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Abstract. This paper introduces a novel data clustering algorithm based on Langevin

dynamics, where the associated potential is constructed directly from the data. To in-

troduce a self-consistent potential, we adopt the potential model from the established

Quantum Clustering method. The first step is to use a radial basis function to construct

a density distribution from the data. A potential function is then constructed such that

this density distribution is the ground state solution to the time-independent Schrödinger

equation. The second step is to use this potential function with the Langevin dynamics

at subcritical temperature to avoid ergodicity. The Langevin equations take a classical

Gibbs distribution as the invariant measure, where the peaks of the distribution coin-

cide with minima of the potential surface. The time dynamics of individual data points

Received July 16, 2018.

2010 Mathematics Subject Classification. Primary 62H30, 82C31, 60H10, 37M25.
The first author was partially supported by a grant from Varian Medical Systems.
The second author was partially supported by RNMS11-07444 (KI-Net) and the startup grant from

Peking University.
The third author was partially supported by KI-Net NSF RNMS 11-07444, NSF DMS-1514826, and
NSF DMS-1812573.
The fourth author was partially supported by NIH 2R21CA218940, NIH 1R01CA184173, NIH
1R21CA165384, and a grant from Varian Medical Systems.
Email address: kyle.lafata@duke.edu
Email address: zhennan@bicmr.pku.edu.cn
Email address: jliu@math.duke.edu
Email address: fangfang.yin@duke.edu

c©2018 Brown University

591

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



592 KYLE LAFATA, ZHENNAN ZHOU, JIAN-GUO LIU, AND FANG-FANG YIN

lead to different metastable states, which are interpreted as cluster centers. Clustering

is therefore achieved when subsets of the data aggregate—as a result of the Langevin

dynamics for a moderate period of time—in the neighborhood of a particular potential

minimum. While the data points are pushed towards potential minima by the poten-

tial gradient, Brownian motion allows them to effectively tunnel through local potential

barriers and escape saddle points into locations of the potential surface otherwise forbid-

den. The algorithm’s feasibility is first established based on several illustrating examples

and theoretical analyses, followed by a stricter evaluation using a standard benchmark

dataset.

1. Introduction. Searching for meaningful structure within hyper-dimensional data-

sets is fundamental to modern data science. Cluster analysis, i.e., the grouping of similar

data objects together based on their intrinsic properties, is a common approach to under-

standing otherwise nontrivial data. Although data clustering is a hallmark of many fields

(e.g., machine learning, data mining, pattern recognition, etc. [3, 4, 12, 20, 21, 28, 33]), it

is, in general, an ill-defined practice [10, 32] that may benefit from physics intuition. In

this paper, we propose a novel approach to data clustering based on Langevin anneal-

ing. Data points are modeled as particles satisfying the second order Langevin equations

with a self-consistent potential, where the Langevin dynamics are used to stochastically

propagate them on a potential surface. The time dynamics of individual data points

lead to different metastable states, which are interpreted as cluster centers. Clustering

is achieved when subsets of the data—as a result of the Langevin dynamics—aggregate

in the neighborhood of a particular potential minimum. To demonstrate the novelty of

such a technique, we provide the following in this paper: (1) a complete mathematical

derivation of the proposed technique, and (2) a numerical validation of the proposed

technique, using a common benchmark dataset.

Briefly, the motivation behind our approach to clustering is as follows. A given dataset

is sampled from a canonical ensemble, whose distribution takes the form of the classical

Gibbs measure,

ρA(q) = Z−1e
−V (q)

kBT , (1.1)

where kB is the Boltzmann constant, T is the absolute temperature, Z is the appropriate

partition function, q ∈ R
k is a position vector in k dimensions,1 and V (q) is a potential

function that reflects the density of the data distribution. The Gibbs distribution, ρA,

also serves as the q marginal distribution of the invariant measure of the following second

order Langevin equation,

m
d2q

dt2
= −∇V (q)− γ

dq

dt
+ Γ η(t), (1.2)

1The number of dimensions in the problem is inherently defined based on the number of data at-
tributes within a particular dataset.
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DATA CLUSTERING WITH LANGEVIN ANNEALING 593

where m is the particle’s mass, γ is a damping coefficient, η(t) is a k-dimensional

noise term, and Γ =
√
2γkBT is an amplitude scaling coefficient [7]. According to the

Fluctuation-Dissipation Theorem [11,24,37], the damping term will dissipate kinetic en-

ergy as it evolves in time, which is balanced with corresponding fluctuations in the form

of Brownian motion. Langevin dynamics are equivalently formulated as the following

stochastic differential equations of motion:

dq = p dt (1.3)

and

dp = −∇V (q) dt− γp dt+
√

2γkBT dB, (1.4)

where the noise term is specified as k-dimensional Brownian motion, B(t), p ∈ R
k is a

time-dependent momentum vector, and we let m = 1 for simplicity. Formally speaking,

while the forces from the potential surface push data points towards potential minima,

corresponding Brownian fluctuations allow them to jump small potential barriers and

escape saddle points into locations of the potential surface otherwise forbidden. The

key observation is the following. Although each trajectory is ergodic with respect to

the classical Gibbs distribution regardless of where it is initiated, when the potential

barrier between two portions of the configuration space is big, it is highly likely that

a trajectory initiated at one portion of the space will stay within the same portion

for a moderate period of time. Therefore, we are motivated to propose the following

clustering mechanism. When the potential function V (q) has several distinct minima,

if we propagate the trajectories starting from the data points of a given data set, with

a high probability, those trajectories will aggregate into several groups within a short

time. Further, if the profile of the potential function intrinsically indicates the density

distribution of the data points, the data points that end up in the neighborhood of the

same minima of V (q) after O(1) time can be considered to be in the same cluster.

Clearly, the mechanics summarized via equations (1.1)–(1.4) require a potential func-

tion, V . While V can take on any well-defined functional form, we opt in this paper to

use the Schrödinger equation to model a self-consistent potential based on the method

developed by Horn and Gottlieb [19]. As such, Euclidean data are mapped into a Hilbert

space of square intergrable functions [17] by associating with a given data set a corre-

sponding wave function, ψ(x). One can then interpret ψ(x) as the ground-state solution

associated with the quantum mechanical Hamiltonian operator,

Hψ(x) = −ε2

2
∇2ψ(x) + V (x)ψ(x), (1.5)

and inversely solve for the potential function, V (x), whose minima correspond to cluster

centers. Here, ε is a rescaled, dimensionless analog of the reduced Planck constant, � → ε,

such that ε � 1 defines the semi-classical regime: a transition regime between quantum

mechanics and classical mechanics [15, 29]. Minima of V (x) intuitively correspond to

amplified regions of high probability density within the original data set, leading to its

high-resolution functional representation [19].
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The dynamic nature of the proposed methodology is consistent with recent research

interests that study clustering as a dynamic problem [5, 25, 31, 41]. In general, dynamic

frameworks provide the unique capability to investigate how clusters are formed, and

may potentially provide important meta-stable structural information about a particular

dataset. In particular, Dynamic Quantum Clustering (DQC) extends quantum mechanics

intuition to a dynamic framework [41]. By coupling data points with Gaussian wave-

packets in a Hilbert space of wave functions, DQC interprets the data as solutions to the

time-dependent Schrödinger equation,

iε
∂

∂t
|Ψ〉 = H |Ψ〉 , (1.6)

such that clustering is achieved by temporally propagating the system based on H, and

tracking the wave-packets on their oscillatory trajectory about potential minima [43].

The relative distances between the centroids of different states changes with time

according to Ehrenfest’s Theorem, thus representing a measure of similarity between data

points. Wave-packets which oscillate around the same minima of V (x) are considered

to be in the same cluster. In general, deriving weights from distance metrics such as

this has been a hallmark of data clustering algorithms. As the convergence of many

points to a common location is a clear and intuitive indication of clustered data, many

approaches advocate constructing similarity functions. This is a way to characterize the

distance between data points and is an essential aspect of DQC, as well as methods of

spectral clustering [6, 31, 40], diffuse interface models [2, 13], and graph-clustering based

on diffusion geometry [8, 25, 31, 38].

Evolving the quantum system according to equation (1.6) leads to closed-system

physics driven by a completely conserved Hamiltonian, such that clustering is only a

transient behavior. In our methodology, while we adopt the method used in [19] to gen-

erate V (x) explicitly from the data, we propagate the trajectories based on Langevin

equations. Compared to [41], this leads to a fundamentally different dynamic scheme

influenced by the interaction between data points and a temperature-characterized en-

vironment. In fact, we derive (in Section 2 of this paper) a critical temperature, T0, in

the regime that equation (1.1) is asymptotically matched with the quantum mechanics

formalism for probability density,

ρB(x) = |ψ(x)|2 , (1.7)

such that

Z−1e
− V (x)

kBT0 ≈ |ψ(x)|2 . (1.8)

In practice, it is possible that at such a critical temperature, clustering of data is

unlikely due to relatively large stochastic fluctuations. However, at subcritical temper-

atures (that is, when T < T 0 is sufficiently small), the time-evolution is more strongly
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influenced by dissipative and systematic forces.2 Accordingly, the position of each data

point tends to first move towards, and subsequently move locally around, nearby poten-

tial minima. As will be demonstrated in this paper, this thermal annealing process is

the primary phenomenon which results in decoding meaningful structure about a given

dataset.

Data clustering is therefore a direct consequence of Langevin dynamics at subcritical

temperatures for a moderate period of time (in contrast to ergodic sampling, which is a

long-time asymptotic behavior). In fact, in the regime that T � T0, momentum decays

to a small magnitude due to nominal stochastic influence (i.e., minimal Brownian motion

where Γ � 1), resulting in a very high likelihood of data-point localization. Appropri-

ately adjusting the subcritical temperature in the thermostat provides a means to tailor

the clustering phenomenon to that of a particular data set. This subtle yet important

distinction offers a couple of key advantages. First, the Langevin dynamics framework

is fundamentally different from time-evolution based on Ehrenfest’s Theorem. The lat-

ter results in oscillatory trajectories about potential minima, which can often lead to

practically difficult implementation. Subcritical Langevin dynamics, however, lead to

damped trajectories towards potential minima, resulting in the intuitive aggregation of

data points. Second, Brownian motion allows data points to thermally jump local po-

tential barriers and escape saddle points into locations of the potential surface otherwise

forbidden. Such a tunneling phenomenon makes it possible for nearly degenerate local

minima of V (x) to merge into a single cluster. Datasets can therefore be explored with

a high resolution kernel, while still maintaining a reasonably narrow impulse response.

Given the proposed dynamic framework, there is a natural transition away from cluster

analysis based solely on geometric intuition. By interpreting the potential landscape

from a kinematic perspective—rather than solely as a geometric entity—it can be easily

generalized to higher-dimensional space [23]. Under such a generalization, the landscape

of V (x) is characterized by the net systematic force felt by each data point at a given

location contributing to the overall Langevin dynamics. In particular, there are three

important scenarios on the surface of V (x) where such an interpretation may be used to

evaluate the dynamic response of a test particle. These scenarios, which are detailed in

Section 2 of this paper, include (1) evaluation of a test particle at a saddle point on the

surface of V (x); (2) evaluation of a test particle far from all stationary points of V (x);

and (3) evaluation of a test particle approaching minima of V (x).

The remainder of this paper proceeds as follows. In Section 2, we detail the theoretical

framework of our proposed clustering algorithm, define the spatial and thermal conditions

for its effective implementation, and derive a critical temperature to match the quantum

and classical perspectives of a given dataset. In Section 3, we briefly demonstrate the

machinery used to numerically integrate the Langevin dynamics that drives the clustering

process. Numerical results are presented in Section 4. Using a common benchmark

dataset, several computational experiments are designed to evaluate the methodology and

characterize its key parameters. Concluding remarks and future directions are provided

in Section 5.

2Except for particles near stationary points of the potential surface.
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2. Data clustering with Langevin annealing. In this section, we aim to estab-

lish a general mathematical framework for data clustering based on Langevin dynamics.

The Schrödinger equation is first used to model a self-consistent potential function that

reflects the probability density of a given dataset. Langevin dynamics are then formu-

lated for such a potential, where clustering is expected to be a relatively low-temperature

phenomenon. Finally, an analytical relationship is derived between the scale of the po-

tential function and the temperature in the Langevin thermostat. The authors stress

that, while quantum mechanics intuition is borrowed to establish self-consistency, the

novelty of this paper is in the Langevin annealing. That is, the approach can be applied

to any well-defined potential function.

2.1. Constructing a self-consistent potential. Given a dataset, {xi}Ni=1 ⊂ R
k, each xi

vector is first mapped from its original k-dimensional Euclidean space into a Hilbert

space of square integrable functions,

ψi(x) = Ce−
|x−xi|2

2σ2 = Ce−
|x−xi|2

2ε , (2.1)

where σ is the resolution of the chosen radial basis function kernel whose variance, ε = σ2,

is interpreted as the semi-classical parameter (a rescaled analog of the reduced Planck

constant), and C is the appropriate normalization constant. Similar to [19], a wavefunc-

tion is then constructed as the superposition of these N wave-packets,

ψ0(x) = CN

N∑
i=1

e−
|x−xi|2

2ε , (2.2)

where CN is a normalization constant ensuring that

〈ψ0

∣∣ψ0〉 = ‖ψ0‖2L2 = 1. (2.3)

To measure the initial overlap observed amongst the set of wave-packets at a given
√
ε-

resolution, we introduce a set of weight functions,

wi (x) =
e−

|x−xi|2
2ε∑N

j=1 e
−|x−xj |2

2ε

, (2.4)

such that

N∑
i=1

wi(x) = 1. (2.5)

Next, by requiring ψ0(x) to be the ground state solution to the semi-classical Hamil-

tonian [19],

Hψ0(x) ≡
[
−ε2

2
∇2 + V (x)

]
ψ0(x) = E0ψ0(x), (2.6)
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the following potential function can be inversely calculated up to a constant:

V (x) =
ε2

2 ∇2ψ0(x)

ψ0(x)
+ E0 =

−kε

2
+

∑N
i=1 |x− xi|2 e−

|x−xi|2
2ε

2
∑N

i=1 e
−|x−xi|2

2ε

+ E0, (2.7)

where E0 is the ground state energy.3 The potential function, written in terms of equation

(2.4), becomes

V (x) =
−kε

2
+

N∑
i=1

wi(x)
|x− xi|2

2
+ E0. (2.8)

Both ψ0(x) and V (x) are intimately connected to the original Euclidean dataset.

Maxima of |ψ0(x)|2 correspond to densely populated regions within {xi}Ni=1, hence why

this mapping is a fairly common approach in conventional kernel-density estimation algo-

rithms [35]. Conversely, minima of V (x) correspond to locations where the wave-packets

are subject to high degrees of local attraction and are therefore interpreted as cluster

centers [18]. Further, ψ0(x) and V (x) are both characterized by resolution-dependent

density variations throughout the data, parameterized by
√
ε. In particular, when ε � 1,

each wave-packet is observed at a semi-classical resolution. This is a transition regime

between quantum mechanics and classical mechanics, where the position and momentum

of each wavepacket is xi and 0, respectively.4

2.2. Langevin annealing and data clustering. One essential feature of semi-classical

wave-packets (which is fundamental to the proposed clustering algorithm) is as follows.

Up to the Ehrenfest time, tE ≈ − log ε, the wave-packets can be interpreted as coherent

states, and the quantum dynamics can be approximated using Newtonian physics [1,16].

That is, the time-evolution of the wave-packets can be approximated by evolving their

parameters. Specifically, if we consider the semi-classical time-dependent Schrödinger

equation,

iε
∂

∂t
Ψi(x, t) =

[
−ε2

2
∇2 + V (x)

]
Ψi(x, t), (2.9)

whose initial condition is given by,

Ψi(x, 0) = ψi(x) = Ce−
|x−xi|2

2ε , (2.10)

then, Ψi(x, t) can be approximated by a parameterized wave-packet whose phase-space

coordinates, q(t),p(t), are determined by the classical Hamiltonian equations,

q̇ = p, (2.11)

3The ground state energy can be regarded as a bias term and does not practically affect the mechanics
of clustering.

4Momentum is zero because we have chosen, without loss of generality, not to include a phase term.
If a nonzero phase term was used, the total wavefunction would no longer necessarily be real-valued. For
simplicity in the current paper, we only consider the real-valued wavefunction.
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and

ṗ = −∇qV (q), (2.12)

with initial conditions, q(0) = xi, p(0) = 0.5

In this work, however, we treat the data points as classical points in equilibrium

with a heat bath, characterized by a temperature, T. Subsequently, we require that the

trajectory of the particles obey the following Langevin dynamics,

dqi = pi dt, (2.13)

and

dpi = −∇q V (qi) dt− γpi dt+
√
2γβ−1 dB, (2.14)

with initial conditions, q(0) = xi, p(0) = 0. Here, B(t) is k-dimensional Brownian

motion, γ is a damping coefficient, and β = (kBT )
−1

, where T is the absolute temperature

of the system and kB is the Boltzmann constant. For simplicity, we let γ = 1 and

choose to work at the characteristic scale where kB = 1. In general, propagation of

the position and momentum, based on equations (2.13) and (2.14), respectively, lead to

ergodic trajectories with respect to equations (1.1) and (2.8). Further, it can be easily

shown that the analytic form of the systematic force term (i.e., the gradient of equation

(2.8)) is composed of both a linear component and a harmonic trap,

F ≡ −∇V (x) = −
{∑

i

∇wi(x)
|x− xi|2

2
+
∑
i

wi(x)(x− xi)

}
. (2.15)

When ε � 1, as we shall show in the next section, there exists a critical temperature,

T0, such that the quantum probability distribution is asymptotically convergent to a clas-

sical Gibbs measure. The interaction between stochastic and systematic forces preserve

a state of equilibrium that guarantees a sampling of the desired canonical distribution

for a sufficiently long time, whereas clustering, which is a short time behavior, may not

be easily observed at critical temperature due to Brownian motion with a relatively large

amplitude.

However, when T < T0 is small enough, the interaction between the potential function

and the Brownian motion leads to a different equilibrium state, uniquely characterized

by a subcritical temperature, T . As such, it is highly likely that each data point follows

the gradient of the potential towards the nearest minima of V (x) where it is trapped.

Data points which end up trapped in the same minima of V (x) are considered to be

in the same cluster. Interestingly, this implies that data clustering is fundamentally

driven by Langevin dynamics at a sufficiently low temperature, T . Further, while the

5To maintain consistency between the quantum mechanical and statistical mechanical perspectives,
we have introduced the following notation: The points x̂i are used when referring to the original, static
dataset, and the points q̂, p̂ are used when referring to the time evolution of the phase space via
Langevin dynamics. Accordingly, q̂i (0) = x̂i indicates that x̂i and q̂i are essentially equal counterparts
of the quantum and classical distributions, respectively.
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systematic force acts globally on the system to push data points downhill, the Brown-

ian motion allows them to thermally jump local potential barriers into locations of the

potential surface otherwise forbidden. Such a tunneling phenomenon makes it possible

for the merging of nearly degenerate local minima of V (x). This enables the data to

be explored with a high resolution kernel, while still maintaining a reasonably narrow

impulse response (therefore reducing some of the noise that equation (2.2) may introduce

during the radial basis function operation).

To track the time-dependent changes in data overlap that transpires during the dy-

namic process described above, we introduce a weight matrix, wij , whose initial condition,

wij(t = 0) = wi(xj), (2.16)

is determined via equation (2.4). Here, we recall that the points xj are time-independent

by definition. Adhering to notation, the weight matrix as a function of time is then

wij(t) = wi(qj(t)), (2.17)

as the points qj are defined to be time-dependent. A high degree of dynamic overlap

occurs for data points that aggregate together into similar clusters, i.e., wij → 1. Con-

versely, data points that are separated into different clusters produce negligible dynamic

overlap, i.e., wij → 0.

While the magnitude of Brownian motion is invariant, the systematic net-force changes

according to equation (2.15). Evaluation of the net force acting on a particle can be used

to characterize the dynamics at various key locations on a potential landscape. As previ-

ously suggested in the introduction, such interpretation of the potential function’s land-

scape as a kinematic quantity is somewhat of a paradigm shift away from conventional

function optimization based solely on geometric intuition. In particular, the following

illustrating examples demonstrate the theoretical response of a test particle6 to three

archetypical potential function interactions:

(1) A test particle evaluated far from potential stationary points: Here, the dynamics

are dominated by steep potential gradients and dissipative effects, leading to

damped Newtonian mechanics. Accordingly, the particle’s trajectory roughly

follows the gradient of the potential.

(2) A test particle evaluated at a saddle point: Here, Brownian motion most promi-

nently influences local dynamics, kicking the particle out of the stationary point

and allowing it to continue its trajectory.

(3) A test particle evaluated near functional minima: Here, ∇V (x) ≈ 0, and the

momentum of the particle becomes small due to damping effects. Dissipation

and fluctuation are comparable in magnitude, and they dominate the dynamics

about the minima leading to dynamic particle confinement.

The simulated response of a test particle to each of these situations is demonstrated

in Figure 1, using test-functions as a proxy for the potential landscape. Each simulation

was executed from t = 0 to t = 1 with a time-step of dt = 0.01. The red stars indicate

6Here, we refer to a test particle as being a 1D proxy for a data point within the illustrating example
presented in Figure 1.
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Fig. 1. Schematic plots of typical Langevin trajectories. For each
scenario (A–C) the red star indicates the starting location. (A) A
particle’s trajectory is initialized at a saddle point, and shown to
escape for a short time. Below, the normalized systematic and sto-
chastic forces are plotted as a function of time, t. The systematic
force is the dominating effect when the particle locates the stronger

potential gradient, as indicated at time t = t
′
. (B) A particle’s tra-

jectory is initialized near a minimum, where it is contained. (C) A
particle’s trajectory is initialized away from a minimum, but ends up

contained within the minimum.

the starting location of each test particle (with zero momentum), and the black lines

demonstrate their time-trajectories according to equations (2.13) and (2.14).

A hyperbolic paraboloid (Figure 1A) was used to test the dynamic response of a par-

ticle with zero momentum starting at the function’s saddle point. In general, effectively

escaping saddle points is a fundamental research topic in optimization problems [9, 14]

and manifold learning [36]. The magnitudes of the systematic and stochastic forces (Fig-

ure 1A, bottom) are shown as a function of the time-evolution. To demonstrate their

relative effects as a function of time, force magnitudes have been normalized relative to

100% simulation completion. It is confirmed that systematic and stochastic influence are

comparable when the particle is near the stationary point, i.e., the systematic contribu-

tion is essentially trapped within the bandwidth of the stochastic noise. However, the

systematic force is the dominating effect as the particle eventually locates the stronger

potential gradient, as indicated in Figure 1A at simulation time, t = t
′
. Inverted Gauss-

ian functions (displayed as 2D projections) were used to study the dynamic response of

a test particle located near minima (Figure 1B) and far from stationary points (Figure

1C). Clearly, particle confinement at the minima is achieved in both cases as a function

of time-evolution.
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2.3. Asymptotic matching of quantum and classical distributions. As others have noted

[5,17–19,41], the conventional quantum mechanical probability density function, ρB(x) =

|ψ0(x)|2, can be interpreted as an empirical probability distribution obtained from the

original data points, {xi}Ni=1. However, we assume that this data set is a sample drawn

from a more general distribution that obeys hypotheses of a canonical ensemble. We

emphasize that this is the most distinguishable assumption in this method: instead of

viewing {xi}Ni=1 as a closed system, we consider it as a subsystem taken from an environ-

ment. As detailed above, such an environment is characterized by a temperature, T , and

there exists a critical temperature, T0, such that the quantum distribution is asymptot-

ically convergent to a classical distribution (with a discrepancy of order O(ε)). As such,

in this section we aim to asymptotically match the quantum distribution with a classical

distribution, and in the process derive an analytical expression for critical temperature,

T0.

In general, the Langevin dynamics lead to an ergodic trajectory with respect to the

classical Gibbs distribution,

F (q,p) ∝ e−βH(q,p) ≡ e
−β

(
|p|2
2 +V (q)

)
, (2.18)

whose marginal distribution is given by

f(q) =

∫
F (q,p) dp ∝ e−βV (q). (2.19)

We then denote the partition function for this marginal distribution as Z such that

f(q) =
1

Z
e−βV (q),

∫
f(q) dq = 1. (2.20)

We have thus derived the approximate probability density function from two different

perspectives: quantum mechanical and classical mechanical. As such, we propose the

following consistency condition:

ρA(x) = |ψ0(x)|2 ≈ 1

Z
e−βV (x). (2.21)

By definition, ψ0 ≥ 0, such that equation (2.21) is equivalent to

ψ0(x) ≈
1√
Z
e−

β
2 V (x), (2.22)

which leads to the following matching condition:

CN

N∑
i=1

e−
|x−xi|2

2ε ≈ 1√
Z
e−

β
2 Ce−

β
2

∑N
i=1 wi(x)

|x−xi|2
2 . (2.23)

This matching condition is carried out under the assumption that, given {xi}Ni=1, one

can choose a sufficiently small ε such that the following nonoverlapping wave-packet

condition,

wi(xj) ≈ δij , (2.24)

is nearly satisfied according to the weight functions defined via equation (2.4). This

nonoverlapping wave-packet condition means that the set of wave-packets, {ψi}Ni=1, com-

posing the wavefunction, ψ0(x), are nearly isolated Dirac delta functions at time, t = 0.
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We then proceed to reduce the matching condition into two separate components: (1)

matching function terms and (2) matching constant terms. First, if the function terms

are to be matched at {xj}, the nonoverlapping condition implies that for ε � 1, then

β = 2
ε . This necessary condition suggests that the absolute critical temperature is

T0 =
1

2
ε. (2.25)

We show in the following that when β = 2
ε , not only are the two functions matched at

{xj}, but they are approximately identity on the whole space. If we denote an effective

support of the ith wavepacket, ψi, as Ωε
i , we conclude that wi(x) ≈ 1 when x ∈ Ωε

i ,

otherwise wi(x) ≈ 0. By using the identity
∑N

i=1 wi(x) = 1, we have when β = 2
ε ,

e−
β
2

∑N
i=1 wi(x)

|x−xi|2
2 =

N∑
j=1

wj(x)e
−

∑N
i=1 wi(x)

|x−xi|2
2ε ≈

N∑
j=1

e−
|x−xj |2

2ε . (2.26)

Thus, we have shown that the function component of the matching condition is satisfied.

Next, to match the constant terms, we note that since CN and Z are both normaliza-

tion constants,

(CN )
2
=

∫ (
N∑
i=1

e−
|x−xi|2

2ε

)2

dx ≈
∫

e−
∑N

i=1 wi(x)
|x−xi|2

ε dx = ZeβC . (2.27)

Further, the nonoverlapping condition implies that when i �= j, the wave-packets are

approximately orthogonal, i.e.,

∫ (
e−

|x−xi|2
2ε

)(
e−

|x−xi|2
2ε

)
dx ≈ 0. (2.28)

Then, by direct calculation, we get

∫ (
N∑
i=1

e−
|x−xi|2

2ε

)2

dx ≈
∫ (

N∑
i=1

e−
|x−xi|2

ε

)
dx = (πε)

k
N∑
i=1

1 = N (πε)
k
, (2.29)

which is the quantum mechanical normalization constant for a Gaussian wavefunction

in k dimensions. Also, due to the nonoverlapping condition, we know that {xi}Ni=1 are

approximate zeros of V (x). By the method of deepest decent,

∫
e−

∑N
i=1 wi(x)

|x−xi|2
ε dx ≈ (πε)

k
N∑
i=1

(1 +O(ε)) . (2.30)
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Therefore, we have verified that when β = 2
ε ,

ρA(x) = |ψ0(x)|2 ≈ 1

Z
e−βV (x) = ρB(x), (2.31)

and the quantum distribution has been approximately matched with the classical Gibbs

distribution (i.e., equations (1.1) and (1.7) are asymptotically matched at the critical

temperature, T = 1
2ε).

The illustrating example in Figure 2 demonstrates quantum and classical probability

distributions matched at critical temperature, T0 = 1/β0 (equation (2.25)), by using

two 1D Gaussian wave-packets, ψi and ψj , separated by various distances along the x-

axis. When the nonoverlapping condition (equation (2.24)) is either completely or nearly

satisfied based on negligible wave-packet interference, we demonstrate that the quantum

and classical probability distributions are in reasonably good agreement. However, this

agreement fails when the overlap between the two wave-packets becomes large such that

wi(xj) �= δij .

Fig. 2. Illustration of quantum and classical probability distribu-
tions matched at critical temperature, T0 = β−1

0 . Two 1D Gaussian
wave-packets, ψi and ψj , are separated by various distances along
the horizontal axis (top). The probability distributions (bottom) are
in good agreement when the nonoverlapping condition is either: (A)
completely satisfied, i.e., wi(xj) = δij , or (B) nearly satisfied, i.e.,
wi(xj) ≈ δij . (C) The probability distributions do not agree when
the distance between the two wave-packets becomes small, where the
nonoverlapping condition is not satisfied, i.e., wi(xj) �= δij .
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3. Time integrator for Langevin dynamics. Let us recall for convenience the

Langevin dynamics that are used to propagate the position and momentum of each

wave-packet,

dq = p dt (3.1)

and

dp = −∇qV (q) dt− γp dt+
√

2γβ−1 dB, (3.2)

where q,p ∈ R
k are k-dimensional vectors of instantaneous position and momenta, re-

spectively. To numerically integrate the Langevin dynamics, we apply the BAOAB split-

ting scheme. This is a numerical integration technique previously developed by [26] to

address classical molecular dynamics problems regarding a Langevin thermostat. Here,

the Langevin dynamics are decomposed into three components: a kinetic component

(denoted by “A”),

(dq, dp) = (pdt, 0) , (3.3)

a potential component (denoted by “B”),

(dq, dp) = (0, −∇qV (q) dt) , (3.4)

and a Langevin thermostat component (denoted by “O”, for the Ornstein–Uhlenbeck

equation),

(dq, dp) =

(
0,−γp dt+

√
2γβ−1 dB

)
. (3.5)

The BAOAB procedure is then carried out as follows. The integration is discretized

into five symmetric phases per discrete time-step, Δt:

(1) the potential component (B) is integrated over 1
2Δt,

(2) the kinetic component (A) is integrated over 1
2Δt,

(3) the Langevin thermostat component (O) is integrated over Δt,

(4) the kinetic component (A) is integrated over 1
2Δt,

(5) the potential component (B) is integrated over 1
2Δt.

As each component is separable in position and momentum, each can be integrated

explicitly, leading to high accuracy, reliable stability, and low computational cost [26,

30]. The kinetic and potential components correspond to drift and kick, respectively,

as a result of global environmental interactions according to equation (2.15) [26]. The

Langevin thermostat component, defined via equation (3.5), has the following Ornstein–

Uhlenbeck solution:

(q(t),p(t)) =
(
q (0) , e−γtp(0) +

√
(1− e−2γt) (β−1)N

)
, (3.6)

where N is a k-dimensional, uncorrelated Gaussian random field. This component gov-

erns local interactions, making it possible for local minima to merge as a consequence

of thermal tunneling phenomena. As the individual components of the BAOAB scheme

essentially reduce to matrix level operations with analytic solutions, the entire algorithm

is highly parallelizable, making it an ideal candidate for modern graphics-card enabled

hardware.
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4. Numerical results and validation. In this section, we investigate the feasibil-

ity of data clustering with Langevin dynamics, using a standard benchmark dataset.

Several computational experiments have been conducted to both validate the proposed

methodology and better understand the choice of parameters driving clustering. Section

4.1 introduces the benchmark dataset (and subsequent preprocessing steps) that was

used to produce the subsequent numerical results, and Section 4.2 investigates clustering

performance and hyper-parametrization.

4.1. Benchmark data and preprocessing.

4.1.1. Ripley’s crab data. Ripley’s Crab Data [34] was used as the basis of numeri-

cal experimentation and algorithm testing in this section. This is a standard dataset

commonly used as a benchmark for classification problems. The 5-dimensional data con-

tains 200 samples of Leptograpsus variegatus crabs, each labeled as one of the following

classes: (A) blue male, (B) blue female, (C) orange male, (D) orange female. Each sam-

ple consists of 5 morphological features—one for each dimension of the problem—which

collectively capture sample-specific, quantitative information.

Accordingly, each sample is mathematically represented by a 5-dimensional feature

vector,

{xi}200i=1 ⊂ R
5.

The data is readily available in MATLAB (Mathworks, Natick, MA), where it is stored

as a 200x5 matrix, X. Columns of X correspond to a particular feature, xj , obtained

from all samples, and rows of X correspond to the 5-dimensional feature vectors, xi,

representing each sample. To ensure normalized units, each column vector, xj , was

zero-mean centered. This is a common preprocessing step in many statistical learning

approaches, in particular, Principle Component Analysis (PCA) [22]. In general, the

goal of the benchmark dataset is to reconstruct the categorical classes, based exclusively

on the quantitative information encoded within the feature vectors.

4.1.2. Singular value decomposition. Rather than clustering X in its original 5-dimen-

sional basis, we first perform a singular value decomposition (SVD),

X =

5∑
j=1

σj�uj�v
†
j , (4.1)

where �uj and �vj are the left and right singular vectors of X, and σj are the singular

values of X. The vectors, �uj , define a practical 5-dimensional coordinate system for the

data that is particularly useful for clustering problems [18,41,44]. To reduce the number

of dimensions, we truncate equation (4.1) to its first 3 leading terms, and cluster the

points, {�yi}200i=1 ⊂ R
3, within the 3-dimensional space defined by the principal coordinate

axes, (�u1, �u2, �u3).

In general, hyper-dimensional statistical learning algorithms are often subject to over-

fitting artifacts as a result of too many degrees of freedom built into models. In fact,

feature selection is a common and important first step to any modern machine learn-

ing approach. It is highly likely that our proposed algorithm should also benefit from

reducing the number of dimensions in a given dataset. In particular, as the number of

dimensions grows, the ability to find optimal values for ε and T becomes increasingly
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nontrivial.7 The authors emphasize, however, that working in the truncated SVD space

is only a preprocessing procedure used to reduce the dimensionality of the data and select

a stable basis. While it provides a convenient coordinate basis to work in, SVD is not

inherent to the clustering process itself. Other, possibly nonlinear, basis transformations

may also provide fruitful results. Further, as others have noted [19, 41], a well-defined

separation is observed in Ripley’s Crab Data between the 2nd and 3rd principal dimen-

sions of the SVD space, i.e., (�u2, �u3). In order to provide a comparison with the literature,

many of the figures that follow are displayed across these principal axes.

4.2. Clustering performance. In this section, we use Ripley’s Crab Data to demon-

strate data clustering via Langevin dynamics at subcritical temperature. The authors

stress that the data has been retrospectively color-coded to differentiate known classes.

This was done for demonstration purposes in order to easily monitor the dynamic clus-

tering process. The algorithm, however, was blind to the data classes.

Different potential functions at various scales were constructed according to equation

(2.8) with semi-classical parameters ranging from ε = 0.0001 to ε = 0.01. For each res-

olution scenario, the data points, {�yi}200i=1 ⊂ R
3, were propagated according to equations

(2.13) and (2.14) at subcritical temperature, T = 0.01T0 = (0.01)(0.5ε). Each ε-specific

dynamic process was run for a total time, tmax = 10, and a time-step, dt = 0.1.

Clustering performance was evaluated based on a generalized Jaccard score, J . This is

a similarity metric comparing the algorithm-produced clustering results with known class

labels obtained a priori from the benchmark metadata [39]. Let a = (a1, a2, . . . , a200) be a

vector whose elements correspond to the known class labels, and let b = (b1, b2, . . . , b200)

be a vector whose elements correspond the clustering results such that ai, bi ∈ {1, 2, 3, 4}
⊂ Z. The Jaccard score is then

J(a,b) =

∑
i min(ai, bi)∑
i max(ai, bi)

. (4.2)

Essentially, J is a generalization of the receiver operating characteristic, extended to

nonbinary classification problems. Here, it is used to quantify the number of data points

appearing in the same class according to both the algorithm and ground truth. A Jaccard

score of J = 1 indicates perfect clustering.

Figure 3A shows the Jaccard score achieved for the range of ε values at the subcritical

temperature, T = 0.01T0, for a total time, tmax = 10, and a time step, dt = 0.1. As

indicated by the red dashed vertical line, the performance of the algorithm was maximized

at ε = 1.225E − 3, resulting in J = 0.90. Figure 3B demonstrates a projection of the

potential (the gray-scale contour map) at this resolution, as well as the final location

of each data point according to Langevin dynamics. Reasonable clustering performance

(J ≥ 0.6) was archived for a relatively stable range of ε values within at the semi-

classical scale, as indicated by the curve’s broad shoulder between 0.001 and 0.005. As

ε → 0, performance is reduced due to decreasing interaction among data points and is

7In general, the optimization of ε and T in arbitrary hyper-dimensions is a challenging task and is a
key focus of our future work.
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Fig. 3. Sensitivity of clustering performance to different ε values.
(A) Jaccard scores, indicating clustering performance, were calcu-
lated at a subcritical temperature of T = 0.01T0. Clustering was
optimized at ε = 0.001225, resulting in a maximum Jaccard score
of J = 0.90. (B) The final location of each data point following
Langevin dynamics (plotted in color), relative to a projection of the
potential surface (gray-scale contour plot) at ε = 0.001225. Each
color corresponds to a different data class, demonstrating optimal
separation at distinct potential minima. Here, u2 and u3 represent
the 2nd and 3rd principal component axes, respectively.

demonstrated as J drops to 0.3 at very low ε. Similarly, as ε → 1, quality clustering

is no longer achieved. In this non-semi-classical limit, the Jaccard score tappers to

a suboptimal J = 0.3. Further, we note that clustering at critical temperature only

produced a maximum Jaccard score of J = 0.72, and that temperatures of T ≤ 0.01T0

resulted in particularly stable clustering results.

The following figures (Figures 4, 5, Figure 6) all demonstrate different aspects of

the dynamic clustering process with input parameters: (ε, T ) = (1.225E − 3, 0.01T0).

Specifically, Figure 4 shows the time-evolution of the data as a series of sequential snap-

shots, comparing the dynamics between critical (Figure 4A) and subcritical temperatures

(Figure 4B). The potential function is shown as a 2D projection across the 2nd and 3rd

principal component axes, and the data points have been retrospectively color-coded

according to the known data classes. At each sequential time-evolution frame, the differ-

ence between critical and subcritical evolution becomes more and more apparent. The

subcritical Langevin dynamics were run at a resolution of ε = 1.225E − 3, with a tem-

perature of T = 0.01T0, a total time, tmax = 10, and a time step, dt = 0.1. While data

aggregation is easily observed at T = 0.01T0, the Langevin dynamics at critical temper-

ature, T = T0, unveils a much less obvious structure to the dataset. This further fulfills

our intuition that clustering is a subcritical temperature phenomenon.
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Fig. 4. Data clustering as a result of Langevin annealing. The time-
dependent location of each data point is plotted, from left to right,
relative to a projection of the potential surface at ε = 0.001225.
Here, u2 and u3 represent the 2nd and 3rd principal component
axes, respectively. (A) At critical temperature,T = T0, the Langevin
dynamics produce a Jaccard score of J = 0.72. (B) At a lower
subcritical temperature, T < T0, the Langevin dynamics produce a
Jaccard score of J = 0.90. Here, a clear separation of the data points
is demonstrated, as each color corresponds to a different data class.

Next, Figure 5 shows the same time-evolution process as Figure 4, but follows the

location of each data point across all 3 principal coordinates of the truncated SVD

space. Even though the known separation in the data classes is optimal across the

2nd and 3rd dimensions, Figure 5 demonstrates that the spatial information encoded

within the other dimensions is not lost during the clustering process. The location of the

data points, which are again retrospectively color-coded according to class, are shown to

converge towards similar coordinates.
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Fig. 5. Time-dependent location of data points in 3 principal di-
mensions. The time-dependent location of each data point is plot-
ted as a series of 5 sequential snap shots (A–E) for ε = 0.001225
and T = 0.01T0. Here, u1, u2, and u3 represent the 1st, 2nd, and
3rd principal component axes, respectively. (E) Data points of the
same class (differentiated by color) are shown to aggregate at similar
spatial locations as a result of the subcritical Langevin dynamics,
producing a Jaccard score of J = 0.90.

Finally, Figure 6 demonstrates the time-dependent changes of the weight matrix, wij ,

defined via equation (2.17), as a result of the Langevin dynamics. Clearly, at 10% of

the time-evolution, wij is still densely populated along the main diagonal (thus satisfy-

ing equation (2.24), the nonoverlapping condition). As the dynamic process continues,

however, the four data classes are observed within wij , demonstrated by high intensity

regions extending from the diagonal. From 70%–100% of the time-evolution, four sets

of similar row-vectors are observed within wij , indicating that the corresponding data

points have saturated to similar locations as a result of the dynamics.
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Fig. 6. Data point overlap as a function of time evolution. The
Langevin dynamics for ε = 0.001225 and T = 0.01T0 produce
changes in data overlap, as measured by the weight matrix, wij

(equation (2.17)). (A–J) wij is shown as a series of 10 sequential
snap shots in time, where the brightness (intensity) indicates the
degree of data overlap. High intensity (white) matrix values of wij

represent a significant overlap between the ith and jth data points.
(G–J) The response of wij to Langevin dynamics results in a satu-
rated diagonal block behavior, capturing the 4 data classes.

5. Summary and outlook. In this paper, we have proposed a dynamic approach to

data clustering based on fundamental concepts borrowed from both quantum mechanics

and statistical mechanics. Due to the alarming rate at which big data is being produced,

the ability to understand hyper-dimensional datasets is becoming increasingly nontrivial.

The development of novel clustering algorithms—such as the one outlined in this paper—

is therefore an essential aspect of contemporary data analytics.

Our proposed methodology is briefly summarized as follows. A given dataset is in-

terpreted as a classical ensemble in equilibrium with a heat bath. This produces an

equilibrium distribution uniquely characterized by a temperature, T , and a resolution, ε.

Langevin dynamics are then employed to stochastically propagate data points on ergodic

trajectories obeying a classical Gibbs distribution according to the appropriate poten-

tial function. Data points which end up in the neighborhood of a particular potential

minimum are ultimately considered to be in the same cluster. Time-evolution according

to Langevin dynamics has several practical advantages with respect to robust data clus-

tering. Most remarkably is the ability for data points to thermally jump local potential

barriers and escape saddle points into locations of the potential surface otherwise forbid-

den. This tunneling phenomenon contributes to the overall dynamic optimization and

ultimate partitioning of the data into degenerate subsets.

The clustering methodology was applied to Ripley’s Crab Data, which is a common

5-dimensional benchmark dataset often used in classification problems. Accurate clus-

tering of the data classes was demonstrated at subcritical temperatures. Such a critical

temperature, T0, was derived by asymptotically matching the quantum and classical

distributions. Clustering performance was evaluated via the Jaccard score, where the
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algorithm achieved a maximum value of 90% at T = 0.01T0 and ε = 1.225E − 3. At

this same resolution, critical temperature Langevin dynamics produced a slightly worse

Jaccard score of 72%.

Others have demonstrated that Langevin dynamics can be implemented to better op-

timize conventional statistical learning techniques, including Bayesian learning [42] and

deep neural networks [27]. Our algorithm can potentially be improved in a similar man-

ner by coupling it with traditional machine learning algorithms. In our case, the optimal

scale to probe data is different for various datasets, and therefore choosing reliable ε and

T values is fundamentally a task-based endeavor. Further, these parameters need to be

chosen in a sequential way: ε defines an ideal potential landscape, and T defines the

dynamics that yield the desired clustering results. Pairing our current approach with

traditional statistical learning techniques would generalize such hyper-parameterization

in a task-based manner. For example, implementation of a Bayesian feedback loop ter-

tiary to the main algorithm would continuously improve the clustering performance as

more data is warehoused to support a particular application. Thus, in principle, the

methodology presented in this paper only represents the core component of a potentially

much larger computational pipeline with a broad range of applications.

Other future research will consist of a detailed comparison study between our approach

with other dynamic clustering algorithms. We also plan to (a) explore new challenges

that arise when the number of dimensions grows significantly large; and (b) investigate

the potential benefit of colored-noise Langevin dynamics, where a spatially dependent

temperature gradient may produce new, fruitful clustering results.

References

[1] D. Bambusi, S. Graffi, and T. Paul, Long time semiclassical approximation of quantum flows: a
proof of the Ehrenfest time, Asymptot. Anal. 21 (1999), no. 2, 149–160. MR1723551

[2] A. L. Bertozzi and A. Flenner, Diffuse interface models on graphs for classification of
high dimensional data [reprint of MR3022033], SIAM Rev. 58 (2016), no. 2, 293–328, DOI
10.1137/16M1070426. MR3493948

[3] A. Bewley and B. Upcroft, Advantages of exploiting projection structure for segmenting dense 3d
point clouds, Proceedings of Australasian Conference on Robotics and Automation (2013).

[4] L. V. Bijuraj, Clustering and its applications, Proceedings of National Conference on New Horizona
in IT (2013).

[5] K. Blekas and I. E. Lagaris, Newtonian clustering: An approach based on molecular dynamics and
global optimization, Pattern Recognition 40 (2007), 1734–1744.

[6] T. Buhler and M. Hein, Spectral clustering based on the graph p-laplacian, Proceedings of the 26th
International Conference on Machine Learning (2009), 81–88.

[7] W. T. Coffey, Yu. P. Kalmykov, and J. T. Waldron, The Langevin equation, with applications to
stochastic problems in physics, chemistry and electrical engineering, 2nd ed., World Scientific Series
in Contemporary Chemical Physics, vol. 14, World Scientific Publishing Co., Inc., River Edge, NJ,

2004. MR2053912
[8] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker, Geo-

metric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps,
Proceedings of the National Academy of Sciences 102 (2005), no. 21, 1788–1794.

[9] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio, Identifying and attacking
the saddle point problem in high-dimensional non-convex optimization, Proceedings of the 27th
International Conference on Neural Information Processing Systems (2014), 2933–2941.

[10] V. Estivill-Castro, Why so many clustering algorithms — a position paper, ACM SIGKDD Explo-
rations Newsletter 4 (2002), no. 1, 65–75.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



612 KYLE LAFATA, ZHENNAN ZHOU, JIAN-GUO LIU, AND FANG-FANG YIN

[11] D. J. Evans, D. J. Searles, and S. R. Williams, Fundamentals of classical statistical thermodynamics.
Dissipation, relaxation and fluctuation theorems, WILEY-VCH Verlag Berlin GmbH, Weinheim,
2016. MR3497107

[12] R. Filipovych, S. M. Resnick, and C. Davatzikos, Semi-supervised cluster analysis of imaging data,
Neuroimage 54 (2011), no. 3, 2185–2197.

[13] C. Garcia-Cardona, A. Flenner, and A. G. Percus, Diffuse interface models on graphs for clas-
sification of high dimensional data, Proceedings of the 2nd International Conference on Pattern

Recognition Applications and Methods (2013), 78–86.
[14] R. Ge, F. Huang, C. Jin, and Y. Yuan, Escaping from saddle points – online stochastic gradient for

tensor decomposition, JMLR: Workshop and Conference Proceedings 40 (2015), 1–46.
[15] P. Gérard, P. A. Markowich, N. J. Mauser, and F. Poupaud, Homogenization limits and Wigner

transforms, Comm. Pure Appl. Math. 50 (1997), no. 4, 323–379, DOI 10.1002/(SICI)1097-
0312(199704)50:4〈323::AID-CPA4〉3.3.CO;2-Q. MR1438151

[16] G. A. Hagedorn and A. Joye, Exponentially accurate semiclassical dynamics: propagation, localiza-
tion, Ehrenfest times, scattering, and more general states, Ann. Henri Poincaré 1 (2000), no. 5,
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