) ~

3.3. Dynamics of bottom facet
Let us now discuss the case where the facet possibly corre-
sponds to a degenerate local minimum of the height profile. In this

case, flf > 0 by Assumption A3. The dynamics in (25) are replaced
by the system

(k10 Yas=
/0 i pr)e=—t (30)
Xr(ho(xr) — he) = hyxg.

2
The first equation implies that 2% <1
Accordingly, by changing variables we observe that

/ In (6% 4+1—X7)dé = — 550. (31)
0

By integrating directly in view of flf > 0, we obtain the system

/1 —X? ;
f T hf
2 /1 =X |tan ' | Y | - S |+ 2X =,/ =,
! X; 2| T Y2
% (ho(x7) — hy) = hyx.
The first equation can be written as
(tan-1 ”) f1= (32)
y Y73 2%

where

2
/1—X;
Xr

The left-hand side of (32) is bounded by 1 for y > 0 (in fact,
it is monotonically decreasing from 1); while, if x; is sufficiently
small, the right-hand side gets arbitrarily large. Hence, we reach
the conclusion that: only if x(0) > % is it possible to find a solution
with a moving bottom facet.

As a result, facet solutions at minima are in fact fixed points of
the evolution unless there is already a sufficiently long facet. This
asymmetry in convexity and concavity of the morphological crystal
surface evolution is consistent with observations of solutions to the
exponential PDE in [8].

y=

Remark 1. For the dynamics given by (6) as a nonlinear (weighted)
H~! gradient flow for the respective E[h], the evolutions of top
and bottom facets are distinctly different, precisely because of the
effect of the exponential mobility, e~@"/1%x1) In particular, we
predict that bottom facets have extremely slow (or non-existent)
motion by diffusion, while top facets move relatively fast.

4. Numerical results

In this section, we present numerical results for the evolution of
the height profile under sinusoidal initial data in 141 dimensions.
We carry out numerics based on: (i) the ODE system discussed in
Section 3; and (ii) the numerical solution of PDE (5) via the reg-
ularization of free energy (1). Specifically, we use the regularized
surface free energy

E[h;v] = / [,/ [Vh|> +v2 + ‘%Whﬁ] dx, (33)

which has the regularization parameter v > 0.
4.1. Numerical approximation withg = 0

Next, we focus on the regularized versions of PDEs (21) and (23).
The corresponding PDEs now read

3:h = d exp [—8x (M) ] (34)
(0ch)?2 + v2

and
Osh ) ) (35)

V(9xhY +v?

For discretizing both (34) and (35), we use the method of lines by
applying a standard central finite difference discretization in space.
The time integration of the resulting ODEs is then carried out with
a fully implicit stepping scheme in time (by using routine ode15s
in MATLAB).

Snapshots of solutions to evolution equations (34) and (35)
under an initial height profile h(0,x) = sinx with N = 60
uniform grid points on the interval [0,27] and v = 103 by
use of periodic boundary conditions can be seen in Fig. 2. We
have chosen time scales such that the facets are evident in the
numerical solutions. Note that exponential PDE (34) results in a
strong asymmetry between regions of convexity and concavity,
seen in the bottom left panel of Fig. 2. For each simulation, we have
chosen the regularization parameter and the grid spacing such
that the resulting derivatives are sufficient not only to allow facet
motion but also to maintain a sharp facet boundary. In contrast to
the clear convex/concave asymmetry of the numerical solution to

ath = —0w0x <
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Fig. 2. Snapshots of evolving surface height profile, h(x, t), under initial data h(x, 0) = sin(x) (top panel) by fourth-order total variation flows given by: exponential PDE (34)
with regularization parameter v = 1073 on a time scale T = 10~ (bottom left panel); and by PDE (35) with regularization parameter v = 107> on a time scale T = 102

(bottom right panel).

(34), notice the symmetry in the solution of (35) in the bottom right
panel of Fig. 2.

To verify that our numerical scheme is consistent, that is, the
increase of resolution (number of grid points) improves or does
not spoil the result, we plot a snapshot of the solution to (34) at
time T = 1074 with N = 60 and N = 120 grid points; see
Fig. 3. Notice that the numerical solution is stabilized, remaining
practically unchanged with increasing N.

In Fig. 4, the evolution of PDE (34) is compared to ODE sys-
tem (28) on time scales such that the facets are evident. In these
simulations, the parameters for the PDE simulation are the same as
above. To solve DAEs (28), we use the implicit ODE solver ode15i in
MATLAB with explicitly chosen initial data for X¢(0) as a non-zero
root of (29). To generate the initial data (x;(0), h;(0)), we find it
ideal to numerically solve PDE (34) for a short time (& 5 x 1077).
Then, we generate a non-singular (i.e. with x;(0) > 0) initial
configuration for the ODEs by reading off the maximum height
of the resulting numerical facet solution and the outer extent of
the facet position. Note that there is some sensitivity in how the
initial data x¢(0) is chosen given the discretization, which explains
the small discrepancy observed in those plots involving x¢(t). To
compare the relevant parameters to the PDE evolution, we take

h¢ pae(t) = max h(x, t),
xe[0,27]

X; = max{x € [0, 27] : ( r%af]h(x, t)) — h(x, t) < e}, (36)

Crystal Height

Fig. 3. (Color Online) Snapshots of evolving surface height profile, h(x, t), for two
different values (N = 60, 120) of the number, N, of grid points on a time scale
T = 10~%. The height h(x, t) evolves according to exponential PDE (34) with initial
data h(x, 0) = sin(x) and regularization parameter v = 1073,

where we typically choose ¢ = 1072. The data points for Xp(t) in
Fig. 4 appear to occur on larger time scales than the discretization
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Fig. 4. (Color Online) Plots of facet height hs(t) versus time, t (top left panel), facet position x;(t) versus t (top right panel) and facet height versus facet position (x;(t), hs(t))
(bottom panel) for exponential PDE (34). In each plot, (x;, hy) as a solution of (28) is plotted using crosses (x); and the corresponding components of a solution to (34) as
described in (36) are plotted using circles (o). The initial data for (28) is taken from the PDE evolution as x;(to) = % hy(to) = .98879899 with tp = 5 x 10~7. The numerical

experiments for the ODEs and PDE are then compared up to time T = 1073,

would suggest. However, this is purely a manifestation of the time
required for the facet edge to travel from one discrete grid point to
another in the numerical experiment. To make the figure clearer,
we have thus only plotted times at which the solution has moved
to a new grid point; the large gaps in data points for x; are due
entirely to the spatial grid size.

In Fig. 5, we carry out a similar numerical study as in Fig. 4, but
now for the (non-weighted) H~! total variation flow (35) studied,
e.g., in [22,25-27]. The PDE evolution is compared to the ODE
system (22) on time scales such that the (top and bottom) facets
are evident. In these simulations, the discretizations for the PDE
are the same as those used for the exponential PDE in this section.

4.2. Numerical approximation withg > 0

In this subsection, we focus on the case with nonzero step-step
interactions (g > 0); see (1) and (33). Accordingly, we consider the
fourth-order PDE

— o (2 +gohl o)

oth = O0ye , g£>0. (37)

In this setting, we still observe asymmetry in the solution. How-
ever, due to presence of the (less singular) term |3,h|? in the surface
energy, the solution to this PDE no longer develops jumps in the
height profile. This is expected from other studies in the (non-
weighted) H™! total variation flow; see e.g. [18]. Similarly to the

case where g = 0, we can study the evolution numerically by using
the regularized PDE

bl +g3xh|3xh|)

,3X<7
dch = dye (xh)?-+02 , (38)

which corresponds to the free energy functional E[h; v] of (33).

In this case, there is no explicit ODE system to predict the
dynamics of facets, since the underlying, regularized energy (33)
does not permit the formation of jumps in height and facets (flat
parts of the height profile) for v, g > 0. Indeed, our numerical
scheme does not result in jumps in the height profile in this case,
though of course the asymmetry of the exponential model is still
manifest in the evolution; see Fig. 6 for a typical evolution of (37)
with g 3. For sufficiently small regularization parameter, v,
the numerical solution for h evolves to become quite flat near a
maximum. This flat part of the height profile is still considered as
a facet. In contrast, the height profile near a minimum seems to
develop a discontinuity in the slope (see Fig. 6).

We note that the case with g > 0 in (37) results in dynamics
similar to those observed in [8] with interaction potentials V(z) =
|z|’, p > 1. These dynamics include a flattening of the surface
profile near the maximum of the initial height, and the finite-time
formation of a discontinuity in the derivative of the height at the
minimum of the initial height profile. We conjecture that these
features are indeed expected in these types of degenerate fourth-
order PDEs with exponential mobility. The reader is referred to [8]
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for the ODEs and PDE are then compared up to time T = 1072,

for a more detailed discussion of this type of breakdown of regu-
larity in dyh in various settings.

5. Conclusion and discussion

In this paper, we studied plausible implications of continuum
evolution law (5) which emerges from a mesoscale model for line
defects and an atomistic broken-bond model in crystal surface
morphological evolution. A noteworthy feature of this PDE is the
presence of an exponential, singular mobility which has a signif-
icant effect if the Boltzmann energy, kgT, is small compared to
the step line tension. Because of this feature, the surface height
evolution occurs in the framework of a nonlinear, weighted H™!
gradient flow for the convex free energy functional E[h] of (1). For
this evolution, in the absence of elasticity (g = 0), when evolution
occurs by (6), we constructed a solution for the surface height in
1+1 dimensions that explicitly manifested an asymmetry between
the dynamics on convex and concave parts of the crystal surface.
This asymmetry manifests in the following way. Top facets expand
fast, regardless of their initial size; in contrast, bottom facets move
only if their size exceeds a certain critical length (see Remark 1).

Our analysis points to several open questions. For example,
it is compelling to ask if the predicted facet asymmetry can be
observed in one-dimensional periodic gratings in homoepitaxy.
So far, we have focused on crystal surfaces in 1+1 dimensions.
However, continuum evolution laws with an exponential mobility

in 241 dimensions have been derived [8]; in addition, such PDEs
are plausibly linked to step flow [6]. Therefore, the analysis of the
dynamics stemming from such equations in higher dimensions is
an interesting topic for future study. A related, pending issue is
to understand the effects of (short- or long-range) elasticity on
the facet evolution. In this case, the analytical description of facet
dynamics is more challenging.

We note that the (non-weighted) H~'-total variation flow (7)
and the corresponding L*-total variation flow have been studied
in some detail by many authors, e.g. [22,25-27]. In the setting of
the (weighted) H~'-gradient flow with an exponential mobility,
these studies fall into the more general framework of evolution
equations of the form

he = ce"™. h(x, 0) = hy,

where £ is an appropriate second-order differential operator dic-
tated by the dominant kinetic processes in surface diffusion, e.g.,
£ = A for diffusion-limited kinetics; recall that the step chemical
potential, u[h], is the variation of the surface free energy. The
analysis of evolutions of this form is still under development,
including ODE dynamics for facets, existence of solutions in the
total variation norm, and finite relaxation times (otherwise known
as extinction times) to reach the equilibrium state in surface mor-
phological relaxation. Similar issues arise in the theory of evolution
PDEs of weighted L?-total variation flow. These studies may shed
light on the dynamics of various phenomena on crystal surfaces,
e.g., the dewetting of thin, solid films [4].
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Fig. 6. Snapshots of surface height evolution by fourth-order, regularized flow (38). Left panel: Initial data ho(x) = sin(x). Right panel: Height profile, h(x, t),att = T = 10!

withv =103 and g = 3.

It is worthwhile noting that the exponential PDE derived from
atomistic dynamics in [8] with p = 2 has the form (for £ = A)

ah = Ae2h.

This PDE is studied in [49], where the authors derive weak solu-
tions for a class of functions where Ah lives in a measure space.
Extending such derivations and global dynamics to a general family
of 4th-order degenerate PDE models with exponential mobility
deserves attention for future research.

In the present work, we refrained from comparing the facet
dynamics predicted by the continuum theory to the underlying
microscale dynamics, particularly the motion of steps. An interest-
ing feature in this context is the interaction between steps in the
vicinity of a facet. This topic will be the subject of future work.

In a related fashion, the numerical schemes that we use here
are based on straightforward finite-difference discretizations. Of
course, energetic methods such as those for related problems
in [18] motivated by algorithms developed in [50] would seem
viable. However, the presence of the exponential mobility renders
these methods much more computationally expensive. The con-
vergence analysis and development of efficient numerical schemes
for evolution equations of form (5) will be valuable for predictions
of faceting in crystal surface morphological evolution.
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Appendix. On the weighted H~'-gradient flow

Following [25], we provide a formal discussion on the weighted
H~!-gradient flow for the PDE

Vh
he = Ae” VUvan) (A1)

which is formulated in the framework of weighted-H ! subdiffer-
ential equation hy € —dE(h) for an appropriately defined energy
functional E(h). For convenience, we take the spatial domain to be
the torus, denoted T below.

A.1. Definition of weighted H™!-subdifferential

Let X be a Banach space of functions whose derivatives are
defined in some sense. For h € X, consider a nonlinear mobility
M(h, Vh, ...)that is strictly positive. We choose not to specify the
space X here. For example, X can be taken to be the space W, It
is possible to justify the constructed solution in this space, since we
can always add some regularity to the related scheme. Details for
this topic lie outside the scope of this appendix; thus, we refrain
from discussing them here. We use the nonlinear mobility M to
define a local weighted Hilbert space H}I(T) as the completion of
C°°(T) with mean zero, under the weighted norm or inner product

||v||i£l] :/M(h, Vh,...)|Vu|*dx, (A2)
n T

(u,v); = /M(h, Vh, ... )Vu(x) - Vu(x)dx. (A3)
T

We then define (74})" as the dual space of #} and let (-, -) be the
duality pair.

Next, we define the duality mappingJ : #} — (#})", v > J(v)
by

(), u) = (v, u)s,

In this vein, we denote the duality mapping as J(v) = —Apv. If
v € #3(T), we can show that

V)

Yu e Hy .

uApv = uV - (M(h, Vh, ..

is integrable, and

Jw), uy = (v,u) = —/uAhv dx.
T
Hence, we call A, the weighted Laplacian operator.

Let ¢ € (#})". Since #} with inner product (-, -); as defined
by (A.3) is a Hilbert space, by the Riesz-Fréchet representation
theorem there exists unique f, € H}l satisfying (¢, u) = (f, u); for
every u € #]. Let us thus define the inverse map J~' : (#})" —
Hi, ¢ — J7U(¢)as] ' (¢) = fy. Indeed, for any ¢, ¥ € (H])", we
thus also have the well-defined inner product of (#})" by



66 J.-G. Liu, J. Lu, D. Margetis et al. / Physica D 393 (2019) 54-67

(@, ¥)—1 = (¥, ] (@)

One can verify that (7—[,11)* with this inner product is a Hilbert space.
Let Ah’1 be the inverse operator of A, in T with mean zero. If
1/fAh’]¢ is integrable, we have

Jé) ) = — f WA $)dx Yy e (1) .
T

and, thus,J7(¢) = — A, '¢.

LetE : X — R U {oo}, h — E(h) be a convex functional. For
a fixed h € X, we extend the functional E to H} and define the
wg&ighted H~'-subdifferential of this extended functional E at u in
Hy as

9E(u) = {¢ € (1)), E(v) > E(u)+ (¢, v —u), Vv € H;} .

One can directly verify that J(v) € dE(v) for E(v) = %llvll,zH].
h

A.2. Example of total variation energy and curvature-dependent ex-
ponential mobility

The gradient flow of linear growth functionals E(h) has been
well studied; see, e.g., [51]. Here, we use the total variation energy
E(h) = [, |Vh| dx defined as

E(h) = sup {/ Vh. ggdx‘ ||(p||]_oc(11-) < 1,(p S LOO(T)} .
4 T

Consider the level set mean curvature-dependent exponential mo-
bility
M(h, Vh, ...) = e~ Vi),
Next, we will find ¢ € (#})" such that (see Appendix A.1 of this
appendix)
E(h + ev) — E(h)
- = (¢, v) +0(1)
The left-hand side of the above expression is written as
E(h+ev) —E(h) / |[V(h + ev)| — |Vh]| dx

e I e

/ Vh Vvdx +0o(1) / A% ( Vh ) dx + o(1)
= — VU = — v .
VA T [Vh|

Vh
=— AN AWV — ) d 1), 0.
/Tv( h) h <|Vh|> x+o0(1), ase —

ase — 0. (A4)

Let

¢ = AV - (%) — _Ae VD,

Hence, we obtain (A.4). By use of this formulation, (A.1) can thus
be recast to the form h; = —¢, which we regard as the weighted
H~Y(T)-gradient flow for energy functional E(h).

A.3. Semi-implicit Euler scheme approximation

In this subsection, we informally discuss a semi-implicit Euler
scheme for PDE (A.1). For a general discussion on the minimizing
movement approach to gradient flow dynamics, see, e.g., [52]. To
indicate the appropriate interpretation for the gradient flow that
we study here, let us now discretize in time so that h" := h(x, nt),
where 7 is the time step. For a given h"~! e BV(T), define

1
®(h; "1, 7)== EMh)+ —|h = h" 2
(h; . T) ( )+2T [ IIHF )

n—1

where

11 ||§{_l =— /(h —h"Hatl (h—h")dx.

n—1
pn—1 K

We discretize in time by using the unconditionally-stable semi-
implicit Euler scheme [52], viz.,

h" € argmin @(-; K", 7).

By convexity, there is a unique h" € BV(T) satisfying

ht — pn-1 A v Vi
N

—v(I Vh"
=V.|e 2R vAVAR
[Vh"|

with
1
Ehn . hn_hn—l 2 <Ehn_1.
(W) + | Iy, < B0
We thus define
h*(x,t)=h", ift € [nt,(n+ 1)1),

and, as T — 0, h'(x, t) approaches a solution of (A.1).
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